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ON THE DISCRETE COUNTERPARTS OF
ALGEBRAS WITH STRAIGHTENING LAWS

MITSUHIRO MIYAZAKI

ABSTRACT. We study properties of a poset generating a
Cohen-Macaulay algebra with straightening law. We show
that if a poset P generates a Cohen-Macaulay algebra with
straightening law, then P is pure and, if P is moreover
Buchsbaum, then P is Cohen-Macaulay.

1. Introduction. DeConcini, Eisenbud and Procesi defined the
notion of Hodge algebra in their article [4] and proved many properties
of Hodge algebras. They also showed that many algebras appearing
in algebraic geometry and commutative ring theory have structures of
Hodge algebras. In fact, the theory of Hodge algebras is an abstraction
of combinatorial arguments that are used to study those rings.

A Hodge algebra is an algebra with relations which satisfy certain
laws regulated by combinatorial data. There exist many Hodge algebras
supported on the same combinatorial data; however, there is one which
is, in some sense, the simplest Hodge algebra with given combinatorial
data, called the discrete Hodge algebra. For a given Hodge algebra, we
call the discrete Hodge algebra with the same combinatorial data the
discrete counterpart of it. DeConcini, Eisenbud and Procesi proved
that:

e A Hodge algebra and its discrete counterpart have the same dimen-
sion.

e The depth of the discrete counterpart is not greater than the depth
of the original Hodge algebra.

It is known that there is a Hodge algebra whose discrete counterpart
has strictly smaller depth than the original one [5].

But if we restrict our attention to ordinal Hodge algebras (algebras
with straightening laws, ASL for short), the influence of the combina-
torial data on the ring theoretical properties becomes greater. So there
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may be a restriction to the combinatorial data by the ring theoretical
properties of an ASL.

The purpose of this article is to study properties of combinatorial data
of a Cohen-Macaulay graded ASL. Since it is equivalent to studying
the properties of combinatorial data of an ASL, i.e., the properties
of the partially ordered set (poset for short) generating the ASL (see
Section 2 for terminology), and to studying the properties of the
discrete counterpart, our results are sometimes written in the language
of posets and sometimes in the language of commutative rings.

We have to comment upon the result of Terai [12]. Let I be a
homogeneous ideal in a polynomial ring R and 7 a term order. Terai
proved in [12] that depth R/I —depth R/in (I) < 1 in the ASL setting.
Unfortunately Terai’s argument is not correct since it works as well
for any initial ideal and there are plenty of examples showing that
depth R/I — depth R/in (I) can be larger than 1. Indeed the difference
between the depth of R/I and that of R/in (I) can be arbitrarily big.
This happens even if I is a prime ideal defining a smooth projective
variety and 7 is a degrevlex order as the following example shows.

Example 1.1. Let I be the ideal of the 2-minors of an n X n generic
symmetric matrix X = (z;;), and let 7 be the revlex order associated
with 217 > @12 > -+ > Z1p, > Tog > -+ > Xpy,. The depth of R/T is n
and the depth of R/in (I) is 2.

In Section 3, we note that if P generates a Cohen-Macaulay ASL, then
P is pure. In Section 4, we show that if P generates a Cohen-Macaulay
ASL, and P itself is Buchsbaum, then P is Cohen-Macaulay.

Consider the following four conditions.
(i) P is a poset.

(ii) P is a pure poset.

(iii) P is a Buchsbaum poset.

(iv) P is a Cohen-Macaulay poset.

The implications (iv) = (iii) = (ii) = (i) are trivial or well known.
And the results of Sections 3 and 4 show that with the assumption
that there is a Cohen-Macaulay ASL generated by P, (iii) = (iv) and
(i) = (ii) are also valid.
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2. Preliminaries. In this article all rings and algebras are com-
mutative with identity. We denote the number of elements of a finite
set X by |X| and, for two sets X and Y, we denote by X \ Y the
set {x € X | z ¢ Y}. The set of integers (respectively non-negative
integers) are denoted by Z (respectively N). Standard terminology
on Hodge algebras and Stanley-Reisner rings are used freely. See [1,
Chapter 5], [2, 4, 6] and [11, Chapter II] for example. However, we use
the term “algebra with straightening laws” (ASL for short) to mean an
ordinal Hodge algebra. Therefore, we use the expression like “A is a
Hodge algebra over k generated by H governed by 3” or “A is an ASL
over k generated by H.” But we sometimes use the expression like “A
is an ASL over k supported by H.”

In addition we use the following notation and convention.
e We use the term poset to stand for finite partially ordered set.

e If P is a poset, we denote the set of all the minimal elements of P
by min P.

e If P is a poset, a poset ideal of P is a subset @ of P such that
zr€Q,y€ePandy<czimplyyeq.

e For a poset P, we define the order complex A(P) of P by

A(P) :={o C P | o is a chain},

where a chain stands for a totally ordered subset.

e We denote the Stanley-Reisner ring k[A(P)] by k[P], where k
is a commutative ring and P is a poset. And if k[P] is Cohen-
Macaulay (or Buchsbaum respectively), then we say P is Cohen-
Macaulay (Buchsbaum respectively) over k.

e If A is a Hodge algebra over k generated by H governed by X,
we denote by Agis the discrete Hodge algebra over k generated by H
governed by X.

e If B is an N™-graded ring with B(q,. . o) a field, then we denote by
depth B the depth of By, where M is the unique N™-graded maximal
ideal.

Next we recall the notion of a standard subset [9].
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Definition 2.1. Let A be a Hodge algebra over k generated by H
governed by Y. A subset Q of H is called a standard subset of H if for
any element z € QA and for any standard monomial M; appearing in
the standard representation

z =Y bM; (0#b; €k, M; standard)
of z, supp M; meets Q.

For example, a poset ideal of H is a standard subset by Fact 2.3 below.
Note that if €2 is a standard subset of H, then A/Q A is a Hodge algebra
over k generated by H \ 2 governed by {u € ¥ | suppp N Q= o}

Now we recall several facts.

Fact 2.2 [4, Theorem 6.1 and Corollary 7.2]. If A is a graded Hodge
algebra over a field, then

dim Adis = dim A

and

depth Agis < depth A.

Fact 2.3 [4, Proposition 1.2]. If A is a Hodge algebra over k
generated by a poset P governed by % and Q is a poset ideal of P,
then A/QA is a Hodge algebra over k generated by P\ Q governed by

{peX|supppn@ =g}
Like [11, IL.5], we make the following

Definition 2.4. For a Hodge algebra A over k generated by H
governed by X, we define

core H := U supp NV,
N is a generator of X

coreX := {yu € ¥ | suppp C core H},
core A:= A/(H \ core H)A.
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It is obvious that if @ = {z1,...,2:} is a subset of H such that
QNcore H= @, then Q is a standard subset of H and z1,... ,z; is an
A-regular sequence. In particular,

Lemma 2.5. core A is a Hodge algebra generated by core H governed
by core X.. Furthermore, if H \ core H = {x1,... ,x+}, then xy,... 2
is an A-regular sequence and core A = A/(xy,... ,x¢).

Moreover, it is easily verified that
(core A)qgis = core (Agis).

So we denote both sides by core Ag;s.

3. Stepping stones. In what follows in this article, we focus our
attention on ASL and consider the following

Problem 3.1. If there is a Cohen-Macaulay ASL over k generated
by a poset P, what can be said about P? In particular, is P Cohen-
Macaulay over k?

To tackle this problem, we state two stepping stones and consider the
following four conditions.

(i) P is a poset.
(ii) P is a pure poset.
(iii) P is a Buchsbaum poset.
(iv) P is a Cohen-Macaulay poset.

The implications (iv) = (iii) = (ii) = (i) are trivial or well known.
And in the following, we state that, under the assumption that there
is a Cohen-Macaulay ASL generated by P, (iii) = (iv) and (i) = (ii)
are also valid.

As for (i) = (ii), we first recall the following result of Varbaro.

Fact 3.2 [13, Corollary 2.13]. Let S be a polynomial ring over a field
with monomial order and I an ideal of S. If S/I is Cohen-Macaulay,
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then Spec (S/in (I)) is connected in codimension 1, where in (I) stands
for the initial ideal of I.

Assume that A is a graded Hodge algebra over k. Then it is well
known that there is a polynomial ring S with monomial order and a
graded ideal I of S such that

A~ S/I and Ags =~ S/in(I).

Therefore, by the result of Varbaro, we see the following result (cf. [13,
Remark 1.1]).

Corollary 3.3. Let A be a Cohen-Macaulay graded Hodge algebra
over a field. Then Spec (Aqis) is connected in codimension 1. In
particular, Agis is equidimensional.

In particular, we have the following

Corollary 3.4. Let P be a poset. If there is a Cohen-Macaulay ASL
generated by P, then P is pure.

4. Buchsbaum posets supporting Cohen-Macaulay ASL’s are
Cohen-Macaulay. In this section, we shall prove that if a poset P
generates a Cohen-Macaulay ASL and if P itself is Buchsbaum, then
P is Cohen-Macaulay.

We begin by noting the graded version of the theorem of Huckaba and
Marley [7], which is proved by noting Lemma 4.2 below and reducing
the proof of [7, Proposition 3.2] to the case of bigraded prime ideals.

Theorem 4.1 (The graded version of the theorem of Huckaba-
Marley). Let A be a non-negatively graded Noetherian ring with Ay
a field and I a non-nilpotent graded ideal of A. Denote by R the Rees
algebra with respect to I and by G the associated graded Ting. Suppose
that

depth G < depth A.

Then
depth R = depth G + 1.
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Lemma 4.2. Let R be an N%-graded ring and I an ideal of R which
18 homogeneous in the first grading. If we set

I" := (a € I | a is homogeneous in the second grading),

then
I" = (z € I |  is bihomogeneous).

In particular, I* is a bigraded ideal.
By a standard argument (cf. [10] for example), we see the following

Lemma 4.3. Let k be an infinite field and G an N™-graded Hodge
algebra over k. Then for any o € Z™, [H4(G)], is a subquotient of
[H%/ (Gais)]a, where N (or N' respectively) is the unique N™-graded
mazimal ideal of G (Gais Tespectively).

Now we state the following

Theorem 4.4. Let A be a graded Cohen-Macaulay square-free Hodge
algebra over a field k. Suppose that core Agis is Buchsbaum. Then Agis
is Cohen-Macaulay.

Proof. Let H be the poset which generates the Hodge algebra A, and
let ¥ be the ideal of monomials on H which govern A. We may assume
that HNY = & (i.e., h is a standard monomial for any h € H). Set
A= {0’ g H ‘ Hziea ZI; §é E} Then Adis = ]{?[A]

In order to prove the theorem, we may assume, by tensoring an
infinite field containing k, that k is an infinite field. And by considering
core A instead of A, we may assume that Aq;s = k[A] is Buchsbaum.

We prove the theorem by induction on |ind A|, where ind A stands for
the indiscrete part of A (cf. [4, page 16]). If ind A = &, then Ag;s = A
and the assertion is clear. So we assume that ind A # @.

Take a minimal element z of ind A and set I = xA. Denote by R the
Rees algebra with respect to I and by G the associated graded ring.
Then R is a bigraded ring and G is a bigraded Hodge algebra over k
such that ind G C ind A \ {z} with structure map H 3 h — h* € G,
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where h* denotes the leading form of h with respect to I ([4, Theorem
3.1)).

If G is Cohen-Macaulay, then by the inductive hypothesis, we see that
Agis = Gais is Cohen-Macaulay. So we assume that G is not Cohen-
Macaulay. Set depthG = e and dim A = d. And let M (respectively
m) be the unique bigraded (respectively graded) maximal ideal of R
(respectively A).

Since R and G are bigraded rings, there are two entries in the degrees
of these rings. From now on, we denote the original degree inherited
from A as the first entry and the newly defined degree by the Rees
algebra structure as the second entry. Then degz* = (deg az,1) and
degy* = (deg 4y, 0) for any y € H\{z}, where deg 4 denotes the degree
as an element of A. Then, since A is concentrated in degree Z x {0}
and Hi;(A) = HL (A), we see by the long exact sequence of the local
cohomology modules obtained by the short exact sequence

(4.1) 0— Ry —R—A—0
that

for any i, u, n € Z with n # 0, where Ry = ®(yn)czx2z,n>0B(u,n)-

On the other hand, since IR = R, (0, 1), by the long exact sequence
obtained by
0—IR—R—G—0,

we see that there is an exact sequence
(4.3) )

, e — [Hy ' (@) w,n)
— [H;\/TI(R+)](u,n+1) — :

for any u, n € Z.

Now we recall the following result of Hochster.

Theorem 4.5 (see [11, Chapter II, 4.1 Theorem]). Let A be a
simplicial complex with vertex set {x1,...,zn}. Then the Z"-graded



ALGEBRAS WITH STRAIGHTENING LAWS 87

Hilbert series of HE (k[A]) is

Z (dimkfliflalfl(linkA(a);k)) H :

ocEA T €0 7

where m is the unique graded mazimal ideal. In particular, if kx4, ...,
T,] is equipped with N?-grading such that deg x; = (a;,b;) with (a;,b;) €
N2\ {(0,0)} for any i, then the Z*-graded Hilbert series of H: (k[A])

8
)\*ai'u*bi

1— A—aiy=bi’

3 (dime B 7 linka (0); 7)) [

ocEA T, €0

We return to the proof of Theorem 4.4. By Theorem 4.5 and
Lemma 4.3, we see that

(4.4) [H} (G)](um) = 0 if n > 0.
So we see by (4.3) that the map
[H (Bl wnr1) — [Hir (B)]wm)
is an epimorphism for any %, u, n € Z with n > 0. On the other hand,
[HIi\/I(RJr)](u,n) =0 forn>0,
since Hi;(R,) is an Artinian module. Therefore, we see by (4.2) that
[y (Re)] () == [Hig (B))(umy = 0

for any i, u, n € Z with n > 0.
So by (4.3), we see that

[(H (G)](w,0) = [Hir (R)](u,0)

for any u € Z. Since depth R = depthG +1 = e+ 1 by Theorem 4.1, it
follows that [Hj;(R)](u,0) = 0 and therefore [Hf,;(G)](u,0) = 0 for any
u € Z. On the other hand, since e = depth G, we see by (4.4) that
there are u and n € Z such that

[H3 (G)l(un) #0 and n <O0.
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It follows from Theorem 4.5 and Lemma 4.3 that
H™171=1(linka (0); k) #£ 0 for some o € A with o 5 =.

But this contradicts the assumption that Agis = k[A] is Buchsbaum.
(For characterizations of Buchsbaum complexes, see e.g., [8].) o

Remark 4.6. Let k be a field, B = k[y1,y2,ys] the polynomial
ring over k with 3 variables and A the second Veronese subring of
B. Then A is a Cohen-Macaulay domain of dimension 3. Set H =
{h117 h12, h13, h22, h23, h33} and define the order on H by h11 > h12 >
h13 > hog > hoz > h3s. Then A is a homogeneous Hodge algebra over
k generated by H with structure map h;; — y;y; governed by the ideal
of monomials on H generated by {h%Z’ h12h13, h%?), h13h22, hlghgg, h%3}
And core Ag;s is isomorphic to

k[ X 12, X13, X22, Xa3] /1
where Xi2, X13, X2 and X533 are indeterminates and
I = (X3y, X12X13, X3, X13X22, X13X23, X33).

Since
I = (X12, X13, X22, X23)* N (X715, X13, X35)

and
I: (X12, X13, X22, Xo3) = (X715, X13, X35)

is the primary component corresponding to the unique minimal prime
ideal (X12, X13, Xa3) of I, it is easily verified that

Iia = (X5, X13, X33)

for any system of parameter a of core Agjs. So core Ag;s is Buchsbaum.
Therefore, the square-free assumption in Theorem 4.4 is essential.
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