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THE ELIAHOU-KERVAIRE RESOLUTION IS CELLULAR

JEFFREY MERMIN

ABSTRACT. We construct a regular cell complex which
supports the Eliahou-Kervaire resolution of a stable ideal.

1. Introduction. A central object in the study of a homogeneous
ideal I C S = k[zy,...,x,] is the minimal free resolution, which
encodes much information about the homological and combinatorial
structure of the ideal. While algorithms to compute minimal free
resolutions are known, the problem of describing them explicitly has
proven intractable, even for monomial ideals. Thus, there has been a
lot of work in recent decades describing the minimal free resolutions of
well-behaved classes of monomial ideals.

One of the most important results in this vein is the Eliahou-Kervaire
resolution [12], which elegantly describes the minimal resolution of a
stable ideal in terms of its monomial generators. The stable ideals are
a large class of monomial ideals containing (in characteristic zero) the
Borel-fized ideals. These occur as generic initial ideals of arbitrary
ideals [3, 13], and so arise in many contexts.

Another approach has been to study non-minimal free resolutions.
These reveal slightly less information than do minimal free resolutions,
but are often much easier to describe. For example, the Taylor reso-
lution [21] is a very clean (but usually highly non-minimal) resolution
for any monomial ideal.

One of the most exciting recent developments in the study of resolu-
tions has been the idea of simplicial resolutions [2], resolutions which
can be described completely in terms of a simplicial complex. The Tay-
lor resolution is simplicial, as are the minimal resolutions of “generic”
monomial ideals. This idea was extended by Bayer and Sturmfels [7]
to regular cell complexes, and later by Jollenbeck and Welker [15] to
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CW complexes. We say that a resolution is cellular (respectively sim-
plicial, CW) if it can be encoded by a regular cell complex (respec-
tively, a simplicial or CW complex). Velasco [22] uses this theory
to construct families of monomial ideals whose minimal resolutions are
characteristic-dependent, as well as monomial ideals whose minimal res-
olutions cannot be described by any CW complex. Batzies and Welker
[1], using discrete Morse theory, show how to construct (not necessarily
minimal) CW resolutions inside the Taylor resolution of any monomial
ideal. There are techniques for using cellular resolutions to construct
resolutions of new ideals; for example, Sinefakopoulos [19] builds the
minimal resolutions of certain p-Borel-fixed ideals from a polytopal res-
olution of a power of the maximal ideal.

There are few examples of interesting resolutions which are cellular
but not simplicial. Sinefakopoulos constructs in [20] a cellular complex
supporting the minimal resolution of any Borel ideal generated in a
single degree. Corso and Nagel [9, 10] describe cellular resolutions of
Ferrers ideals of many graphs, including bipartite graphs and stable
ideals generated by quadrics. Nagel and Reiner [17] extend this
construction to a larger class of ideals, including Borel ideals generated
in one degree. Even these examples are polytopal complexes (i.e., they
can be embedded in R™ so that each cell is a polytope), however, so
it was unclear that the full generality of the cellular case in [7] was
necessary.

In Theorem 5.3 we show that the Eliahou-Kervaire resolution of any
stable ideal is cellular. This is not a duplication of Sinefakopoulos’s
or of Nagel and Reiner’s work, even in the case of a Borel ideal gener-
ated in one degree: their complexes have very different combinatorial
structure (see Figures 4 and 5), and describe a different basis for the
resolution than that given by Eliahou and Kervaire. As noted by the
referee, it would be interesting to have a better understanding of the
relationship between the constructions of [17] and [10]. For example,
these complexes coincide for the square of the maximal ideal in four
variables. The complex constructed in this paper is not polytopal in
any obvious way. In the example above, the construction does seem
to be closely connected to a CW complex described by Batzies and
Welker [4], but it is not clear if the complex their construction pro-
duces is regular. Simultaneously with this project, Clark [8] has used
the theory of poset resolutions ([7]) to prove the existence of a cell
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complex supporting the Eliahou-Kervaire resolution. It is possible to
trace a construction through Clark’s proof, and the resulting complex,
while not embedded in R™ in any natural way, seems to be combi-
natorially equivalent to the complex given in Construction 4.1. This
work and [8] approach the problem from very different directions: [8]
begins with the resolution and builds a complex out of it, whereas we
essentially build the complex from scratch and show that it supports
the resolution, but the topological intuition appears to be the same.

Section 2 gives a quick overview of cellular resolutions and the
Eliahou-Kervaire resolution. In Section 3, we recall a well-known cell
complex that supports the Eliahou-Kervaire resolution of a power of the
maximal ideal in k[z1, z2, 23], and in Sections 4 and 5 we generalize this
construction to arbitrary dimension.

2. Background and notation. Let S = k[zi,...,x,] be the
polynomial ring in n variables. We impose a grading and multigrading
on S by setting degxz; = 1 and mdeg z; = x;.

A monomial of S is an element of the form m = z{*---z% . The
exponent vector of m is a = (ai,...,ay,). For convenience, we will
frequently write m = x®. The monomial x® has degree |a|] = Y a;
and multidegree x®. By abuse of notation, we will routinely identify
monomials (and multidegrees) with their exponent vectors.

A monomial ideal is an ideal M which is generated by monomials. All
ideals appearing in this paper will be monomial ideals. Every monomial
ideal has a unique minimal generating set of monomials gens (M); we
call the elements of this set the generators of M.

Definition 2.1. For a monomial m = x®, we set max(m) = max{3 :
a; # 0}, the largest index with a positive exponent in m. Since the
monomial 1 is the empty product, we set max(1) = 0. The variable
Tmax(m) 1 thus the minimal variable dividing m in any of the natural
term orders; we will attempt to avoid this source of confusion by
discussing monomial orders as little as possible.

Definition 2.2. We say that a monomial ideal M is stable if it
satisfies the condition:
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Let m € M be a monomial, and suppose ¢ < max(m). Then
M(Z;/Tmax(m)) € M as well.

Stable ideals were introduced by Eliahou and Kervaire [12] as a class
of ideals minimally resolved by the Eliahou-Kervaire resolution. The
class of stable ideals includes Borel ideals, which occur as generic initial
ideals in characteristic zero [3, 13].

Proposition 2.3. Let M be a stable ideal and m € M a monomial.
Then there exists a unique gemerator g and monomial h such that
m = gh and, for every x; dividing h, we have i > max(g).

Definition 2.4. Let M, m, g and h be as in Proposition 2.3. Then g
and h are called the beginning and end of m, respectively, and we write
beg (m) = g and end (m) = h.

Proof of Proposition 2.3. If m is a generator of M, set ¢ = m and
h = 1. Otherwise, set m' = m/Zpax(m). Since m is not a generator,
there exists some z; dividing m such that m/z; € M. Since M is stable,
it follows that m' = (m/x;)(:/Tmax(m)) € M as well. By induction
on the degree of m, we may write m’ uniquely in the form m' = ¢g'h/;
set g = ¢’ and h = h'Trax(m). The uniqueness of this decomposition is
immediate since Tmax(m) must divide h. ]

A free resolution of an ideal M is an exact sequence
F:-- .2 F—>F—=F—M-=Q0,

with each F; a free S-module. When M is a monomial ideal, F
inherits a natural multigraded structure if we require that the maps
¢; : F; — F;_1 preserve multidegree. The resolution F' is minimal if
each F; has minimum possible rank, or, equivalently, if every entry in
the matrices associated to the maps ¢; is contained in the homogeneous
maximal ideal.

Stable ideals are minimally resolved by the Eliahou-Kervaire resolu-
tion [12], defined below.

Definition 2.5. Let M be a monomial ideal. An EK-symbol for M is
a pair of the form [f, a], where f € gens (M) is a minimal generator of
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M and « is a squarefree monomial satisfying max(«) & max(m). The
EK-symbol [f, @] has multidegree fo and homological degree deg ().

Definition 2.6. If « is a squarefree monomial andz; divides «, put
sgn (z;, ) = 1 if the cardinality of the set {x; : z; divides @ and j <1}
is odd, and sgn (z;, ) = —1 if it is even.

For an EK-symbol [f, o], the differential is given by

dfa)= S sen(ea) [f, g]

. i
z; divides a

C sl aend (o) pes ), 2

z; divides a

where we treat a pair [f', /] as zero if it is not an EK-symbol (i.e., if
max(a’) > max(f’)).

The proof that the Eliahou-Kervaire resolution is in fact a minimal
resolution usually uses mapping cones. A nice treatment is given by
Peeva and Stillman in [18].

Definition 2.7. For the formal definition of a regular cell complex,
see [6, Chapter 6.2] or [5, Chapter 4.7]. For our purposes, a regular
cell complex A is a finite collection of closed d-balls Ay (called d-
cells) for every dimension d, such that the boundary of each d-cell
is a union of (d — 1)-cells. There is an orientation or incidence function

e:Ax A— {-1,0,1} which satisfies:
e c(F,G) =0 unless FF € Wy and G € A;_; for some d.
e For all F and H, ) ,e(F,G)e(G,H) =0.

¢(F, @) indicates whether G appears with positive or negative orien-
tation in the boundary of F.

We say that a cell complex A is simplicial if each cell is a simplex,
and polytopal if it can be embedded into some R™ in such a way that
each cell is a polytope.

Intuitively, we say that a resolution F is supported on a cell complex
A if the vertices of A can be labeled with monomials in a way that
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allows us to read off the maps of F' from the incidence function . We
formalize this as follows.

Definition 2.8. Let A be a regular cell complex and F be a
resolution such that each free module F,; has a basis {f¢} indexed
by the d-cells of A. We say that F is supported on A if it is possible to
label the cells of A with monomials such that:

e Each cell is labeled by the least common multiple of its vertices,

label (G) = lemy e (label (v)).

e The differential maps of F are given by

label (F)

O(fr) = e(F,G)——rt.
(Fr) ;( )label(G)

Implicit in this definition is the requirement that the number of d-
dimensional cells in A be equal to the rank of the free module Fj.

Example 2.9. In this example, we show that the Taylor resolution
(which non-minimally resolves every monomial ideal) is supported on
a simplicial complex. For a monomial ideal M = (go,...,9m), the
module Fj is the free module with basis consisting of the formal symbols
[Gigy -+ >8] With 0 < ig < iy < --- < is < m. The symbol [giy,. .- ,gi.]
has multidegree lcm (g;,, - - - ,g;,) and differential

S

: lcm(gi ,...,gis) -
¢S([gi07“‘7gis]) :Z(_I)J : [gi07"'7gij7"'7gis]'

s lcm(gio,...,@,...,gis)

For example, if M = (2%, zy,y>), the Taylor resolution of M is given

by
3
SN Sley® (00 Y\ S
1 ® —y2 0 z f2>)
y? S[a?, = 22 o) g (22 zy y3)
— Y ] _ = 4 xy] = 77 LM
D D

S[mz, zy| S[ys]

0 — S[z2 zy,y°] — 0.
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Now let A be the simplex on m vertices labeled g, ... , gm, and label
each face of A by label (F) = lem{yg; : g; € F}. The d-faces of F are
indexed by ordered tuples [gi,,.-. ,9i,] With 0 < ig < -+ < ig < m,

and the simplicial boundary maps are given by

S

d([giov'" agis]) = Z(_l)s[giov"' 7.61';7"' 7giy5]7
=0

which differ from the Taylor boundary maps only by the absence of the
monomials, which can be recovered as label ([g;,, - - ., 9i.])/label ([gs,,
-s Giys--9i,])- Thus, we say that the resolution of M is supported
on the (simplicial) complex A.

In the example M = (z2, zy,y*), the labeled simplex is as in Figure 1.

Xy Xy y

FIGURE 1. The Taylor resolution of (22, zy, y3).

ac? [J,ab] pe2

FIGURE 2. The Eliahou-Kervaire resolution of (a, b, c)3.
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3. Powers of the maximal ideal in three variables. In
this section, we recall the well-known cell complex which supports the
resolution of a power of the maximal ideal of R = k[a,b,c]. T am not
sure where, if anywhere, the picture in Figure 2 has been published; I
first saw it in a class taught by Irena Peeva in 2005.

We construct the complex supporting the resolution of (a,b,c)¢ as
follows: First, we intersect the first orthant of R? with the hyperplane
r1 + 2 + 3 = d, and take the lattice points as vertices. We label the
vertices in the natural way (so that (d,0,0) is labeled by a?, etc.), and
draw edges as follows:

For every vertex m = nc divisible by ¢, add oriented edges pointing
from m to nb and na (these edges will have labels nbc and nac, and
correspond to the EK symbols [nc,b] and [nc, a], respectively), and for
every vertex m = nb divisible by b but not by ¢, add an oriented edge
pointing from m to na (this will be labeled nab and correspond to the
EK-symbol [nb, a]).

The faces consist of squares with vertices nc?, nbc, nab, nac for every
monomial n of degree d— 2 (corresponding to the EK-symbol [nc?, ab]),
and triangles with vertices a"b°c,a"b*t!,a"t1b% for r +5s = d — 1
(corresponding to the EK-symbol [a"b%c; ab]); we orient them clockwise.

It is straightforward to verify that the complex constructed above
supports the Eliahou-Kervaire resolution; it is much less obvious how
it can be generalized for more variables. Our strategy is to break the
cells down as simplicial complexes.

We observe the following:

Remark.

e Fach of the rectangular cells in Figure 2 has unique top and bottom
vertices. These are its last and first vertices, respectively, in the lex
order.

e The edges at the boundary of each rectangular cell describe two
oriented paths of length two from the top vertex to the bottom vertex.

o If we define the top and bottom vertices of a triangular cell to be
its lexicographically least and greatest vertices, then the edges again
trace out two oriented paths from the top to the bottom. One of these
paths has length one; we will see later that this path is degenerate.
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FIGURE 3. Decomposing the cells in Figure 2.

o If the edge [m,z;] points from m to n, then n = m(x;/Tmax(m))-
We have x; = b if the edge points from left to right, and z; = a if it
points from right to left. Also, Zyax(m) = c if the edge points down,
and Tyax(m) = b if it is horizontal.

Example 3.1. The cell named [c?, ab] has top vertex ¢* and bottom
vertex abc. There are two paths from c¢® to abc, namely, (c3,bc?, abc)
and (c®,ac? abc). The cell named [a®c,ab] has top vertex a?c and
bottom vertex a®. The two paths from a’c to a® are (a’c,a?b,a®) and
(a%c,a®). The second path is a subset of the first.

Each of the (maximal) paths described above has three vertices; these
vertices define a triangle. These triangles are bounded by the dotted
lines in Figure 3. Note that each of the rectangular faces is the union of
the triangles defined by its two paths, and each of the triangular faces
is the triangle defined by its path.

When there are more than three variables, we will generalize this
observation, defining the faces of the Eliahou-Kervaire resolution as
unions of simplices.
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Recall that the set of monomials m in a stable ideal is closed under
multiplication by #;/%max(m) whenever i < max(m). This inspires the
following notation.

Notation 3.2. Let m be any monomial, and let x; be any variable.
(i) Set

Ti

m— x; = {mzmaxw)
m if ¢ > max(m).

if i < max(m)

(ii) Let n be another monomial. Then we inductively define m —
zn=(m—z;) = n.

In order for the second notation above to be well-defined, we need
the following lemma.

Lemma 3.3. Let m be any monomial, and let x; and x; be variables.
Then (m — ;) — z; = (M — ;) — ;.

Proof. We may assume that i < j, and we can write m = nzixy,
with max(n) < k < ¢. There are then six cases to check, depending
on the ordering of ¢, j, k and ¢. For example, if £k < i < j < £, then
(m — ;) - x; = (m — x;) - x; = nxgr;. The other cases are
unenlightening, and are left as an exercise. o

4. Powers of the maximal ideal. Throughout this section, fix
positive integers n and d. Denote by I the ideal (zy,...,z,)¢, and
by A the simplex in R™ obtained by intersecting the first orthant
with the degree d hyperplane z; + --- + z, = d. We will construct a
regular cellular subdivision of A which supports the Eliahou-Kervaire
resolution of I.

As in the previous section, we identify lattice points in the first or-
thant of R™ with monomials via the exponent vector. Thus, for exam-
ple, the monomial z2z,x, is identified with the vector (2,1,0,1). By
abuse of notation, we will treat monomials and vectors as interchange-
able. (Thus, for a vector v, max(v) is the index of its last nonzero
entry, and v — x; is defined as for the corresponding monomial.)
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Construction 4.1. Let m be any monomial of degree d, let

a = z; ...z;; be a squarefree monomial with max(a) < max(m),
and let 0 = (o1,...,0;) be any permutation of (iy,...,%;). We
denote by ch (m, a, o) the convex hull of the points {m,m — z,,,m —
Ty Loyy--- ,m — af. We say that ch (m,a,0) is nondegenerate if it

has dimension j.

We set the cell U(m,«) equal to the union over all o of the
ch (m, o, o).

A few observations are immediate.

Lemma 4.2. Let m,a, 0 be given. Then:
(i) ch (m,a,0) C A.
(ii) ch (m, a, o) is a simplex.
(iii) ch (m, a, o) is nondegenerate if and only if the j + 1 monomials
m,m — Zo,,...,M — a are distinct.

(iv) If o is the unique decreasing permutation (i.e., o1 > -+ > 0j),
then ch (m, a, o) is nondegenerate.

(v) If ch(m,a,0) is degenerate, then there exists a permutation o’
such that ch (m,a,c') is nondegenerate and ch(m,a,o) is a face of
ch (m,a,o’).

Thus, in particular, we can view U(m, «) as the union of the nonde-
generate ch (m, o, o).

Proof. We prove (v). Suppose that ch (m, a, o) is degenerate. Then

for some k, we have m — (25, ...25,) = m — (To,...Top,,);
choose the minimal such k. It follows that oxi1 > of. Let ¢ =
(01y--+ s 0k+1,0k, - - - ,05) be the permutation obtained from o by swap-

ping the k*® and (k + 1)*® terms. It is immediate that ch (m,a,0) is a
(not necessarily proper) face of ch (m, @, 7). By induction, it is a face
of some ch (m, «, o'). O

Example 4.3. We return to the cells in Example 3.1. The top
cell is U(c?,ab); it is divided into two triangles: the left triangle
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is ch(c?,ab,(a,b)), and the right triangle is ch (c3,ab, (b,a)). The
bottom left cell is U(a?c,ab). It consists of a single triangle, which
is ch (a%c, ab, (b, a)). The degenerate ch (a’c, ab, (a,b)) is the left edge.
The other cells decompose similarly.

Now we study the geometry of the ch (m, «, o).

Lemma 4.4. Suppose that deg(a) = n — 1 and ch(m,a,0) is
nondegenerate. Then the vertices of ch (m,a, o) form a basis for R™.

The next technical lemma is obvious after unwrapping a lot of
notation.

Lemma 4.5. Suppose that deg(a) = n — 1 and ch(m,a,0) is
nondegenerate. Let v, = (vo1,v0,2,...,V0,n) be the ezxponent vector
of m, vi = (v1,1,v1,2,... ,V1,n) the exponent vector of m — z,,, etc.
Let k = max(m — «). Then:

(i) For all i, we have v; —vi_1 = e,, — €max(m—z, 7o, ,) (where

the e; are the usual standard basis vectors). "
(ii) If ¢ < k, then vp_1 4 > vj 4 for all j.
(iii) If ¢ > k, then 0 = vp_1,4 < wj,q for all j.
(iv) If opu—1 = k, then vp_1,k > vj for all j.
(V) If o1 # k, then vp_1 < ;i for all k.
(vi) If q ts such that v,_1,4 > vjq for all j, and oy = q, then
Vjg = Un-1,q Jor j > € and vj g = vn_1,4 — 1 for j < L.

The following lemma will allow us to recover ch (m, a, o) given a point
in its interior.

Lemma 4.6. Let z = (21,...,2,) € ch(m,a,0). Observe that
>~ z; = d. Denote by [z;] the least integer greater than or equal to
zi. Using the same notation as in Lemma 4.5, we can recover v,_, as
follows.

Step 1: Set a = 0, and start with i = 1.
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Step 2: Set vp_1,; = min(d — a, [2;]).
Step 3: Add vn—_1,; to a, increment ¢, and return to Step 2.

The coefficient c,, 1 is given by min, <, , {frac(z;)}. (Here, frac(2;)
represents the fractional part of z;.)

Example 4.7. Suppose that z = (.3, .45,.05,1.15,.05). We compute
d = 2 and set the counter a equal to 0. We have [.3] =1<2-0, so
va,1 = 1. We increase a to 1. We have [45] =1=2—1, 50 vao = L.
We increase a to 2. Now 2 —2 = 0 < [.05], so va3 = 0 and a is
unchanged. Similarly, v44 = v45 = 0.

Finally, ¢4 = min(.3,.45) = .3. (In fact, z = .05(0,0,0,1,1) +
0.5(0,0,0,2,0) +0.1(0,0,1,1,0) + 0.05(0,1,1,0,0) + 0.3(1,1,0,0,0) €
ch (zazs, 1222324, (4,2,3,1)).)

Proof. For each i, one of the following holds:

(i) ¢ < max(vp_1), in which case, by Lemma 4.5 (ii), (vi), we have
Un—1,; = %] (and d —a > v,_1,; by induction on 7).

(ii) ¢ = max(vn—1), in which case we have v,,_1 ; = d—a by induction
on ¢ (and v,_1,; < [2;] by Lemma 4.5 (iv), (v), (vi)).

(iii) ¢ > max(v,—1), in which case we have v,_1;, = 0 =d —a by
induction on 1.

By Lemma 4.5 (vi), whenever j is such that v,_;; > z;, we have
frac (zj) = 3,5, cq, where £ is such that o, = j. Since all the ¢, are
positive, this is minimized for j = o, _1. a

Lemma 4.8. Let z = (29,...,2n) be any vector in A. Then z may
be written uniquely in the form z = > c;v; for positive coefficients ¢;
such that " ¢; = 1 and such that there exists some ch (m,a,c) having
the v; among its vertices.

Note the requirement that the coefficients be nonzero; this means that
the expansion may have fewer than n terms, and, as such, the choice of
ch (m, a, o) may be nonunique. However, if z lies on the interior of any
ch (m, a, o), the expansion must contain all n vertices and so is unique.
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Proof. Lemma 4.6 tells us v,_1, cho—1 and o,_1. Set 2/ = 2z +
en-1/(1—cpn_1)(z — vn_1), so that z = ¢, 19,1 + (1 — cr_1)7.
Let y € R"! be the vector obtained by removing the (o, ;)"
entry from z’. By induction on n, y may be written in the form
> d;v}; reinserting the removed entry to each v} gives us the expression
z = cp—1Vn—1 + (1 — ¢n_1)(D_ div;). It remains to show that v,—1 =
Un—2 = Top_y-

Set k = 0,1, and write 2’ = (21,...,2,). We compute z, =
Un—1, — 1, and fzﬂ = vp_1,; for all j # k such that z; < v,_1,;. Let ¢
be minimal such that z; > v,_1¢. Then the algorithm in Lemma 4.6,
applied to y, gives us v,_2¢ = vp_1¢ + 1 and ¢ = max(vn_2). Thus,
Up—1 — Up_2 = € — ey, s0, by Lemma 4.5 (i), we have v, 1 = v, 2 —
on—1 as desired. |

We have proved the following:

Proposition 4.9. The union of all the ch(m,a,c) is the simplex
A. The intersection of two simplices ch (m,a,0) and ch (m/, o', 0") is
a common face.

Notation 4.10. Set « = xy---x,_1. For a collection of points
V1,...,Us, let (vq,...,vs) represent their convex hull.

Definition 4.11. Let F be any facet of ch (m,a,c). We say that
F is interior if it also a facet of some ch(m',a,0’) # ch(m,a,0).
Otherwise, we say that F is exterior.

Lemma 4.12. Let F be a facet of some ch(m,,0), and write
F = (v1,...,vnh_1), with the v; increasing in the lex order. For each
t> 2, if vy = vi_1 — x; for some j, set T; = j. If no such j exists, set
T = 0.

Then all the ; are distinct, and exactly one of the following holds:

(i) There exists a unique i such that 7, = 0. We have v;y1 = v; —
zjxr, where 1 < 5,k < n —1 are the two indices not occurring as any
7j. I is interior.
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(ii) None of the T; are equal to zero. Let j < n be the unique index
not occurring as any ;. F s exterior if vi; = 0 or if vi, = 0, and
interior otherwise.

Proof. Let m and o be such that F is a facet of ch (m, a, o), and write
ch(m,a,0) = (wp,... ,w,_1). Let wy be the vertex which is missing
from F; we have v; = w;_1 for i < £ and v; = w; for i > £. Also,
7i = 0j—1 for ¢ <{ and 7; = o; for i > £+ 2. Finally (if £ # 0,d — 1),
we have wy11 = wy_1 — 25,25, ,. If this is not equal to wy_1 = x4, ,
we are in case (i); otherwise, we are in case (ii).

In case (i), let o’ be the permutation obtained from o by swapping
o¢ and oyy1. Then F is a facet of both ch (m, a, o) and ch (m, o, 0”).

In case (ii), return to the notation in the statement of the lemma.
Suppose first that vy, = 0. It follows that v; — z,_1 = v; for all
it and that j = n—1. Set vy = vy +e, —e,_1, 01 = n— 1, and
o; = 7; for all ¢ > 2. Then F is a facet only of ch (vo,,0) and
is exterior. Otherwise, let k be minimal such that vy — z; # vs.
Let 0 = (T1y.+ Ty Jy Thtly -+ yTn—2), 0 = (J,T1,-.+ ,Tn—2), and
vy = v1 — € + e,. We have that F' is a facet of ch(vi, o, 0), and
is a facet of ch (vg, @, ¢’) provided that vy has nonnegative entries (i.e.,
v1,; # 0). Thus, F is interior if vy ; # 0 and exterior otherwise. a

Now we are in position to describe the orientations of the ch (m, a, o).
Since the ch (m, a, o) form a subdivision of the big simplex A, there
is a unique orientation function inherited from A. This assigns an
orientation of +1 to the simplex ch (a:‘{lila:n,a, (1, T2y, 21)),
and satisfies:

(¥*) Let G be an interior facet common to F' = ch (m, o, o) and
F' =ch(m/,a,¢"). If G occurs with opposite signs in the simplicial
boundaries of F' and F’, then F' and F' have the same orientation.
If G occurs with the same sign in both boundaries, then F' and F’
have opposite orientations.

The condition (x) is because d(A) = d(}_p_cp (m,a,0) O(F)F) is sup-
ported on the boundary of A, i.e., on the exterior facets.

Because any two simplices F' = ch (m,a,0) and F' = ch(m/, o, 0”)
are connected by a chain F = Fy,... ,F, = F' such that F; and F;
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share a facet, there is a unique solution to (*). If we use the simplicial
boundary d((vo, ... ,vn)) = (Vo,-.. ;Vn—1) = (Vo, .. , Vn—2,Vp) + - +
(=)™ (v1,... , Uiyevn yUn) + -+ (=1)"(v1,... ,vp), it is straightfor-
ward to verify that the solution is as follows:

Proposition 4.13. Let F = ch(m,a,0). Then F has positive
orientation if o differs by an even permutation from the decreasing
permutation o = (n —1,...,1), and negative orientation otherwise.

Remark. The simplicial boundary map chosen above seems unortho-
dox. However, if we reorder the vertices in the lexicographic order,
as is standard practice, and write (vo,...,v,) = (wp,...,w,) with
Wp = Up,W; = VUp_1, etc., we get d((wo, ... ,wy)) = (w1,... ,w,) —

ot (=) woy e ey Why e e e ywy) + oo+ (1) (w0, . . . ,wy—1), Which is
the usual simplicial differential.

Note that the orientation depends only on ¢ and not on m. We
extend this observation to orient the lower-dimensional cells.

Notation 4.14. Let o be a permutation of some subset T C
{1,...,n—1}. We say that o is positive if ¢ is an even permutation of
the decreasing permutation on 7', and that o is negative otherwise.
If F = ch(m,a,0) and o is positive, we say that F has positive
orientation and write o(F') = o(o) = 1. If o is negative, we say that F’
has negative orientation and write o(F') = o(o) = —1.

Remark. If we view the Taylor resolution as being generated by
symbols of the form [g1, ... ,gs] (where [g1,...,9s] = [h1,..., hs] if the
s-tuples differ by an even permutation, and [g1,... ,9s] = —[h1,- .. , hs]
if they disagree by an odd permutation), then ch (m, a, o) is the Taylor
symbol [m — o,...,m — z,,,m|. We will see that the Eliahou-
Kervaire resolution sits nicely inside the Taylor resolution.

Our next goal is to show that the topological differentials of the cells
U(m, a) agree with the differentials in the Eliahou-Kervaire resolution.

Fix m and a; we will compute the topological differential of U(m, ).
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(Essentially, we are analyzing the interior and exterior facets of the
simplicial fan U(m, ) as we did with A above. The analysis is almost
the same, so we omit many proofs.)

U(m, ) is oriented as

U(m,a) = Z o(F)F.
o:F=ch (m,a,0)
nondegenerate
Set p = deg(a). For ease of notation, we may assume that o =
AT xp‘
Choose a nondegenerate F' = ch (m,a,0) and write F = (m,m —

Zgyy--- ,m — a). The differential of F' contributes three types of terms
to the differential of U.

(1) Removing the first vertex gives the face (—1)?(—=1)?"7*(m —
Tgyye-o,m — a)y = (—=1)%ch(m — z,,,(a/zs,),0'), where ¢/ =
(02,...,0p). This face cannot arise from the differential of any other
F.

(2) Removing the last vertex gives the face (m,... ,m — (a/op)) =
(=1)t*oech (m, (a/oy),0'), where ¢’ = (o1,...,0,-1). This face
cannot arise from the differential of any other F'.

(3) If we remove the i*® vertex, we are left with the face (—1)P~¢(m, ...
M — Ty, " To,,--- ,Mm — a). This is canceled out by removing the *%
vertex from F’ = ch(m,a,7) (where 7 is obtained from o by swap-
ping the i and (i + 1)™ entries), unless m — o, *** To, Topyy =
m — Tg,-**Te,,,, in which case F' is degenerate and the face is
(=1)P=i(=1)**7ich (m, (a/2s,),0"), where 0’ = (01,... ,5iy... ,04-1).

Taking the sum ) d(o(F)F) over all F, (and omitting some tedious
work), we are left with

(1) The sum of all (—1)%o(o")ch (m — x4, (a/;), 0") (taken over all x;
dividing «, and all ¢’ such that the resulting simplex is nondegenerate).

(2) The sum of all (—1)**io(o”)ch (m, (a/x;),0") (taken over all x;
dividing «, such that m — (a/z;) # m — «, and all ¢’ such that the
resulting simplex is nondegenerate).

(3) The sum of all (—1)**%o(o’)ch (m, (a/z;),0") (taken over all z;
dividing «, such that m — (a/z;) = m — «, and all ¢’ such that the
resulting simplex is nondegenerate).
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The sum in (1) is simply — Y,(—1)""'U(m — z;, (a/z;)), and the
sum of (2) and (3) is >_,(—1)'U(m, (a/x;)).

Thus, d(U(m,a)) = 3,(-1)'U(m, (a/z:)) = 3;(=1)'U(m — i,
(/).

This agrees (up to monomial coefficients) with the Eliahou-Kervaire
differential, ¢([m, a]) = >, (=1)'z;[m, (a/z;)]—>_,;(—1)’end (mz;)[m —
x;, (a/x;)]. Thus, we have proved the following:

Proposition 4.15. The complex described in Construction 4.1
supports the Eliahou-Kervaire resolution.

It remains to show that this is a regular cellular complex, i.e., that
the cells U(m, a) are topological balls.

Lemma 4.16. Let m and o be given, and suppose that F 1is
an interior facet of U(m,a). Then F is a facet of at most two
nondegenerate ch (m,a, o).

Proof. This statement is actually immediate from the embedding in
A, which is homeomorphic to R*~!. However, we will need it again
in the next section, where we will not have the luxury of any ambient
space, so we give a more involved proof here.

Without loss of generality, we may suppose o = x; - - - zp. Following
the notation of Lemma 4.12, we write F' = (v1,...,vp_1), with the v;
increasing in the lex order, and, for each ¢ > 2, if v; = v;_1 — z; for
some j, we set 7; = j. If no such j exists, we set 7; = 0.

Suppose first that 7, = 0 for some i. Then it must be the
case that v, = wv;,_1 — xrxy, where k,/ < p are the two in-
dices not appearing in 7. If 0 = (7o,...,7i-1,k,0,73,... ,7p_1) O
(2,---,Ti—1,4,k, T3y ... ,Tp—1), then it is clear that F' is a face of
ch(m,a,0). On the other hand, if 0; = k with j < i — 1, then
ch (m,a, o) does not contain v;_1, and if o; = k with £ > ¢, then
ch (m, a, o) does not contain v;.

Now suppose instead that no 7; = 0; let k& be the missing index from
7. If vy is the exponent vector of m, and let j be the maximal index
such that v; — @ #v;. fo = (72,... , 75, ks Tit1,... ,Tp—1), then F is
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not a face of ch (m, o, o) if ¢ < j (since this simplex does not contain v;)
or if 7 > j (since this simplex is degenerate). If v; is not the exponent
vector of m, then since ch (m, a, o) containing F must contain m, we
must have o = (k, 72,... ,7p). O

Construction 4.17. Fix m and a. Let P be the set of all monomials
that can be written in the form m — 3 for some 3 dividing «. Partially
order the set P by (m — ) <p (m — 7) whenever 3 divides ~.

Observe that the maximal chains in P are in correspondence with
the simplices ch (m, a, o). (The simplex ch (m, , o) corresponds to the
chain m <p m — o1 <p - <p m — a.) Thus, U(m, ) is the order
complex of P. We can label the Hasse diagram of P by labeling the
edge from m — 8 to m — z;8 with ;. This is an EL-labeling (see for
example [23], so, applying [23, Theorem 3.2.2], we have:

Lemma 4.18. U(m, ) is a shellable simplicial complez.
Proposition 4.19. U(m,a) is a ball.

Proof. We have observed that U(m,a) is a pure p-dimensional
shellable simplicial complex, and that each of its (p — 1)-faces is
contained in at most two p-faces. Thus U(m, «) satisfies the hypotheses
of [11, Proposition 1.2], and so is a p-ball as desired. O

Putting everything together, we have shown the following:

Theorem 4.20. The cells U(m,a) form a cellular subdivision of the
(n — 1)-simplex which supports the Eliahou-Kervaire resolution of any
power of the mazimal ideal of k[z1,. .. ,z,].

The resolution of (a, b, c,d)? is pictured in Figure 4. It is isomorphic
to the complex constructed by Batzies and Welker [1] using discrete
Morse theory. I have been unable to determine whether these complexes
continue to coincide with more than four variables. Even if they are the
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X

b2
a ab

FIGURE 4. The Eliahou-Kervaire resolution of (a, b, c, d)?.

same, the constructions are very different. Where we have constructed
the cells explicitly, Batzies and Welker were demonstrating a special
case of a more general construction, building down from the Taylor
resolution. Batzies and Welker show that their complex is CW, but
make no attempt to prove or disprove that the cells are regular.

Our construction is not polytopal. For example, the cell U(cd, ad)
contains the points ac and bc but none of the segment connecting them.
It is unclear whether or not the complex could be deformed somehow to
become polytopal. On the other hand, Sinefakopoulos [19, 20] gives an
elegant inductive construction of a polytopal subdivision of the (n —1)-
simplex which supports a minimal resolution of a power of the maximal

ideal.

The combinatorial structure of the Sinefakopoulos resolution is very
different from that of the Eliahou-Kervaire resolution, corresponding
to their different embeddings in the Taylor resolution. Although they
are isomorphic as algebraic chain complexes, I think these resolutions
are nonetheless worthy of further study as distinct objects.

5. Stable ideals. Our final task is to exhibit a regular cell complex
supporting the Eliahou-Kervaire resolution of any stable ideal.
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bc

b2

FIGURE 5. The Sinefakopoulos resolution of (a, b, ¢, d)2.

Let B be a stable ideal, minimally generated by gy, ... , g,

If B is generated entirely in degree d, the cells U(gs, @) form a sub-
complex of the resolution of (z1,...,z,)?% constructed in the previous
section; this subcomplex supports the Eliahou-Kervaire resolution of
B.

If B is not generated in a single degree, the situation is essentially
the same, but some tweaking is required. Namely, we need to modify
the operation — x; to make sense in the new setting.

Definition 5.1. Let B be a stable ideal, m € B a monomial, and «
a squarefree monomial. We set m —p o = beg (ma), the beginning of
ma.

Remark. If B = (x1,...,2,)¢ and m has degree d, then the
operations — x; and — g x; are the same.

Construction 5.2. For a generator g, squarefree monomial «,
and permutation o, let ch (g, @, o) be the simplex on vertices named
(9,9 =B Zo;y---,9 =B a). Define U(g,a) to be the union of the
nondegenerate ch (g, o, o).
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Treating the ch (g, , o) and U(g, @) as abstract objects, we can repeat
our arguments from the previous section to show that the {U(g, )}
support the Eliahou-Kervaire resolution, and that each cell U(g, @) is
a pure shellable simplicial ball.

Thus, the {U(g,a)} form a regular cell complex supporting the
Eliahou-Kervaire resolution of B, as desired. This proves:

Theorem 5.3. Let B be any stable ideal of S. Then there is a reqular
cell complex which supports the Eliahou-Kervaire resolution of B.

6. Consequences and further research. Now that we know
the Eliahou-Kervaire resolution is cellular, there are techniques given
in [4] to produce minimal cellular resolutions of new ideals. However,
Borel ideals are sufficiently important that those resolutions are already
well-known; the only new information is that those resolutions are also
cellular. For example, the following result about “Borel-with-holes”
ideals is due to Gasharov, Hibi and Peeva [14].

Corollary 6.1 [14]. Fiz ezponents ey, ... ,e,, and a Borel ideal B.
Let B' be the “Borel-with-holes” ideal generated by those monomials of
B which are not divisible by any x;*. Then B’ is minimally resolved
by the subcomplex of the Eliahou-Kervaire resolution generated by the
symbols [m, a] such that ma does not divide any z;*.

6.1. Generalizing the construction. The Eliahou-Kervaire
resolution of a stable ideal I is classically built from a mapping cone,
relying on I having linear quotients with special structure. Can
Construction 4.1 be generalized to describe the minimal resolution of
any ideal with linear quotients?

Is it possible to describe a cellular structure on any (non-minimal)
mapping cone, as the Taylor resolution puts a simplicial structure on
a non-minimal resolution of any ideal?

6.2. Different minimal resolutions. Recall that the simplex
ch (m,a,o) corresponds to the Taylor symbol [m — o,...,m]. It
follows that the Eliahou-Kervaire resolution is embedded in the Taylor
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resolution, with the EK-symbol [m, o] corresponding to the sum

Z o(o)ch (m,a, o).

o
nondegenerate

The Sinefakopoulos resolution [19, 20] also produces an embedding of
the minimal resolution of (z1, ... ,z,) inside the Taylor resolution.

We now know of two different cellular structures (due to Eliahou-
Kervaire [12] and Sinefakopoulos [19, 20]) on the minimal resolution
of m™, and possibly two more (the Morse theory construction of Batzies
and Welker [4] and the “complex of boxes” of Nagel and Reiner [17]),
each corresponding to a sparse basis for the minimal resolution inside
the Taylor resolution.

What other ideals have multiple interesting realizations for their
minimal free resolutions?

If F, and G, are two different minimal free resolutions of I, it is
reasonable to wonder how they interact. What can be said about their
sum or intersection inside the Taylor resolution? For example, it is
known that the intersection of all (non-minimal) simplicial resolutions
of an ideal is its Scarf complex (see [16, Chapter 6.2]). Do any other
complexes arise in this way? Can an isomorphism from F, to G. be
extended to an automorphism of the Taylor resolution?
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