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ON MODULES M FOR WHICH N =M
FOR EVERY SUBMODULE N OF SIZE | M|

GREG OMAN

ABSTRACT. Let R be a commutative ring with identity,
and let M be an infinite unitary R-module. M is called a
Jonsson module provided every submodule of M of the same
cardinality as M is equal to M. Such modules have been well-
studied, most notably by Gilmer and Heinzer ([3-6]). We
generalize this notion and call M congruent provided every
submodule of M of the same cardinality as M is isomorphic
to M (note that this class of modules contains the class
of Jénsson modules). These modules have been completely
characterized by Scott in [10] when the operator domain is Z.
In [9], the author extended Scott’s classification to modules
over a Dedekind domain. In this paper, we study congruent
modules over arbitrary commutative rings. We use the theory
developed in this paper to prove new results about Jénsson
modules as well as characterize several classes of rings.

1. Introduction and general results. In this paper, all rings are
assumed commutative with identity and all modules are unitary. We
begin by revisiting the definition given in the abstract.

Definition 1. Let M be an infinite module over the ring R. We call
M a congruent module if and only if whenever IV is a submodule of M
of the same cardinality as M, then N =2 M.

To initiate the reader and to motivate our study, we introduce some
canonical examples of congruent modules.

Example 1. Let F be an infinite field. Then F becomes a module
over itself whose submodules are precisely the ideals of F'. Since F' has
only trivial ideals, it is easy to see that F' is congruent as a module
over itself.
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Example 2. Consider the ring Z of integers as a module over itself.
Any nontrivial submodule of Z is infinite cyclic and hence isomorphic
to Z. Thus Z is congruent as a module over itself.

Example 3. Let F be a field, and let k > |F| be an infinite cardinal.
Then @, F' is a congruent F-vector space.

Example 4. Let p be a prime number. The direct limit of the
Abelian groups Z/(p") is the so called quasi-cyclic group of type p™,
commonly denoted by Z(p*°). It is well known that every proper
subgroup of Z(p*) is finite, whence Z(p°) is trivially a congruent
module over Z.

We conclude the list of examples by stating our classification of the
congruent modules over a Dedekind domain.

Theorem 1 [9, Theorem 1]. Let D be a Dedekind domain with
quotient field K, and let M be an infinite D-module. Then M is
congruent if and only if one of the following holds:

(1) M 2&,D/P for some prime ideal P of D, and k > |D/P).

(2) M = D/P where P is either a mazimal ideal of D, or P = {0}
and D is a PID.

(3) M = C(P*®) ={z € K/D : Pz = 0 for some n > 0}, where
P is a nonzero mazimal ideal of D such that the residue field D/P is
finite.

We now recall the following definition.

Definition 2. Let M be an R-module. The annihilator of M,
denoted by Ann (M), is the collection of all elements r € R for which

rm = 0 for every element m € M. M is said to be faithful if
Ann (M) =0.

One checks immediately that Ann (M) is an ideal of R for any R-
module M. Further, if I is the annihilator of M, then M has a canonical
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module structure over the factor ring R/I given by 7 -m := rm. We
state the following trivial but useful lemma. The proof is easy and is
omitted.

Lemma 1. Let M be an R/I-module where I is an ideal of R. Then
M has a canonical R-module structure given by r-m :=7Tm. With this
structure, M is a congruent R-module if and only if M is a congruent
R/I-module.

We now come to the following proposition which will be indispensable
in our analysis of congruent modules. This result is a generalization of
[5, Proposition 2.5].

Proposition 1. Let R be a ring, and suppose that M is a congruent
R-module. Then the following hold:

(1) If r € R, then either rM = M or rM = (0).
(2) Ann (M) is a prime ideal of R.

Proof. Assume that M is a congruent R-module.

(1) Let r € R. Define the map ¢ : M — M by ¢(m) = rm. Then
@ is clearly a homomorphism onto rM. Let K be the kernel. Then
rM = M/K. This implies that |K|[rM| = |M|. If |[rM| = |M|, then
since M is congruent, we see that rM = M. Otherwise |K| = |M]|,
and so M = K. Let v : K — M be an isomorphism. Now let
m € M be arbitrary. Then m = ¢(m’) for some m’ € K. Thus
rm = rp(m') = Y(rm’) = ¥(0) = 0. As m was arbitrary, we obtain
rM = (0).

(2) Suppose that 7,s ¢ Ann (M). Then by (1), we see that rM = M
and sM = M. This clearly implies that rsM 2= M. Hence rs ¢
Ann (M) and Ann (M) is a prime ideal of R. This completes the
proof. O

The following corollary follows immediately.

Corollary 1. Let R be a ring and suppose that M is a faithful
congruent R-module. Then R s an integral domain.
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Thus by modding out the annihilator, there is no loss of generality in
assuming that M is faithful over a domain.

We now turn our attention toward characterizing the torsion-free
congruent modules. We begin with the following technical lemma. The
proof utilizes basic set-theoretic techniques and is omitted.

Lemma 2. Suppose that R is a ring and |R| = k. Then, for any
nonzero cardinal A, if at least one of k,\ is infinite, then | &) R| =
max(k, A).

The following proposition will be used shortly.

Proposition 2. Let R be an infinite ring. Then R is congruent as
a module over itself if and only if R is a principal ideal domain.

Proof. Suppose first that R is a principal ideal domain. Suppose
that I is an ideal of R of the same cardinality as R. Then I = (z) for
some nonzero x € R. The mapping r — rz is clearly an R-module
isomorphism between R and I. Thus R is congruent as a module
over itself. Conversely, suppose that R is congruent as a module over
itself. As R is a faithful R-module (R has an identity), it follows from
Corollary 1 that R must be a domain. Let I be an arbitrary nonzero
ideal of R. We show that I is principal. Pick any nonzero € I. The

mapping r — rx is injective since R is a domain, and thus |I| = |R|.
As R is congruent, we have I =2 R as R-modules. As R is a cyclic
R-module, so is I. This completes the proof. ]

We state a final definition before characterizing the torsion-free con-
gruent modules.

Definition 3. Let M be an R-module, and let S be a subset of M. S
is said to be linearly independent provided that whenever mq,... ,mg
are distinct elements of S and r1,... ,7, € R with rymq+---+rgmg =
0, then each r;m; = 0.
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It is easy to see that if S is an independent subset of an R-module M,
then the submodule (S) generated by S is isomorphic to @scsRs. If S
is torsion-free, then (S) = @|s|R. We now characterize the torsion-free
congruent modules.

Theorem 2. Let R be a ring and M an infinite torsion-free R-
module. Then M 1s congruent if and only if M = ®&,R where K is a
cardinal and one of the following holds:

(1) k=1 and R is a principal ideal domain.

(2) k is infinite, k > |R|, and R is a Dedekind domain.

Proof. That the modules in classes (1) and (2) are congruent follows
from Theorem 1. Thus we let R be an arbitrary ring and M a torsion-
free congruent R-module. Since M is torsion-free, it follows that R is
a domain. If R is finite, then R is a field, and thus M is a vector space
over R. But then M = @, R for some cardinal . Since M is infinite,
it follows immediately that (2) holds. Thus we assume that R is an
infinite domain. Suppose first that |[M| < |R|. Let m be an arbitrary
nonzero element of M. Since M is torsion-free, the map r +— rm is
injective, and thus |(m)| = |R| = |M|. Since M is congruent, M =~ R
and (1) holds by Proposition 2. Now suppose that |M| > |R|. Let F
be the quotient field of R, and let S be the set of nonzero elements of
R. Then S 'M is an F-vector space. We have |S~1M| = |M| and
|F| = |R|. Thus the dimension of S™'M as a vector space over F
is equal to |M|. It follows that there exists a set X of |M| elements
of M which are linearly independent over R. Since M is congruent,
M = (X) = @y R. It remains to show that R is a Dedekind domain.
If I is any nonzero ideal of R, then | ® s I| = | ®|a R|, and hence as
@ R is congruent, ®|ps I = @5z R. Hence I is a direct summand of a
free module, and is thus projective. Since every ideal of R is projective,
R is Dedekind. This completes the proof. o

Now that we have this theorem in hand, we proceed to show that
all congruent modules which are not torsion-free must be torsion. To
begin, we note that in general, congruent modules are not closed under
taking homomorphic images. However, there is a class of submodules
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which preserves congruence upon factoring, and it is this class which
will play the main role in establishing our next theorem.

Definition 4. Let M be an R-module and N be a submodule of
M. We say that N is monomorphically invariant if and only if for any
monomorphism ¢ : M — M and any m € M, ¢(m) € N if and only if
m € N.

Before stating our next lemma, we introduce the following notation
for brevity. If p : M — N is an R-module homomorphism and .J is a
submodule of N, we let J¢ := @~1(J).

Lemma 3. Let M be a congruent R-module, and suppose that N
is a monomorphically invariant submodule of M. If M/N is infinite,
then M/N is a congruent R-module.

Proof. Let us assume that M is a congruent R-module and that N is
a monomorphically invariant submodule of M. Suppose that M/N is
infinite, and let J be a submodule of M/N of the same cardinality as
M/N. We must show that J = M/N. If N has the same cardinality as
M, then as N C J¢ (J¢ is taken with respect to the natural map from M
onto M/N), we see that J¢ has the same cardinality as M. Otherwise
|N| < |M|, in which case |M/N| = |M| = |J|, and thus in this case
also |J¢| = |[M|. As M is congruent, J¢ = M. Let ¢ : M — J¢ be an
isomorphism. We define a mapping ¢ : M/N — J by @(m) := p(m).
We first must show that this mapping is well-defined. Thus suppose
that my; = my. Then my; — mo € N. Since N is monomorphically
invariant, ¢(my —msg) € N, and thus clearly p(m;) = ¢(m2). Hence
@ is well-defined. @ is clearly a surjective homomorphism. We now
show that % is injective. Suppose that p(m) = 0. Then ¢(m) = 0,
and thus ¢(m) € N. As N is monomorphically invariant, m € N, and
thus m = 0. This shows that P is injective and thus M /N = J and the

proof is complete. mi

We also need the following simple lemma.
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Lemma 4. Let M be a module over the domain D, and let T be the
torsion submodule of M. Then T is monomorphically invariant.

Proof. Let M,D and T be as stated, and let ¢ : M — M be a
monomorphism. Let m € M be arbitrary. We must show that m € T
if and only if ¢(m) € T. Suppose first that m € T. By definition,
there exists a nonzero r € D with rm = 0. Applying ¢ to both sides
yields r¢o(m) = 0. Hence ¢(m) € T. Conversely, suppose ¢(m) € T.
Then rp(m) = 0 for some nonzero r € D and thus ¢(rm) =0. As ¢ is
injective, rm = 0 and m € T. This completes the proof. a

We now state our result.

Theorem 3. Let M be a congruent module over the ring R. Then
M is either a torsion module or a torsion-free module.

Proof. We first prove this in a special case and then generalize. We
suppose that M is a congruent module over a domain D. Assume first
that |[M| < |D|. If M is not a torsion module, then let m € M be a
nontorsion element. Then the cyclic module (m) has cardinality |D].
Since |M| < |D|, it follows that |(m)| = |[M| = |D|. As M is congruent,
M = (m). Since m is not a torsion element, we have (m) = D. Thus
M = D and M is torsion-free since D is a domain. We now suppose that
|M| > |D|. Let T be the torsion submodule of M. If |T'| = |M]|, then
since M is congruent, we see that M = T and M is a torsion module.
Hence we suppose |T'| < |M|. In particular, |M/T| = |M| > |D|. By
Lemma 3 and Lemma 4, M/T is a congruent D-module. Since M /T
is torsion-free, it follows from Theorem 2 that M/T = &,D for some
cardinal k. Recall that |[M/T| = |M| > |D|. Hence k = |M|. There
exist x elements {m; : i € K} of M/T which are linearly independent
over D. Clearly this implies that {m; : ¢ € x} is linearly independent
over D. Since k = |M| and M is congruent, M = @,D and so M is
torsion-free.

Now for the general case. Suppose that M is an arbitrary congruent
R-module. Let P be the annihilator of M in R. Then M is a congruent
R/P-module. Since R/P is a domain (Proposition 1), it follows from
what we just proved that M is a torsion or a torsion-free congruent
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R/P-module. If M is a torsion R/P-module, it is clear that M is a
torsion R-module. Suppose that M is a torsion-free R/P-module. If
M is a torsion-free R-module, then we are done. Thus suppose that
rm = 0 for some nonzero m € M and nonzero r € R. Since M is
a torsion-free R/P-module, we see that ¥ = 0, and so r € P. But
then r annihilates every element of M. In particular, M is a torsion
R-module. This completes the proof. ]

Recall that an infinite R-module M is a Jénsson module provided
every proper submodule of M has smaller cardinality than M. In [5,
Theorem 3.1], Gilmer and Heinzer prove (among other results) that
every infinitely generated countable J6nsson module is torsion. We
presently provide a significant generalization. First we prove a simple
lemma (which is also discussed in [5]).

Lemma 5. Suppose M s a Jonsson module over the ring R. Then
M is indecomposable.

Proof. If M = N @ P, then by elementary cardinal arithmetic,
IN| = |M]| or |P| = |M|. As M is a Jénsson module, this forces
either N = M or P = M. Thus M is indecomposable. a

We now present our generalization of a portion of Theorem 3.1 from
[5]-

Proposition 3. Let M be a faithful Jonsson module over the domain
D. Then either M is torsion or D is a field and M = D.

Proof. Suppose that M is a faithful Jénsson module over the domain
D. If M is torsion we are done. Thus suppose M is not torsion. By
Theorem 3, it follows that M is torsion-free. As M is indecomposable,
it follows from Theorem 2 that M = D and D is a principal ideal
domain. It remains to show that D is a field. Let d be an arbitrary
nonzero element of D. Since D is a domain, |(d)] = |D|. As D is a
Jénsson module, we have (d) = D and thus d is a unit. As d € D — {0}
was arbitrary, this shows that D is a field. ]
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2. Large congruent modules. In this section, we study congruent
modules which are ‘large’ relative to the operator ring R. The precise
definition follows.

Definition 5. Let M be an infinite R-module. M is said to be large
provided |M| > |R).

Before proceeding, we recall several definitions from set theory.

Definition 6. Let x be an infinite cardinal. The cofinality cf (k) of
k is the least cardinal A such that k is the sum of A many cardinals,
each smaller than k. The cardinal & is called regular if cf(x) = x and
singular if cf (k) < k.

The regular cardinals include ¥y as well as every successor cardinal;
that is, every cardinal of the form ™ for some cardinal & (k¥ is simply
the least cardinal larger than ). It is well known that cf (k) is regular
for every infinite cardinal k.

Recall from Theorem 1 that every large faithful congruent module
over a Dedekind domain is free. Using Theorems 2 and 3, we obtain
the following.

Theorem 4. Suppose that D is a domain, and suppose that M is a
large faithful congruent module over D. If |D| < c¢f(|M]), then D is a
Dedekind domain, and M is isomorphic to a direct sum of copies of D.

Proof. Assume that |D| < cf(|M]). By Theorem 2, it suffices to
show that M is torsion-free. Suppose by way of contradiction that this
is not the case. Then by Theorem 3, it follows that M is a torsion
module. For each nonzero d € D, we let M[d] := {m € M : dm = 0}.
Clearly M[d] is a submodule of M for each d. Since M is torsion, we
have M = Ugep_qoyM[d]. If each M|d] has smaller cardinality than
M, then M is expressed as the union of at most |D| many subsets
each of smaller cardinality than M. This contradicts the fact that
|D| < cf(]M]). Hence some M|d] has the same cardinality as M. Since
M is congruent, we obtain M = M][d]. But, by definition, M[d] is
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annihilated by d, and thus so is M. This contradicts the fact that M
is faithful and the proof is complete. O

We immediately obtain the following corollary.

Corollary 2. Let D be a domain, and suppose that M is a large
faithful congruent module of regular cardinality. Then D is a Dedekind
domain and M is free.

We now show that a somewhat weaker result holds for large congruent
modules of any cardinality if one assumes the GCH. We recall a final
definition from set theory.

Definition 7. Let x be an infinite cardinal. Then « is called a strong
limit cardinal provided that for every A < &, one has 2* < k.

(¥) Note that if x is a strong limit, and o, 8 < &, then o < (2%)% =
208 < k.

We utilize the following result of Ecker in the proof of our next
theorem.

Proposition 4 [2, Proposition 3.2]. Let R be an infinite ring and
I a mazimal independent set in an R-module M. Then we have the
following:

(1) If |[I| = 0, then M = {0}.

(2) If |I| = 1, then |M| < 2IEl,

(3) If |I| > 1, then |M| < |I)/E.

Theorem 5. Assume that every singular cardinal is a strong limit.
Then every large faithful congruent module M over a domain D is a
direct sum of cyclic modules.

Proof. Suppose every singular cardinal is a strong limit, and suppose
M is a large faithful congruent module over the domain D. If M has
regular cardinality, then M is free by Corollary 2, and we are clearly
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done. Similarly if D is finite, then D is a field and M is free in this
case as well. Thus we assume that M has singular cardinality and D
is infinite. An easy application of Zorn’s Lemma shows that M has
a maximal independent subset I. It now follows easily from (%) and
(2) and (3) above that |I| = |M|. Since M is congruent, we obtain
M = @;crRi. This completes the proof. a

Recall that Generalized Continuum Hypothesis is the statement that
for every infinite cardinal k, there are no cardinals properly between k
and 2%. It is well known that GCH is independent of the usual axioms
for set theory. It is also easy to see that GCH implies that every singular
cardinal is a strong limit. Thus we obtain the following corollary.

Corollary 3. Assume GCH. Then every large faithful congruent
module M is a direct sum of cyclic modules.

We apply these results to obtain nonexistence results for large Jénsson
modules.

Proposition 5. Let R be a ring. Then:
(1) There are no large Jénsson modules over R of reqular cardinality.

(2) Assuming GCH, there are no large Jonsson modules.

Proof. This follows immediately from Corollary 2, Corollary 3 and
the fact that Jénsson modules are indecomposable. u]

We now proceed to show that the characterization of large congruent
modules can be done without GCH if the operator domain is Noethe-
rian. We state two lemmas.

Lemma 6. Let M be an R-module, and let m € M. Suppose that
Ann (m) = P is a prime ideal of R. If r € R and rm # 0, then
Ann (rm) = P.

Proof. We suppose that » € R and rm # 0. Clearly P C Ann (rm).
Thus suppose that € Ann(rm). Then xrm = 0, and thus zr € P.
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Since P is prime, either x € P or r € P. As rm # 0, this forces x € P.
This completes the proof. ]

Lemma 7. Let M be an R-module, and suppose that my,... ,myg
are distinct elements of M which are linearly independent over R. Let
J; be the annihilator of m;. Then the annihilator of my + --- + my, is
JiNJy---N Jg.

Proof. Let r € R. Simply observe that r(mq + -+ -+ my) = 0 if and
only if rm; = 0 for each i (since {mq,...,m} is independent) if and
only if r € Jy NJy---N Jg. O

We prove a proposition which will serve as a cornerstone of our next
two classification theorems.

Proposition 6. Let D be a Noetherian domain and suppose M 1is
a faithful congruent D-module. Suppose M = @;c;Dm; for some set
{m; : i € I} of elements of M and for each i, Ann (m;) is a prime ideal
of D. Then D is a Dedekind domain and M is a direct sum of copies
of D.

Proof. Let S = {m; : i € I}, and for each prime ideal P of D, we
let M[P] be the submodule of M generated by {x € S : Ann (z) = P}.
It is clear that M = @ pprime M[P]. We will show that each nontrivial
M([P] has the same cardinality as M. Suppose by way of contradiction
that some nontrivial M[Py] has smaller cardinality than M. It follows
that @ pp, M[P] has the same cardinality as M. Since M is congruent,
we obtain M = @p.p,M[P]. Since M[P,] is nonzero, there exists an
element of M with annihilator Py. Since M = @ p_p, M[P], it follows
that there exists an element m of @ pp, M[P] with annihilator P,. We
may express this element in the form m = mj + -+ - + my where each
m; € M[P;] and P; # P,. It follows from Lemmas 6 and 7 that each
m; has annihilator P;. It follows from Lemma 7 that m has annihilator
Py N P;---N Pg. But recall by assumption that m has annihilator P.
Hence Py = P, N Py--- P,. But since each P; is prime, this forces
Py = P, for some ¢ with 1 <4 < k. This is a contradiction. Hence each
nontrivial M[P] has the same cardinality as M. Since M is congruent,
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we obtain M = M|[P] for some (any) nontrivial M[P]. Clearly this
implies that M = @®,D/P for some cardinal A. But M is faithful
and P annihilates every element of M. It follows that P = 0, and
M = @)D. That D is a Dedekind domain now follows from Theorem 2.
This completes the proof. a

We use this proposition to characterize large congruent modules over
Noetherian rings. First we need two more lemmas.

Lemma 8. Let R be a Noetherian ring, and let I be a proper ideal
of R. There exists an x € R such that [I : x| is a (proper) prime ideal
of R.

Proof. Assume that I is a proper ideal of R. Let S denote the
collection of all ideals of the form [I : 2] where z ¢ I. Note in particular
that S consists of proper ideals of R. Since R is Noetherian, S possesses
a maximal element, say [I : z]. We claim that [I : z] is a prime ideal.
Suppose not. Then there exist elements a,b € R such that ab € [I : z]
but a ¢ [I: z] and b ¢ [I : z]. Then ax ¢ I. In particular, this means
[I:az] €S. Clearly [I : ] C [I : az]. Note that by our assumptions,
b e [l:azx]—[I:z]. This contradicts the maximality of [I : z] and
completes the proof. mi

The proof of our next lemma is contained in the proof of Theorem 1
of [1].

Lemma 9 [1]. Let R be a Noetherian ring, and suppose that M is an
infinite R-module with |M| > |R|. Then M possesses an independent
subset S of the same cardinality as M .

We are now ready to characterize the large congruent modules over
a Noetherian ring.

Theorem 6. Let D be a Noetherian domain, and suppose that M
is a large faithful congruent module over D. Then D is a Dedekind
domain and M = @y D.
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Proof. Let M be a large faithful congruent module over the Noethe-
rian domain D. By Lemma 9, M possesses an independent subset S
with |S| = |M|. Of course we may assume that each element of S is
nonzero. Let € S be arbitrary and consider Ann (z). By Lemma 8,
there is an element d € D such that [Ann(z) : d] = P is a prime
ideal of D. We claim that Ann(dz) = P. Indeed, y € Ann (dr)
if and only if ydr = 0 if and only if yd € Ann(z) if and only if
y € [Ann(z) : d] = P. Hence for every z € S, we may choose an
element d, € D with Ann (d,z) a prime ideal of D. Since S is inde-
pendent, so is {d,z : * € S}. Since M is congruent and |S| = |M]|,
we have M = @, csDd,x. The proof is now completed by invoking
Proposition 6. ]

3. Injective congruent modules. Most of the faithful congruent
modules we’ve studied to this point have all ended up being free. We
now look at the congruent injective modules over a Noetherian ring.
Shortly we will provide a complete description of these modules. We
begin by recalling a few definitions.

Definition 8. Let M be an R-module. The set of prime ideals of R
associated to M, denoted by Assg(M), is the set {P|P is a prime ideal
of R and P = Ann (y) for some y € M}.

Definition 9. A domain D is called an almost DVR if and only if
D is a local Noetherian domain of Krull dimension 1 and is such that
the integral closure of D is both finitely generated over D and a DVR.

Definition 10. A module M over a ring R is said to be almost
finitely generated if and only if M is not finitely generated, but every
proper submodule of M is finitely generated.

We now state the following result from Weakley in [11] on almost
finitely generated modules and then recall some standard results from
Matlis about injective modules over Noetherian rings. The second
proposition is a collection of several results of Matlis. For proofs, see
[8].
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Proposition 7 [11, Proposition 3.3]. Let D be a domain, and let M
be a mazimal ideal of D. Let E(D/M) be the injective hull of D/M.
Then the following are equivalent:

(1) E(D/M) is Artinian and almost finitely generated.
(2) Dy is an almost DVR.

Proposition 8 [8]. Let R be a Noetherian ring. Then:

(1) An arbitrary direct sum of R-modules is injective if and only if
each summand is injective.

(2) If E is an injective module over R, then E = &;E(R/P;), where
each P; is a prime ideal of R and E(R/P;) is the injective hull of R/ P;.

(3) For a prime ideal P, E := E(R/P) is P-primary and Assg(E) =
{rr.

(4) For each prime ideal P, E(R/P) is indecomposable.

We are almost ready to classify the injective congruent modules over
a Noetherian ring. We first state a theorem of Gilmer and Heinzer on
countable Jénsson modules and then prove two lemmas.

Proposition 9 [5, Theorem 3.1]. Suppose that M is a countably
infinite Jonsson module over the ring R and that M is not finitely
generated. Then M is a torsion R-module, and there exists a mazimal

ideal @ of R such that the following hold:
(1) Ann(z) is a Q-primary ideal of finite index for every x € M —{0}.
(2) R/Q is finite.
(3) The powers of Q properly descend.
(1) MR, @ = Ann ().

(5) If H; = {x € M : Q'z = 0}, then {H;}°, is a strictly ascending
sequence of submodules of M such that M = U2, H;.

Lemma 10. Let R be a ring and I a finitely generated ideal of R. If
R/I is finite, then R/I™ is finite for every positive integer n.
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Proof. Induct on n, the case n = 1 being obvious. By the second
isomorphism theorem, there is a surjective module homomorphism from
R/I™ to R/I with kernel I/I", whence |R/I"| = |I/I"||R/I|. Thus
it suffices to show that I/I™ is finite. Simply note that I/I" is a
finitely generated module over the ring R/I™~!, which by our inductive
hypothesis is finite. This completes the proof. o

Lemma 11. Let M be an infinite R-module, and let r € R, n € N.
Suppose that ™ annihilates M. Let M|r] denote the submodule of M
consisting of the elements of M annihilated by r. Then |M|r]| = |M]|.

Proof. We prove this by induction on n € N. The case when n =1
is trivially true. Thus we assume the lemma is true for some n € N.
Suppose that M is an infinite R-module, r € R, n € N, and suppose
that r™*1 annihilates M. It is clear that M/M[r] = rM. Hence we
get that |[M| = |rM||M]r]|. As M is infinite, it follows that either
|M[r]| = |M| or |rM| = |M|. If |M[r]| = |M]|, then we have what
we want and we are done. Otherwise [rM| = |M|. Recall that r**!
annihilates M, and therefore r” annihilates rM. By the inductive
hypothesis, we have |(rM)[r]| = |[rM| = |M|. Clearly (rM)[r] C M|r],
and thus |M[r]| = |M|. This completes the proof. O

Finally, we are ready to characterize the congruent injective modules
over a Noetherian ring.

Theorem 7. Let D be a Noetherian domain, and let M be an infinite
module over D. Then M is congruent and injective if and only if one
of the following holds:

(1) D is an infinite field and M = D.
(2) D is a field, and M = @D, where k > |D| is an infinite cardinal.

(3) M =2 E(D/.J) where J is a nonzero mazimal ideal of D, D/J is
finite, and D; is an almost DVR (here E(D/.J) is the injective hull of
D/J).

Proof. We first show that each of the modules in (1)—(3) is congruent
and injective. It follows from Theorem 2 that the modules in (1) and
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(2) are congruent, and from Proposition 8 that they are injective. Now
consider M = E(D/J) where J is a nonzero maximal ideal of D, D/J
is finite, and Dy is an almost DVR. By Proposition 7, we see that M
is Artinian and almost finitely generated. From (3) of Proposition 8,
it follows that M is J-primary. Consider any nonzero element m € M.
Then Jim = 0 for some positive integer i. Let I be the annihilator in D
of m. Then J' C I, and hence |D/I| < |D/J*|. Since D/J is finite and
D is Noetherian, it follows from Lemma 10 that D/I is finite. Thus
for each m € M, the cyclic submodule (m) is finite. Let N be a proper
submodule of M. Since M is almost finitely generated, N is finitely
generated over D. But since each cyclic submodule is finite, this clearly
implies that IV itself is finite. Thus we have shown that M is a Jénsson
module and is consequently congruent.

Conversely, let M be any infinite module over D, and suppose that
M is congruent and injective. We will show that M belongs to family
(1), (2), or (3). From (2) of Proposition 8, we have:

M=ED/P)

el

for some set {P;} of prime ideals of D (with repetitions allowed). We
first dispose of the case where some P; = {0}. In this case, note that
D embeds into M, and thus M is not a torsion module. It follows
from Theorem 3 that M is torsion-free, and thus M is isomorphic to
a direct sum of copies of D. It follows from (1) of Proposition 8 that
D itself must be injective. But then D is divisible, hence a field. Thus
M belongs to family (1) or (2). Hence we assume that all of the prime
ideals P; are nonzero. We suppose first that each E(D/P;) has smaller
cardinality than M. Fix an arbitrary E(D/P;,), and select a nonzero
element m € E(D/P,,). Let I be the annihilator of m in D. By
Lemma 8 there exists an € D such that [I : z] is a prime ideal of
D. Consider the element m, and let d € D be arbitrary. Then note
that d(zm) = 0 if and only if dz € I if and only if d € [I : z]. Hence
the element xm has prime annihilator in D. Now, since E(D/P;,) has
smaller cardinality than M, we see that ®;-;, E(D/P;) must have the
same cardinality as M, and thus |(Dix, E(D/P;)) ® (zm)| = |M].
Since M is congruent, this implies that (i, E(D/P;)) @ (xm) is
injective. It now follows from (1) of Proposition 8 that each summand
is injective. In particular, (zm) is injective. But recall that zm is
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a nonzero element of E(D/P;,). Since (xm) is injective, it follows
that (zm) ® N = E(D/P;,) for some module N. As E(D/P;)) is
indecomposable by (4) of Proposition 8, we are forced to conclude that
N = 0 and thus E(D/P,,) is a cyclic module with prime annihilator
in D. Since iy was arbitrary, M is a direct sum of injective cyclic
modules, each with prime annihilator. Proposition 6 now implies that
D is a Dedekind domain and M is isomorphic to a direct sum of copies
of D. As above, since M is injective, D must be a field, and thus
M Dbelongs to family (1) or (2). Thus, finally, we may assume that
some E(D/P) has the same cardinality as M and P # {0}. Since M is
congruent, M = E(D/P). By (3) of Proposition 8, we see that M is P-
primary, and that P is the unique associated prime ideal of M. We now
show that this forces M to be countable. Choose an arbitrary nonzero
r € P. Since M is P-primary, every element of M is killed by some
power of r. For each positive integer n, we let M,, be the collection
of elements of M annihilated by r™. Clearly M; C My C M3 C -- -,
and M is the union of the M,s as n ranges over the positive integers.
We claim that M([r] = M; is finite. Suppose by way of contradiction
that M; is infinite. Since My C My C .-, it follows from Lemma 11
that |M,| = |My]| for every positive integer n. But, since M is the
union of the M,’s, it is clear that |M| = |Mi|. As M is congruent,
M = M; = M]Jr], whence every element of M is killed by r. Recall
that as M is an injective module over a Noetherian domain, M is
divisible, thus faithful. This is a contradiction. Thus M; is finite. It
follows from Lemma 11 that M, is finite for every positive integer n,
and hence M is countable. We now show that M is a Jénsson module.
Let N be a proper submodule of M. We must show that IV is finite.
Suppose by way of contradiction that N is infinite. Then since M is
congruent, M = N. But then N is injective, and so must be a direct
summand of M. This contradicts (4) of Proposition 8. We have shown
that M = E(D/P) and that M is a Jénsson module. By (2) and (5)
of Proposition 9, there is an associated maximal ideal J of M with
D/J finite. By (3) of Proposition 8, we must have J = P. Lastly,
we must show that Dj is an almost DVR. To prove this, it suffices
by Proposition 7 to show that E(D/J) is Artinian and almost finitely
generated. But this follows immediately from the fact that E(D/J) is
a countable Jénsson module. This completes the proof. o
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We immediately obtain the following corollary.

Corollary 4. Let D be a Noetherian domain, and let M be an
infinite module over D. Then M is an injective Jonsson module over
D if and only if D is a field and M = D or M = E(D/J) for some
nonzero mazimal ideal J of D such that D/J is finite and Dy is an
almost DVR.

4. Ring characterizations. Using the theory we have devel-
oped, we give characterizations of fields, principal ideal domains, and
Dedekind domains using the notion of a congruent module.

Proposition 10. Let R be an infinite ring. The following are
equivalent:

(a) R is a field.
(b) Every R-module may be embedded into a congruent R-module.

(c) Every large R-module is congruent.

Proof. (a) = (b). This follows immediately from Theorem 1 by taking
a sufficiently large direct sum of copies of R.

(b) = (a). Suppose that every R module is embeddable in a
congruent R-module. Let xz be a nonzero element of R. Suppose
by way of contradiction that = is not invertible. Then the R-module
M := R®R/(x) is neither torsion nor torsion-free. However, M embeds
into a congruent R-module M'. By Theorem 3, M’ is either torsion or
torsion-free, hence so is M. This contradiction completes the proof of
this implication.

(a) = (c). This also follows immediately from Theorem 1.

(c) = (a). Suppose every large R-module is congruent. Let x > |R).
Then ®,R is congruent. Since R has an identity, &,R cannot be
torsion. By Theorem 3, ©,R must be torsion-free. In particular, R is
a domain. Now let z € R be nonzero. Suppose by way of contradiction
that x is not invertible. Then (z) # R. Thus also (z2) # R. Consider
the R-module ®,R/(z?). By assumption, this module is congruent.
The annihilator is clearly (z2). By Proposition 1, (z?) is a prime ideal.
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But then = € (22). Since R is a domain, this clearly implies that z is
invertible, a contradiction. This completes the proof. u]

Proposition 11. Let R be an infinite ring. The following are
equivalent:

(a) R is a principal ideal domain.
(b) R is congruent as a module over itself.

(c) R possesses a congruent ideal I which is not contained in the set
of zero-divisors of R.

Proof. We already have (a) < (b) from Proposition 2. Now (b) clearly
implies (c), and thus we need only show that (c) = (a). Suppose I is
an ideal of R which is congruent as an R-module and suppose [ is not
contained in the zero-divisors of R. Then by Theorem 3 and Theorem 2,
we see that R must be a domain. Let J be an arbitrary nonzero ideal
of R, and let € I be nonzero. Then |Jz| = |I| and Jz C I. Since I
is congruent, we have Jxr = I. But also J & Jx, whence J 2 I. As J
was an arbitrary nonzero ideal of R, it follows that R is congruent as
a module over itself. By Proposition 2, it follows that R is a principal
ideal domain. O

Proposition 12. Let R be a ring. The following are equivalent:
(a) R is a Dedekind domain.

(b) R admits a torsion-free congruent R-module.

(¢) R admits a free congruent R-module.

(d) R admits a faithful projective congruent R-module.

(e) Every R-module is the homomorphic image of a congruent R-
module.

Proof. (a) = (b). This follows immediately from Theorem 1.

(b) = (c). If R admits a torsion-free congruent R-module, then R
is a Dedekind domain by Theorem 2. Now by Theorem 1, R admits a
free congruent R-module.

(c) = (d). Trivial.
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(d) = (a). Suppose that R admits a faithful projective congruent
R-module M. Since M is faithful, it follows from Corollary 1 that R is
a domain. But then M must be torsion-free, whence R is a Dedekind
domain by Theorem 2.

(a) = (e). This follows immediately from Theorem 1 and the fact
that every module is the homomorphic image of a free module.

(e) = (a). Suppose that every R-module is the homomorphic image
of a congruent R-module. In particular, R itself is the homomorphic
image of a congruent R-module M. If M is torsion, then clearly so is R,
and this is impossible since R has an identity. Therefore by Theorem 3,
M must be torsion-free. By Theorem 2, R is a Dedekind domain. o
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