Flips and variation of moduli scheme
of sheaves on a surface

By
Kimiko Yamada

Abstract
Let \(H \) be an ample line bundle on a non-singular projective surface \(X \), and \(M(H) \) the coarse moduli scheme of rank-two \(H \)-semistable sheaves with fixed Chern classes on \(X \). We show that if \(H \) changes and passes through walls to get closer to \(K_X \), then \(M(H) \) undergoes natural flips with respect to canonical divisors. When \(X \) is minimal and \(\kappa(X) \geq 1 \), this sequence of flips terminates in \(M(H_X) \); \(H_X \) is an ample line bundle lying so closely to \(K_X \) that the canonical divisor of \(M(H_X) \) is nef. Remark that so-called Thaddeus-type flips somewhat differ from flips with respect to canonical divisors.

1. Introduction
Let \(X \) be a non-singular projective surface over \(\mathbb{C} \), and \(H \) an ample line bundle on \(X \). Denote by \(M(H) \) (resp. \(\overline{M}(H) \)) the coarse moduli scheme of rank-two \(H \)-stable (resp. \(H \)-semistable) sheaves on \(X \) with Chern class \((c_1, c_2) \in \text{Pic}(X) \times \mathbb{Z} \). We shall consider birational aspects of the problem how \(\overline{M}(H) \) changes as \(H \) varies.

Let \(H_- \) and \(H_+ \) be generic ample line bundles separated by just one \((c_1, c_2)\)-wall \(W \). For \(a \in (0, 1) \) one can define \(a \)-semistability of sheaves and the coarse moduli scheme \(M(a) \) (resp. \(\overline{M}(a) \)) of rank-two \(a \)-stable (resp. \(a \)-semistable) sheaves with Chern classes \((c_1, c_2)\) in such a way that \(\overline{M}(\epsilon) = M(H_+) \) and \(M(1 - \epsilon) = M(H_-) \) if \(\epsilon > 0 \) is sufficiently small. Let \(a_- < a_+ \) be generic parameters separated by only one miniwall \(a_0 \). Denote \(M_{\pm} = M(a_{\pm}) \) and \(M_0 = M(a_0) \). There are natural morphisms \(f_- : M_- \to M_0 \) and \(f_+ : M_+ \to M_0 \). After [4], let \(f : X \to Y \) be a birational proper morphism such that \(K_X \) is \(\mathbb{Q} \)-Cartier and \(-K_X \) is \(f \)-ample, and that the codimension of the exceptional set \(\text{Ex}(f) \) of \(f \) is more than 1. We say a birational proper morphism \(f_+ : X_+ \to Y \) is a flip of \(f \) if (1) \(K_{X_+} \) is \(\mathbb{Q} \)-Cartier, (2) \(K_{X_+} \) is \(f_+ \)-ample and (3) the codimension of the exceptional set \(\text{Ex}(f_+) \) is more than 1. The main result is the following.

2000 Mathematics Subject Classification(s). Primary 14J60; Secondary 14E05, 14D20.
Received January 16, 2009
Revised April 2, 2009
Theorem 1.1. Assume c_2 is so large that \bar{M}_- and \bar{M}_+ are normal and that the codimensions of

$$\bar{M}_\pm \supset P_\pm = \{ [E] \mid E \text{ is not } a_-\text{-semistable} \}$$

and

$$\bar{M}_\pm \supset \text{Sing}(\bar{M}_\pm) = \{ [E] \mid \dim \text{Ext}^2(E, E)^0 \neq 0 \}$$

are more than 1. Suppose K_X does not lie in the wall W separating H_- and H_+, and that K_X and H_- lie in the same connected components of $\text{NS}(X)_{\mathbb{R}} \setminus W$. (See the left figure below.) Then the birational map

$$M_+ \rightarrow \right
of $M(H)$, although it is unknown whether $M(H_X)$ admits only terminal singularities. Note that $M(H)$ is of general type if X is of general type, $H^0(K_X)$ contains a reduced curve, and $\chi(O_X) + c_1^2(E) \equiv 0(2)$ by [5]. Corollary 2.1 states that any sequence of flips occurring from the variation of moduli schemes of sheaves on a surface always stops, in relation to termination of flips.

We mention some characteristics of this paper compared with Thaddeus’ work [8], which considered the variation of GIT quotients and linearizations. By [6] the rational map $M_1 \cdots > M_2$ is a Thaddeus-flip, that is, a rational map which is an isomorphism in codimension 1 and comes from the variation of GIT quotient and linearizations. Relations about a flip with respect to the canonical divisor are not mentioned there. So-called Thaddeus-flip is weaker than a flip defined above. Moreover the birational map (1.2) is described in a moduli-theoretic way. Moduli schemes M_- and M_+ are connected by a natural blow-up and a blow-down described in moduli theory; see [9, Prop. 4.9].

Acknowledgement. The author thanks to the referee for valuable advises.

2. Proof of Theorem

There is a union of hyperplanes $W \subset \text{Amp}(X)$ called (c_1, c_2)-walls in the ample cone $\text{Amp}(X)$ such that $M(H)$ changes only when H passes through walls ([7]). Let H_- and H_+ be ample line bundles separated by just one wall W, and $H_0 = \lambda H_- + (1 - \lambda)H_+$ an ample line bundle contained in W. If c_2 is sufficiently large with respect to a compact subset $S \subset \text{Amp}(X)$ containing H_{\pm}, then M_{\pm} are normal and the codimension of $P_{\pm} \subset M_{\pm}$, which is defined at (1.1), are greater than 2 from [5] and [3, Thm. 4.C.7]. By [1, Sect. 3], for a number $a \in [0, 1]$ one can define the a-stability of a torsion-free sheaf E using

$$P_a(E(n)) = \{(1 - a)\chi(E(H^-)((nH_0)) + a\chi(E(H^+(nH_0)))) / \text{rk}(E)\}.$$

There is the coarse moduli scheme $\bar{M}(a)$ of rank-two a-semistable sheaves on X with Chern classes (c_1, c_2). Denote by $M(a)$ its open subscheme of a-stable sheaves. There is a finite numbers a_\pm called miniwall such that, as a varies, $M(a)$ changes only when a passes through miniwalls. Let $a_- < a_\pm$ be parameters separated by only one miniwall a_0, and denote $M_{\pm} = \bar{M}(a_{\pm})$ and $M_0 = \bar{M}(a_0)$. Since a rank-two a_\pm-semistable sheaf of type (c_1, c_2) is a_0-semistable, there are natural morphisms $f_- : M_\rightarrow \rightarrow M_0$ and $f_+ : M_\rightarrow \rightarrow M_0$ when $M = H_+ - H_-$. Since M_+ is effective and C equals $n_0 M$ with sufficiently large n_0, by [1, Prop. 3.14].

Remark that the canonical divisors of M_{\pm} are \mathbb{Q}-Cartier. Indeed, M_- equal $R/\text{SL}(N)$, where R is a subscheme of the Quot-scheme parameterizing quotient sheaves $\mathcal{O}_X(-M) \rightarrow E^-$ on X. Let E^\pm_R be the universal quotient sheaf on X_R. From descent lemma [3, Theorem 4.2.15], det $R\text{Hom}_{X_R/R}(E^\pm_R, E^\mp_R)$ descends to a line bundle on M_-, which we denote by det $R\text{Hom}_{X_{M_-}/M_-}(E^-, E^-)$.

It is known that $K_{M_-|M_-, \text{Sing}(M_-)}$ equals $R\text{Hom}_{X_{M_-, M_-}}(E^-, E^-)$ from deformation theory. Since M_- is normal, we have

$$K_{M_-} = \text{det} R\text{Hom}_{X_{M_-}/M_-}(E^-, E^-),$$

(2.1)
so it is \mathbb{Q}-Cartier.

Let η be an element of
\[A^+(W) = \{ \eta \in \text{NS}(X) \mid \eta \text{ defines } W, \ 4c_2 - c_1^2 + \eta^2 \geq 0 \text{ and } \eta \cdot H_+ > 0 \} \].

After [1, Definition 4.2] we define
\[T_{\eta} = M(1, (c_1 + \eta)/2, n) \times M(1, (c_1 - \eta)/2, m), \]
where n and m are numbers defined by
\[n + m = c_2 - (c_1^2 - \eta^2)/4 \text{ and } n - m = \eta \cdot (c_1 - K_X)/2 + (2a_0 - 1)\eta \cdot C, \]
and $M(1, (c_1 + \eta)/2)$ is the moduli scheme of rank-one torsion-free sheaves on X with Chern classes ($(c_1 + \eta)/2, n$). We also denote $T = \coprod T_{\eta}$, where η runs over $A^+(W)$. If $F_{T_{\eta}}$ (resp. $G_{T_{\eta}}$) is the pull-back of a universal sheaf of $M(1, (c_1 + \eta)/2, n)$ (resp. $M(1, (c_1 - \eta)/2, m)$) to $X_{T_{\eta}}$, then we have the following.

Proposition 2.1 ([9], Section 5). We have isomorphisms
\[
\begin{align*}
(2.2) \quad P_- & \cong \coprod_{\eta \in A^+(W)} P_{T_{\eta}} \left(\text{Ext}^1_{X_{T_{\eta}}/T_{\eta}} (F_{T_{\eta}}, G_{T_{\eta}}(K_X)) \right) \quad \text{and} \\
(2.3) \quad P_+ & \cong \coprod_{\eta \in A^+(W)} P_{T_{\eta}} \left(\text{Ext}^1_{X_{T_{\eta}}/T_{\eta}} (G_{T_{\eta}}, F_{T_{\eta}}(K_X)) \right).
\end{align*}
\]

There are line bundles L_1 (resp. L'_1) on P_- (resp. P_+) with exact sequences
\[
\begin{align*}
0 & \rightarrow F_T \otimes L_1 \rightarrow E_{M_-}|_{P_-} \rightarrow G_T \otimes L_2 \rightarrow 0 \quad \text{and} \\
0 & \rightarrow G_T \otimes L'_1 \rightarrow E_{M_+}|_{P_+} \rightarrow F_T \otimes L'_2 \rightarrow 0
\end{align*}
\]
such that $L_1 \otimes L_2^{-1} = \mathcal{O}_{P_-}(1)$, which means the tautological line bundle of the right side of (2.2), and $L_1' \otimes L_2'^{-1} = \mathcal{O}_{P_+}(1)$. Here E_{M_-} is a universal family of M_-, which exists etale-locally.

Claim 1. It holds that
\[K_{M_-}|_{P_- \times T_{\eta}} = - (\eta \cdot K_X) \mathcal{O}_{P_-}(1) + \text{ (some line bundle on } T), \quad \text{and} \]
\[K_{M_+}|_{P_+ \times T_{\eta}} = (\eta \cdot K_X) \mathcal{O}_{P_+}(1) + \text{ (some line bundle on } T). \]

Proof. Suppose that $A^+(W) = \{ \eta \}$ for simplicity. From the definition of η, one can check $c_1(F_t) - c_1(G_t) = \eta$. By Proposition 2.1 and (2.1),
\[
\begin{align*}
K_{M_-}|_{P_-} & = \det RH \text{om}_{X_{P_-}/P_-} (E_{M_-}|_{P_-}, E_{M_-}|_{P_-}) \\
& = \det RH \text{om}_{X_T/T}(F_T, F_T) + \det (RH \text{om}_{X_T/T}(F_T, G_T) \otimes L_2 \otimes L_2^{-1}) \\
& \quad + \det (RH \text{om}_{X_T/T}(G_T, F_T) \otimes L_1 \otimes L_1^{-1}) + \det RH \text{om}_{X_T/T}(G_T, G_T) \\
& = -\chi(F_t, G_t) \cdot \mathcal{O}_{P_-}(1) + \chi(G_t, F_t) \cdot \mathcal{O}_{P_+}(1) + \text{ (line bundle on } T) \\
& = -(\eta \cdot K_X) \mathcal{O}_{P_-}(1) + \text{ (line bundle on } T). \]
\]
One can calculate $K_{M_+}|_{P_+}$ similarly.

Remark that, since $\eta \cdot H_+ > 0$, one can verify that $\eta \cdot K_X < 0$ if and only if K_X does not lie in $W = W$, and H_- and K_X lie in the same connected components of $\text{NS}(X)_{\mathbb{R}} \setminus W$. The next lemma ends the proof of 1.1.

Lemma 2.1. The map $f_+: M_+ \to f_+(M_+)$ is proper.

Proof. It suffices to show that $f_+^{-1}(f_+(M_+)) = M_+$. Suppose not. Then some $[E] \in M_+ \setminus M_+$ satisfies $f_+([E]) = f_+([E'])$. Since $a_+ > 0$ is generic, E' is denoted with an exact sequence

$$0 \to F' \to E' \to G' \to 0$$

with rank-one torsion-free sheaves F' and G' such that $P_a(F'(n)) = P_a(G'(n))$ for any a. $[E]$ and $[E']$ are S-equivalent with respect to a_0-stability, so (2.4) implies that E cannot be a_+-stable, which is a contradiction.

Corollary 2.1. Any sequence of flips occurring from the variation of polarizations and moduli schemes of sheaves on a surface X always stops after finitely many modifications.

Proof. In fixing a polarization H, we claim that only finitely many walls pass across the segment L connecting H and K_X. Indeed, $L \cap \partial \text{Amp}(X)$ is empty or equals $\{H_0\}$ with a Q-divisor H_0 from the cone theorem. Thus the claim follows from the fact [6, Lem. 1.5] that only finitely many walls intersect with a fixed polyhedral cone in $\text{Amp}(X)$ spanned by Q-divisors. One can readily check the corollary from this claim.

We end with proving some facts in Introduction.

Lemma 2.2. Assume K_X is nef, and fix c_1 and a polarization H_0. If c_2 is sufficiently large with respect to X and H_0, then for $H \in \mathcal{L} = \{(1-t)H_0 + tK_X | t \in [0,1]\}$, $M(H)$ are mutually isomorphic in codimension one.

Proof. Let H_- and H_+ be any ample line bundles lying in adjacent chambers and separated by a wall W passing through a point L on \mathcal{L}. Since K_X is nef, one can find an effective divisor $H \in H^0(\mathcal{O}_X(NK_X))$ with some $N > 0$ such that H is the disjoint union of some finite smooth curves. Then similarly to [7, Lem. 2.2] we can show that, for a divisor F with $2F - c_1 \sim \eta$,

$$h^0(\mathcal{O}_X(K_X - (2F - c_1))) \leq d_1(X) + N|K_X \cdot \eta|,$$

where d_1 is a constant depending only on X. By the proof of [7, Lem. 2.1], it holds that

$$|K_X \cdot \eta| \leq \left(2K_X^2 + \left(\frac{K_X \cdot L}{(L^2)^{1/2}}\right)\right) \left(2c_2 - c_1^2\right)^{1/2}.$$

When $K_X^2 > 0$, $|K_X \cdot L|/(L^2)^{1/2}$ is bounded for any $L \in \mathcal{L}$. When $K_X^2 = 0$, one can check that

$$|K_X \cdot L|^2 \leq |K_X - H_0|^2 / H_0^2.$$
Thus some d_2 depending only on X and H_0 satisfies
\begin{equation}
|K_X \cdot \eta| \leq d_2(X, H_0) \cdot (4c_2 - c_1^2)^{1/2}.
\end{equation}
In the same way as [7, Thm. 2.3], we can show that
\[
\dim(P_\times T_\eta) \leq (3/4)(4c_2 - c_1^2) + d_3(X, H_0) + d_4(X, H_0) \cdot (4c_2 - c_1^2)^{1/2}
\]
with some constant d_3 and d_4 depending only on X and H_0 by using (2.5), (2.6) and (2.7), and this implies the lemma.

Claim 2. Suppose K_X is nef, and let H_X be an ample line bundle H_X such that no wall of type (c_1, c_2) divides K_X and H_X. Then the canonical divisor of $M(H_X)$ is nef.

Proof. From [3, Prop. 8.3.1] $2K_{M(H_X)} = p_*(\Delta(E_{M(H_X)}) \cdot K_X)$, and $p_*(\Delta(E_{M(H_X)}) \cdot H_X)$ is nef. When H_X is sufficiently close to K_X, the assertion holds.

Department of Mathematics
Faculty of Science
Kyoto University
Kyoto 606-8502
JAPAN
e-mail: kyamada@math.kyoto-u.ac.jp

References

