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Summary

The purpose of the present raper is to prove a dual relation
between locally compact groups G and the set 2 (resp. é\) of equiva-
lence classes of (resp. all irreducitle) uritary representations of G.
This duality may be considered as an extension of Pontrjagin duality
for abelian groups and Tannaka duality for compact groups.

In such a duality thieorem, G is characterized as the “dual
group” of 2 (resp. (/}\), that is, as the set of all “birepresentations”
which are operator fields over 2 (resp. 6) commuting with the
operation of Kronecker product. ‘‘Birepresentation’ is a generalization
of a character over the dual group in abelian case. And the initial
topology of G coincides with the ‘“weak topology” on the set of
operator fields over £.

The duality between G and £ is called the weak duality, and
the one between G and /G\ is called the strong duality. The first one
is proved for general locally compact groups, but the strong duality
is proved under the type I restriction for G.

The results are strengthened for special groups.

§0. Introduction.

1. In the theory of representations of locally compact groups,
the dual object, that is, the set of all equivalerce classes of unitary
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irreducible representations of the given group, plays an important
role. And many investigations have been done about ftopological
structure or Borel structure of this object.

From the name ‘‘dual object”, naturally, there arises a question
whether the initial group is characterized by its dual object in some
canonical way, or in other words, whether two different groups have
dual objects of different structure. But the fact that any separable
compact group with infinite elements has discrete dual with countably
infinite elements shows that if we consider only topological or Borel
structure on the dual object, then it cannot characterize the initial
group.

However there exists algebraic structure, that is the so-called
Kronecker product of representations. Considering that the dual
object having topological or Borel structure is furnished moreover by
the structure defined by Kronecker product, we have some examples

for which the above question is ansowered affirmatively.

2. In the case of a locally compact abelian group A, the well-
known duality of L. Pontrjagin [18] is valid. This duality is stated
as follows. The dual space f/l\ of A can be identified with the set
of all continuous unitary characters on A, with the locally compact
topology defined by uniform convergence on any compact set, and
with the Borel structure generated by this topology. The Kronecker
product of elements of 1/4\ corresponds to the ordirary product of
characters as functions. With these structures, //l\ becomes a locally
compact abelian group.

Now consider the dual group IZIA\ of locally compact abelian group

A ~
f/l\. That is, A is the set of all functions % over A such that

1 |z =1, for any x in A (unitarity),
2) 1()T(x) =%(X: %), for any x;, % in A

(commutativity with product operation),
ay
(3) % is continuous, or more loosely, Borel measurable on A

(measurability).
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A
Consider an element @ in A as a function ¢ in A with the equality

N

a(x)=x(a), for any x in A.

A
Then we can define a homomorphism ¢ of A into A.
A

The duality theorem asserts that ¢ is an isomorphism onto A.

3. For a compact group K, T. Tannaka [19] gave a similar
duality theorem. In this case we attach discrete structure to I/{\
Generally an element in I/{\ is not one-dimensional, so Kronecker
product pX)s of a pair of elements p and ¢ in I/{\ is decomposed into
a direct sum ,P---Pr,, of finite elements in I/{\

A A
As the dual group K of K, we consider the set of all operator
(matrix) fields T={T(p)} over K such that

(1) T(p) is a unitary matrix on the space of representation p,
2) TRT6)=T()D DT (x.),

for any pair (p,s) in K and the above decomposition formula. Define
the group structure into I/é\ defined by componentwise product
T, T.={T:(p) T:(p)}, for T,={T,(0)},

and the weakest topology among those which make all matrix ele-
ments {{T(p)u, v>},., continuous. (We call such topology the “weak
topology”.) It is easy to see that I/{A\ is a topological group and the
matrix field W= {Wgr(p)}, of which W(p) isthe matrix of represen-
tation p, gives an element in Ié'\ Therefore we can define a homo-
morphism ¢ of K into I/A{\' by assigning k£ in K to Wk

A
Tannaka duality theorem says that ¢ is an isomorphism onto K,

as iu the case of abelian groups.

4. The third example is given by the real unimodular group G
of second order [20]. This duality is stated in quite the same form
as in compact case. In the case of G, the Kronecker product ¢Xos
of elements of 6 is decomposed into a non discrete but continuous

direct sum of irreducible representations, in general: p®a~§wdup,u(w).
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Let this equivalence relation be given by an isometry U of the space
of pX0s onto the space of the right hand side.
A
Take as the dual G of G the set of all operator fields T= {T(p)}

e
over G such that

(1Y T(p) is a unitary operator over the space of representa-

tion p,

@) UT@RT@) U= T@)dsn(w),

for any pair (p,¢) in 6 X (A} and any irreducible decomposition of pXs.
By the same group structure and topology as in the compact case,
é\ becomes a topological group. And a homomorphism ¢ of G into
é\ is defined by considering the field of representation operators
Ug={Ug(p)} as an element of é

The main result of the previous paper [20] asserts that ¢ is

A
an isomorphism onto G.

5. From the above three examples, we may make a conjecture
that the following theorem holds for some wide class of lccally
compact groups G.

Consider the set 6 of all operator fields T= {T(p)} over the

dual G of G such that
(i) T(p) is a unitary operator over the space of representa-

tion p,
(ii) for any irreducible decomposition of the Kronecker product

ay
p®a~gwdup_a(w) of any two elements p, ¢ of G, which are related
by an isometry U of the space of pX¢ onto the space of right hand

side, the following equation is valid
UT@@T ) U= T(@)dua ).

(ii1) {T(p)} satisfies some measurability condition with respect

Py

to the Borel structure on G.
We shall call such an operator field birepresentation. The con-

dition (i) will be weakened later.
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A
We give a group structure in G by introducing componentwise
product
T.T.,= {Tl((J) T2<P>} )

and consider certain topology which is compatible with this group
structure.

Then a homomorphism ¢ of G into é\ is defined by the cor-
respodence of g to a birepresentation Ug= {Ug(p)}.

Our main theorem is stated as follows.

Theorem. ¢ is an isomorphism onto (/;\ In other wovds, for any
given bivepresentation T, therve exists a unique g in G such that
T=Uyg, and the mztzal topology of G corresponds to the above
given topology of G by .

Although our main purpose is to find a family of groups for
which the above mentioned duality theorem holds, the above definition
of é\ contains the ambiguous condition (iii) and the ambiguous to-
pology, as readers may notice.

The last two examples do not need the measurability condition
(iii). But in the case of non-compact abelian groups, if we omit
this condition then there exist non-measurable unitary characters
over the dual group :4\ and it gives examples which satisfy (i) and
(ii) but are not in A. The first problem is to make clear the reason
why such difference arises, and to seek adequate condition for measur-
ability.

Analogously for the last two examples, the good topology in
G is just the “weak topology”. But for non-compact abelian case,
its “weak topology” is equal to the simple convergence topology of
characters over 21\ and strictly weaker than the initial topology of
A. Tt is the second problem to set up a generally applicable topology.

The third problem is how we can loosen the unitary condition
(i). C. Chevalley [2] shows that in the case of compact Lie groups
the family of matrix fields satisfying the conditions (1’) and (2')
except unitarity of T(p) gives the complexification of K. Moreover
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the condition of reality 7T(p)=T(p) yields the unitarity. This
circumstance may te comparable to the existence of non-unitary
characters over an akelian group.

Therefcre it seems that the unitarity cordition is necessary
for this theorem. But as sicwn in the follewirg fcr trc case of
non-compact connected simple Lie groups with firite certre this
condition can be replaced by a weaker cordition of boundedness (§5.
proresition 5.2). This fact is tased on a property that the main
part of 6 is finitely generated for these groups.

6. The first step of solving these questions is to prove a duality
theorem of somewhat weaker type which we state as follows (§2.
proposition 2.1).

Let G be a locally compact groupr. We corsider the set of all
equivalence classes 2 of unitary (in general, not irreducible) represen-
tatiors of G, dimensions of which are lower than a sufficiently large
cardinal number equal to, for instance, the square of the dimersion
of L*(G). For brevity of notations, we attach a representative
0= {Ug(w),H(w)} to each element of £. In £, as usual, tke opera-
tion “@” (direct sum) and “®” (Kronecker product) are defined.
It is shown later that the set of multiples of the regular represen-
tation R of G is an analogue of an ideal with respect to these
operations.

As the dual /.Q\ of 0, take the set of all operator fields T= {7 (w)}
over £ such that

(i) T(v) is a clesed operator on H(w), and T(R) is a non-
zero bounded operator on L*(G),

(i) U(T(0)D T (@) Ur'=T(as),
where ,Pw, and ws are connected by the isometric operator U, of
() BH(w,) onto H(ws),

(i) U(T (oD@ T () Us'=T (o),
where 0,Qw, and w, are connected by the isometric operator U, of

D(0) ZH(w:) onto H(w,).
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We shall call such an operator field a weak birepresentation.
Being equipped with the componentwise product and the weak topo-
logy as above, .abecomes a topological group, and the map ¢: g(€G)
—Ug={Ug(w)} gives a homomorphism of G into 2.

In this form, we can prove generaliy that ¢ is an isomorphism
onto ?2\ as a topological group.* This fact may be called weak
duality.

The proof of this weak duality runs as follows.

The Kronecker product of two right regular representations R
of G is decomposed into a discrete direct sum of R with multiplicity
equal to dim L*(G):

R®RNZ@Ra , (RaNR).

There are many equivalence relations A connecting the represen-
tations of both sides. Denote the left regular representation of G
by L={Lg, L*(G)}. Let T be a non-zero bounded operator on L*(G)
such that

a) TLg=LgT, for any g in G,
b) for any equivalence relation A,

AT QTS = {Thd}«, if A(SQS) = {ha}a.

Call such an operator T to be admissible. It is easy to see that
the component T'(R) on R of any weak birepresentation is admissible
and T= {T(w)} is uniquely determined by T(R). So /,Q\ is imbedded
in the space .?2\0 of all admissible operators in L*(G). If we introduce
the weak topology of operators in /ﬁu, this imbedding is continuous.
To prove the weak duality it is sufficient to show that E.?\o is iso-
morphic to G. This is done in §2.

7. Now we shall return to the duality theorem in the stong
form. The weak duality assures that for any given birepresentation
T over 6, if we can define non-zero bounded operator T(R) on
L*(G) satisfying a) and b), which corresponds to T, then by con-

* The definition of an adequate topology is given in J. Ernest’s paper [4].
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31der1ng the topology which is mduced by the weak topology of
.Qo, the duality theorem is proved for G
The meaning of ‘“correspond to” is as follows. Let R=

g wdvr(») be an irreducible decomposition of the regular represen-
o(R)

tation, then the equation

Rg— S Ug () dv(o)
o(R)

holds for every g in G. Therefore, if the theorem can be proved,
the corresponding admissible operator 7(R) must be defined by

T(R)= SG(R)T(w)duR(a)).

But this integral defines a non-zero bounded operator, if and
only if
a) T(w) is vg-measureable; that is, for any {v(w)} in the space

of g wdvr(w), {T(0)v(w)} is also in the same space,
o2(R)
8) {l|T(w)]]} is ve-essentially bounded,

r) {T(w)} is not zero on a ve-positive set.

8. In this view point, the difference between abelian and compact
cases becomes clear.

The dual object of a compact group has discrete structure, so
we do not need any assumption of measurability, and weak convergence
in 1? gives rise to weak convergence of 7T(R) immediately.

The conditions ) and y) should be given in both cases, and for
this it is sufficient to assume the unitarity of 7(R) (condition (i)).

Then what happens in the case of SL(2, R)? To make clear
this situation, we attend to the condition (ii) of birepresentation.
In order that the formula

UT)ST() U=\ T(0)dun(0)
is possible, the right hand side must exist and define a bounded
operator. This assumption hides the y,.-measurability of {7T(w)}.

Extending this consideration to repeated product, we conclude that
if R is contained as a subrepresentation of a discrete direct sum of
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Kronecker products of irreducible representations taken from a count-
able family (shortly, R is countably generated), then a) follows from
the condition (ii) of birepresentation.

For some class of semi-direct product groups, R has such a
property. (§7. proposition 7.1)

Moreover, from the equality

TR T =ITWI- 1T,

the boundedness of operators 7(p), T(s) gives the essential bounded-
ness of T(w) over the carrier of v,,. The consideration as above
shows that if R is contained as a subrepreseatation in a direct sum
of Kronecker products of finite number of irreducible representations
(shortly, R is finitely generated), then the boundedness of 7'(p) on
the basic finite irreducible representations leads us to §). And it
is easy to show that the weak convergence of T(R)’s follows from
the weak convergences of T(p)’s on the basic representations.

We shall show that R is finitely generated for SL(2, R), and
more generally, for non-compact connected simple Lie groups with

finite centre.

9. The contents of this paper are as follows.

§1 is devoted to state the notions and elementary properties
which are used in the following §s.

In §2, we shall prove the weak duality theorem which holds for
general locally compact groups.

This weak duality is extended to the case of homogeneous spaces
of G by a compact subgroup, after N. Iwahori’s paper [12], in §3.

The connection between weak and strong forms of duality
theorem is discussed in §4.

In the case of connected semi-simple Lie groups with finite
centre, we can prove a duality theorem under weaker conditions.
In §5, we consider this fact, using the result of $6 which states a
property of orbits space on such a group.

For some class of semi-direct product groups, which contains
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the motion group over m-dimensional Euclidean space, and the m-
dimensional proper inhomogeneous Lorentz group, we can show that
R is countably generated, which means that the orbit spaces are
“well-behaved”. So in §7, we prove a duality theorem in stronger
form for such groups.

The author wishcs to thank Professor H. Yoshizawa for his kind
advices.

Short summaries of the results of this paper have been published
in [21] and [22].

Notations. Locally compact groups will be denoted by G, H,
K, N etc., and their elements by corresponding g, %, k, »n etc.
respectively. We mean by representation of a group a unitary
strongly continuous representation of the given group over some
complex Hilbert space, through this paper. A representation w=
{Ug(w),9(w)} is given by unitary operators Ug(w) on the Hilbert
space H(w). Elements of H(w) are shown by u, v, w etc. [(w)
(or I) shows the identity operator over 9(w). Representations of
a given group are shown by Greek alphabet such as o, p, g, ¢ etc.
The restriction of a representation o of G to a subgroup H of G
is denoted by w|z. We denote by 1 the trivial representation, whose
operators are the identity operator over one-dimensional complex
vector space C.

On G, we can define right Haar measure p, (or x) and left

Haar measure p,. Then the modulus of two Haar measures

4:(g) (or 4(g))=(du/dpm)(g),

is a positive continuous function on G.

For a function f over a locally compact space M, [f] means
its carrier, and f means its complex conjugate. C.(M) is the set
of all continuous bounded functions on M, and C,(M) is the set of
elements with compact carrier in C.(M), moreover Cy (M) consists
of all elements which takes real non-negative value in C,(M). For
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given measure v on M, L:(M) means the Hilbert space of all »-
square-summable functions on M. When M is a group G, we denote
L:(G) by L*(G) shortly.

The right regular representation R= {Rg, L*(G)} of G is the

representation on L?*(G), operators of which are given by

(Rg, ) (@) =rf(g&), for any f in L*(G),

and the left regular representation L= {Lg, L*(G)} is defined on the
same space L*(G) by

(Le,f)(g)=(4(g))"f(&:8), for any f in L*(G).

If two p-measurable sets £ and F in G are different only by
a set of p-measure zero, then we denote E~F.

By x: we denote the characteristic function of E, that is, the
function which is equal to 1 on E and to zero on the outside of E.

C, R mean the fields of all complex or of all real numbers,
respectively.

For a set of bounded operators A= {A} on &, the set of all
bounded operators which commute with each element of 2, is a
weakly closed *-ring; we denote this ring by ' or {A4}'.

§1. Preliminaries.

1. When a locally compact group G and its representation o
are given, we call a bounded operator A in $(w) G-invariant, if

(1.1) AUg(w) =Ug(w) A, for any g in G,

and a subset V in $(w) G-invariant, when V is invariant as a set
by Ug(w) for any g in G. When moreover V is a closed subspace,
it means that the projection P, with the range V is G-invariant.

A representation o of G is called irreducible when there exist
no proper non-trivial closed subspace of $(w) which is G-invariant.

Two representations w, and o, of G are unitary equivalent (or
shortly equivalent) by U, when U is an isometric map of 9(w;)
onto D(w,) such that
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1.2) UUg(wy) = Ug(wy) U, for any g in G.

U
We denote this relation by w,~w, or simple by w;~w,. The unitary
equivalence gives an equivalence relation on the set of representations
of G.

2. We refer the readers to Dixmier’s book [3] for the definition
and elementary properties of Kronecker product of finite number of
Hilbert spaces and operators on these spaces. And we shall remark

now only the following:
Lemma 1.1. For non-zero vectors u in H(w;) and v in D(w,),
(1.3) uRv=0, in H(0) @D (w,).

Therefore for two vectors u, u, in H(w,), if there exists a non-
zero vector v in (w,) such that

(1.4) Qv =uQv,

then Ur=1Uy .

(The proof is trivial.)
Now we shall turn to the definition of Kronecker product of

representations.

Definition 1.1. If a finite set of locally compact groups
{G}isis. and representations w;= {Ug,(0,),9;} of each G; are
given, then the family of unitary operators {Ug (0:)Q Ug,(0)®
o R@Ug,(0,)} on QDR XD, gives a representation of the
product group G, X G, X+ XG,. We call this representation the
outer Kronecker product of {w,} and denote by wl®w2®m®wn.

Lemma 1.2. The outer Kronecker product wlé\gwg@---@wn is
irreducible if and only if each w; is irreducible.

Proof. It is enough to show it when #=2. And obviously
HR®9(w,) is a non-zero closed proper G-invariant subspace of
9(0) X9 (w,) for any non-zero closed proper G-invariant subspace
H of 9(w,). This shows “only if” part.
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Conversely, let w,, w, be irreducible and A be a bounded operator
on H(w)XH(w,) commuting with all Ug (0)Q Ug,(w,). Take a
complete orthonormal system {v;} in $(w,); then the vector A(u@v)
is expanded uniquely as

(1.5) A(u@v)zg‘,u,@)v,.
For a fixed v, the map A;(») on $(w,), defined by
(1. 6) A(u=u;

is a bounded operator commuting with {Ug,(w,)}. Hence from the

irreducibility of w;, for some scalar c¢;(v),

1.7 A;(0) =c¢;) (o),

(1.8) A(u@v) = g‘.c,(v) u@v,;= u®%_.“ c;(v)v; .
Next put A4, a bounded operator on $(w,) defined by
1.9 A= ;‘.c,(v)v, .

Then A, commutes with {Ug,(w;)}. That is, A, is a scalar operator.

Thus A=1(0;)@QA, is a scalar operator. This gives the irreducibility
N\

of 0, QRw,.

n

’ T
Definition 1.2. In the product group G'=G X -+ X G of same
locally compact group G with multiplicity n, the set G, of all dia-

gonal elements {(g, -+, g): g=G} is a closed subgroup in G* which
is isomorphic to G with the induced topology and by the map
. g—>(g, -, 8). We call G, the diagonal group in G".

Definition 1.3. In the definitionl. 1, if all G;s are equal to
same group G, we can consider (w,@w,@-"®w”) |, the restriction
of w1®wz®-~‘®wn to the diagonal group G, in G, a sa representation
of G by the map =n,. This representation of G is called the inner
Kronecker product (o7 shortly Kronecker product) of {w,}, and is
denoted by o Lw,R - Ruw,.

Lemma 1.3. For given bounded operators T; on 9,
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(1.10) ITQ-QTull = I Tall X -+ X [ T

Proof. The proof of inequality || T:®---Q T, Tall X -+ X || T,
is given in Dixmier’s book [3] (p. 23).

Conversely for any ¢>>0, there exists v; in 9; such that || T;v,|
> T;l[=e)vsll. Then

(1.11) | T®--&Q T,,vnllzl} AT = flvsll
=TJI(H Tl —e) 1@ Q.
That is, the converse inequality is deduced from

(1.12) IT:Q--QTN=T U T3l —e).

F. J. Murray and J. von Neumann [17] studied rings of operators
on Hilbert spaces, and defined ‘“factor” as W *-ring with 1-dimensional
centre. By their classification, there are three types of factors, so-
called of type I, II, III.

Applying the theory to the rings of operators on representation
space (o) generated by the operatcrs Ug(w) for some representation
o of G, we get following definitions.

Definition 1.4. A representation o of G is called a factor re-
presentation when the W*-ring generated by {Ug(w)} is a factor.

Definition 1. 5. A group G such that any factor representation
of G is of type I, is called a group of type I

3. In this section, we assume that all Hilbert spaces which we
shall consider are separable and all groups G are separable too.

The author refers J. Dixmier’s book [3] for the definitions and
simple properties of direct integrals of Hilbert spaces etc. Let
{X,®B,r} be a measure space, and let for any x in X, a Hilbert
space H(x) be attached, the direct integral of {H(x)} with respect
to {X, B, v} is denoted by SXH(x)du(x). Direct integral of operators,
and of representations are denoted in analogous way.

The followings are well-known results of classical theory.



A duality theorem for locally compact groups 201

Lemma 1. 4. (F. I Mautner, [15]). For any representation o
of a separable locally compact group G, there exist a measure
space (X,B,v) and a family {w(x)} of irreducible representations
of G which is associated to each x in X, and

(1.13) w~§xw(x)du(x).

Such an integral form of the given representation o is called the

irreducible decomposition of o.

Lemma 1.5. For any representation v of G, the irreducible de-
composition of the W*-ring which is generated by { Ug(w)} J{Ug(w)}’
is unique up to unitary equivalence. And its almost all com-
ponents are factors.

This decomposition of o is called the central decomposition
of w.

Lemma 1.6. If Gis a type I group, then for any representation
o, its 1rreducible decomposition is unique up to unitary equivalence.

Lemma 1. 7. For type I group G, operators of almost all
components p in the centrval decomposition of the given repre-
sentation are of the form

(1~ 14) Ug (p) = n(D)® Ug (w (p) ) )

where »(p) is an irrveducible representation and I, is the identity
operator in some n(p)-dimenfional Hilbert space 9,.

Proof. In fact, operators of representation of type I factor are
of the form of (1.14).

Lemma 1.8. For a direct integral
(1.15) o=\ 0(0d(0),

if v-almost all components o(x) are equal to the same representa-
tion w,, then

(1.16) o~>Dw,
with the multiplicity which is equal to dim Li(X).
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Proof. It is considerable that all the spaces D(w(x)) are same
to D(wo). Let {p.} be a complete orthonormal system of L1(X),
and consider for any element

1.17) v={v(®)}, in H(w),

(1.18) ﬁazng(x)% (x)dv(x).

Then it is easy to see that the map ¢; v— {J.} gives the equivalence
relation of (1.16).

Lemma 1.9. When a direct integral
(1.19) wEwa(x)du(x)

is given, then there exists an irrveducible decomposition
@20 o~ ot nannfan = o)
such that, for v-almost all x,

(.20 0@~ w(xdn(y)

gives an irreducible decomposition of w(x).

Proof. Let 2 be the abelian ring generated by the diagonal
elements of the direct integral (1.19). (That is, the map: f(x)—
c(x)f(x) in $(w) where c(x) is a v-essentially bounded function on
X). Consider a maximal abelian subring A of {Ug(w)}" which
contains 9. Then the irreducible decomposition of » with respect to
A is given as follows:

1.22) w~§}w(£)dﬁ(f).

But because of separability of  and G, % contained in D
separates the measure space {5(', v} as a double integral form
{(x,}: xeX,y€Y,, s=vXy,}). And it is easy to see that the
both hand sides of (1.21) are equivalent for almost all x, so (1.20)

gives an irreducible decomposition.
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Lemma 1.10. For given two direct integrals

(1. 23) w;ESXiw(x)du,(x), (j=1,2),
we have
(.20 o@o~|  o®Ra(9)dn(®)du(s).

Proof. Consider the linear map ¢ generated by u@v— {u(x)
Xv(y)} from H(enQw,) to the space of representation of right hand
side of (1.24), where {#(x)}, {v(y)} are corresponding vector to
#, v in the integral (1.23).

The map ¢ gives the unitary equivalence of (1.24).

Corollary. If the irreducible decompositions of represenilations
w; (7=1,2) of type I group G are given by w,~8 o(x)dy;(x)
a5
respectively, then the irrveducible decomposition of o.Qw, has a
form

@29 o@o~ dn@dD{], 0w x»d,@},

where
(1.26) o@@u(N~\, o %, D duu, W),

is a fcrm of irreducible decomposition of o(x)Kw(y).

Proof. From lemma 1. 10,
.27 oo~ 2DR0(Ndda().

Apply the result of lemma 1.9, then uniqueness of irreducible
decomposition leads to (1.25).

Hereafter we assume that G is type I group.

Now consider the set 6 of all equivalence classes of irreducible
representations of G. From each element of é\, we choose a repre-
sentative o. ‘

Let T={T(w)} be an operator field on /G\ in which T(w) is a
bounded operator on $(w), for any irreducible representation w,, T
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is extendable uniquely by
(1. 28) T(w)=UT(w) U™,

where o is the representative of equivalence class containing , and
U is the equivalence relation connecting w, to w.
Let o, be given representation of G and let its irreducible de-
composition is given by
U
(1.29) wpgmw(f) don (o).

And let vectors u, v in D(w,) correspond to {#(w(r))}, {¥(w())}
respectively in this decomposition, by U.

Definition 1. 6. T is called integrable on w, when for any
vectors u, v in O(w,), the function
(1.30) (T(@)(0), (@) g

is wv-measurable over 2(w,).
It is easy to see that integrability does not depened on the way
of irreducible decomposition.

Lemma 1.11. If T is integrable on o, then ||T(v) H&,(w) is
w-measurable function over 2(w,).

Proof. Let {v;} be a dense countable set in $(w;); then,
for y-almost all o,

- (T(@)v;(0), v:(@))
(]" 31) ” T(‘”) ”,b(w) - S,uP x[u}]ﬂ[w’] ”U} (w) ” ”vk (w) ” .

That is, || T(w) ”g)(a,) is y;-measurable.

Definition 1. 7. If T is integrable on o, and

(1. 32) vi-ess-sup|| T(w) H@(m)< + oo,
then T is called bounded on w,.

And if
(1.33) wress-sup|l T'(w) llg(,) 0,

then T is called non-zero on w,.
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Lemma 1. 12. If T is integrable on o,, then,
(1.34) T={ T(0())dn(®)

is defined as a closed operator on 9(w,) with dense domain.
When G is type I, T(w,) does not depend on the form of
irreducible decomposlion.
Moveover, if T is bounded on w,, then T(w,) is bounded and

(1. 35) wesssup|| T(0) g oy = 1 T (@) -
Especially, if T is non-zevo on o,, then T(w)=0.

Proof. Divide 2(w;) into a disjoint sum of measurable subsets,

(1. 36) 9(071)=.Ql+.91+"’,
where
(1.37) 2.= {o; n—1<|| T (o) |<n}.

Evidently $(w,) is the direct sum of closed subspaces
(1. 38) H,={;[v(o)]C2.},

and the norm of T(w,) |x. is smaller than #. This shows that 7'(w,)
is a closed operator with a dense domain.

Uniqueness of 7T(w,) follows from the uniqueness of decom-
‘position.

Next, since

@39 [T@ol = T@®) 0@ Focureyd®
< IT@E 19 @E) g ugeyydn®,

‘the right hand side of (1.35) is smaller than the left one. But for

.any given ¢>0, we can select adequate non-zero {v(w)} such that
@.40)  (IT@E) @) Pyaeyd®
=((resssupl T(@) gy —¢) {12 @) [ (@.

“This shows the converse inequality.
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Lemma 1.13. If T is integrable on w,, then for any sub-
representation w, of w,, T is integrable on o, too.

Proof. The irreducible decomposition is given by the decomposi-
tion (1.29) of w, and a y-measurable subset 2(w,) of 2(w,)), as

(1.41) w2~§ww<r> (o).

The integrablility of T on w, follows immediately from »,-measura-
bility of functions
(1. 42) AN OLEAOTIORIONTRS

4. Now we shall give a simple sketch of the theory of induced
representations developed by G. W. Mackey [13].

If a locally compact group G and its closed subgroup K are
given, the homogeneous space M=K\ G of left K-ccsets is a locally
compact space over which G operates as a transitive transformation
group. Denote, by = the canonical map from G to M which transfers
an element g of G to the left K-coset containing g.

For a measure v over M and g in G, we can define a measure
vg by v (E)=v(Eg) for all measurable set £ on M. u is called
quasi-invariant if and only if v, and v have same null sets, that is,
mutually absolutely continuous.

Lemma 1.14. There exists a quasi-invariant measure v on M
always. And any two quasi-invariant measures arve wmutually
absolulely continuous. For such a v, a measurable set E on M is
v-null set if and only if n'(E) is p-null set, wherve p is a Haar
measure on G.

We refer to Mackey’s paper [13] for the proof of this lemma.

Now we shall assume G is separable, and a representation
t={Wp, H} of K on a separable Hilbert space H is given. Denote
by O, the set of all H-valued function f on G such that,

(i) <f(g),v) is a Borel function of g for any v in H,

(ii) f(kg)=Wr(f(g)), for any k in K and any g in G,

(iii) Ilfll2ESM<f(7r'l(x)), F@ () rndv(x)<<+oo,
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where {f(g),f(g)> is considered as a Borel function on M from
‘the conditions (i) and (ii).

It is easy to verify, § becomes a Hilbert space and the family
of operators {Ug} on $ which are defined as

(Ugf) (go)=(dv(n(g0) &) /dv(n(£:)))"[(£: &),

gives a representation of G on .

Lemma 1.15. {Ug, 9} is independent of the selection of v
within unitary equivalence.

Proof. Let v, v, be two quasi-invariant measures on M, and let
0(@)=0dn(x(g))/dv,(x(g))) be the modulus of these measures based
on lemma 1.14. Then the map f(g)— (o(g))**f(g) gives the unitary
-equivalence between the spaces defined from »,, and from v,.

Definition 1.18. The representation {Ug, D} is called as the
representation of G induced by the representation of K, and we
Shall use the notalion, Indcz-, for this representation.

K->

The following lemmata which we state without proof are obtained
by G. W. Mackey [13], and will be used in the following sections.

Lemma 1.16. If 7,=> Pr; then
(1. 43) Indco~>BIndr; .

K->G j K->G

Lemma 1.17. Let K, K, be closed subgroups of G and K,Z K,,
and let t be a representation of K,, then

1.44) Indc~Ind{ Ind<}.

K16 K2>G  Ki>K3
Lemma 1.18. Denole by {e} the closed subgroup consisted
of only the unit element e of G, and by R the regular represen-
tation of G, then

(1.45) R~1Ind I

{e)>C
Corollary. Let Ry be there gular representation of a closed
subgroup K of G, then
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(1.46) R~1Ind R .
K->G
Now consider a finite family of groups G; and representatiors:-
;= {Wi' , H} of closed subgroups K, of each G;, then for their outer
Kronecker product, the following is valid.

Lemma 1.19.
(1. 47) (Ind ©) & (Ind =) Q& (Ind =)
K1-G) K2->G2 Kp—>G,
~ Ind DR,
KixK2x...xK,>G1xG2x .- xGn

And the equivalence relation between both sides is generated
by the correspondence of vectors

(1.48) [ QfQ- Q= 1(g) & f.(g) & R fu(g),

where f; is a vector in & and the right hand side is vegarded
as a (HQH,Q--QH,)-valued function on GiXGyX -+ xXG,.

Definition 1.9. Two closed subgroups K, and K, in G are
regularly related when the space D of double K,—K, cosets in G
is countably separated except p-null set. That is, there exists a
sequence E,, E,, E,, -+ of double K,— K, cosetwise measurable sub--
sets such that p(E,) =0, and any double K,— K, coset not in E,
is representable as the inlersection of E;s which contain this coset.

Lemma 1.20. (J. Glimm|[8)). For the case of E,=¢, regularly
relatedness of K, and K, is equivalent to the property that the
space D is Ty-space.

Lemma 1.21. Let v be a finite measure in G with the same
null sets as the Haar measuve nof G. For any measurable set F
in D, let F, be the subset of G which is the wunion of double
K.— K, cosets belonging to F and put v,(F)=uv(F,), then v, gives
a measure on D.

We shall call such a measure v, admissible.

Lemma 1.22. Let c={Wpg, H} be a representation of K, and sup-
pose that K, and K, are closed subgroups of G which are regularly
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related. For each g in G, consider the subgroup K,Ng'K,g=K,(g)
of K,, and the representation, o(g) EKIm_i)K{ Wgk,g-, HY of K,. Then
w(g) is determined to within equivalZ:;cezby the double coset D=
K.gK,, and we may write o(g)=w(D). Finally ({{111561-) |k, IS @
dirvect integral over D, with respect to any admissible measure v,
in D, of the representations w(D). And the equivalence relation
of this decomposition is given by the correspondence of vectors

(1. 49) F(=f(g)—fe(k)=f(gky),

wheve [ is in the space of Ing,'cr given as a function on G, and
K,

fe(ky)) is regarded as a function on K, and as the component of f

on the representation o(D)=w(g), (g€D), in Sw(D)dyo(D).

Combining the lemmata 1.19 and 1.22, we get the followings.

which is useful later.

Lemma 1.23. Let K, be closed subgroups of G and let v;=
(Wi, H} be a representation of each K;. Now we assume the sub-
groups K=K,x--xK, and the diagonal group G, are regularly
related in G*. For each 3= (g, -+, g.) consider the representations
71— Wing of the subgroup r(§) =g K.,g.N---Ng.'K.g. of G. Let
us denote their Kronecker product by v({z;}: g) and put
(1. 50) Ind t({r;}}: §)=w({r;}: 2).

rH>6
Then ow({r;}: g) is determined to within unitary equivalence by
the double coset Dzl?gran in G, and we may write o({r;}: g) by
o(D). Finally

(1. 51) Ind ©x@Ind 1@ QInd 7.',,~S w(DYdv(D),
K1>G Ko2—G Ky>G D

wheve D is the set of double K—G, cosets and v is any admissible
measurve in®. The equivalence relation of this velation is given by

1.52) f[i®fQQf—f1(£ 8K (£:)Q - Qf.(g.8),

where the right hand side is regarded as a function of g.
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5. The regular representation R of G is in special position in

the set of representations. The followings state this situations.

Lemma 1. 24, For any representation o and the right regular
representation R of G, o QR is unitary equivalent to the multiple
of R with multiplicity (dimw). And the map which gives this
equivalence, is genevated by

(1.53) vQf— {{Ugv, 02f (&)}«
for any v in D(w), f in L*(G),

where {p.} is any fixed complete ovthonormal system in O(w) and
the vight hand side is considered as a vector in SPL*(G) with

a-th component {Ugv, 00f(g).

Proof. We consider the map generated by (1.53). Obviously

this map is isometric onto, and by this map,
(1 54) ;Ugong Rgoff—_) {]2< Uggo vj, ‘Pol>fi(gg0)} « .
This gives the operation corresponding to >PR.

Remark. This lemma is deduced as a special case of lemma 1. 23
in the case of G and $(w) being separable. And the general case
was given by J. M. G. Fell [5].

Lemma 1.25.
(1. 55) RYR~>DR., (R.~R),

with multiplicity of dim L*(G). And the equivalence relation is
generated by

(1.56) @ s {{ e e@ranta £}
for any fi, f in L*(G),

where 0= {p.} iS an arbitrary fixed complete orthonormal system
in L*(G).

Proof. This lemma is an immediate corollary to lemma 1. 24,

when w~-R.
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Notation. We denote by A(0), the map from L*(G)QRQL*(G)
onto SXPLX(G), which is given in lemma 1.25 (1.56), for fixed
complete orthonormal system 0= {p.} in L*(G).

Corollary. Let L={Lg, L*(G)} is the left regular rvepresenta-
tion of G, then

(L 57) L®LN§EBL«% ) (La'\'L) B

with multiplicity of dim L*(G). And the equivalence relation is
generated by

1.58) F@Fi> (L o) Fi(@) o
~{{ ez e @ranted fia)]

for fi, foin L*(G) and a complete orthonormal system {p.; in L*(G).

Proof. Since the left regular representation L is equivalent to
right regular representation by the equivalence relation,

(1.59) f(@)—>4(@)"f(g™,

so the result follows from lemma 1.25, immediately.

§2. Duality theorem in a weak form.

1. Let 2 be the set of all equivalence classes of representations
of G. dimensions of which are lower than a certain fixed sufficiently
large cardinal number (for instance the square of the dimension of
L*(G)). We attach a representative w to each class in 2. Hereafter
we deal £ as the set of w’s.

Definition 2.1. An operator field T={T(w)} over 2 is called
a weak birepresentation when

(i) T(w) is a closed operator with dense domain in H(w),
and T(R) is a non-zero bounded operator on L*(G),

i) if wl@wzg}wg, then
@1 Ui(T(0) DT () UT'S T (wy),
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(iii) lf a,~1'§§ oy ’[\]*20)4, then
(2.2) U(T(0)X T () Us' S T ().

N
Denote the totality of weak Lirepresentations by £, then a product
N
operation in £ is introduced by the definition

(2.3) T, T.= {T\ (o) T:(a)}, for T,={T;(0)} (j=1,2).

As shown later all weak birepresentation is invertible, so with this
product ard identity I= {I(»); identity operator over £(w)}, /Q\ be-
comes a group.

For given g in G, the operator field Ug= {Ug(w)} over 2 is a
weak birepresentation. And it is easy to see that the map ¢: g—Ug
gives an algebraic homomorphism of G into 2. We shall show the
following.

Proposition 2.1. ¢ is an (algebraic) isomorphism of G onto
Q. That is the same, for any given weak bivepresentation T, there
exists unique g in G such that

(2.4) Ug=T.

AN
On the other hand, we can define topology r on £, as the weakest
topology which makes all matrix elements {T(w)u#, v) (v and u, v

in 9(v) are fixed) continuous.
Definition 2.2. ¢ is called the weak topology on 2.
He:rcafter we consider fQ\ with the weak topology; then,
Proposition 2.2. ¢ is a bicontinuous map.
Connectizg the above two propcsitiors, we get

Theorem 1. G is isomorphic to Qasa topological group, and
the isomorphism is given by o.

In the following section 2 and 3, we shall prove the proposition
2.1, and the section 4 is devoted to show proposition 2. 2, some ex-

amples are given in the section 5.
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2. Let T={T(w)} be a given weak birepresentation.

Lemma 2. 1.
(2.5) T =I1(1).

Proof. Put w,=w,=R, w,=1, and U,=I(R), in (2.2), then we
get the result.

Lemma 2. 2.
(2.6) Tw)ye{Ug(w): geG}'.

(T(») commutes with any element of {Ug(w): g G}'.)

Proof. Again in (2.2) put o;=w,=w0, »,=1, and let U, be any
unitary operator in {Ug(»): g€ G}’ over H(w), then the result follows

from lemma 2. 1.

From lemma 2.2, if we define for any representation o of G,
2.7 T(w)y=U""T(")U,

where o' is the representative in £ belonging to the same equivalence
class of w, then T'(w) is uniquely defined and the relations (ii) and
(iii) are true for this extendedly defined 7T(w). Only for simplicity
of notions, we shall use this extension of T under the same notations.

Lemma 2.3. Let A be any set of parameters a. If

2.8) S Pl

a€A

and T(w.)’s are all bounded operators, then
(2.9 VDT () U =T (o).
That is, the relation (ii) is extendable to infinite dirvect sum,

Proof. When A is a finite set, (2.9) follows from (2. 1) easily.

Let A be infinite, and put To=U(T(0<)) U™, and Ho=UH(0.),
P.=(the projection of $(w), image of which is 9.), then it is
sufficient to show,

(2.10) %@ Te=T() (=T).
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At first the left hand side, TEZEB T, is closed. In fact, let
®€A

{v’} be a sequence in H(w), such that v=Ilim?’, and v,=lim T v’.
Since P,v=1limP.v’ and T, is bounded,

(2.11) ToPov=lmTyPov'=lim P, Tv'= P limTv' = P.v,.
i j J
This assures that Twv= 3T« P,v exists and is equal to v,. That is,
a

v is in D(T) and v,= Tv therefore, T is closed.

While for any given finite set F in A, put $-=>PH. (a
subspace of 9(w)), and wr the restriction of » onto wéi Then
Z@wagjmf where Uy is a restriction of U onto P9 (w,). Thus
;;gm the finiteness of F, %EB T.=Tr, in which Yf:pis the restriction
of T on 9 and zero on . Then for any v in 9,

Tv:zTavngTav:Tpvz To.

a€A
But the union of $:’s, in which F are finite subsets in A4, is
dense in $(w), and T is closed, so T must be equal to T, as two

closed operators which coincides on a dense set.

Lemma 2.4. For two weak bivepresentations T, and T,, if
(2.12) T,(R)=T.,(R),
then T,=T,, that is the same, T\(v)=T,(0) for any w in 2.

Proof. For (2.2) and lemmata 1.24 and 2.3, T;(0)vQT;(R)f,
(j=1, 2), correspord to the same vector {T7(R) KU.v, ¢u)f)(Q)}a=
{T.,(R) KU, 0uf)(g)}a in Z“@L“’(G) by (1.53). That is, T:(w)v
RT1(R)f=T,(0)vQT,(R)f, for any v in D(w), f in L*(G). Since
T.(R)=T,(R)=0 by the assumption, there exists a non-zero vector
f in L*(G) such that T,(R)f= T.(R)f=0. Therefore, by lemma 1. 1,
T(w)v=T,(w)v for any v in (). That is, T (w) = T,(w) for any
.

Lemma 2.4 asserts that for given weak birepresentation T, if

there exists an element g in G such that T(R)=Rg, then T=Ug.
While the regular representation separates any two elements in G,
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so such a g must be unique, and in this case proposition 2.1 is
proved. So we have to determine the form of operator T(KR).

Lemma 2.5. For any weak bivepresentation T, T(R) (denote
by T) satisfies followings.

(i) T is a non-zero bounded operator on L*(G),
(ii) for any g in G,
(2.13) TLg=LgT,
(iii) for amy complete orthonormal system o© in L*(G), if
A0) ([T f) = {ha} o, then
(2.14) A@) (THYTS) = {The} o -

Proof. (i) and (iii) follow from the definition of weak birepre-
sentation and lemma 2.3, immediately. From Lg< {Rg,: g1 G}’ for
any g in G, lemma 2.2 results (ii).

Lemma 2.6. From the conditions (i) and (iii) of lemma
2.5, it resulls,

(2.15) IT=1.

Proof. (iii) asserts that TX T corresponds to a multiple of 7T,
so |[TIP=ITKT|=|T] C(see lemma 1.3). The assumption (i) of
“T=0", leads to (2.16).

Remark. The same argument as lemma 2.6, applying to the
relation between T (0)X T (R) and multiple of T(R), results

(2.16) IT(@)]|X1, for any.w in L.

Definition 2. 3. An operator T over L*(G) satisfying the con-
ditions (i) ~(iii) of lemma 2.5, is called an admissible operator.

3. As a consequence of previous section, for proving the pro
position 2. 1, it is sufficient to show arbitrary given admissible operator
T is the form of Rgq, for some g(7T) in G.

Lemma 2.7. Under the assumption of conditions (i) and (ii)
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in lemma 2.5, the condition (iii) is equivalent to the following (iii)’,
(i)' for any h in Cy(G) and f in L*(G),

(2.17) Th-fH (=T (&) (THH(g, aen

where - shows ordinavy product of functions.

Proof. (iii)—(iii)’. We use only properties of boundness of
T and (iii). Because of &, f, h-f are all in L*(G) and T is bounded,
both sides in (2.17) are determined as functions of g except on
a p-null set.

By the lemma 1. 25, the followings are valid,

@18)  (Th = {T| (e doul@dduer 1 |@)
@19 AW (THRTH = {{(Th) (2:8)0.(8)dn(2) (T ()} .

The condition (iii) asserts the coincidence of each components
of the right hand sides in (2.18) and (2.19) as functions in L*(G),
that is, for any «,

(2.20) (T (agrvatardntad (1) (&)

=1 {harea@rdnied 1@, aen

But from arbitrariness of complete orthonormal system @ in L*(G),
(2.20) is true even if we replace ¢, by any function ¢ in L*(G).
So

(2.2) () aolerdniar (T (@

-1 {neret@rdner 1@, aen

Now consider a filter base of functions on C,(G) which tends
to the Dirac’s measure § on e of G. That is, for any neighborhood
V of e, let F,= {p,} be the set of non-negative functions in C,(G)
such that [¢y]C V and S¢V<g>dﬂ<g):1, then = {F,}, generates

a filter base which converges to .
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In the left side of (2.21), Tk is in L*(G) and (Th)(g.g) is
equal to 4(g)*(Lg:Th)(g), so it is near to Th in L*(G) if g, is
sufficiently near to ¢ in G. The convexity of norm assures that

S(Th) (&:18)ev(gndu(g) = S 4(g) (L Th) (8)ev(g0)dn(g)
(denote by (Th),(g)) is near to Thin L*(G) for sufficiently small
neighborhood V of e. This shows that {(Th),}, converge to (Th)
in L*(G).

On the other hand, in the right side, Sh(glg)gpv(gl)dﬂ(gl)

(write by hy(g)) converges to h(g) uniformly, then A,-f converges
to h-f in L*(G). Using the boundedness of 7, the convergence of
right sides to T(&f) in L*(G) follows.

Since L*(G) is a metric space, we can select a sequence {V(j)}
of neighborhoods of e, such that both sequences {(7Th)v} and
{T(hyep-f)} converge to Th and T(h-f) in L*(G) respectively.
If it is necessary, taking a subsequence, the functions {(T/%)y»(g)}
and {T(hyep-f)(g)} converge to (Th)(g) and T(h-f)(g) almost
everywhere in ,, satisfying (2.21). So in the limit, we get (2.17).

(iii)—(@ii)’. It is sufficient to show (2.21), for any %, ¢, f in
L*(G). At first, if & and ¢ are in C,(G), from the conditions (i)
(i) (i),

7| \iede(@rdue-f]
- 1({naelardnten) @) (T (@)

-\ (@@0(erdnten- (T (). in LG).
That is, (2.21) holds in this case. While C,(G) is dense in L*(G)
and from
lgf1<g1g>ﬁ@7)'dﬂ<gl) | = [{Refo, f 1= fille- L £l
k- fll.= IRl £l

the above equation is easily extendable to the case in which all 74,
¢, f are any elements of L*(G).
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Hereafter in this §, let T be a given admissible operator.

Lemma 2.8. Let E be a Gscompact set in G, then there
exists a measurable set T(E), such that

(2. 22) T(XE> =2Xr¢E) » ln Lz(G>.

Proof. There exists ¢ in Co(G) such that 0<+r:(g) <1, and
E={g: y:(g)=1} (see, P.R. Halmos [11]). Obviously y; converges
to ¥z in L*(G) when n tends to oo. From the boundedness of T,
(T@))'=TWre)—>T(xe), (n—o0), in L*(G). If it is necessary,
select a subsequence (T (Yrg))' =T (Xs), (n—>0) a.e.p. Put i as h
in lemma 2.7, and take the limits,

(2.23) T f)=Te) T(S), a.e.p.
Especially Ty =T %) =T (xe) - T(Xx), a.e.p.

Thus T (%z) must take only values 0 or 1 except over null-set. Put
T(E)={g:(Txs)(g) =1}, then

T(XE) = XT(E), in L2<G> .

Lemma 2.9. For any Gscompact sets E and F in G,

(2.24) w(T(E)=<np(E),
(2.25) T(ENF)~TEYNT(F),
(2.26) T(gE)~gT(E), for any g in G.

Proof. From ||[T||=1, || Tx:||<||2e]| follows, so that,
w(E) = gxg(g)d/x(g) = [2elP= Txell = || e l*

e (@dnte) = (1),
Next from (2.22) and (2.23)

Xrenm = T(inr) =T %) =T(xe) - T(xr)

= X7y Xrery = Xrexn TR -

This leads to (2.25) immediately.

Lastly we use the condition (ii) of lemma 2.5,
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Yrem =T (Xez) = T(4(g)*Lgxe) = (4(g)) ™ *Lg (T (x))
= (4(g)) " LgXrcey=Xercer -

This shows, (2.26) is true.
Lemma 2.10. T gives an isometry on L*(G).

Proof*. Now we consider a set function u2(E)=u(T(E))
on the class € of all Gs-compact set in G,, which is an open closed
subgroup of G generated by a compact neighborhood of e. It is
easy to show that .7 is ¢-finite and countably additive on €, by ex-
tension theorem (for instance see P. R. Halmos [11] p. 54 ThA),
there exists a Bair measure pr over G, which coincides to »f on €.
This measure is uniquely extendable onto whole G by (2.26), we
shall denote this extended measure on G by ur too. (2.24) asserts
the absolutely continuity of ., with respect to x and from (2.26)
it is follows that x; must be coincide with ¢;x for some constant
cr. lLe.

| Tl = \rcor(8) (@) = nCT(EY) = s (B) = e ED = el
And it is easy to see, for any step function f on G,

(2.27) I TfII*=erll FII

But the space of all step functions is dense in L*(G), (2.27) is true
for all functions f in L?*(G). And (2.15) results cr=1.

Corollary. For any Gscompact set E,
(2.28) u(T(E))=u(E).

Proof. In the proof of lemma 2. 10, it is shown that pr=cru,
and ¢;=1. So that (2.28) is deduced.

Remark. From the relation (2.22), and the linearity of bounded
operator 7T, easily it is proved that 7T is real, i.e., for any real valued
function f in L*(G), T(f) is real valued too. Moreover, using

* This proof was given by Professor H. Yoshizawa. It is shorter than the
author’s original proof.
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(2.23), T is positive, that is, for any non negative real valued f
in L*(G), T(f) is non negative too.

Conversely if we presuppose that

i) T is a closed operator on L*(G) such that its domain ®(7T)
contains C,(G),

ii) TLgC LT,

iii) for any % in C.(G) and f in L*(G),

Thf) =T T(Sf), a.e.p.,

iv) T is real, (therefore combinating with iii), 7T is positive),
then the boundedness of T follows.

In fact, simple argument starting from i) iii) and iv), as the
theory about Radon measures, shows that 7 induces a regular measure
ur on G. But from ii), A 'ur is left invariant, therefore by the
uniqueness of invariant measure, ur=crp for some positive number
¢r. This results (2.27), i.e., ¢7'T is an isometry.

So we can take i) ~iv) as a definition of admissible operator.

Indeed, this is done in a formulation of Tannaka duality theorem.
Lemma 2.11. (N. Iwahori). For any h in C,(G),

(2.29) [hlle={Th|,

where || ||. shows essentially superior norm.

Proof. Denote by | ||, the norm in L’(G)-space then,
1Ta =T (@ 17dn(e) =\ 1 ((Th) () I'dn(e)
(1w @ raue =110 1= 101

=g| (h(@)**du(g) =|h||%.

Taking the limits of 2p.roots of both sides for p-—>co, we get the
result.

Lemma 2.12. For any Gs-compact set E, theve exists an ele-
ment g(E) in G such that
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(2.30) T(E)~Eg(E).

Proof. Consider the function

@30 o=\t t(a)du(g) = n(ENEg™.

Then from (2.26),
(2. 32) (To) () = \1s(8) Tee () dnCa)
(@t (@ du(a)
~\ul@mw (@0 dn(e) = n ENTE) &),

Obviously ¢ is in Cy (G) and Ty is continuous, so we can apply
lemma 2. 11, and get,

(2.33) sup| (Te) (&) | =1Tolle=llpll-=max |¢(g) | =¢(e) = n(E).
There are two posibilities.

(1) There exists g(£) such that (Ty) (g(E)) =u(E).

(2) There exists a diverging sequence {g,} such that {(T¢) (g,)}
increase to u(E).

But the second case is excluded. In fact, if (2) is true, then
for sufficiently large N, (Ty) (g)>(1/2) u(E), for any j=>N. While

the compactness of E assures the existence of j larger than N such
that

(2.34) Egigv'NE=4¢.
So
(2.35)  u(E)=pn(T(E))=n(T(E)EV)
>u(ENT(E)gi) +u(Egigi' NT(E) gv")
=(To) (gw) + n(ENT(E) gi") = (To) (gn) + (Te) (g))
=>1/2) n(E) + (1/2) n(E) = n(E).
That is contradiction.
For the only case (1), u(ENT(E)-g(E)™)=(Te)(g(E))=
u(E)=u(T(E)). This leads to the result immediately.
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Lemma 2.13. For a fundamental system {E,} of Gs-compact
neighborhoods of e in G, the family F= {Fo= {gs: Es S E,}} ., where
g.=g(E,) satisfies (2.30) for each E, respectively, constructs a

base of Cauchy filter in the complete space G. Consequently,
there exists unique limit point

(2. 36) limge=(gr)", in G.

Proof. Since , is a Haar measure, any open set in G is not
p-measure zero. From (2.25), for any « and p.

(2.37) 0Fn(EaNEg) = pu(T(E.NEs))

=p(T(E)NT(Ee) =pn(EcguMNEsgs).
Le.,

(2.38) S8 €EE;'Ey, for any a and 8.

Because {E,} is a fundamental system of neighborhoods of e,
the family § constructs a base of Cauchy filtre.

Lemma 2.14. For any f in L*(G),
(2. 39) T'f:Rng.

Proof. Let {£.} be a fundamental system of neighborhoods as
in lemma 2.13. Now, for any % in C,(G) define a function %, by

2400 ha(@)=/n(ED) \h(gre, (g:8)du(2.

Then, .
@41 (Th (@) =0/uE) 1) (Tr) (Ddn(g).
Substitute the following in (2. 41),

(2 42> (Txg;%:ﬂ) (g) = XT(g;‘Ea)(g) :xg-llT(Ea)(g> = Xe;‘E,,-zn(g)

=%5,(£1883")-
So, we get,

@43)  (Tho(2)=/nE\he):, (288 dn(2)

= (/B \h(gga'er . () dn(g.
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Now take the limits of both sides for E,—{e}. Since /. con-
verges to & in L*(G), Th, converges to Rg h in L*(G), so we get

(2. 44) Th=Rgh, in L*(G).

While both T and Ry, are bounded and C,(G) is dense in L*(G),
this shows (2.39) soon.
(2.39) gives the assertion of proposition 2. 1.

4. Now we shall state the proof of proposition 2.2, following
to the paper of J. Ernest [4]. Based on the proposition 2.1, which

N
is just proved, we shall identify £ to G in this section.

Lemma 2.15. The weak topology - on 2=G is weaker than
the initial topology =, on G.

Proof. Since any matrix element {(Ug(w)u,v) is a continuous
function on G with respect to 7,, and r is the weakest topology
which makes all matrix elements continuous. Thus r must be weaker

than .

Lemma 2.16. The topology ' which makes matrix elements
{KRgh, hy: (heCy,(G))} continuous, is stronger than <.

Proof. It is sufficient to show that for any neighborhood V of
¢ in G, there exists non-zero matrix element {(Rgh, k), the carrier
of which as a function on G is in V. Let U be a neighborhood of
e such that UU'cV, and % be a function in C;(G), carrier of
which is in U. Then the carrier of function

(2.45) Reh, 0y =\ (81 h (gD dn( e,
is in UUC V.

It is evident that ¢ is stonger than 7/, so combining lemmata 2. 15

and 2.16, we get a proof of proposition 2. 2.

5. In the definition of birepresentation, we took apparently un-

natural condition (i), i.e.,, we assumed
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a) T(R) is bounded,

b) T(R)=0.
But the following examples show trat these conditiors are —ecessary
to prove the duality of this type. (cf. §0).

Example 1. (Necessity of cozdition a) I). Let G be R= {x}
(additive group of real numbers), then (/;\: {w(p)} can be identified
to R={p} too. Any element x of initial group G correspords in
one-to-one way to a unitary character ¢’*” on 6 For given represen-
tation w of R with an irreducible decomposition

o=\ [2)|0(o)ds(p),

where n(p) gives the multiplicity of «(p) in w, U,(0) corresponds
to the map multiplying ¢** on w(p)-components of vectors.

Now consider a non-unitary character ¢ (z€C, and .23%0)
and the map on 9(«) multiplying €** on »(p)-components of vectors,
then easily to see, this map defines a non-zero non-bounded (in
general) closed operator 7T (w) with dense domain in $(w), and the
operator field T= {T(w)} satisfies the conditions of definition of
birepresentation with only exception a).

Example 2. (Necessity of condition a) II). In the case of that
G is a compact Lie group, C. Chevalley’s result [2] shows that if
we don’t assume unitarity nor reality of T, then operator fields given
by such a method, correspords in one-to-one way to the complexi-
fication of G. The remark cited after lemma 2.10 means that this
is the case in which T'(R) is not bounded. This results the necessity

of condition a) also.

Remark. The above two examples tempt us to make a con-
jecture that if we take the set of all operator fields, components
T(w) of which are bounded on each 9(w) (wE 6), but not necessarily
(uniformly) bounded on the regular representation R and satisfy (ii)
and (iii), it will become a group corresponding to a complexification
of G. However we shall show later (§5), for some semi-simple Lie
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groups, if T satisfies (ii) and (iii), the boundedness of T(R) follows
from the bourdedness of T(w) on $(w)(w<E 6). Therefore, in such
a casc, the above mentioned set of operator fields does not be extended
from the initial group.

Example 3. (Necessity of condition b) I). Let G be a separable
locally compact group having no finite dimensional irreducible repre-
sentation except trivial representation 1, (for instance, SL(n, C),
SL(n, R) etc.). Then any Kronecker product o:Xw, of irreducible
representations o; and w, except 11 has not subrepresentation 1.
This assures that if we define an operator field T= {7 (w)}, such
that, (i) T(1)—1, (i) T(w)=0, for any w1 in G, (iii) T(w)2

T(w(s6))dv(s) for general » in @ which has the irreducible decom-
position wggw(d)dv(d), then T gives an operator field satisfying
(i) ~(iii) except b) on 2. Evidently T=0, but T(w) (0=1) are
non-unitary. Therefore such a T does not correspond to any element
in G by ®.

Example 4. (Necessity of condition b) II). Example 3 deals
very simple operator field, so there arises a question, that omitting
such operator fields, can we find a group with operator field satisfying
(i) ~(iii) except b)? To answer this question, consider a locally
compact semi-direct product G of a separable non-compact closed
abelian normal subgroup N and a closed subgroup K, which is
mentioned in the examples in §4 and §7.

It is easy to see that the set of all representations of type
(¢, ), which are considerable as representations of the factor group
K=N\G (cf. §7), generates a “subring” of £, and the regular re-
presentation has no non-trivial component consisted of these represen-
tations. (Call such a component as ®(¢, r)-component). Moreover,
any Kronecker product of two representations without non-trivial
D (¢, r)-components has no non-trivial D(¢, r)-component. While any
representation in £ can be decomposed into the form, w’qleB

S@(é, t)dyv(c), where o; has no non-trivial (¢, r)-component.
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Now fix an element £ in K and let Wge(r) be the operator of
representation ¢ of K. Define an operator field T={T(»)} by
T(a))EO(wl)@S Wr(r)dv(r), where 0(w,) is zero operator on H(w,).
Short arguments shows that T satisfies i) ~iii) except b) and
T(R)=0.

Examplie 5. (Necessity of condition b) III). Analogous example
is given for non-compact locally compact abelian groups too. Let £,
be the set of discrete direct sum of elements of (/3\ in 2. Any re-
presentation « is decomposable to the form @.Pw. where w, is in 2,
and w, has no dirscrete irreducible component. Let w, be represented
as a sum >Pwf by irreducible components wf.

Fix anwelement g in G, and denote by g(w), the character on

A

G corresponding to g. And define for above mentioned w,
T(0)=T(0)D0(0) =D& (@) PO0(w,).
Then T={T(w)} gives an example required.

Example 6. (Loosening of condition b) I). For a compact
group G, since, as well-known, any representation of G is imbedded
as a non-trivial subrepresentation in a multiple of regular represen-
tations, if T={T(w)} satisfies i)~iii) except b) and T(R)=0,
then T=0.

So that, for such a group, the only assumption T =0 results
automatically, 7 (R)=:0.

Example 7. (Loosening of condition b) II). When G=SL(2, C),
the situation is analogous to example 6. To explain this we quote
the results of M. A. Naimark [16].

s
In this case, G is separated into three parts as follows [7].

a) é\o= {trivial representation, 1},
B) (/3\,= {principal series, &, ,},
) 6s= {supplementary series, ®,, (0<<{y<<2)}.

The extended Plancherel theorem [7] shows that the regular re-
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ay
presentation of G is decomposed as a continuous direct sum over G,.

And the results of M. A. Naimark [16] asserts the following.

Lemma 2.17. 1) Kronecker product o:Qw, of elements of /G\ s
equivalent to a subvepresentation of R with the exceptional case of,

(1) at least, one of w, and w, is 1,

(i) e=%2,, and 0,=9,,, (2<n+w).

2) In the case of (ii) (0/Q@w,=D,QD.,), if we remove the
component of o Qw, which is equivalent to D,,,.,_., then the remain-
ing subrepresentation is equivalent to a subrepresentation of R.
(Proof is omitted).

We can obtain some results about exceptional case (ii).

Lemma 2. 18. Let 2<<u,+v, and the projection onto D, ., o
component in D, QD., be P,. Then for vectors u in H(D,,), and
v in H(D,,) if
(2. 46) (I—P,) (u®v) =0,
then

u@v=0.

Proof. As shown in [16], $(D,)RH(D,,) is considered as a
space of the completion of C,(C X C) with respect to the norm
@4 1= la-a -zl

X f(21, 2)f (21, z3)dz,dz,d 2, dz} .

Consider a sequence {&.(z, 2,) =k(z2))h,(z:—2,)} in C,(CxC),
in which % is a fixed element in C,(C) and {A,} is a sequence which
tends to the Dirac’s measure 4 on the origin 0 of C. It is easy to

see that if v,+v,—2>0, then {k,} constructs a Cauchy sequence in

H(D.)RH(D,,). Denote the limit point of this sequence by £°, then
its norm is given by

4y = e k@R dadz ]

and immediate calculation shows



228 Nobuhiko Tatsuuma

X . napf @21 )\
219 Up@.@Dk=(lge ol ok(22ET)Y

Thus, the map k—#° gives a unitary equivalence between Dirtvyt
and a subrepresentation of ®,XD,, on the G-invariant space {&';k
G (C)}.

Now we consider the Fourier transform of f with respect to

(21, 24),

(2. 50) f(wb u/2) ES f(Zly zz)eiiﬂe(hﬁh +Zzﬁ2)dz] de,
c?

@5 A==l ] P i) dwsduo,
with normalizing constant ¢,(30).

Since C,(€ X C) is dense in H(D.)KXH(D,,) the latter space is
mapped into L*(C?% |w,|™ |w,| "2dw.dw,). Especially the image of
a vector #u®@v is a product of functions fi(w,), fo(w.) which cor-
respond to u, v respectively, so f; is in L*(C, |w|™dw).

While the image of &° in the subspace D(D,,41,—) is the limit of

(2.52) (k) (wy, w,) =X k(2 ho(2,— 2,) €t e 202 g7 gz,
C?

_ S k(Z;) hn(z2>eime(21wl +(z —Zz)Wz)dzl de
c?
:E(w1+w2)ﬁ;,<_w2).

Because the limit of i[ in (n—oo) is 1, the image of vector in the
space (D, 1...0) is a function of type of f(w,+w,).

(2.46) shows that #&v is in H(D.,4.,-2), s0 that the correspond-
ing function in L*(C? |w,| ™" |w,| "2dw,dw,) is the form of f(w,+ w,)
and fi(w,)f.(w,) at same time. Therefore

(2.53) Sl +w,) =fL(w) fr(w,).

Substitute w,+w,+w in w,+w, and consider integrals, for any ¢ in

Co(),
@54 | fwtwe dwf,w) = @) o), f,(w.+w).
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This shows that f, is continuous. Analogously f; is continuous too.
Moreover if one of f;(0)=0, then f(w)=f1(0)f,(w) =fi(w)f,(0)=0,
this is the result of lemma. So we assume that #Ewv=0, then

£:(0)£:(0)=£0, and

(2. 55) L) =cfiw), (c=(£2(0)/£(0))=0).

That is,

(2. 56) FCw+w) = fi(wy) - fs(w) = fr(w+wy) - ¢ 0).

This results that (fi(w)/f:(0)) must be a character of additive
group C.
But any character on € does not belong to L*(C, |w|™dw).

That is contradiction.

Let o be a representation of SL(2, C) without 1-components.
Simple argument shows that wQw does not contain 1-components, so
the irreducible decomposition of w@w is separated into two parts,

w@a)fngp@mp@Sx,@., .

The first term is a subrepresentation of >)PR by lemma 2. 17.
We put the projection onto this subrepresentation as P;.

Corollary. For any u, v in 9(w), where v is as above, if
(2.57) P, (uQv) =0,

then
u@v=0.

Proof. Let the irreducible decomposition of w be
(2.58) wNSAw(r) dv (7).

And let u={u(r)} be the correspondence of vectors in this decom-
position, then

(2. 59) w®w~SS“Aw(rl)®w(r2) Ao (e dvo(es).
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The G-invariant projection P, is induced by a field of G-invariant
projections {P,(r;, z,)} on AX A, such that the range of [I— P, (r, t3) ]
is ®,-component (for some v) in w(r)Rw(r,) for almost all (v, z,).
So that, (2.57) is equivalent to

(2.60) Pi(ry, ) (u(z) @0 () =0, for almost all (3, 7y).

Using lemma 2. 18, such a #(r,)@v(r,) must be zero for (r;,t,), on
which (2.60) is valid. This leads us to the result.

Now we consider an operator field T= {7 (w)} over £ satisfying
(i) ~(iii) of definition 2.1 except b) (T(R)=:0).

Lemma 2.19. Under the same assumption of o as above,
“T(w)=0" follows from “T(R)=0".

Proof. If T(w)=E0, there exists a vector # in $(») such that
T(w)ux0. ILe.,
(2.61) T(0)uR T (w)u0.

While by ({ii),
(2.62) Pi(T(0)u@RT(w)u) =T (S @,,,,,,)Pl(u@u).

This vector must be zero by the assumption “7T(R)=0", and (ii).
This contradicts to the above corollary.

This lemma 2. 19 shows that the operator field given in example 3,
is the only example of non-zero T satisfying “T(R)=0" and (i)~
(iii) of definition 2.1 except b).

§3. Duality theorem on homogeneous spaces.

1. In [12] N. and N. Iwahori gave a formulation of an extension
of Tannaka duality theorem for homogeneous spaces of compact groups.
Here we shall prove similar results for a homogeneous space X=
H_G, in which His a compact subgroup of a locally compact group G.

Let n be the canonical map of G onto X by which g in G
corresponds to the coset Hg. Because of compactness of H, there
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is an invariant measure », on X which is unique besides equivalence
(cf. A. Weil [23]). For simplicity we take a measure y= 4y, on X,
in which 4(g) is considered as a continuous function on X, because
the modulus 4 of two Haar measures satisfies 4(k)=1 for any %
in H.

Now we define a representaticn » of G over X by

{@(w)=L”(v: X),
(Ug()f)(2) = (4(g))"f(x-8),  for fin H(w).

Denote by N the normalizer of H in G, then we can construct

(3.1)

a unitary representation of N on this space $(w).
(3.2) (Waf)(x)=f(n-x),  for f in H(w),
where n-x shows the H.coset Hng, if x= Hg.
On the other hand, another formulation of these representations
are given as in the following. Consider the left regular represen-

tation L= {Lg, L*(u;; G)} of G. Put  be the space of all H-
invariant vectors, i.e. of all functions f in L?(u,; G) such that

(3.3) f(hg)=1(g), for any % in H.
Consider the right regular representation
(3. 4) Rgf(g)=(4(g)N"f(gg), for fin L*(m; G),

at the same time. Then {L,; neN} and {Ry; g=G} make 9
invariant.

If we consider a function in © as a function over H\ G in
natural way, the restrictions of {L,} and {Rgz} to $ give equivalent
representations to { W5} and {Ug(w)} respectively. We shall identify
these representations.

Now consider LK L. As in the case of right regular represen-
tation, this representation is decomposed into discrete direct sum of
L for any complete orthonormal system @= {p.} in L*(u, G), (see,

corollary to lemma 1.25)

(3 5) L®LN2€BLCU (La"'-L)
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And the equivalence relation A(®) is given by
(3.6) FHRf—>{Lg fu, 0a2fo(8)}a

Since a product of H-invariant vectors is also H-invariant, the
image of HXH by A(@) is a subspace of SPD. in PH(L.),
where 9, is the subspace of all H-invariant vectors in 9(L,).

Let P, be the projection in 3B L*(u;, G) onto .

Lemma 3.1. If ¢« is real non negative, then
3.7 P, A(0) (DZD) =a .

Proof. Because of arbitrariness of f,, it is enough to show that

for any g, in G, there exists a neighborhood U of g,, and f; in
9 such that

(3.8) {Lg-fi, pa)F0, for any g in U.

Indeed for any k£ in C,(H\G) such that [k]C HU, then k,(g)=
(k(g)/{Lgfi1, pay) is also in C,(H\G) so in , and

(3.9 P A(0) (fi&ko) (8) ={Lg [, parbe(g) =k(g)

is in .. But when g, runs over G, such functions 2 spans 9..

Now we shall assume that there exists g, such that for any f;

in O,

B10)  0=(Lgafi, o=\ fil@o@ol@dn()

- r@e@daue.
Replacing f; by

@1 fo =\ fhdmn, (FC6)),

we get the equation
(3.12) 0= 867 (&oa(gi'g)dum(g)

( du || 1D dumIe s D)



A duality theovem for locally compact groups 233

=, au {{ r@e. e W du(e)
(1o et mDdm ) duio).

And this results

(3.13) S 0 (githg)duy(h) =0, for almost all g.
H
But this is impossible.

For any n in N, the followings are evident,
(3.14) WaUg(w)=Ug(w) Wy,
(3.15) P, AO) (W@ Wn)A(@) = W,.

Conversely we shall take as the definition of admissible operator
over » by these relations.

Definition 3.1. An operalor T is called admissible operator

when
1) T is a non-zero bounded operator over 9,

ii) TUg(w)=Ug(w)T, for any g in G,

iil) if PoA(®)([ifs) =ha, then PoA(0)(THQTS.) = Tha,
for any fi, f, in © and any complete orthonormal system 0 in
L, G).

As stated in §2, the set N of all admissible operators constructs
a group, and the map ¢: n—L, is an algebraic homomorphism of
N into N. Under this situation extended Tannaka’s duality on the
homogeneous space X is stated as follows.

Proposition 3.1. ¢ is an (algebraic) homomorphism of N onto
N, with kernel H. That is the same, for any given admissible
operator T there exists n in N such that

(3.16) W.=T.
Such a n is determined H-cosetwise, that is,

(3. 17) Wm: an )
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if and only if n,, n, belong lo same H-coset in N. So ¢ induces
an (algebraic) isomorphism & of H\N onto N.

Moreover let r be the weakest topology on N which makes all
matrix elements {{(Tu, v), (Vu,vE9)} continuous, then,

Proposition 3.2. § is a bicontinuous map.

Combining these propositions, we get the following.

Theorem 2. HN\N is isomorphic to N by ¢.

Remark. Obviously this theorem contains the results of §2 as
a special case. But by the reason of simplicity of situations, we
adopted this procedure.

2. Proofs of these propositions are completely analogous to the
case in §2. The series cof following lemmata is valid, for given

admissible operator T too.

Lemma 3. 2.

(3.18) | T|=1.

Proof. ||T|<1 follows from the condition iii) of definition 3.1,
and
(3.19) A(0) (HDRD) C%@&)a .

But the results of lemma 3.1 and the condition iii) of definition 3.1

give the contrary inequality.
Lemma 3.3. T, is an admissible operator, if and only if
it satisfies 1) and ii) of definition 3.1, and
(iii)" for any h in Co(X) and f in 9,
(3.20) Ti(h-) () =(Tih) (x) - (T f) (%),
for almost all x with respect to v.

Proof. Analogous to the proof of lemma 2. 7.

Lemma 3.4. For any Gscompact set E in X, there exists
a measurable set T(E) such that
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(3.21) T (xe) =% » mn 9.
Proof. Analogous to the proof of lemma 2. 8.

Lemma 3. 5.

(3.22) v(T(E))<v(E),
(3.23) T(ENF)~T(E)NT(F),
(3. 24) T(EQ)ZXT(E)g, for any g in G,

for any Gs-compact sets E and F in X.
Proof. Analogous to the proof of lemma 2.9.
Lemma 3.6. T gives an isometry on L*(y, X).

Proof. Using the uniqueness of G-invariant measure over X,
the proof is given analogously as the proof of lemma 2. 10.

Corollary.

(3.25) v(T(E))=v(E).
Proof. Analogous to the proof of corollary to lemma 2. 10.
Lemma 3.7. For any h in C(X),

(3.26) [Alle=1ITh]. .

Proof. Analogous to the proof of lemma 2. 11.

Since in this case, the related functions are all H-cosetwise, so
we have to prove some additive lemma.

Lemma 3.8. For arbitrary given neighborhood W of e in
G, there exists a neighborhood V of e such thal

(3.27) HVV'HcCHW.

Proof. For any neighborhood V; of e, a neighborhood V of e
such that

(3.28) vvicy,

exists. Therefore, it is enough to show that the existence of V,
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which satisfies
(3.29) HV,HcCHW.
Because of continuity of the map
" (3.30) (&1, 8)—818:81"
at (g, e), there is a neighborhood V(g) of e such that
(3.31) Vig)-g- Vig)-(V(ghg)'c W.

While H is compact, thus finite covering U V(k,)h; of H can be
selected. Put ’

(3.32) Vo=01V(hy),

then for any % in H, there is a V(h,)h; containing % and
(3.33) V(h)h; V(h) ' V(k)'C W,

that is,

(3.34) hVoh'c W, for any % in H.

Multiplying H from left, we get (3.29) immediately.

Lemma 3.9. For any Gscompacl set E in X, there exisis
an element g(E) in G such that

(3.35) ' (T(E))~g(E)n"(E),
(3. 36) g(E)'Hg(E)cn ' (E)- (= '(E))™.
Moreover for any h in H, g(E)h has the same properties.

Proof. Instead of ¢ in lemma 2.12 (2.31), we put

33D e(@) =t @Dt (g8 du(2)

= (B g™ ().
Using the results of lemmata 3.4 and 3.5, we get,
3.3 (T (@)= (E)Ngw (TE)).

The same arguments as in lemma 2. 12 can be adopted, so it is
obtained the existence of g(E) in G such that
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(3.39) r (T(E))~g(E)n ' (E).

But »'(T(E)) is a H-cosetwise set in G, so

(3.40) hg(E)nw '(E)~hn'(T(E)) ~a'(T(E))~g(E)n(E),
for any 2 in H.

This results (3.36) immediately.

Because n'(E) is H-cosetwise set, so g(E)h satisfies the same

properties.

Lemma 3.10. For a fundamental system {W,} of Gs-compact
neighborhoods of e in G, the family F= {Fo= {n(gs"): WsS Wa}}«,
where go.=g(x(W.)) satisfies (3.35) for each (W) respectively,
constructs a base of Cauchy filter in the complete space X=H\ G.
Consequently, there exists unique limit point

(3.4D) limn(ga") =n(gr), in X,
(3.42) grEN.

Proof. As the proof of lemma 2. 13, it is obtained that,

(3.43) Ta(W))NT@(We)) =g,
From (3. 35),
(3.44) g HW . Nge HWa=¢, for any « and §B.

On the other hand, from the result of lemma 3.8, for any neighbor-
hood W of e in G, there exists a W, such that

(3.45) HW W, HCHW,
so for any W, W, which are contained in Wi,
(3. 46) gs'CHW W;'Hg,'"cHW W, 'Hg;"C HW g;".

This shows that ¥ constructs a base of Cauchy filtre. Let the limit
of this filtre be =(gr), we can select {(g.)'= (hage)™, hocs H}
which converges to gr in G.

While from (3.36) being applied to g.,

(3.47) (g)'H(gs) cHW W, HCHW.
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Taking the limit, we get
(3. 48) grHgr'CH.
So (8.42) follows from (3.48) scon.

Hereafter we shall denote gr by 7, for the reason of (3.42).
Lemma 3.11. For any k in C,(G),

(349 k(@ =\ k(210 Cun, (8) ] (HW.))d (),

converges uniformly as W.—{e}, to
(3. 50) (@) =\ kUig)du(o).

Proof. The integral with Haar measure ., is represented as
multiple integral as follows. (cf. A. Weil [23]).

@5y | r@due - 1@ a@due)
=\ duGean {{, rng) a0 dma )}
~{ a@antn {{ rirgrdun)
=\ avzan || rrerdmn}.

Especially,
(3.52) w(HW ) = Scxnwu (g)dm(g)
| Ao (=) ((8)) = v(m(W.)).
So that,
(3.53)

k()= dve(@)) || kChgi ) Gouw. Chg) /s CHW ) dpua(B)
= Clacw (e (0) e (W) (2,8 ().

But % is in Co(X), so the integral converges to ’E(n(g)) uniformly
in g, as W,—{e}.
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Lemma 3.12. For any f in 9,
(3.54) Tf= Wnrf-
Proof. For any k£ in C,(X), put

(3.55)  ka(a(g))=Q1/m(H Wa))gck (m(&i")) %nw. (&) A (&)

Analogous arguments to the proof of lemma 2.14 leads us to,

(3.56)
(Tke) (n(g)) = Sk(n(gf’(g;)“‘g)) Kw. (g0 /i (HW o)) d i (g1).

From the result of lemma 3. 11, the limit of right side is

3.57) gk(n(h“‘nrg))dun (h) =k(z(nrg)) = (Wark) (x(£)).

While {k.(x(g))} converges to k(z(g)) uniformly having carriers
in some fixed compact set. Therefore {Th,} converges to Tk in
L*(v; X). Consequently,

(3.58) Thk= Wk, in L*(v; X).

This relation is easily extendable to (3.54) on 9.

The above lemma 3. 12 shows that ¢ is onto map, so we must

show the kernel of ¢ is H.

Lemma 3.13. W, is equal to Wa,, if and only if n, and n,
belong to same H-coset in N.

Proof. The “if” part is evident, so we consider the converse.
Taking W' Wn,= Wy,'n,, it is enough to show that if Wy,=1I, then
n is in H.

But the condition

(3.59) k(nx)=(Wpk) (x)=k(x), for any k& in Co(X),
results
(3.60) nx==x,

that is,
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(3.61) nHg=Hg, for any g in G.
Especially,
(3.62) nH=H.

This asserts that » is in H.

Thus we have proved proposition 3.1, so next we shall prove
the topological assertion propositicn 3.2. Because of continuity of
L,, the weak topology r on N is weaker than initial topulogy of
H\ N, that is, ¢ and so ¢ are continuous. So it is sufficient to
show the followings.

Lemma 3.14. ¢ is conlinuous.

Proof. As in the proof of lemma 2.16, it is sufficient to see
that for any neighborhood W of e in N, there exists a non-zero

vector # in H such that {( W,u,u) is zero for » not contained in
HW.

Since the natural topology of N is induced topology by G, a
neighborhood W, of ¢ in G such that

(3.63) HW\WNCHW

exists, therefore by lemma 3.8, we can select a neighborhoocd V of
e in G such that

(3. 64) HVVHCHW,.

Take u, carrier of which is in z(V), then
(365 (Wat,wy=\ ulx(n£))u(e())dv(x())

~\ pou@due,
is zero for # which does not belong to
(3.66) NNHVV*HcCNNONHW,cHW.

This completes the proof.
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§4. Duality theorem in a strong form.

1. In §2, we have proved, a duality theorem, which holds bet-
ween any locally compact group G, and a set £ of equivalence classes
of (sufficiently many) representations of G. However, comparison
with Pontrjagin’'s or Tannaka’s duality theorem shows that the proved
duality theorem is somewhat different from them. The main dif-
ference is that in the latter two dualities, an element in G is charac-
terized as a vector field over the dual /(\; (set of all equivalence
classes of irreducible representations) of G, instead of £ in §2. In
this point of view, we shall reformulate a duality theorem, and
clarify the relation of these two types of duality.

[Assumption] In what follows, we deal only separable and
type I groups G. Namely, irreducible decomposability and
uniqueness of the decomposition within unitary equivalence of
any representation of G are provided.

Let /G\ be the set of all equivalence classes of irreducible repre-
sentations of G. And we attach a representative » to each class
in 6, as in the case of £ in §2. And if an operator field T=
{T(w)} over 6, in which each 7(w») is an operator on $(w), is
given, then for any irreducible representation w,, we can define un-
ique operator as extension of T by

(4.1) T(w0) =UT(0) U™,

where w(gwo) is the representative of equivalence class containing
w,. Hereafter, if it is necessary, we consider this unique extension
T of T, under the same symbol {7 (w)}
Definition 4. 1. An operator field T={T(w)} over 6 is called
strong birepresentation when,
(i) a) T(w) is an bounded operator on O (v),
b) T is integrable® on the regular representation R,
c) T is bounded* on R,
d) T is non-zero® on R,

* See §1.
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(i1 ) For the irreducible decomposition

U
(4.2) o@0.~\  a@dna),

2(wi1,

of Kronecker product of two elements o, and w, in C/;\, T is inte-
grable on o,RQw, and the equation

43  UT@RT@)U={  T(a(x)dun.),
is valid.
A
As in §2, the set of all strong birepresentations G (bidual) be-
comes a group by the product operation
4.9 T,- T.={T\(0) Tx(0)}, for T,={T;(w)}, (j=1,2)

and the identity I={/(w)}.

And for given g in G, Ug= {Ug(w)} gives a strong birepresenta-
tion and the map ¢; g—Upg is an algebraic homomorphism of G
into éA\ The main proposition is as follows,

Proposition 4.1. ¢ is an (algebraic) isomorphism of G onto
A
G. That is the same, for any given strong birvepresentation T,
there exists unique g in G such that

(4.5) Ug=T.
About the topological part, we shall consider later.

2. For any given strong birepresentation T={T(w)}, if we

can define an admissible operator T over L?*(G) (see §2) such that
A

(4.6) U(T()QT)U;'=>BT, for any o in G,

where U, gives the equivalence relation of

4.7 w®R~l£Z@R,

then by the reason of the results of §2, there exists an element g
in G and

(4.8) T=Rg.

Thus, lemma 2.4 asserts that
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(4.9) T=U,.

So to prove the proposition 4.1, it is sufficient to show the ex-
istence of admissible operator T satisfying (4.6). While (4.9)
results that such an admissible operator must be the form of

(4.10) T=Rg=Ur (|, Us(o(x))dn()) Us
=U({, T®)dn®)U,

for the irreducible decomposition of the regular representation

(4.11) Rﬂigumu) dve(%).

That is, if we show that the operator T defined by

(4.12) T=U({, Tw@)dn® ) U,

on L*(G), exists and is admissible satisfying (4.6), then the propo-
sition 4.1 is proved.

The conditions (i) a)~d) of definition 4.1 assure that (4.12)
gives a non-zero bounded operator on L3*(G), that is, T satisfies
the condition (i) (of lemma 2.5) of admissibility.

Next, from the assumption G is type I, in the central decom-

position
(4.13) R~a(nds(o),

almost all components @(p) are type I factor, namely, its operators

of representation are forms of
(4.14) Ug(@(0)) =L® Ug (0 (p)),

where w(p) is an irreducible representation and I,,, is the identity
operator in a 7(p)-dimensional Hilbert space ©,. (see lemma 1.7).

Because of the decomposition

(4.15) R~{S®0(0)d5()
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gives the irreducible decomposition of R, almost all components of
in the decomposition (4.13) are forms of

(4.16) T(0) ~ LR T(w(0)).

While for any g in G, Lg belongs to {Rg}' then almost all com-
ponents of Lg in (4.13) take forms of

(4.17) Le(0)~Le(0)RI,,

where Lg(p) is a unitary operator in 9, and I, is the identity oper-

ator in (0 (p)).
From (4.16) and (4.17), easily to see that two operators

(4.18) T~ T ds o,

(4.19) Le~\Le@ds(o),

mutually commute. This is the condition (ii) of admissibility.

The condition (iii) of admissibility and the equation (4.6)
are proved in the same way. Let the irreducible decomposition of
given representation w, be

U,
(4. 20) "’°“0“Sp (%) dr ().
Then from the corollary to lemma 1.10 the irreducible decom-
position of w,XR is given by
U U,
(4.21) QR @—Rgg w(x)dyo(x)(X)Sp o(¥)dve(y)

~Saoxokd”0 () dvr(y) {0(X)RQw ()}

SSU,.,@@‘I’“RU)X dv () dve(3)

X {gg(,,,,“’(““ x, y)du,_,(w)}.

While the irreducible decomposition of 3)PR. which is equivalent
to wy@ R is given by
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(4.22) SR~ {Sn%wu) du%(x)} ~S oD BECD).

From the uniqueness of irreducible decomposition of a representa-
tion of type I group G, there exists a bimeasurable correspondence
between the space {(w, x, y): we2(x, y), xE 2, YE L and LJ.Q% ex-
cept null set, which maps vy X ve( X v,,) to gu‘,’é, so induces a unitary
equivalence relation U between two representations in integral form.
But obviously T is non-zero bounded, and integrable on %}@Ra, e}
that the both sides of following equation exist and define a non-
zero bounded operator, and the equation is valid.

(4.23) SDMRduu(x)duR( » {S T(o(w: y))du,.y(w)}

2(x,
— {SU%T(w(x))duz(x)} -1,
The left side of (4.23) is connected to
(4.24) [, 7 an@® @\, Twm)dnm,

by (S U), when T is integrable on w,. And the right side is con-
nected to

(4. 25) ;GB T(R.)

This shows (4.6) when w, is o, and shows the condition (iii)
of admissibility when w, is R.

Remark. The conditions (i) b)~d) depend closely to the ir-
reducible decomposition of R. It seems that if we don’t know the
exact form of decomposition of R, then we can not check whether
T is a strong birepresentation or not. In this point of view, we
shall consider to replace these conditions to sufficient ones which
don’t need the knowledge of decomposition of R.

For instance, conditions (i) ¢) and d) are trivially replaceable to

i) ¢) |IT(w] is uniformly bounded over 6,
d) |[|T(w)||&0, for any w in G.
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And these conditions are evidently satisfactory when
A

(i) c¢d’) T(w) is unitary for any o in G.

The condition substituted for (i) b) is somewhat complicated.
In [14], G. W. Mackey constructed a Borel structure on (/3\ as follows.
Let H,(n=1,2, ---, 0) be a #n-dimensional Hilbert space, and con-
sider the set I, of all irreducible representations of G over H,. Put
the smallest Borel structure B in I=UI, such that a) I, is a Borel
subset of [ for all #, b) for each », each #, and v, in H, and each
g in G, {Ug(w)u,,v,) is a Borel function on I,. Mackey’s Borel
structure is the quotient Borel structure of 6 as a quotient Borel
space of {I,B} with respect to equivalence relation. Under this
circumstance, we consider the function ¢i.,..,,(0)={T (@)%, v.);

o<l,}, on I, for an extended operator field T corresponding to T.

Definition 4.2. An operator field T={T(»)} over 6 is called
integrable on G when Plun.vmn 1S B-measurable (for any n, and any
u,, v, in H,.)

It is easy to see, when T is integrable on C/;\ then integrable on
any representation o, especially on R. This leads us to a sufficient
condition for (i) b),

(i) ) T={T(w)} is integrable on G.

We can define a topology r, of I which is generated by uniform
convergence on compact sets, of matrix elements {{(Ug(o)u,, v.)}..

That is, a fundamental system of neighborhood of w, is given by

(4. 26) U(wo, e, C, , v) = {w: dim H(w) =dim H(w,) and
|<(Ug(0) — Ug(ws) )1, v>| e, for any g in C},

for any ¢=>0, and compact subset C in G, and vectors u, v in H,(n

=dim H(w,)). Since this set is representable as

(4.2 Ulos, o G, 0) =t [<(Ug, (@) — Ug, (o)), 03 | <sh,

for countable dense set {g,} in C, the Borel structure generated by

7, is equal to B. Therefore, (i) b) is replaceable by a sufficient
condition
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(i) b") (T(w)u,v) is r,-continuous for any # and v.
Combining proposition 4.1 with (i) c-d”) and (i) b”), we get
the algebraic part of Pontrjagin duality theorem™.

A

3. The adequate topology of G is not so simple. From the
results of §2, it is sufficient to give the weakest topology which
makes any matrix element in R,

(4.28) |, Vs, fu@) (@) =(Re fir £

continuous, where f;, f; are any elements (or it is sufficient, to run
over a dense set) of L2(G) which correspond to vectors {fi(0)},
{f:(w)} in the decomposition (4.11) of R, respectively.

When G is an abelian group, for any fi, f; in L*(G) and >0,
there exists a compact set C(¢) in /G\=32R such that

Lo 1@ P du<e, (=12

Therefore uniform convergence of {Ug(w)f;} over compact subset of
/G\ induces the adequate topology, this results the topological part of
Pontrjagin duality.

While for a compact group G, 6 has discrete Borel structure, so
it is easy to see the adequate topology coincides to the weak topology.

4. In this section, we shall introduce some well properties which
are not true in general, but are satisfied, for instance, for some semi-
simple Lie group, or some semi-direct products of groups.

Definition 4.3. For any finite set F= {w;: 1<j<n} in 6, and
positive integer N, let the subset 2(F,N) of 2 be the set of all
equivalence classes of representations which are, (1) direct sum
of {w;& Rojmy (MIN)} and (2) its subrepresentations.

An element of Q(F,N) is called to be finitely generated.

Definition 4.4. For any countable family S= {w;} in ?;, let the
subset 2(S) of 2 be the set of all equivalence classes of represen-

*) The idea to use the results of §2, for proving the Pontrjagin duality is
suggested by Prof. J. Ernest to the author.
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tations which are, (1) dirvect sum of {00 Q- Rwjm, (M=1,2,3,:-+)}
and (2) its subvepresentations.
An element of 2(S) is called to be countably generated

Lemma 4.1. For representations o,, w. tn 2 with the irveduci-
ble decompositions

U, .
(4.29) o=\ owano, G-12),

respectively, let an operator field T={T(w)} over 6 be integrable
On w;, w, at the same lime and moreover satisfy the condition
(1)—a) and (ii) of definition 4.1, then T is integrable on v, Lw,.

Proof. As in the last part of the proof of proposition 4.1,

430 osel Sg () {Sm,.,f"“”‘ , y)du,.,(w)},

1

gives an irreducible decomposition of w,‘Xw, and by the equivalence
relation U which gives (4. 30), T(0)uQ T () v (uED (@), vEH(w,))
corresponds to

2(x

wsn ([, awamf 10w 5 »a.w]) vegs.
This shows that
ws ([f, a@am |, 10w 5 »d.wl)

X U(u@v)](w; x,3), U'&v") (w; x, y)>©(m(w;

=(T(o(w; 2, y)) [ UuQv) (w; x, y)],
Ulw'@v") (w; x, y>>©(@(w; % )

%)

is measurable on 2, X 2,( X 2(x, )). But the vectors {U(u&v)} span
the space of representation of right hand side of (4. 30), thus integra-
bility of T on o,Qw, is deduced.

Lemma 4.2. If w, s countably generated, then any operator
fileld T={T(w)} over G which satisfies the conditions (i)—a)
and (ii) of definition 4.1 is integrable on o,.
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Proof. Repeated applications of lemma 4.1 result that T is
integrable on s=0;HQ - Roim, (0;E 6).

Now let w, be a direct sum of &*'s of above form. Then for
any vectors %, v in (w,), there exist countable memkbers {&%} such
that

(4.33) u, v ﬁ@@(@“f)-

This means that the corresponding vector valued functions {#(w)},

{v(w)} have carriers in G.Q(&“i). So
(4.39) (T(@)u(0), v(w) >5§(m) = ;( T(0)u(w), v(w) 2§ (@)X

is measurable with respect to the measure of irreducible decomposition
of wy, as a countable sum of measurable functions.

Lastly if w, is general element in 2(S) that is, a subrepresen-
tation of ;@5‘*, from lemma 1.13, T is integrable on .

Lemma 4.3. If w, is finitely genervated then any operator
field T={T(w)} over G which satisfies the conditions (i)—a) and
(ii) of definition 4.1 is bounded on w,.

Proof. From the relation (lemma 1. 3)

435 [T @@ T(wm) | =1 Tww) |
gives that
(4.36) vuress-Supl| T'(w) [l )= (max (1, | T(ep D)™

Lemma 4.4. If o, is countably generated and T is an opera-
tor field over G which satisfies the conditions (i)—a) and (ii) of
definition 4.1. Moreover if {T(w)} satisfies one of the following
conditions for gemerator {w;} of w,,

a) (T(0))7(0)={0},
b) T(w,)H(w;) is dense in H(w,),

then T is non-zero on w,.
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Proof. By the definition, w, is a subrepresentation of ;@5“,
therefore if T is zero on w,, there exists an a and non-zero subre-
presentation @, of &* such that T is zero on .

So it is enough to show that if 7(w;) satisfies one of the con-
ditions a), b), then T(w;p)® & T(w;m) has no non-trivial G-
invariant zero-space, that is the same, since this operator reduces
G-invariant space, the minimal G-invariant closed subspace which
contains the range of this operator is the whole space. We shall
show this property by induction with respect to m.

At first, for m=1, since w; is irreducible so non-trivial G-invariant
space must be whole $(w,;), but the both of conditions a) and b)
assure T (w;)%0, this shows, the above is true in this case.

Next, we assume that B=T (0;1n)& -+ Q T(wyn-») has the above
property on 9=9(w;n)X - KD (®im-1»), and consider BR T (w;m) on
DK D(wjmy). Take a complete orthonormal system {v,} in O, and
{w,} in $(wm), then any vector in (BQR T (wjm)) (0) is written
as ga,u,(gw, uniquely, in which u, are vectors in  and {a;}
satisfies

(4.37) laf* ulg<+oo.
While
(4.38) 0=(BRT(wiem)) (ZasuQwi) =31a:(Bu)Q (T (wsen) w:)
= IZk a{Bu, v)vi@ (T (o0m) wi).

(4. 37) shows the convergence of vectors >)a,{Bu,, v,ow, for any &,
1
so that from the boundedness of T (wjm),

(4.39)  wi=T(om) [1201<B741, VoW, = 1201<Buh v T(wjemy) (w1),
exists for any k. So from (4. 38)
(4. 40) w,=0, for any k.

Now, if T(w;my) satisfies the condition a) then

(4. 41) Zld,<Bu,, 1),,>w1=0, fOI' any k,
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(4. 42) a,{Bu,, v,) =0, for any / and k.

This shows that, if a,&0 then Bu,=0.

To belong the vector Ja,u,&w, in G-invariant zero-space of
! .

B@ T(w!(m)) , ( Ug(wi(l)) SRRy Ug (@jem)) (2 a, u:@“’/)
= (33a:((Ug (050) @@ Ug (01002) ) /D Ug (wemy)w,)  must  be in
(BQRQT(wjm))*(0). Thus from the results of above arguments,

and arbitrariness of complete orthonormal system {w,}, #, must be
in G-invariant zero-space of B. Therefore a,u,=0 for all /, and the
assertion is proved in this case.

On the other hand, let T(w;m)D(wjm) be dense in H(wym), of
course, Ug(wjm) T(@im)D(wjm) is dense for any g in G. From the
assumption, for any # in  and >0, there exist ¢ {g.} in G and
{v,} in  such that llu—Zk(Ug‘(w,-(l))(X---@ Ug,(0jm-1))) Bv,||[<<e. And
for any w in 9(wy.) and g, as above we can select f, in D(wjm)
such that [[w— Ug, (0jmy) T(@m) til|<<e. So

(4.43) [u@w—3(Ug,(050) @@ Upg, (0, BR T (@jn)) (@2
<llufe+ [wlle+e

This shows that BQ T (w;..,) has the above property.

Lemma 4. 5. If wy is finitely generated, then the weakest topolo-
gy of G which makes {Ug(w)v, u) continuous for any u, v in (w,)
is weaker than the weakest topology which makes {{Ug(w;)v;, u;>}
continuous for any w; and any u;, v; in H(w;).

Proof. All the operator Ug(w,), Ug(w;) are unitary. So these:
topology are equivalent to the topology which make Ug(wo)v,
{Ug(w;)v;}; continuous in strong topology of vectors, respectively.
But , is a subrepresentation of &= 3P (0@ Qwim), SO, it is.
sufficient to show that Ug(@&)v is continuous in the topology induced
by {Ug(w;)v;};. For the vector of type v=0;X - Qv;m, the in-
equality
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4. 49 [10®- QVim— (Ug(010) @@ Ug (@im) icx®++* K Vel
éik 1205 @ V364Q (I~ Ug (0305 )0ie6R Ug (05040) Vi sy'®
& Ug (@im)Vionll
g%”vxw— Ug (wjaxy) v;u)”Ek”Ujm‘L

shows that Ug(&)v is continuous. And for general vector v=2>]v’,

we can take N such that,
N
(4. 45) lv—> v <<e.

Take g sufficiently near to e, then
(4. 46) lo— g@( Ug (050) @+ @ Ug (@m,) ) v"*|

<o =330+ S i@ v,
— (Ug(050) Q-+ Q Ug (witm,y) Wicxy@+*@jim,) |l
+l (Zs® Ug (0ja) @@ Ug (wjm,))) (v — 2 )|l

N m,
<2+ §; g!]v‘}(,,)— Ug (@05) Vi) ”lg V5ol
becomes very small.

Combining these results, we can loosen the conditions of defini-

tion 4.1 in special cases.

Proposition 4. 2. If R is countably generated, then for opetator
fields T={T(w)} over (/;\ which satisfies only the conditions (i) a),
¢) and (ii) of definition 4. 1, and the condition of lemma 4-4 for the
generators {w;} of R, the same result as proposition 4. 1 is valid.

Proposition 4. 3. If R is finitely generated, then for operator
fields T={T(w)} over 6, which satisfies only the conditions (i) a),
and (ii) of definition 4. 1, and the condition of lemma 4.4 for the
generators {w;} of R, the same result as proposition 4. 1 is valid.

Moreover, in this case, the topology of G coincides the weakest
topology of G which makes the mairix elements {{Ug(w;)v, u):
u,vE9(w;)}; conlinuous for the genevator {w;} of R.
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We shall show later, the situation of proposition 4.2 is the case
of some semi-direct product of groups (see §7), and that of proposi-
tion 4. 3 is the case of connected non-compact simple Lie group with

finite centre, but in the latter case, the condition of lemma 4.4 can
‘be loosen again.

We shall call the duality theorem under the special situation as
.above by,

Definition 4. 5. If for any operator field T over (/}\, the condition
(i)—b) of definition 4. 1 follows from the other conditions, then we
call that G satisfies the duality theorem of the first kind.

Definition 4. 6. Analogously, if the conditions (i)—b) and c)
follows from the others, then we call that G satisfies the duality
theorem of the second kind.

5. Example. (The group of linear transformations on the
straight line.)

As shown by I. M. Gel'fand and M. A. Naimark [6] this group
is representable as a matrix group

(4. 47) G={<g’ i’): a>0, —oo<b<oo},
‘which is the semi-direct product of normal subgroup

(4. 48) N= {(é: ’1’)}

and closed subgroup

(4. 49) K- {(g: i’)}

And irreducible representations of G are given by,

D e=fio=1@ (¢=(1)) ¢},
(4. 50 for a unitary character x of K,
ii) w+5{vn§1 e,

i) o_.=Inde™,
N->G
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which correspond respectively to the G-orbits in N (~R), such that
i) L={0},
(4.51) { i) lL={x; x>0},

iii) [l.={x; x<<0}.

For a function f(g)=f <<(1)’ i’) (g’ (1)>> in L*(G), the Fourier

transform with respect to b is given by

(4.52) Fa, 0 scoglf( (3: f) (g: ?))e’””db,

(¢o; mormalizing constant).

And it gives a decomposition of the regular representation R of G,

(4.53) R~S°° Ind e*dx,

—oo N>G
where the component Ind e is equivalent to w, when x>0, and is
N->G
equivalent to w_ when x<<0.

Consequently the regular representation K of G is decomposed
to a direct sum of multiples of w, and o_,

(4.54) R~%€Bw’;@ﬁl@w’;, (0 ~0,, & ~w.).

That is, R is finitely generated with the generators {w,, w_}. And
G satisfies the duality theorem of second kind.

§5. Connected semi-simple Lie groups.

1. Let G be a connected semi-simple Lie group with finite centre.
This § is devoted to show the followings.

Lemma 5.1. For such a G, the regular representation R is
countably generated.

Movreover, if G has no compact factors®* then the regular
representation is finitely generated.

*#) Let the decomposition of G as a direct product of simple Lie groups Gj be
G=G:1X:-X Gn. We call each Gy as a factor of G, and G has no compact factors,
when all Gj's are non-compact.
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Lemma 5.2. For such a G, the condition (i) d) of definition
4.1 (non-zero property of T on R) follows from

(1) d"") T(w)=0, for some irreducible representation o which
is induced by a representalion of the subgroup I (see (5.3)), as
in the paper of F. Bruhat [1],

and the other conditions of definition 4. 1.
And from the results of §4, we get,

Proposition 5.1. A connected semi-simple Lie group with
finite centre satisfies the duality theovem of the first kind.

Proposition 5.2. A connected semi-simple Lie group with
finite centre without compact factors satisfies the duality theorem
of the second kind.

And in this case, the weak topology of f}A\ coincides with the
initial topology of G.

2. At first we shall quote some results about connected semi-
simple Lie groups without proofs or with simple proofs.

Lemma 5.3. (Harish-Chandra [9)). A connected semi-simple
Lie group is a type I group.

Corollary. To prove the lemmata 5.1 and 5.2 for G, it is
sufficient to show the same assertions for each factor G; of G.

Proof. It is easy to see that the regular representation R of G
is equivalent to the outer Kronecker product of regular representations
R; (1<j<n) of each factor G; of G.

While from lemma 1.2, for any irreducible representation w; of
each Gj, w{%wg'}g---@wn is irreducible. So if each R; are countably
(resp. finitely) generated and its generators are {w‘},, then {wil@)w’;z
@---@wﬁ"}m,n_m are all irreducible and construct a countable (resp.
finite) family of generators of R.

Moreover, since T,(R,)(g) Tz(Rg)@"'@ T.(R,) =0, if and only if
there exists j such that 7;(R;) =0, so the non-zero property of T;(R;)
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results that of T(KR).

Lemma 5.4. For any compact Lie group, the regular rvepreses-
tation R is countably generated.

Proof. Since a compact Lie group is separable, so L*(G) is
separable, that is, R is decomposed to a discrete direct sum of count-
able irreducible representations.

For any connected simple Lie group G with finite centre Z(G).
and with Lie algebra g, let its Iwasawa decomposition be

(5.1) G=KHN,
where H is a closed simply connected abelian subgroup, N is a
closed nilpotent subgroup and K is a compact subgroup, ard any
element g of G is represented uniquely by elements % in K, & in H
and # in N as
(5.2) g=Fkhn.

Put M the centralizer of H in K, then M contains the centre.
Z(G) of G, and
(5.3) r=MHN
becomes a closed subgroup of G, containing Z(G).

Lemma 5.5. If G is non-compact, then

(5.4) r=G.

Proof. For non-compact G, the subgroup H, therefore, HN is.
a non-trivial closed subgroup of G. But it is easy to see that M is.
contained in the normalizer of HN (see, F. Bruhat [1] p. 186). So if
I'=G, that is, if K=M, HN must be a normal subgroup of G. This.
contradicts to the simplicity of G.

Take a unitary character ¢ of abelian group H, such that, for
any Weyl transformation s on H,

(5.5) ¢’ o,
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where ¢° is the unitary character defined by
(5.6) o' (h) =p(s(h)), for any %k in H.

Now take any irreducible unitary representation ¢={V,(s), H(s)} of
compact group M, and consider the unitary representation of I' on

H (o) defined by

(5 7) {TE{W% H(J)}»
' Wy= W m=¢(h) V,(s), for y=mhn in T.
Obviously r give an irreducible representation of I.
Lemma 5.6. (F. Bruhat [1]). The representation
(5.8) o=Ind~<
-G
of G is irreducible.

Remark. F. Bruhat’s original form of this lemma is based on

the property
(5.9 %7, for any Weyl transformation s,

instead of (5.5). That is, (5.5) gives only a sufficient condition of
(5.9). But for our aim, it is enough to consider only representations.
of such a kind.

Lemma 5.7. We can select finite representations {r;} (1<j<n)
of the type (5.7), for which the restriction of

(5.10) roaé@r,

to Z(G) contains a subrepresentation which is equivalent to the
regular representation of Z(G).

Proof. From the assumption, Z(G) is a finite group. Then its
regular representation is finite dimensional, and is a discrete direct
sum of finite irreducible components. The Frobenius reciprocity
theorem on induced representations, being applied to M and Z(G),
assures that for each irreducible representation p; of Z(G), there
exists an irreducible representation ¢; of M such that the restriction
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of ¢; to Z(G) contains a component which is equivalent to p;. Thus
construct r; from some fixed ¢ as (5.5) and 4; by (5.7), then the

assertion of this lemma is immediately.

Let the projection onto the subrepresentation, which is equivalent
to the regular representation of Z(G), in H(z,) (=>PH(s,)) be P,.
n J
And for r,=>Pr;,, put
j

(5. 11) w;-=~lndr,~.

r->G

Then from lemma 1. 16,
(5.12) 00=3"PDo,~Ind(S®c,) =Ind c, .
j r->G j r>G

Lemma 5.8. There exists a function P,(g) on G, values of
which are projections on H(z,), and the restriction of w, to Z(G)
operates as the regular representation on the range of this pro-
jections. Moreaover,

(5.13) (P.f)(g)=Pi(2)f(g)

gives a projection on H(w,).

Proof. Take a complete orthonormal system {v;} in PyH(x,),
then from strong continuity of W,(z,) and finiteness of the dimension
of P,H(z,), there exists a neighborhood V of e in I such that

(5.14) | Wy (z)v;—0,l|<(1/2) (< (1/v/2)),
for any j and any y in V.

One can select an open relative compact neighborhood U of ¢ in G
such that

(5.15) vuu*nrcV.

Let C be a compact neighborhood contained in U, then there exists
a continuous function f satisfying

(5. 16) {i> 0< f()<1, for any g in G,

i) f(g) =1, on C; and=0, on the outside of U.

Define vector valued functions
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(5. 17) f,(g){: <Srf(7’g)d/lr<7‘)> grf<7’g) W—l(fo)vjdﬂr(')’), on FC,
=0, on the outside of I"C,

then obviously {f;(g),v) are measurable on G for any vector v in

H(z,) and j. Moreover,
(5.18) fiGg) = Wy()fi(g),

for any y in I" and any g in G,

and if g is in C then
6.19) 15,0~ o~ ({ fG0dn®) I 100 Wrsteovdu ()
-\ reovidumml
<({,rG0dn®) | fa@I Wato~vldmm <a/2).

The last inequality follows from that for any g in C the integral
domain is
(5. 20) {y:rgelU rerycUC*Nrculi*NrcV.

Let {g,} be a countable set such that both of {z(C-g,)} and
{=(U-g,)} give locally finite coverings of G/I', where =n is the
canonical map from G onto G/I'. Such a set is given, for instance,
by considering finite coverings by {z(C-g;)} of the compact sets

(5.21) (U —n(U™™).
Next, denote the functions
(5. 22) fu(®=fi(gg",
and lastly construct a family of functions on G by
(5.23)  Fl@=fule), for gin "Cau—Urc g,

then f~,~’s are measurable functions on G, and from (5.18), (5.22)
and (5.23), satisfy the relation

(5.24) ﬁ(rg)= Wy(ro)?,(g), for any ¢ in I and g in G.
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We shall show {f,(g)} ; are mutually linearly independent for
k-1

any g in G. In fact, if g is in (I"-Cg,— UI'-Cg,). g is represented
=1

as
(5.25) g=rc g, for yinr, ¢ in C.
And for any j,

(5.26)  fi(@)=fru(reg) = Wi(z) fiulegd) = Wy(z)f(0).

But using (5-19),

G.21) Wy fi(0) ~ Wyl =1 £:(0) ~ vl < (1/2),
for any j.

Since {v;} is a complete orthonormal system in P, H(z,), so {f;(c)};,
therefore {j~‘,~(g)},~ are mutually linearly independent.

This results that {f,(g)} ; spans a vector subspace of H(z,)
which has same dimension with PyH(z,). While since Z(G) is the
centre of G, the W.(z,) (z€Z(G)) operates on {fj( 2)}; as follows,
(5.28) W.(e) f(8) = W.(x0) Wy(m) ()

= (const.) x W.(e) Wy 7Ge) Wi (e, ()
= (cost.) X W~, (ro)grf(rc) Wy»n (To) ( W, (To) Uj) d/lr(T)-

This shows that { ff(g)}j transfer under the operation of W.(z,) as
same manner as {v;}, from the definition of {v;};, { W.(x)}. is equi-
valent to the regular representation of Z(G) on P,H(zr,), that is,
on the space H(g) spanned by { f~,(g)} ;. Put the projection from
H(z,) onto H(g) as P.(g). Then P,(g) is given as

(5. 29) Pi)f (&) =Ze( (&), (e fi(e),
where ¢;(g) are measurable and not all zero at same time, satisfying,
(5. 30) c;(rg)=c¢;(g), for y in I, g in G.

Thus P,(g)f(g) belongs in $(w), and it is easy to see that 13;
given in (5.13) is a projection over ().
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Lemma 5.9. The restriction of ©vQ-- R, to Z(G) contains a
subreprentation which is equivalent to a multiple of the rvegular
representation of Z(G). And P.(g)QP,(g.)R---RP,(g,) give a
projection of H(zy)Q---QH(z,) onto the subrepresentation for any
(g, &), where P,(g) is given in lemma 5. 8.

Proof. From lemma 5.7, 7,|z0 contains a component being
equivalent to the regular representation, and lemma 5.8 claims that
P,(g) gives a projection to this component for any g in G. By
lemma 1. 25, the Kronecker product of this components is equivalent
to a multiple of the regular representation. Therefore,

(5.31D) 70| 2 &+ Q0 | 206y~ (2o K0 | 2¢0»

contains a component which is equivalent to a multiple of the regular
representations, and P;(g) X P:(g) X Q P.(g,) gives the projection
onto this component.

Let M be a locally compact space, and G be a Lie group which
operates as a transformation group over M, such that (m,g)—mg
gives a continucus map of MXG to M, and me=m for any m in
M and the unit element ¢ in G.

Now we call the closed subgroup
(5.32) r(m)={g: mg=m}
of G, defined for any given m in M, the isotropy subgroup on 1.

Lemma 5.10. (J. Glimm [8]). The dimension of the closed
subgroup '(m) is a upper semi-continuous function on M.

3. Now we shall entre to the proof of lemmata 5.1 and 5. 2.

From corollary to lemma 5. 3, for proving lemmata 5.1 and 5. 2,
it is sufficient to show that these lemmata are true for any simple
factor of G.

If G is compact then lemma 5.1 is same to lemma 5.4. And
non-zero property of T={T(w)} on R follows from existence of o
in (/;\ for which T(»)=£0, because any irreducible representation of
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compact group is contained in R as a discrete component. This is
namely lemma 5. 2.

Thus in what follows, we restrict us to the case that G is a
non-compact connected simple group with finite centre.

For such a G, from lemma 5.5, '#=G. Put

(5. 33) dim r=d.
¢

Lemma 5.11. For t=2d+2, /& Qw, (0 1S the representation
given in (5. 12)) contains a subrepreseniation which is equivalent

to R.
That is, for such a G Lemma 5.1 is true.

Proof. In §6, it is shown that two closed subgroups I’
¢ t

— ~ —_——
(=rx--xr) and G,(={(g -, g:g€G}) in G(=Gx--xXG)
are regularly related. So we can apply G. W. Mackey’s results
(lemma 1.23) to this case.

(5.34) 0@ Qoy= (Ind 7)) Q&) (Ind =)
0 (g () Q- Qg (r): ' (£))dv(£),

NSN\G:/(T;
where g= (g, -+, &) runs over the set of representatives of (I, Zv‘,)-

double cosets in G*, and v is a measure over "'\ G'/ G, such that

a double cosetwise set E in G' is a null set with respect to a Haar
¢

measure g (=pX---Xy) over G', if and only if its canonical image
Ein rM\G' /G, is a ynull set. I*(g) is a closed subgroup of G
such that
(5. 35) r'(¢)=g’'rg.N---Ngi're.,
then 1'(g) contains Z(G) always.

Write by g,;(x,) the representation of g;'I"g;, space of represen-

tation of which is the space H(tr,) as same as 7,, and operators of
which is given by

(5. 36) ngylg;l<ro), fOr T, in gfll"g;.
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Then the outer Kronecker product gl(ro)(/X\)m(/X\\g,(ro) is defined
as a representation of the subgroup gi'I'g:X g:'I'g.X---X g:'I'g, in
G'. So we can consider its restriction to the subgroup F’(g‘)E{(r,
1) rer'(g)} which is isomorphic to I"(g). Regarding this
restriction as a representation
(5.37) 81(0) [r@ R &:(v0) [ray (=08, 1 (8)))
of r*(g), put

(5. 38) o(g1(x) & Qg (xo) :I"(£)) E(Ifid 0(&,1'(£)),
ri(g)>G
a representation of G induced by the representation p(g,"(g)) of
rag.
In the other hand, because of invariancy of elements in Z(G)

by inner automorphisms,

(5.39) &(t0) | 2y~ 26>

So

(5. 40) &1(70) |20 Q& (%0) | 260y~70 | 2@+ o | 209
~ (@@ &) | 26 -

From lemma 5.9, the last representation contains a subrepresentation
which is equivalent to a multiple of the regular representation of
Z(G), so by the step theorem of induced representations

(corollary to lemma 1.18)

(5.41) Ind (&) | 2@+~ @) |z

contains a subrepresentation which is equivalent to a multiple of R.
Lemma 5.12. For t=2d+2, the set

(5.42) E={g:1'(&)*Z(G)},

is u'-measure zervo in G'. That is, the set of double cosets, for any
element of which the isotvopic subgroup in G, differs from Z(G),

is v- measure zevo in ' \G'/G,.
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The proof of this lemma is given in the next section.
When we assume the above lemma is true, then for a double
cosets in C(E) (complement of E), which contains the represen-

tative g,

(5.43) (g1 @ Vg (r): I'(£)) =0 (g1(z) QR g:(r) : Z(G))
~Ind (<) |20/ Qg:(w) |20
~Ind (zyR Q7o) | zce

Z(G)>GC
contains a subrepresentation which is equivalent to a multiple of R.

By lemma 1. 23, the correspondence of vectors in the decomposi-
tion (5.34) is generated by

(5. 44) (fiQQf)—=f1(£:8)Q-Kf:(g.2),

as a function of g.

So it is easy to see, using the notation P, given in (5.13), the
Py
projection P, generated by

(5. 45) P(file )@ Qf(g-)) ()
= (P (@2)Q(Pif) (2:8)R-Q(P.f) (g.9),

on the space of the right hand side of (5.34) has the range, on
which the restriction of w(gi(r0) Q- Qg (z): I"(g)) is equivalent
to a multiple of K. This shows, the right hand side of (5.34)
contains a direct integral, almost all components of which are equiva-
lent to a multiple of K. But from the construction of ]3], this
direct integral is equivalent to a direct integral of a multiple of R
with same multiplicity over C(E), that is, the result of lemma 1.8
asserts that this direct integral is equivalent to a multiple of R.

Thus it is remained to prove lemma 5.12.

4. Proof of lemma 5.12. By lemma 5.5, G==I", so we consider
G as a transformation group over the homogeneous space M=r1"\G"
which maps a coset m containing (g')=(gy, -+, &) to the cosets
mg containing (g'-g)=(g.g, -, g:&). It is easy to show that the
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isotropy group of this coset m is 1'(g'). By lemma 5. 10, dim7*(g")
is a upper semi-continuous function on &’. So the set

(5. 46) E,={g": dimr'(gHh=m+1} = {g': dimr'(g") =m}
is a closed set in G,

Lemma 5.13. For m=(dimr)—I7+1,
(5.47) #(E)N)=0.

Before stating the proof of lemma 5.13, we have to set some
lemmata about simple Lie algebra g of G.

Lemma 5. 14. For any element X in g and any proper sub-
space V in q,
(5.48) n({g: (adg) X V})=0.

Proof. Since {g: (adg) X V}c{g: (adg)Xc V,} for any V,
containing V, without loss of generality, we can assume V is a
hyperplane in g. By the reason of simplicity of g, its Killing form
B(X,Y) is non-degenerated, so there exists an element X, in g
such that X, is in V if and only if

(5. 49) B(X,, X;)=0.

For given X, put X,= (adg)X, then B(X,, (adg)X) is a non-zero
analytic function of g. Therefore, this asserts that

(5.50)  u({g:(adg) X, CV})=pn({g: B(X, (adg)X)=0})=0.
Lemma 5.15. For any proper subspace V, and V, in g,

(5.51) n({g: (adg) Vic Vo})=0.
Proof. Let a basis in V; be {X;},, then
(5.52) {g: (adg) ViC Vo} = O {g: (adg) X,C V3}.

So (5.48) results (5.51).

Proof of Lemma 5.13. For any given two proper closed sub-
groups K,, K, in G, with Lie algebras f,, f, respectively. Consider
the set
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(5. 53) N(K], K:):{g. dimK1=dim(Klﬂg_1K2g)}.
Since K;, K., and K, g 'K,g are Lie groups too, so the equation
(5.54) dimK;=dim(K,Ng 'K, g)

means that the connected components K3 of ¢ in K; and (K;Ng'K,g)°
of e in K;Ng'K.g coincide, that is, (5.54) is equivalent to

(5. 55) Klcg'Kig.

But the relation (5.55) is transfered to the relation between Lie
abgebras, as

(5.56) t,C (adg)t..
Therefore,
(5.57) N(K,, K,)={g: tiC(adg)t:}.

So lemma 5. 15 results
(5.58) r(N(K,, K,))=0.

We apply (5.58) to the case of that
(5. 59) K =K{=r; KP=rNgi'rg, K®=r; -

o K =r0gi'reN--Ngihr g, K¥=r; -,
inductively, and we get
(5. 60) 2 ({(gy, -+, g5): dim(FrMgr' Mg
~g;'rg;) Z(dimr)—j})=0.

This implies immediately

(5.61) W ({(gy -, i) dim (g g -
<+NginT giw) = (dimr) —j}) =0.
Put j+1=1/, we get (5.47).
Lemma 5.16. For two discrete subgroups D,, D, in G,
(5.62) n({g: D:\Ng ' D, gt Z(G)}) =0.

Proof. Because of s-compactness of G, D; and D, are both
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countable sets. And the set
{g: D\Ng'D.gdc Z(G)}= U {g:g'dgeDy}

dED,NCZ(G))
is F,, therefore measurable.

Now consider for any elements d; in D,, d; in D,,
(5.63) N, d,)={g: di=gd.g}.
Obviously this set is shown as
(5.64) N(d,, dy) =c(d)ny=nyc(dy),

where c¢(d,), ¢(d,) are the centralizer of d,, d,, respectively, and #,
is any element of N(d,, d,). Of course c(d,), c(d,) are closed
subgroups of G. So from connectedness and simplicity of G, if d;
or d, is not in Z(G), N(d, d,) is lower dimensional than G, and

(5. 65) #(N(d,, d,)) =0.

If DiNg™D,gd Z(G), then there exists a couple of d; in D; and d,
in D, such that both of them are not in Z(G) and

(5. 66) di=g7""d,g.

So such a g is contained in N(d, d;). That is

(5.67) {g: Di\Ng ' D.gt Z(G)}c U N(d,, d»).

(d1, d2)4(Z(G), Z(G))
Since D,, D, are countable sets,

(5- 68) .U( U N(db dz)) =0.

(dy, d2)3(Z(G), Z(G))
Therefore (5.67) results (5.62).

Lemma 5.17. 1'(g") contains Z(G) for any I, and
(5. 69) {(g:r(gH=*Z(G)}={5":1"(gNF Z(G)}
is a (1r',G,) -double cosetwise measurable set in G

Proof. Since I' contains Z(G), and since Z(G) is invariant
with respect to any automorphism of G, so any g 'I'g and I'*(g")
contain Z(G).

Obviously, from the definition of 1'(g’)
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(5.70)  I'(GFgH=I"(£), for #'=(p, ) in I',
and
(5.7D) rg'g)=g7'r'(ghHg, for g=(g, -, g) in G..

This shows that the set given in (5.69) is (I, 5,)-double cosetwise
set in G'.

Lastly we consider G/ ~G as a transformation group over
M=r"\G'. For proving the set given in (5.69) is measurable, it
is equivalent to show the set in M,

(5.72) My= {m: m=mg, for any g Z(G)}
is measurable. Because for any g’ belonging to a I''-coset m in M,,
the isotropy group I”(é’) of m is equal to Z(G).

The set given in (5.69) is the inverse image by =, of the

complement of M,.

Now, for any m and g such that mg=-m, there exist a neigh-
borhood V of m and a neighborhood U of g such that

(5.73) VUNV=¢.

In fact, since mg=m, there exist a neighborhood V; of m such
that

(5.74) VinVig=¢.

But the map (m, g)—mg is continuous, so we can take a neighbor-
hood V of m and a neighborhood U, of e and

(5.75) VU,c Vv,

then, the pair of neighborhoods V of m and U= U,g of g satisfies
(5.73).
Next we shall show the set

(5.76) M(K)={m: mg=xm, for any g in K}

is open, for any compact set K in G.
In fact, for any m and g such that mg=-m, there exist neigh-
borhoods V(m), U(g) such that
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(5.77) Vim)U(g) N V(m) =¢.

For any fixed m in M(K), and for any g in K we take V(g, m),
U(g) as (5.77). Since K is compact so there exists a finite covering
KcUJU(gy). Let V={1V(g, m), then for any m, in V and any

J
g in K, there exists a U(g;) which contains g, so

(5.78) VN VU(gH < V(gi:m)NV(g;: m)U(g,) =4,
that is,
(5.79) VN VK=¢.

This shows M(K)D V, that is, M(K) is open.

Finally G—Z(G) is o-compact, so we can take a countable
compact cover G—Z(G)zLjK,. Under these notations, M, is re-
presented as ]

(5. 80) M,= ﬁM(Ka,

therefore M, is a G;s-set and measurable.

Now we are on the step to prove lemma 5.12. As shown in
lemma 5. 17, the set E={g": I"'(g")FZ(G)} is measurable.
While from (5.60) and (5.61), putting /=d+1, we get,

(5.81) 4 ({(gy -, g0 dim(gi' T gN -+ Ngi'Tg) Z0}) =0,
(5.82)  #7({(gy, i) dim(TNg g

- ginirgi-) 20}) =0.
That is, I"(g") =gi'Ir'g:\---Ngi'r'g, and rMrr'(g"H=rng.rg:
M---MNgiZirgi., are discrete subgroups for almost all ' and g%

5 1i—1

But from lemma 5. 16, for such g’ and g7,
(5.83)  u({g:gi're:N--Ngi'rg.Ng (g rgin-
NginirgiaNrgxZ(G)}y)=0.
From the measurability of mapping

(5.84) g = (gv = &6 iy oy Gora, Gor) >
— (g1, " &1 G Qe o118, 81,
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and the measurability of E, the measurability of the set
(5.85)  E'={g"":giTgN--Ngr'rgNgs(grhrgmn -
gl 8N g Z(G)}
follows. So the above arguments result.
(5. 86) B (ENY=p2(E") =0.
By the mapping (5.84), (5.86) is equivalent to
(5. 87) 1 (EY=0.
For t=2d+2, (5.87) assures that for almost all g'
(5.88) (gD =r*(gHNr=g™)=zZG)Nr=g"=20G),
where g'= (g% g"%). This is the required result.

5. Now we shall prove lemma 5.2 for, non-compact simple Lie
group G with finite centre.

At first, let o, be the regular representation of M and ¢, be the
representation of I' defined as in (5.7) from any fixed ¢ and o,
instead of o.

Lemma 5.18. The restriction of t, to Z(G) is equivalent to
a multiple of the vegular representation of Z(G).

proof. For characters {x;} of Z(G), by joining the functions
5.8 fim=\_u@fmdz (F€CM),
one can get a family of functions {f,} such that
fi(zm) =2;(2) f;(m),
Take a complete orthonormal system {h,(m)} of L*(M/Z(G)),
then the system {%,(#)f;(m)} constructs a complete orthonormal
system of L?*(M). Moreover the closed space H, spanned by

{h.(m)f;(m)}; for fixed k, is a subspace on which the operators
{ W} operate as the regular representation of Z(G), and evidently,

(5.90) for any m in M.
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(5. 9.!.) H(T,) = Z@H}, .
This shows the assertion.

Completely analogous arguments as in the proof of lemma 5. 11,

shows,
Lemma 5.19. Put
(5.92) o,=Indr,

r->G

then, for t=2d+2 (d=dim TI),

.
(5.93) (0,)'=0,Q - Ro,
is equivalent lo a multiple of the regular representation R of G.

Proof. As in lemma 5.11, one gets an analogous formula to
(5. 34),

.90 )~ o(@E)@Rr ) ()b,

reNGt/G:

where almost all w(g,(r,)®--QRg:(z,): I"'(g)) are the representation
¢

of G induced by z‘,®-:-®f,
of Z(G) are multiples of the regular representation of Z(G) with

2> of Z(G). But the last representations

same multiplicities for any such a §. So w(g:(z,)®--Qg:(z,): I'(g))
are multiples of R with same multiplicities for almost all g. The
results is easily deduced by applying of lemma 1. 8.

Lemma 5.20. Any irrveducible representation o induced by a
irrveducible representation v of I' as (5.7) is a subrepresentaiton

of o,.

Proof. Because of compactness of M, ¢, contains any irreducible
representation s. Therefore, r, contains r=¢-s. This asserts that

w,=Indr, contains w=Ind-.
r->G r-G

Proof of Lemma 5.2. Let T={7T(w»)} be zero on R, then from
the equivalence relation given in lemma 5.18, T is zero on (,)’,
but this is true only when T is zero on w,. Because of lemma 5. 20,
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o, contains the irreducible representation w as a component, so 7(w)
must be zero. This completes tie proof.

§6. Orbits space on semi-simple Lie groups.

1. For proving lemma 5.11 in §5, we have used the property
that in any connected simple Lie group G with finite centre, two
closed subgroups I'* and 5, in G' are regularly related. In this §, we
shall give the proof of this.

Lemma 6.1. Two closed subgroups I'" and G, in G' are regu-
larly related in the sense of G.W. Mackey. That is, there exists a

countable family {E;} of " —G, double cosetwise measurable sets
where E, is pnull set and other 1'—G, double coset is represented
as an intersection of E;s. (countably separated except E,).

2. Before to prove this lemma, we quote useful results.

Lemma 6.2. (J. Glimm [8] Th. 1). Let G be a separable
locally compact™® topological transformation group acting on a
separable locally compact® space M as given in §5.4. Then the
followings are equivalent:

(1) The space M/G of G-orbits on M is a To,-space by
induced topology from M,

(2) M/G is countably separated,

(8)  for each m in M, the map T'(m)g—mg from I'(m)\G
onto mG is a homeomorphism, where I'(m) is the isotropy group
of m and mG has the relative topology as a subset of M.

Lemma 6.3. (F. Bruhat (1] Th. 7.1). When G and T’ are as
in §5.2, then the space of I'—I" double cosets in G, is a finite set.

Lemma 6.4. (F. Bruhat (1), Chap. III §7.3). For any g in
G, there exists a s(g) in rgr such that

*) We assume T:-property in the word “locally compact”.
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©.1) { rNs(g)'rs(g)=MHN.y,

N.oy=NMs(g)Ns(g).
Corollary. If
(6.2) dim(I'gr) =dim G,
then there exists a s(g) in 1'gl, such that
(6.3) rns(g)rs(g)=MAH.

Proof. It is easy to see, for Lie algebras g,c¢,u1, ), 1t of G, T,
M, H, N respectively,

(6. 4) dim G=dim g= dim n+dim c=
=2dim n+dim §+ dim m.

(see F. Bruhat [1] proof of lemma 7.1, p 188). From the assum-
ption, using s(g) in the result of lemma 6.4,

(6.5) dim G=dim I'g r=2dim I'r—dim(IrNg-'rg)
=2(dim n+dim H+dim m) —dim ("' Ns(g)™Ir's(g))
=2dim n+2dim Y+ 2dim m— (dim M+ dim H+dim N.q)
=2dim n+dim )+ dim m1—dim N,».

Equate the right hand sides of (6-4) and (6-5), we get

(6 6) dim Ns(g) =0.

But as shown in F. Bruhat’s paper [1] p 189, N, is connected, so
that N.,, must be {e¢} and we get (6-3) from (6-1) immediately.

3. Proof of lemma 6.1. Consider a map on G* to G** defined
by

(6 7) ¢:(gl)"'ygf)_)<g1gt—l’ "';gt—lgt—l)-

It is easy to see that ¢ maps any F’—a, double coset in G* to a
" *—T,, double coset in G'', one-to-one way. Therefore, an one-to-
one correspondence ¢ between P‘\G‘/@, and I"\G"'/I',, is es-
tablished by ¢. Since ¢ is continuous and open, ¢ gives a homeomor-

phism of these spaces with canonically induced topologies from the
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topologies of G*, G respectively. And the inverse image of x~'null
set in G*' by ¢ is g-null set in G'. That is, if we show I\
G"I/I"',N_l is countably separated except null set, then lemma 6.1 is
proved.

While from lemmata 6.2 and 6.3, I'\G/I" is a T,-space and
the union of all lower dimensional I"—I" double cosets in G becomes
a pnull set F in G. Put

(6.8) G'=G—-F,

then G’ is open as a union of open cosets which has same dimension
with G. And "\ (G)"'~(r\G")** is I 'orbitwise open set in
r'\G*, especially T',_-orbitwise open set in I''\G'?, and locally
compact. Therefore, to prove that F’"l\(G’)"l/F,_I is countably
separated, it is sufficient to show this space is a T,-space, by lemma
6. 2, this results lemma 6.1 soon.

For showing this, we shall prove the following.

Lemma 6.5. For fixed | and closed subgroups ADB in I, if
r"\(G"'/A and g7r'gMNA\A/B area Ty space for any g=(g,
-, g0 tn (G, then M\(G")'/B is a Tyspace.

Proof. Let g, g’ be representatives of two different I’ — B double
cosets in (G")'.

If g, g’ belong to mutually different 7' — A double cosets, then
from Ty-property of 1"\(G")!/A there exists a I"— A double cose-
twise open set which contains one of ¢ and g’ and does not contain
the other. Since AD B, a I''— A double cosetwise set is I'" — B double
cosetwise set too. This shows the separating property of I'\(G')’
/B about (g, g").

Next if g, ¢’ belong to a same I'" — A double coset I"gA=r1"g"A.
From lemma 6.2 and 7,-property of I"\(G')'/A, this double coset
is homeomorphic to the homogeneous space g7 71"g(1 A\ A, especially
locally compact. The group B operates on this homogeneous space

A—

g7'rgMN A\ A which is homeomorphic to I"gA, as a locally compact
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topological transformation group. By the homeomorphism between
I"gA and g7'1'gMA\A, a I"—B double coset is mapped to some
(g7 r'gMA)—B double coset in A. So the existence of I'"— B double
cosetwise open set separating the cosets which contain g, g’ respec-
tively, follows from 7,-property of ¢'I"g( A\A/B.

We put A and B in lemma 6.5 as
-1

A=T_xT={( Nert
= l—lx = T,"',T,T S5 ! )
(6.9) {B=F,.
Then from
(6.10) r\(G")'JA=T"\(G")' (T, xT)
= ("\(G)'™T'a) X (P\G'/ 1),
and
/-1

A A — !

(6.11) §Tr'gNA={G, - rr):
rerng'rg.N - Ngiirg,., vy €rNgi'rg;}
-1

={(, ) rErNgr'rg:N - Ngirg.ay XrNgi'rg.

We shall use the notation

(6.12) goi=(e, g, -, &),
then (6.11) is shown by the notation in §5, as
(6.11") ST gNA={r"(gy )}, xr(gy.
And
,,—/“/( ~ ~
(6.13) (rgNANA/B=Ar" (&)} XT*(g)\T"1a X T/T,

~T" (g4 X (g \I*/T,
~ o
because of I'\,~I" and {I"(g¢ ")}, ~Ir'(gy™").

Using analogous mapping as (6-7), the last space is home-
omorphic to

(6. 14) P (g5 X TGN\ T~ (g5 \I/T (8.

By lemmata 6.2 and 6.3, '\G'/I" is T,, therefore if the space
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given in (6.14) is 7, then using lemma 6.5 for (6.10) and (6.13)
we can prove the Typroperty of I"\(G')'/T, by induction with
respect to /.

Corsequently the problem is reduced to show that the space
given in (6.14) is T\.

By tke corollary to lemma 6. 4, for any g in G', I"*(g}) is conjugate
to MH inI". So the space I"/I"*(g:) ~I'/ MH is homeomorphic to N,
and from the simply connectedness of N, this space is homeomorphic
to its Lie algebra n. Thus the space I (gs)\I'/T*(g3) ~I'(g5™)
\I"'/MH is homeomorphic to the orbits space by the operations {ady}

on adjoint representation restricted to n, for y in I"(g:™') which

is conjugate to a subgroup I’ of MH in TI.

While the general theory of Lie algebras asserts that u is span-
ned by the root vectors E, of ad % such that

(6.15) (ad W) E,= ea(Y)E,, for h=exp Y in H.

We denote by m. the subspace of n which is spanned by E.’s such
that a’s give a same linear form A on H, then n is represented as a
direct sum of ny's. For any X in n, let X, be the component of X
in nmx. And for some set J of indices, put

(6. 16) AQ]E{XIX,\jZO,jE]}»

then this space is a closed subspace of n. It is sufficient to show
that each orbit {(ady)X: y&rI''} is closed in £, —]‘LZJ] 2;, which con-
tains X.

While since any m in M commutes with all % in H, so {ad m}
makes invariant each subspaces 1.'s. As shown in Harish-Chandra’s
paper [10], for adequate inner product ad m becomes an orthogonal
transformation and ad % is given as in (6.15).

For given gi'=(e, g, -, &), we take {s(g,)(=s,)}, as in
lemma 6.4 corresponding to each g;(1<j</—1). Put

(6.17) gi=ri'ss Gunri, €ED),

and
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(6. 18) r,_lrj'l:n,h,mj, n;E N, hjEH, MJEM.
This shows that
(6.19) r(geH=rNgi'raN-Ngirg.
:rﬂrflsflrsn’lﬂ"'ﬁTl—-lxsl-—l1F31—1T1—1
:Tfl(rﬂsfll—'&)?’lm"'077—11(rﬂsl——11r31—1>T1—1
=ri'MHn - NyiiMHy
=12 Gt ) MH Gy 7)) -
N GroeriZe) MHG g 22) " MH y,
=i {mMHn O N MHn 2, NMH} 7.

Thus (g™ is conjugate in I' to

(6.20) I'=nMHn*N---Nu..MHn 2, "NMH
While for any y in I' the decomposition

(6.21) y=mhn, wmeM, heH nE N,

is unique. So an element y in I' telongs to I, if and only if it is
the form for some sets {m,} in M and {k;} in H,

(6.22) r=mmhanit = =n,m,_h,_nilty, =mh,

but since MH is in the normalizer of N

(6.23) mh=m;h;((mh;) 'n;(msh))nyt, (1<j<I—2).
This results

(6.24) m=m; h=h; (m;h;)"'n;(m;h;)=n,

That is, (mh) commutes with each #,.
Conversely any element (mh) in the commutator of {;}; belongs
to I". Therefore I'" is equal to the commutator of {»,}; in MH.

Let
(6.25) n;=expX;, X,en(1<ijl—2),
and

(6.26) X;=23(X), (X)a€m,
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then I'" is characterized as a subgroup of MH as
(6.27) I''={y=mh:ad(mh) X;= X, (1<j<l-2)}.

But since ad(mh) makes invariant each subspaces 1\’s. So the above
conditions in (6.27) are equal to

(6. 28) ad(mh) (X))r= (X))

While ad m is an orthogonal transformation and er(Y) is real, so
(6. 28) means

(6.29) {ex(yXX})AZ(Xj)A’ for any j and 2
. (ad m) (X;)a= (X)), .

This shows that for each y=mh in I/, its components m and h are
in the commutator of {n,;} separately. Conversely, if m and % com-
mute with {#n;}, then y=mh is in the commutator of {#n,}. Conse-
quently I"" is a direct product of the commutators M, and H, of {#;}
in M and H respectively, which are both closed. Obviously H, must
be a vector subgroup in H.

Now let a sequence
(6. 30) {ad(m,h) X: m,e M,, h,e Hy},

in a I'-orbit converge to X, in which {ad(m,h,) X}, and X, are
contained in some £,— J&,. This is equivalent to the convergence
of each components {aﬁz]m,,h,,)(X )a;b to (Xy)a. From the definition
of £,, these components are not zero only for je /.

This means that the sequence of their norms

(6.31) llad () (XD a1l = llad (Re) (XD
=M (Y[ (X))l

converge to the non-zero value [[(X,).]| for j& /. Since H, is a

vector subgroup of H, so there exists a /4, in H, such that
(6.32) [ (ad ho) (X )l =[[(Xo)all,  for any j.

The compactness of M, assures the existence of subsequence of
{(ad m,) X} converging to some {(ad m,) X}. That is, there is a
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subsequence of {(ady,) X} converging to ad(m,h,) X in this I-orbit.
Obviously the limit must coincide to X,. That is, each I'-orbit is
closed in 2;,— U&,, which contains this orbit.

27
This completes the proof.

§7. Semi-direct product groups.

1. Let G be the semi-direct product of a separable closed abel-
ian normal subgroup N and a closed subgroup K. In this §, we
shall show that if G satisfies the assumptions 1~3, which are given
later, the duality of the first kind is valid for such a G.

As examples of groups of this type, one can quote the m-dimen-
sional proper inhomogeneous Lorentz group, the motion group over
m-dimensional Euclidean space.

Put the dual group J/\\f of abelian group N, and consider an ele-

ment g in G as a transformation on N such as

(7.1) g:n—g(#h),
where g(7#) is given by
(7.2) <gi), my=3i, g7'ng),

using the notation < , ) of ordinary dual relation between N and ](7\
We choose a representative 7 for each G-orbit in 1/\\/, and denote

the isotropy subgroup of # in G by G(%). Since N is an abelian

normal subgroup, so any element # fixes all 7. Then the isotropy

group of 7 in K is given by

(7.3) K)=Gn)NK,

and G(#) is the semi-direct product of N and K(#).
Now we presuppose the assumptions.

[Assumption 1] G is a regular semi-direct product in the
sense of G.W. Mackey [13].

[Assumption 2] There exists an element #, in N such that
K (#,) is separable compact.
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For any finite set F= {#i;} (1<j<?) in J/\\/, we consider the con-
tinuous map ¢r of (K(s)\K) X -+ x (K(#,)\K) into ](7\, defined by

7.4 el RS R 00)),
where k; shows a representative of a coset 1?, in K(i;)\ K.

[Assumption 3] There exists a finite set F= {#i;},c;<: 0 J/\\f
and a velative compact open mneighborhood W of (é,---,¢e) in
(K#H)\K) X -+ X (K#A)\K) such that,

i) V=e(W) is a open neighborhood of zt‘, 7y,

j=1

ii) the restriction on V of the Haar measuve is absolutely
continuous to the measure introduced by

(7.5) w(E)=u X X (WNe:'(ENV)),

NN
for measurable E in N,
where v; is a non-trivial quasi-invariant measure on K(#;)\K.
Under these assumptions, we get the following.

Lemma 7.1. For such a G, the regular representation R is
countably generated.

Therefore from the results of §4, the main proposition is deduced.

Proposition 7.1. For a semi-dirvect product group G, satis-
fying the assumptions 1~3, the duality theovem of the first
kind is valid.

2. For such a group G, all irreducible representations are ex-
hausted by the theory of induced representations given by G. W.
Mackey [13].

At first, fix a # in J/V\ and take an irreducible representation t
={Wr(c), Hx)} of K(#). Then {4, n) Wr(z), H(z)} (g= nk)
gives an irreducible representation of G (7). Put

(7.6) D, o) =Ind {<ni, n) Wr(r), H(z)}.

G(n)-»G
Then using the assumption 1, the following is valid.
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Lemma 7.2. (G. W. Mackey [13]). D, t) is irrveducible
and determined by the orbit containing # and the rvepresentation
7 of K(#) besides unitary equivalence.

And arbitrary irveducible representation of G is equivalent
to one of the representalions of such a form.

3. To prove the lemma 7.1, we consider a decomposition of
the regular representation R of G.

For any f in L*(G), define a function fon NxG by
7.7 i, =\ £ )G Y duw ),

where uy is a Haar measure on N. Then by Plancherel’s theorem
on N, the integral converges for almost all ## and g, and

(7.8) FGh ngy =G, m)f (4, ),
@9 A 7GR 1) dua i = 1 F < 4o,

2\
where x5 is a Haar measure on N (adequately normalized). And
the operator Rg, in the representation R corresponds to the map,

(7.10) (Uge(W)f) (3, £) =F (i, ggv).
That is, for fixed #, Ug(#) operates as in the representation {V%Kﬁ,n}.

Consequently, we get the following.

Lemma 7.3. R is decomposed as,
(7.11) R~ ﬂﬁango‘z, nSduz(A).

To use the results of G. W. Mackey, the followings must be
shown.

Lemma 74. Let G;(0<j<s) be subgroups of the form NK;
in G, where K; arve closed subgroups of K. Then GyxGiX---XGs
\G**/G,,, is homeomorphic to the space Kyx K;X -+ X KS\K““/I?s+1
and to the space K x KX xKNK* /(K.

Proof. Since
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(7.12) GoX G X+ XG,=K,NxK.Nx--xK,N
= (KoXle b XKS> Ns+1’

and N**!' is a normal subgroup of G**!, so

(7.13) GixG, X+ XG\NG = (KX K; X -+« X K) N\ Kst1 N+
~K X K; X --- x K\K**,

~ ~

For N makes invariant any point of the last space, G,+1=Ns+1]~{3+1

operates as same manner as K,,; on this space, so

(7-14) GoX Gy X+ X GGG yi~Gy X - X G\G /K.,
~Kyx - x K\K*/K ..,

as a set. But the one-to-one correspondence of double cosetwise open
sets is immediately.

Next, take the map
(7. 15) (kO) kly T ks)-—)<klk0_1’ ) ksk0_1>v

which is analogous to the map (6:7) given in §6, then this map
gives the homeomorphism of

(7.16) Kyx KX xK,JK"K ~K X xK\NK*/(K))..

Corollary. If K, is compact, and G;=G (#;) for some {7} in
ﬁ(l<j<s), then two subgroups Gox G,x ---x G, and G.,, are reg-
ularly related in G, in the sense of G. W. Mackey.

Especially, Nx G(#,) X - x G(#.) and G.,, are regularly related
in G,

Proof. It is easy to see, a orbits space by a compact subgroup
over any separable homogeneous space is countably separated. While
the separability of factor spaces K(#,) \K follows from the separa-
bility of N and from the equivalence between the topologies of
K(#;)\ K and of the orbit containing #; based on the assumption 1.
This shows, K;X - ><KS\K‘/(I?;)s which is homeomorphic to G, X
G X XGN\G* /(G),,, is countably separated.

The case of G,= N is the special case when K,= {e}.
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Now we can apply the decomposition theorem (lemma 1.23)
given by G. W. Mackey, on the Kronecker product,

T17) D)) = Und o, n)) @Dy, D@
QD 1) QD(l, 1).

Such a representation is decomposed as an integral on the space
(7.18) S=NXG,x X G \G'*/(G) 1o~

Ky X XK \K ' e} ~ Ky e X K \K
~(KN\K) X X (K \KD.

And for representatives F= (ky, -+, kiy1) of each cosets, the component
on this coset of the integral is given by

(T19) D, (k")) =Ind kT ) + o, 1,

bzcause

(7.20) N=NNG Ui N NG Gu),

(7.21) T ) + o, 1 = oy myCE ), -

° <kt—-&1 (fl:u), n>»
(7.22) 1I~1Qk (D &k (D).

The measure v of decomposition over S is given by
(7. 23) V= X oo XVH.],

the product of quasi-invariant measures y; on K(#;) \K as a measure
which has the same null sets as 2*.
Lemma 7.5.
t41 ~
a2 Do~ D), (ki) dyy (k).
(K(n\K) x -+ x (K(ny1)\K) ji=1

Now we shall show the followings.

Lemma 7.6. If the assumption 3 holds for some {F= {#i;}1<;<:,

W3 then for any #.,, in ]\7, theve exists a relative compact open
t+1

neighborhood W' of (é,---,&) in (K(#H)\K) X -+ X (K i) \K)
and 1), ii) of the assumption 3 are valid for such a {F'={#.,} UF,
w's.
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Proof. Take any relative compact open neighborhood W, of ¢
in K(#,,,)\K, and put

(7.25) W'=Wx W,

Then

(7.26) Vi=pr (W)= {(fi= ﬁnlk;l(ﬁj) + kL (i) s (B E W1
- k;}lgwow""( W) + ks (i) |

t+1

is a open set as a join of open sets, and contains 21 %y, thatis, the
property 1i). o

Next, to prove the property ii), it is enough to show that for
any measurable set E in 1/\7 satisfying

(7.27) wn(EN V) +0,

the following inequation holds.
(7.28) L=(n X Xy (W Nerl (EN V) #0.

But the value [, is representable as a double integral.
(7~ 29) IO: Swoxwxf?i(anv’)<kh ot k:+1) dVl(k~1) "'th+l(E;+l>

- Swo Dvins (ko) {SW"{@], ks Dk ) +k-il<fu.l>eE}d“”'d’“'}
ZS dV:+1(;:+1) {S x?;l([E—kT-l\(;,”)]nl/)dl/l'"dVl}
Wo w

= SWOV()( [E— kt_+11 (ﬁl+1) J )dl/t+1<kt+1> .

While from the separability of 1/\\/ and (7.26), one can choose
a countable family {E;=¢( W)+ (ki) *(44,s1)} such that V' is
covered by JE; This shows the existence of k.., in W,, from (7. 27),

such that
(7. 30) pi (L E—=k7L () ) Ner (W) #0.

Since u% is a regular measure and k;},(#,,) is continuous on
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K1)\ K, so there exists an open set O in W, for any k., in O,
(7.30) holds. But the assumption 3 asserts for such a £k,

(7.31) w([E—Fkil (i) ]) #0.

But with respect to v, any open set has positive measure, so that
from (7.29) and (7.31), (7.28) is deduced. This is the proof of
property ii).

Combining lemmata 7.5 and 7.6, a useful result is obtained.

Lemma 7.7. For {#;},.;. g given in the assumption 3, there
exists a nezghborhood V of E A; in N, such that for any 7, and
/Y N D({A} - jre1) whzch is given in lemma 7.5, contains
a subrepresentation which is equivalent to
(7.32) | - IndGic+ i, n)dp ().

Proof. Put V=¢,( W) as in the assumption 3. From lemma
7.5, obviously ®({7#,}) contains

t+1
.33 | o), ern e
g Ind{Gi+ sy, n)dyy(12),
v N>G
where W' V' are given in lemma 7.6, and the measure », on ]/\\7 is
constructed for {F’, W'} as (7.5) of the assumption 3.

But the absolute continuity of ux; to v asserts that (7.33) con-

tains a subrepresentation which is equivalent to
(7.34) S Ind i+ i, myduz ().
v/ N>G

Again, restrict the integral domain V’ to the open domain V+i#,,,
which is contained in V', the result is deduced.

4. Proof of lemma 7.1. At first, take a 7, as in the assump-
tion 2. Since K (#,) is separable compact, there exists an at most
countable family {r;} of irreducible representations, such that, >Pr;
is equivalent to the regular representation K, of the group K’(ﬁo).
That is,
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(7.35) Z@DO’IO; To) = 2@ Ind <7’10:n>fo

l=1 NK(#o)-—
~ Ind (A, n>(2@ro)~ lnd <no, ny Ry~

NK (i) >G NK ()

~ Ind {ngny { Ind 1}~
NK(fi))—>G (e} »K()

~ Ind { Ind {(n, n)} ~Ind<no, n.
NK(#) +G N >NK(fio)

Next, we consider the Kronecker product of representations de-
fined for the set F= {7;} (1<j<t) given in the assumption 3 and
N
arbitrary given # in N,

(7.35) D) =D Do, 1) KD, D Q-+
@D, DRDOL, 1) ] ~
~ [ZOD 0, 70) | D (s, D+ @D, DRD(GE, 1) ~
~(Ind<no, 7)) ( Ind <n1, nyE---

ﬂl—’

- Q( Ind i, )1R( Ind <, ny-1).
NK(#,)—G NK(#)—G

Now we apply lemma 7.7 to (7.35) and get the following.

Lemma 7.8. D(#) contains a subrepresentation which is
equivalent to

(7. 36) { - macitiomyamoin~§ . Indci nyduGi.

Vi+n+ng N

N
While the separability of N results the s-compactness of N, and
there exists an at most countable set {#’} such that U[V+ W+ 9]
covers whole N. And Z@@(ﬂ) contains a subrepresentatlon

(7.37) |, mmaci wamon,

which is equivalent to R, by the reason of lemma 7.3. This shows
that, {Diy, 7t), Dy, 1), D(#* 1)} .5 gives a countable family of
generators of K.

This completes the proof.

5. Examples.
a) The motion group over m-dimensional Euclidean space.
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(7.38) G:{g:( ko i)}mﬂ}.
0,01

That is, G is the semi-direct product of closed normal subgroup

I 1 K n 1
(7.39) N= = :
-

which is isomorphic to the additive group R” with vectors n, and

closed subgroup

f 0
(7. 40) — k= R, |’
l 0, -, 01

This group is isomorphic to the group of orthogonal matrices of
degree m which is consisted of {&,}.

The dual group J/V\ of N is isomorphic to the additive group
R”, and an element g in G operates on I/V\ as

(7. 41) n—k,' (1),

as an orthogonal matrix on the vector space R”. Then the G-orbits
in N are (m—1)-dimensional spheres S(») with the radius »(0<r
<Coo) and with the centre on origin. One can select a representative
of orbit S(») as

(7.42) An,=(r,0,--0),

then the isotropy group K(#) of #, in K is given by

i) K()=K,
[ [ i 1)
0, |
k= ; B | 4 ,
U o)

K, is isomorphic to the group of orthogonal matrices of degree m—1

0’ e, 0,

o O

(7.43) ] i) Kr)=K,=

= O

0,0, -, 0,
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which is consisted of {k,.}.

From the compactness of K, the assumptions 1 and 2 are easily
verified, therefore, if we show that the assumption 3 is fulfilled, then
the duality theorem of G is obtained.

To show the assumption 3, put a pair F= {#s,, %} = {(1,0, ---, 0),
(—1/2,v/3/2,0,++-,0)} as the set {n;} (¢=2). We shall show the
existence of a neighborhood W;x W, of (4,,#,) in S(1)xS(1)
which is homeomorphic to an open set of (K(%,)\ K) X (K(,)\ K),
and on which the measure y; are given as ordinary Lebesgue measure.
That is, W,;x W, satisfies the conditions of the assumption 3.

For this, let the coordinates of #; and #; on S(1) be

(7. 44) { = (x+1, %, -, X)),
' = (0 —(1/2), 3+ (V'3/2), ¥s, =+, ¥u),
then
(X + 1) 4234+ x5,=1,
@19 L (/e v 3/ 321

A neighborhood W;(¢) X W,(e) of (4,,#%.) is given by
(7.46) [x;]<<e, and |y;]<<e A<Lj<m).

By the map ¢-; (#;, #1,) —%:+ 7, the correspondence of coordinates are
given by

(7.47) 2=%+9+ (1/2), z2=%+y.+ (13 /2),
2;=x;+Y;, BLji<m).

For fixed x'=(%s, -+, x,,), take the parametres (%,, ., -+, ¥.) then
for sufficiently near (4, 7,) of (4, #.)

(7. 48) 21=v1— (H+ - +x%)

AL (3t (V3 /2))2+ 324 -+ 32},

Therefore,

6(21, ) zm)
.49
(7 ) a(xZ)yZ) “')ym)
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— X2 _ y2+(l/§—/2) —JYs —Ym
x+17 »n—1/2) 7 y»—(1/2)° ' y»—(1/2)
1, 1,
1o 1
X ’ 0
. 0 .
0, 1,

=(—2) (X + D7+ (3 + (V3 /2)) (3 — (1/2) 7L
This value is non-zero for instance for (7, #;) such that

(7.50) Max(|x:], [ %2, [31], [321)<<1/3,

therefore on W;(1/3) X W,(1/3) too. Take this neighborhood of
(i1, %) as the W of the assumption 3. Such a W satisfies the
properties i), ii) of the assumption 3. In fact, let

(7.51) Wi={x'= (%3, =+, Xn): (X1, -+, x) € W1 (1/3)} ,
(7.52) W(x)={x,: (x1, -, x.) E W1 (1/3)}, for x'e W,.
Then the map

(7-53) (17,,:’: (xz,y2>'”)ym)—)(zlv227 “‘yzm))

is a regular map of W(x') x W,(1/3) into N for any x' in Wi,
because (7.49) does not take zero. But obviously this map ¢.r gives
the restriction of ¢r of W;(1/3) X W,(1/3) onto a closed subspace
(W(x", x") x W,(1/3) in S(1) x S(1). So that the image ¢-( W;(1/3)
x W,(1/3)) is open as a join of open sets {pw( W(x") X W,(1/3))}.
which are images of regular maps. This is the property i).

Moreover the regularity of ¢ shows that the ordinary Lebesgue
measure on W(x') X W,(1/3) has same null set by the correspon-
dence ¢y, as the measure dz, dz,---dz,, on ]/V\ The ordinary Lebesgue
measure over W,(1/3) x W,(1/3) as an open subspace in S(1) X
S(1), is decomposed to an integral over the space W, components
of which are the Lebesgue measure on (W (x"),x’) x W,(1/3).

By the same reason as to prove the existence of k., satisfying
(7.30), for any given measurable E in N which satisfies uz(EN
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or( Wi(1/3) x W,(1/3)) #0, one can find x' such that (¢.)'(EN
o (W(x") x W.(1/3))) has positive measure, and its value becomes
a continuous function of x’. Consequently, for such a set E,
(or) M (ENer(W1(1/3) X W,(1/3))) has positive measure on S(1) X
S(1), value of which is the integral of continuous non-zero non-
negative function of measure of (o) '(ENev( W(x') X W,(1/3))
over Wi. This proves the property ii).

b) m-dimensional proper inhomogeneous Lorentz group.
For this group, the circumstance is analogous to the case of a),
except the group K is isomorphic to the m-dimensional proper
Lorentz group L, instead of the orthogonal group.

! [“
(7. 54) G: g= m m+1 ,
0, -, 0,1
[ ™
(7.55) N= /| n= '-1 n|y,
L 0, 0,1
J .
(7. 56) K={1= ol
L 70, 0,11

where /,, is a real matrix of degree m which makes invariant the
quadratic form on R",

(7.57) g() = x5 — (xi+ 23+ +xa0),

where n=(x,, X1, -**, Xu_1), and in the connected component of e in
this matrices group.

Thus G operates on ﬁf»R'” as hyperbolic rotations, and J/V\ is
separated to disjoint sum of the following G-orbitwise measurable

sets.
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i) The origin {0},
ii) the light cone {#: q(#) =0, #+0},
iii) the set of time like vectors {#: q(#%)<<0},
(7.58) | iv) a) the set of positive space like vectors
{5i: x,>0, ¢ (7)) >0},
b) the set of negative space like vectors
{5 : 2,<<0, ¢(#)=>0}.

From the locally compactness of each orbits, using the results
of J. Glimm [8], the assumption 1 is verified. As the vector #,
given in the assumption 2, one can select any space like vector.
As wellknown, for such a G-orbit one can choose the representative

of the form #,= (7,0, +-,0), and the isotropy group of this represen-
tative in K is
{ 1, 0, ---, 0, 0"
0, 0
(7.59) K(n,) =K,= Ik= : ko 0 )
0,0, 0, 1,

where k,_; is any orthogonal matrix of degree m—1, so K(#,) is
compact. This shows the assumption 2.

To prove the assumption 3, let for instance {#, 7.} = {(1,0, ---,
0), (/3,v2,0,-+,0)} as the set {i,} (t=2). On the G-orbit H(1)
passizg through the both of #,, #,, we introduce coordinates,

A= (Xo+1, %1, oo, X)),

(7. 60) { Y * -
n2=(y0+1/3yy1+1/2)y2y “.yym—l>7

where
Zo+ 1) = (it +xn) =1,

(7. 61) { € )_ 2 1 _1)» \ 2
(3o+V'3) = {(h+V2)+ i+ +yi =1

A neighborhood W;(¢) X W,(e) of (4., #%,) is given by
(7.62) |x;]<<e, and |y;]<<e (A<j<m).

Put the coordinate of #;+4#;, as (2, 21, ***, Zu_), and for fixed x'=
(%,, %3, -+, Xn_1), using the parameters (xi, %1, ***, Yma), We get,
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a(zl'_‘azl '“)zm—l)
7.63 UKo, &1, T Bmal)
( ) a(xlvyly”')ym—])
X1 J’1+1/Z Ve _ y,,,,.1_
L+l ¥+y3 7 Pt+y/3 " YtV/3
- 1,
0, .0
5 0 | .
=2, X+ D)7 = (34+V2) (3+V3)7,
because of
(7.64) Zo= %0+ Yo+14+V3, z=x+3+V2,

z;=x;+y;, Q<j<m—1).

And the Jacobian (7.63) does not take zero for instance on W;(1/4)
x W.(1/4).

The same arguments as in a) show that W’'= W;(1/4) x W,(1/4)
is the neighborhood required in the assumpticn 3.

Remark. In the previous paper [21] IV, the author used the
different method to prove the duality theorem for some semi-direct
prodtict groups, for which the author did not set the measure theo-
retical assumption as stated in the assumption 3 of this paper. But
the proof mentioned in the previous paper is not complete, and it
seems us the measure theoretical assumption is necessary. There-
fore the results of the previous paper are completely contained in
the results of this paper.

The author does not know whether this assumption is necessary
or tot.
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