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The purpose of the present paper is to show the close rela-
tion between the theory of Finsler spaces and differential geometry
of tangent bundles, and to develope the former as a theory of
special linear connections on the tangent bundles. In a previous
paper [11], a special linear connection T on the tangent bundle
was derived from a given Finsler connection, and called the linear
connection of Finsler type. It was also shown that, by sym-
metrization of TV, the linear connection given by K. Yano and A.].
Ledger [16] was obtained as a specially simple case. Further,
it was known that the tangent bundle was thought of as a
Riemann manifold with a Riemann metric which was defined by
lifting a given Finsler metric on the base manifold to the tangent
bundle [13], [15].

In the present paper, we are specially concerned with the
difference between the linear connection of Finsler type I'V and the
Riemann connection T" with respect to the lifted Riemann metric.
The difference will be exactly formulated by defining the strain
tensor of the Finsler connection under consideration, by means
of which the parallel displacement of tangent vectors with respect
to TV will be compared with that with respect to T'. These
considerations lead us to the concept of normal Finsler connec-
tions, which seem natural from the standpoint of the theory of
linear connections on the tangent bundles.

It appears from the theory of Finsler spaces that the last
section is an appendix, because some theorems given in that place
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will be concerned only with the problems arising from Riemann
metrics and not from Finsler metrics. Those theorems, however,
will give interesting results as for sectional curvatures of the
lifted Riemann metrics.

§1. Fibre bundles

Let F(M) (M, =, G) be the bundle of frames over a dif-
ferentiable #»-manifold M, where »: F(M)—M is the natural
projection, and G=GL(n, R) is the structural group. Throughout
the present paper, we shall denote by the letter z a point of
F(M), and by (x,2.) a canonical coordinate of z, corresponding
to a local coordinate (x*) on the base manifold M, namely,

z2=1(2,), a=1,,n; z,=z,—"—~M,,
0x’
where we use the notation M, to denote the tangent vector space
to M at a point x.

Next, let T(M) (M, 7, F, G) be the bundle of tangent vectors
to M, where 7: T(M)—M is the natural projection, and F is the
standard fibre, that is, a real vector n-space. In the following,
we shall denote by the letter y a point of 7(M), and by (xf, y?)
a canonical coordinate of y, corresponding to a local coordinate
(') on M, namely, y=y'(8/0x?). Further, let (e¢,), a=1, -+, n, be
a base of F, which is considered to be fixed throughout the paper.
Then, the operation of g&G on F is defined, referring to the base
(e,), such that

g=(g): f=/Se.—gf =gifl,.

By the projection 7 of the tangent bundle 7 (M), the induced
bundle 77'F(M) is obtained from the frame bundle F(M), which
will be denoted by Q(T (M), =,, G). The structural group of @ is
G=GL(n, R), too, and the total space  is given by

Q = {(9, )€ T(M)X F(M)|7(y) = =(2)} .

Thus, a point g=(¥, 2)€Q is a pair of a tangent vector y and a
tangent frame z to M at the same point x=7(y)==(2)eM. The
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principal bundle @ will be called the Finsler bundle of M under
consideration, which will play an important role in the theory of
Finsler spaces. The mapping =, is the natural projection Q—
T(M) such that =(y, 2)=y. A right translation R, of @ by g€G
is naturally induced from a right translation R, of F(M) such that

Ry, 2) = (5, R,(2)), namely, (y,2)g= (1 28).

We shall denote by ¢=(y,2) a point of @ and by (x¢, 5/, 2}) a
canonical coordinate of ¢, where (x¢, ) and (x7, 2;) are canonical
coordinates of ¥ and z respectively.

In order to consider the differential geometry of the tangent
bundle 7(M), we shall be concerned with the frame bundle
FTMYT(M), ', G") over T(M), where »': FT(M)—T(M) is the
natural projection, and G’=GL(2n, R) is the structural group.

Let F’ be a real vector 2n-space, and then F’ may be
identified with the direct sum F®F, and we have the fixed base
(eh), a=1, .-+, 2n, which is obtained from the above fixed base (e,)
of F as follows [11]:

et/t: (ea) 0)’ a = 1,"‘,%,
e(a) = (07 ea)y (a) = n+a.

Therefore, referring to the base (e¢,), we can obtain the opera-
tion of g’€G’ on F’ as well as that of g&G on F. Let p: F®
F—F’ be the identification, and then we see, for f=f“¢,=F,

p(f, 0) = fq, p0, f) = [ .
Further, we shall define a natural homomorphism ¢ : GG’ [11] by

g = (gnet FT (M)
—>¢(g)=(g‘b‘ 0>€G’- D
0 g;:’ ’
T
It is easy to verify that / Q
A
1.1)  pgf,0) = p(g)p(f, 0), T M) i
F M)
Finally, we shall illustrate /
fibre bundles and mappings used 4

M
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often in the following. The mapping =, is called the induced
mapping such that =y, 2)=z, and the mapping &® is a -bundle
homomorphism, which will be defined in §5 by a non-linear con-
nection H on T(M), together with the above homomorphism
@: G—G.

§2. Non-linear connections

A frame zexz"'(x) at a point x= M is interpreted as an admis-
sible mapping from the standard fibre F of T(M) to the fibre
77(x) over x. Since the mapping is a homeomorphism, we denote
by z7! the inverse mapping of z. Further, by means of the fixed
base (e,) of F, a global coordinate (f“) on F is introduced such
that f=f%,. Hence, fEF gives a tangent vector field j(f) on F':

i) = f“% : f=fe,.

We shall call j(f) a parallel vector field, corresponding to fEF.

Now, since a tangent vector X to the manifold M at x is a
point of the fibre 77'(x) over x, 27'X is a vector of F. Corres-
ponding to 27'X, the parallel vector field j(z7'X) on F'is obtained.
Then, given a point yer '(x), we obtain the tangent vector
j(z7'X),-1, to F at the point 27y, and thus

(2.1) X" =dz(j(z7X),-.,),

where dz is the differential of the mapping z. X is a tangent
vector to T(M) at the point y and obviously vertical. It will
further be easily verified that X” depends only on ¥ and not on
the frame 2z used. X” as thus obtained is called the wvertical lift
of X to y [11]. If we put X=X9/0x") in terms of a local
coordinate (x?), then X" is expressed by

(2.2) X = x 0
o0y’

referring to the canonical coordinate (x?, y*) on T(M).

By means of the notion of the vertical lift, we can introduce
a special vertical vector field b on 7(M), which will play an
important role in future. That is, since a point y of T(M) is
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regarded as a tangent vector to M at x=+(y), the vertical lift y*
of y to the point y is defined as above, which will be denoted by
b. Referring to a canonical coordinate (x7,y’), b is expressed
by »(9/8y"),. It is remarked that the tangent vector field b
as thus defined was introduced without a tangent vector field on
M, and, in this sense, we refer it the intrinsic vector field on
T(M).

Further, we consider an integral curve of the intrinsic vector
field, which will be called an intrinsic curve on T(M). The dif-
ferential equations of an intrinsic curve are given by

dxi dy. .
(2.3) E‘——O, =L =y,
It is seen from (2. 3) that the curve has been already treated in [8].

Next, we shall be concerned with a concept of non-linear
connection on M, or in T(M), which is one of the basic concepts
in the present paper.

Definition. A non-linear connection H in the tangent bundle
T(M) is a distribution ye T(M)—H, such that a tangent vector
space T(M), to T(M) at any point y is expressed

T(M), = HBT(M), (direct sum),

where T(M); is the vertical subspace of T(M),.

The modern definition of a non-linear connection as above
was given by W. Barthel [1], who developed the theory of holo-
nomy groups of nonlinear connections. He imposed further two
conditions, namely, homogeneity and differentiability. The homo-
geneous condition is not required for our present purpose, though
it has been often used in our previous papers. On the other
hand, the differentiable condition is, of course, necessary in our
discussion, but it will be used without mention.

H, is called the horizontal subspace of T(M),, and XeH,
is horizontal. If a linear connection I' is given in the frame
bundle F(M), the associated linear connection H is obtained in
T(M) [12, p. 43]. The associated connection is a specially simple
case of non-linear connection. With respect to a non-linear con-
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nection H, the lifting operator /,: M,—H,, x=7(y), is introduced
such that 7/,=1. If we refer to a local coordinate (x) of x, and
put X=Xi(0/8x%), the lift /,X of X to a point y is expressed

(2.4) LX = X0~ Flie ) 0 )

where FJ(x, y) are functions of x* and y*, and called the connection
parameters of H. In a case of an associated connection with a
linear connection in F(M), the connection parameters are reduced
to the form y*F,7(x).

The notion of a lift of a curve C on M to T(M) will be in-
troduced with respect to a given non-linear connection H. A
lift of C is a horizontal curve covering C. Let xi(#) be a curve
C, and then a lift of C is given by the differential equation

(2.5) D1 pian, )%~ 0.
A point y(¢) of the lift is called to be obtained from its starting
point ¥(0) by the parallel displacement along the curve C. This
is nothing but the notion of an usual parallel displacement of a
tangent vector ¥(0) to M at the point x(0).

In a similar way to the case of the intrinsic vector field b,
we obtain the horizontal vector field §, that is, the lift of a
tangent vector yeM, to the point ye T(M). 9 will be called the
H-intrinsic vector field on T (M) with respect to the non-linear con-
nection H. In terms of a local coordinate (x7, y) on T(M), § is
expressed

(0 0
2.6 = y( 2 - Fit, —,>.
(2.6) b=y (o Fi
An integral curve of the H-intrinsic vector field §) is called the
H-intrinsic curve, which is given by the differential equations :

@2.7) % _ % +Fi(t), yE)p7(t) = 0.

A projection of an H-intrinsic curve on the base manifold M is
called a path with respect to the non-linear connection H. It will
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be easy to show that a path is characterized by the property that
the tangent vector of the curve is parallel along the curve. The
differential equation of a path is given by

dxi ; dx\dx’
2.8 d’x' F"( 1), 4¥)4x7 _
2-8) a O dt)dt

§3. Flat connections in Finsler subbundles

We shall be concerned with the Finsler bundle Q(T(M), =,, G)
of the manifold M. Given a point ¢=@, we define a mapping

L,: G—>Q, g=G—qge,

and hence, corresponding to an element A of the Lie algebra
L(G) of G, a vertical vector field F(A) is obtained such that F(A),=
L,A) at ¢, where by the same letter L, we denoted the differen-
tial of the above mapping L,. F(A) is called the fundamental
vector field on @, corresponding to A=L(G). It is well known
[12] that, given a base (A4,,-,A,), r=#* of L(G), the set of
fundamental vector fields (F(A,), -, F(A,)) spans a vertical
subspace Q) of a tangent vector space @, to @ at any point gq.
The similar fact holds good in a case of the frame bundle F(M).

Lemma 1. Let F(A) and F(A) be fundamental vector fields
on the Finsler bundle Q and the frame bundle F(M) respectively,
corresponding to an element A of the Lie algebra L(G) of G=
GL(n, R). Then, the induced mapping r,: Q—F(M), g=(y, 2)EQ—
2€F(M), carries F(A) to F(A).

Proof. F(A) is defined by a mapping
L,: G—>FWM), g=G—zgeFM),

such that F(A),=L,(A). The proof will be easily obtained by the
fact that »,L,=L,, g=(3, 2).

Lemma 2. A tangent vector X=Q, vanishes, if and only if
7t1<X) = 0) ”Z(X) = 0)

where r,; Q—T(M) is the projection, and =,: Q—F(M) is the in-
duced mapping.
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Proof. The condition is clearly necessary. Conversely, if it
is satisfied, then X is vertical by means of #,(X)=0, which implies
that there exists an element A€ L(G) such that X=F(A),. As
a consequence of Lemma 1, #,(X)=0=F(A4),, ¢=(¥, 2), and hence
A=0.

Now, we shall introduce following three subspaces of a
tangent vector space @, to @ at ¢:

Q; = {X€Q,|m(X) = 0}, @ = {Xe€Q,|=(X) = 0},
Q7" = {X€Q,|m(X) = 0} .

Q7 is well known and called the vertical subspace, while @;®> will
be called the induced-vertical subspace [7, p. 146], and QF° the
quasi-vertical subspace.

Proposition 1.

(1) QF = QiPR” (direct sum),
(2) RQY = Qlr,

where R, is a right translation of Q by g=G.
(3) Given x€M and 2€7"(x), we define a mapping

52 7(x) =~ @, yeET(x) > (9, 2)EQ,

and then s, (T(M3)=Qi, q=(3,2), where T(M)} is the vertical
subspace of the tangent vector space T(M), to T(M) at y.

Proof. We shall first prove (3). Given a tangent vertical
vector Xe T(M);, we see 7,5,(X)=0 by virtue of =,s,=constant,
which implies that s,(X)=@;*. Consequently we have s (T(M):)C

i», To prove the reverse inclusion, if we take X=@Q.", it follows
that 77,(X)=7#,(X)=0, which implies that »,(X)e T(M);. Further,
it follows from =,s,=identity and =,s,=constant that =,(X—
s, (XN=0, m(X—s,7,(X))=0. Therefore we have X=s,7,(X)
from Lemma 2, and hence s,(T(M):)D®Q.”. Thus we proved (3).

Next, we shall show (1). Given Xe@Q}", it follows from
(X)=0 that z(X)e T(M);, and from (3) s, z,(X)EQ,". Since
7 X—s,7,(X))=0, we obtain X=s,7,(X)+Y, where Y is vertical.
Therefore we have Q¥ =Q.+@Q.;". The fact that @;NQ;"=0 is a
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direct result of Lemma 2. Finally (2) will be easily verified
from z,R,=R,m,, where R, is a right translation of F(M) by g€G.
Now, given a point x&€M, a subbundle Q(x) of @ can be
introduced, whose base space is the fibre 7 (x) over x. @Q(x) is
called the Finsler subbundle over x. A point of Q(x) is a pair
(3, 2) of a tangent vector y and a frame z at the fixed point x.
It is obvious that a tangent vector space Q(x), to Q(x) at ¢g=
(¥, 2) is nothing but the quasi-vertical subspace @}° of @,, because
Q¥={XeQ,|r(X) is vertical}. Then, we observe that (1) and
(2) of Proposition 1 mean that the distribution @”: ¢=Q(x)—Q:"
on Q(x) is a connection in Q(x). This connection on the fibre
Y (x)=M, is called the flat connection in the Finsler subbundle
Q(x) over x. On the other hand, (3) of Proposition 1 means that
the mapping s, is the lifting operator to the point (¥, z) with
respect to the flat connection. The base space of Q(x) is
homeomorphic to the vector space F (the standard fibre of T(M)),
and (y) as often used in the preceding section is thought of as
a global coordinate on the base space v '(x) of @(x). Then, the
lift s,X of a tangent vector X=X/(8/dy%), to (, 2) is immediately
expressed by s,(X)=X/(0/0y'), ., in terms of the coordinate
(y%, 2') on Q(x). Accordingly, it is seen that'the connection para-
meters of the flat connection vanish identically in terms of the
coordinate (y?). Therefore, the covariant differentiation with
respect to the flat connection is nothing but the partial differen-
tiation by »'. In the classical theory of Finsler spaces, this fact
has been well known and often used in order to derive new
tensors from a given scalar or tensor (see, for example, [14]).

§4. Finsler metrics

It is well known that a tensor field T of type V on a dif-
ferentiable manifold M is thought of as a mapping from the frame
bundle F (M) to a vector space V such that TR, =g 'T is satisfied
[5, p. 66], where R, is a right translation of F(M) by g€G, and
g' in the right-hand side is the operation of the representation
of go' on V. On the other hand, in classical theory, components
of a tensor field 7 on a Finsler space M are generally functions
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not only of x’ but also of »¢, and hence T cannot be regarded
as a mapping from F(M) to some vector space. In previous
papers, the present author has been shown that, from the modern
standpoint, a tensor field 7 on a Finsler space M is regarded as
a mapping from the Finsler bundle @ to some vector space such
that TR,=g'T. Thus, for an example, a tensor field of (1,1)-
type T is a mapping Q—>FQF* (F* is the dual space of the
real vector n-space F), so that T is expressed

T(q) = Ti(x, y)27'7ze,Qe*  at g = (&', ¥, 20),

where z7'? are elements of the inverse matrix of the matrix (z;),
and (¢°) is the dual base of the fixed base (¢,) of F. Coefficients

‘(x, ¥) are functions of x* and y*, which are classical components
of T. y=m,(q) is called the element of support of T(q), follow-
ing E. Cartan [4].

As an example of Finsler tensor fields, let us remember the
characteristic field v on €, which is defined by «(q)=2z""y, ¢=
(3, 2). The characteristic field « is a Finsler tensor field of (1, 0)-
type, and has played an important role in our previous papers.
We may say that v is the element of support itself, because the
classical components of v are y'.

Definition. Finsler metric function L is a positive-valued
scalar (namely, a Finsler tensor field of (0, 0)-type) and further
supposed to be positively homogeneous of degree 1. Thus L
satisfies

LR, =L, Lh, = r-L,

where #4,, r>0, is the homogeneous mapping [1] such that
h(y, 2)=(ry, 2), which is used in order to define the homogeneity
with respect to y [7].

Then, there exists an unique positive-valued function L on
T(M) such that Lz,=L. In fact L is given by Ls,, where s, is
used in Proposition 1. Then, (L())"* is called the absolute length
of a tangent vector y to M. The arc-length of a curve f—x(#)
on M is by definition the integral of the absolute length of the
tangent vector x’(#) to the curve.
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Let us denote by A, the covariant differential operator with
respect to the flat connection as defined in §3. Then, from the
function L, a tensor field of (0, 2)-type G is defined by G=3A%L").
We now have to impose upon L the regular condition :

1) G(f, /=0,  feF,
2 G(f,f)=0, if and only if f=0.

The tensor field of (0,2)-type G as thus obtained is called the
Finsler metric tensor, constructed from the Finsler metric func-
tion L. In the following, components of G are written g;;(x, ¥)
as usual, and hence we obtain G(g)=g;;(x, ¥)z:2le’®e®, where g=
(%, ¥, 2a).

Let X and Y be Finsler vector fields, that is, tensor fields
of (1,0)-type, and then we have X(q), Y(¢)EF, ¢q=@, and hence
a real number G(X, Y),=G(q)(X(q), Y(q)), which is called the scalar
product of X, Y with respect to the element of support y==,(q).
In particular, the non-negative number (G(X, X),)”* is called the
relative length of X with respect to y.

Now, we shall deal with a non-linear connection H in T(M)
and a Finsler metric L. In §2, the notions of parallel displace-
ment and path have been introduced.

Definition. A non-linear connection H is said to be metrical
with respect to a given Finsler metric L, when the following two
conditions are satisfied :

(1) A parallel displacement of a tangent vector to M
preserves its absolute length.

(2) Any path coincides with an extremal of the variation
problem with respect to the Lagrangean L, provided that the
path parameter is taken as the arc-length s of the path.

It follows from the homogeneity of L that the condition (1)
is expressed by d(g;;(x, ¥)y'y?)=0, where dy'=—Fj(x, y)dx’ from
(2.5), and hence we obtain

(4- 1) Foj = Yooj »

where we put F;;=g,Fj and v,; are Christoffel's symbols
constructed from g;,(x, ¥) with respect to x* Further, following
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the usual manner, index 0 means the contraction by the element
of support y*. Next, an extremal in the condition (2) is given by
d*x dx

; dxidx* _ P = gily,
ds? +'YJ k(x> (7;) ds ds —Ov (7] k=& 'Y_;Ik) ’

and hence (2) is expressed
4.2) Fio = Yoo -
We sum up the above results for the later use.

Proposition 2. A non-linear connection H is wmetrical with
respect to a Finsler metric L, if and only if the connection para-
meters F; satisfy (4.1) and (4.2), where v,;, are Christoffel’s
symbols constructed from the components of the Finsler metric
tensor g;/(x,y) with respect to x.

Given a Finsler metric L, there exists really a metrical non-
linear connection H. In fact. if we put G'=1v,,, the non-linear
connection H whose connection parameters are given by

26"

4.3 Fix,y) =
( ) i(x, ¥) 9y

is then metrical, as is well known [4]. The connection H as thus
obtained will be called Berwald’s non-linear connection [2, p. 45].

§5. Finsler decomposition of tensor fields

Assume that a non-linear connection H be given in the tangent
bundle T(M), and we shall define a bundle homomorphism from
the Finsler bundle @ to the frame bundle FT(M) of the tangent
bundle T(M) as follows. The homomorphism ¢: G—G’ between
the structural groups has been defined in §1. If we take a point
q=(», 2)€Q, z=1,q) is a frame, that is, a set of linearly inde-
pendent n vectors z=(z,) at x=7(y)=n(2)€M, and hence their
vertical lifts 2’=(2}) to the point ye= T(M) span the vertical
subspace T(M), while their horizontal lifts z*=(2) to y with
respect to H span the horizontal subspace H,. Therefore the set
(2", 2) is considered as a frame at y, that is, a point of FT(M).
Put ®(q)=(2" 2"), and then the mapping ®: Q—FT(M) is defined.
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It is obvious that =’'®=w=,, and ® is compatible with the
homomorphism @ : G—G’, namely ®R,=R’',,,P, where R’y is a
right translation of FT(M) by ¢(g)eG’. Consequently the map-
ping ® as above defined, together with ¢, is a bundle homomor-
phism [12, p. 20], [11, p. 258 and the final remark].

In the following, we shall show that a tensor field on T (M)
is interpreted as a set of Finsler temnsor fields, by making use of
the above bundle homomorphism ®. In order to show that, for
example, let us consider a tensor field of (0, 2)-type 7 on T(M).
Then, T is regarded as a mapping FT(M)—F'*®F’* and satisfies
TR /= g’ ~'T, where R’,/ is a right translation of FT(M) by g’'€G".
Now, we shall introduce a mapping 7,,: @Q—=F*QF* such that,
for f,, f,EF,

Tn(fu fz) = T(p(fn 0)) P(fz’ 0))(1) ’

where p: FOF—F’ is the identification as defined in §1. In
order to see that T,, is really a Finsler tensor field, it is enough
to verify that T,,R,=g7'T,,, g€G. In fact, it follows from (1.1)
that

Tlle(fU f2)ll = T(p(fl ’ O)y P(fzr 0))¢(q)¢(g)
= (@) ' TXP(f1, 0), P(f2, Oer = T(@(8)P(f1, 0), P(8)P(f2) 0)eco>
= T(p(gfn 0), p(gfm O))Mq) = Tu(gfn gfz)q = (g_l 11)(fu fz)q .

Therefore, we obtain a Finsler tensor field of (0, 2)-type T,,.
Further, three Finsler tensor fields 7,,, T, and T,, of the same
type will be introduced as follows:

T12(f1 ’ fz) = T(P(fl ’ 0)) P(O) fz))q) ,
T21(f1 ’ fz) = T(P(O’ fl)! P(fz» 0))¢ )
T22(f1 ’ fz) = T(P(O, fl)) P(O» fz))q) .

Definition. The set of four Finsler tensors (7, Ty, T, 1)
as above defined is called the Finsler decomposition of the tensor
field of (0, 2)-type T on the tangent bundle 7(M).

We shall deal with components of T and its Finsler decom-
position. Given a point ¢=(y, 2) of @, T is expressed

To(q) = Tape'*®e*
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and then we obtain, for an example,

T21(f1» fz)q = wﬁem®elﬂ(fge,(a)’ fgeg) = T(a)bf‘llfg .

Thus, components of 7,,, referring to the frame 2z, are equal to
Tews, Where (a)=n+1, --+,2n, and b=1, ..., n. Therefore, if T,
a, B=1, -+, 2n, are components of 7 in terms of the frame ®(g),
qg=(y, 2), components of the Finsler decomposition of 7T are
given by

Tu : Taln le: Ta(b))
T21 . T(a)b) Tzz: T(a)(b)’
a,b=1,---,n; (a),d)=mn+1,--,2n.

In general, it may be said that components of the Finsler decomposi-
tion of T, referring to the frame z, are given by the classification
of components of T, referring to the frame ®(q), q=(, 2), based
on ranges of indices.

On the other hand, if we consider components of the Finsler
decomposition with respect to canonical coordinates, the circums-
tances will become complicated. In fact, let 7,. be components
of T with respect to a coordinate (x¢, ¥?), and then we have

T = T,252"%"Qe”,
where we put 2’=®(g). Then it follows immediately that
Tu(f1, fa = Ta2 w25 115 -
Since 2/, is defined as the vertical lift of z,, we obtain

0
2w = z{;F, hence 2/, = (0, 2%).

yl
On the other hand, 2/, is defined as the horizontal lift of z,, we
obtain

2 = z;(%_ aniyi)’ hence z; = (2, —2iF}).

Consequently, we see that

To(f1s fo)e = (T(i)j— Tcnck)F,J')ZZiZIZf(ffg .
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Since, referring to the frame z, the tensor T,, should be expres-
sed T,(f,, f)e=(Tu):j2e2i f1f5%, it follows then from the above
that

(T21)ij = T(i)j_ T(i)ck)Fs ’

which are components of T,,, referring to the coordinate (x%). It
will be easily seen that, in general, components of the Finsler
decomposition having at least one of the index 1 (for example,
T,, Ty, Ty;) are expressed by components of the tensor, fogether
with the conmection parameters F§ of the non-linear connection
H used.

" The Finsler decomposition of a tensor field on the tangent
bundle T(M) will be defined for a tensor field of any type in
the similar way. As an another example, we consider a tensor
field of (1,1)-type 7, which is a mapping FT(M)—F'QF’*. Now
we shall define mappings

p: F'=F,  facF'—f"¢, F,
p.: F'=F,  f'¢il€F'—f'"“¢,€F.

That is, the first half of f’ is chosen by p, and the latter half
by p,, with respect to components of f’. Then we put, for fEF,

Ti(S) = p(T(p(f, D),  THS) = pLT(p(f, 0))P),
W) = p(T(PO, fN®).  TiSf) = rLT (O, /)P).

It will be easy to show that these T}, T%, T3 and T2 are Finsler
tensor fields of (1, 1)-type, and thus the Finsler decomposition
(Ti, T3, T}, T3) of T is constructed.

We now return to the consideration of a Finsler metric tensor
G. In a previous paper [11], we obtained a Riemann metric
tensor G on T(M) from G, which was called the /ifted Riemann
metric of G. Since this concept is one of the basic concepts in
the theory of tangent bundles, we shall again give the way to
define it. Let X be a tangent vector to T(M) at y, and then we
have

X = hX+vX, hXeH,, vXeTM),.

If we put X,=7X, we have 2X=/,X,, and hence it will be natural



184 Makoto Matsumoto

that the length of AX should be defined to be the relative length
(G(X,, X,),)”* of X, with respect to the Finsler metric G. On the
other hand, if a point x€M is regarded to be fixed, the Finsler
metric G=g;(x, ¥)zizle"®e® is considered as a Riemann metric on
the fibre v7'(x), and g;; are components of the metric in terms of
the global coordinate () on 77'(x), because 2z} are components of
the frame 2° (the vertical lift of 2) in terms of (). Since vX
is tangent to r7'(x), the Riemann length [0vX| of vX is obtained
with respect to the above Riemann metric. Put »X=X(8/08y),
and then |vX|*=g;(x, ) X'X/. Besides, vX is regarded as the
vertical lift of X,=Xi(6/dx")eM,, and g,(x, ») X' X' =G(X,, X,).
Then, we define the Riemann length (G(X, X),)”* of X with respect
to G as the Pythagorean sum of the above lengths of X, and X,
that is,

G(X, X) = G(X,, X,)+G(X,, X,) .

by means of which the lifted Riemann metric G is defined.
The Finsler decomposition (G,,, G, G,,, G,,) of the lifted
Riemann metric tensor G has been given in [11, (4. 2)] as follows :

(—;nzézzzcv G12=G2l=0'

§ 6. Finsler connections

A definition of a Finsler connection has been given in previous
papers [6], -+, [11], from the viewpoint of fibre bundles. In this
section, however, we shall give an alternative characterization of it.

Definition. A Finsler connection (I'y H) on a differentiable
manifold M is a pair of a non-linear connection H in the tangent
bundle T(M) and a connection I' in the Finsler bundle @ of M.

By making use of the lifting operator /, with respect to T,
we define two subspaces of a tangent vector space @, to @ at ¢
as follows:

T = l,H, T=1TM):, q = (52,

and then a pair (T'%, T'?) of distributions is obtained on Q. It will
be easy to show that (I', I'”) is a Finsler connection in a sense
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of previous papers. Conversely, let (I'*, I'”) be a Finsler connec-
tion in a sense of previous papers, and then we put

H, =Ty, T,=TI®T; (direct sum), qg=2)),

and then the pair (I', H) is a Finsler connection in a sense of
the above definition. Therefore those definitions of Finsler con-
nections are equivalent each other.

The theory of Finsler connections based on the above defini-
tion has been developed in detail in previous papers, and we shall
then describe in outline for our present purpose.

For a vector fe€F, two tangent vector fields B*(f) and B*(f)
on the Finsler bundle @ are obtained by the rule

B¥f)e =1 2f), B(f)e = l2f), 9=2),
where ( )* and ( )* denote the horizontal and vertical lifts
respectively with respect to H, while /, the lift to ¢ with respect
to T'. B*(f) and B’(f) are called the /- and v-basic vector fields
respectively. Corresponding to the fixed base (¢,) of F, the set
(B*(e,)) spans the h-horizontal subspace T'”%, while the set (B°(e,))
does the w-horizontal subspace I'”. In terms of a canonical
coordinate (¢, y%, z%) on @, those are expressed

9 9 .
B",,=zf»< —Fi o —aFdi),
(¢) oxi oyt %02
9 ;0
B(e,) = z&(—.—z"C f,-—),
(en) oy i

where F! are connection parameters of H and (F,7;, C,7;) are that
of . If x&€M is fixed, C,/; are connection parameters of the
connection T'?, that is, the restriction of T" to the Finsler subbundle
Q(x) over x as defined in §3.

Let F(A) be a fundamental vector field on @, corresponding
to an element A of the Lie algebra L(G) of the structural group
G of @. Then, the structural equations of the Finsler connection
(I', H) are given by

[B*(f), BXf.)] = F(R*(f1, f)+BXT(f,, £)+B(R'(f,, £2)),
[B*(f), B°(f2)] = F(P*(f,, £))+BXC(f,, f2)) +B(P(f,, f2),
LB°(f), B (f2)] = F(S*(/., f2) +B*(S(f1, £2))
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for f,, f,€F. From these equations, the curvature tensors and
torsion tensors are obtained. First, R?, P? and S* are called the
h—-, hv- and v-curvature tensors respectively, and components of
R?, P* and S? are R}, P;', and S, respectively, which are
given by

SFj, OFj (8F: SF% ; ;
Rfw = _b‘é’_k— S;kl"‘ i'h(ﬁ;_ﬁ)“'ﬁ‘jhkl"il_ﬁ‘i"’ Ko

oF;i, &C/ oF! i )
Pl = 8;1k - 8_;1:1 +Cjfy ayzk +FCii—ChF) g,
aC;i, oC;
Situ = =1t 2! +CCh—CMCy

0yt oy*
where we used the differential operators
8 _ 08 _ 08p,
ox!  0x* 0y’

Next, T and C are called the A(k)-and h(hw)-torsion tensors, and
those components are given by T,/ ,=F;,—F,’; and C;,. Finally,
R, P* and S' are called the v(k)-, v(hv)-and v(v)-torsion tensors,
and those components are given by

. SFt &F: . or! . . . .
Rf‘k=8—;l— Sx;’ Pi'k=a—y,f—Fk’i» Stk = Cia—Ci;.

Two kinds of covariant derivative A*K and A’K of a Finsler
tensor field K are obtained with respect to T'* and T respectively.
For example, take a Finsler vector field K, and then the com-
ponents K¢ ; and K¢|; of A*K and A’K respectively are given by

i _ oK BE i i) OKF kC. i
Ku—s—xj"‘Kij, K']—ay]+chJ.

Now, assume that a Finsler metric tensor G be given, and
then a Finsler connection (I', H) is said metrical with respect to
G when A*G=A’G=0. The following proposition is well known,
and so we show it without proof [4].

Proposition 3. There exists uniquely a Finsler connection
(T, H) satisfying the following four conditions :
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(1) Metrical.

(2) The h(h)-torsion T=0.

(3) The v(v)-torsion S*=0.

(4) The condition F: Fi(x, y)=y*F, (x, ) holds good.

A geometrical meaning of (4) has been shown in [7], from
the standpoint of fibre bundles. The Finsler connection as thus
determined from the given Finsler metric G is called Cartan’s
connection [10]. It is well known that the connection parameters
of Cartan’s connection are given by

Cije = 8uCi'y = %%» F§ =v74—Ciro%,
Fijp = guFie = Yijn— CijFi— CiuFi+Cpu F5

where v, are Christoffel’s symbols constructed from components
of G with respect to x*.

In the following, we shall enumerate some important proper-
ties of Cartan’s connection for the later use.

(5) The non-linear connection H is Berwald’s one, and hence
metrical.

(6) »';=0, and y*| ;=85 (Kronecker’s deltas). The former
identities mean the above condition (4), while the latter does
y*C,1,=0.

(7) Cjr coincide with the Christoffel’s symbols constructed
from g;;(x, y) with respect to y*. We said in §5 that g (x, »)
are regarded as components of the Riemann metric on the fibre
77(x), and hence C;;, are connection parameters of the Riemann
connection on 7 '(x).

(8) The v(h)-torsion R' and the v(hv)-torsion P' are obtained
from the s-curvature R? and the hv-curvature P? respectively by
contraction by the element of support :

Ry = ¥Ry, Piy = y'Ply,
While y’S;fjk=0.
(9) The v(w)-torsion P! is given by

Pijr = 8aP}y = Cijntdt,
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which implies that P;;, are completely symmetric and P,;,=0.

§7. Strain tensors of Finsler connections

By means of the bundle homomorphism @®: Q—FT(M) as
defined in §5, a connection IV in FT(M) is derived from the
connection T" in @, where (I', H) is a given Finsler connection in
Q. T’ was called the linear commection of Finsler type [11]. In
[11], we were concerned with the connection in a great detail,
and the following two facts have to be noticed here for the later
use.

Proposition 4. [11, (4.4)] If a Finsler connection (I, H) is
metrical with respect to a Finsler metric G, the linear connection
of Finsler type TV derived from (I', H) is metrical with respect to
the lifted Riemann metric G of G. The converse is true, too.

Proposition 5. [11, (2.16), (2.17)] The Finsler decomposition
of the torsion tensor T’ of the linear comnection of Finsler type T'
is given by torsion tensors of the Finsler connection (T, H):

T,lll = 4, T/121 = Rla T/112 =C ’
T,122 _ Pl’ T/212 _ 0, lezz - S'.

The Finsler decomposition of the curvature tensor R’ of T is given
by curvature tensors of (', H):

1 2 ! ’2
Rllll = R/zu = Rz, R 211 = R 11 = 0
2
112:R212—P 212—R112—0
122—R222—SZ, 222—R122—0

We have to agree entirely with H. Busemann, who said [3]
that the term “Finsler space” evokes in most mathematician the
picture of an impenetrable forest whose entire vegetation consists
of tensors. Indeed, according to our general theory of Finsler
connections, there are three curvature tensors and five torsion
tensors. Further, we have three Ricci’s identities and eleven
Bianchi’s identities. But, from the standpoint of the differential
geometry of tangent bundles, we observe from Proposition 5 that
those five torsion tensors are nothing but the Finsler decomposi-
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tion of the only one torsion tensor 7’ and those three curvature
tensors are that of the only ome curvature tensor R’, and so on.

Now, we shall have the Riemann connection T with respect
to the lifted Riemsnn metric G of the Finsler metric G. It will
be clear that T' does not generally coincide with the linear con-
nection of Finsler type I, even if the original Finsler connection
(I, H) is metrical and so is TV. We shall first show

Theorem 1. Let T be the Riemann connection in FT(M) with
respect to the lifted Riemann metric G of a Finsler metric G, and
let TV be a linear connection of Finsler type in FT(M) derived
from a Finsler connection (I', H). If TV coincides with T, then the
metric G is Riemannian.

Proof. The Riemann connection T' is uniquely determined
from G by the condition :

(1) Metrical with respect to G.

(2) The torsion T’ vanishes.
Therefore, if TV=T, it follows from Proposition 4 that (I", H) is
metrical. If follows further from 7’=0 and Proposition 5 that
C=0. Thus we see
0g;;

ay* —Cij—Cjin =0,

A'G =0:

which implies that g,;(x, ¥) are functions of x alone.

If G is Riemannian, we obtain the linear Finsler connection
(T, H) [11] which is essentially equivalent to the Riemann con-
nection with respect to G. Then we obtain the linear connection
of Finsler type IV derived from the above (I', H). In this simplest
case, it may be expected that T coincides with the Riemannian
T. But, this is not so, as will be shown later.

In order to formulate exactly the difference between connec-
tions T and IV, we shall define a tensor K expressing the difference
as follows:

Definition. Let T and I be connections in FT(M) as men-
tioned in Theorem 1. The strain tensor K of the Finsler connection
(I, H) is a tensor field of (1,2)-type on T(M), that is, a mapping
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K: FTM)->F'QF'*QF'* such that
K(f') = o'(B(f), [f'EF,
where o’ is the connection form of TV [11, (2.3)], and B(f") is
the basic vector field with respect to T, corresponding to f'eF’.

By making use of the strain tensor K, the basic vector field
B’(f’) with respect to I’ is expressed by

(7.1) B(f') = B(f)+F(K(f),

where F(K(f’)) is the fundamental vector on FT (M), correspond-
ing to the element K(f’) of the Lie algebra L(G’) of the structural
group G’ of FT(M). Further, the connection form » of the
connection T' is given by

(7.2) o =o' —K(@),

where 6 is the basic form on FT(M), namely, §,/=2""'z" at 2’
FT(M).

Since the Riemann connection T is metrical, we are, in future,
concerned only with a metrical Finsler connection (T, H) and so
T’ is supposed to be metrical. We shall first treat the curvature
tensor R of the Riemann connection T', which is given by the
structural equation of the connection :

LB(f1), B(f5)] = F(R(f1, f5), fi, fi€F’.
Making use of (7.1), the left-hand side of the above is written
= [B'(fD), B(f)1+[B(f1), F(K(f3)]
—[B'(f5), F(K(f )1+ [F(K(f1), FK(f2)]
= F(R(f1, f)+B(T'(f1, fi)—-BEUSDfD+FB(fDK(f2)

+B(K(f)fD)—FB(fHK D)+ F(K(S 1), K(F2)])
+F(F(K(fD)K(f9)— F(F(K(f2)K(f1) -

Comparing first the horizontal parts of the above, we obtain
(7.3) T'(f1, f3) = K(f1, f)—K(f3, fD),

where we put K(f3)fi=K(f}, f4). Next, comparing the vertical
parts, and according to (7.3) and the formula
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FI(AK(f") = K(Af)—[A, K(f)], AELG), f'EF’,
we obtain
(7.4 R(f1, f3) = R(fL, FO)+AK(fh, F)—NK(FL, 5)
—LK(fD), K D1-K(T'(f1, f2),
where A’ is the covariant differential operator with respect to I".

Let T4 and K, be pure covariant tensors obtained from 7T~
and K by the metric tensor G respectively, namely,

WFLf5 S8 = G, T F2),
) i F4, FiEF,
K(f4, f4, £9) = G4, KUFL 9

Since both of T and I’ are metrical with respect to G, it follows
from (7.1) that

B(f")G = 0 = B(f"\G+F(K(f")G = F(K(f))G,

which implies that

(7.5) Ki(f1, f5, F)+Ki(S3, 1, f3) = 0.
Further it follows from (7.3) and (7.5) that
(7.6) 2K.(f1, f3, f3) = TiS1, f2, f3)

—Ti(f3, f3, FO+ T3, f1, f2),
which is the equation giving the strain tensor K.

Since K, is skew-symmetric with respect to the first two
indices, the Finsler decomposition of K, is completely known by
its part (K, K Koy Kisey Kosi, Kypy) (we omit the sign ). It
follows from (7.6) and Proposition 5 that those are given by

2(K111)ﬂbc = Tabc_ Tbca"‘ Tc‘ab ’
Z(Kuz)abc = Rcab + Cabc— Cbac ’
(7° 7) 2(K121)abc = Ccab + Cacb_ Rbca ’
Z(Klzz)abc = Pcab+Pbac ’
2(K221)abc = Pocp— Pyea s
Z(Kzzz)abc = Sabc_ Sbca + Scab ’

where we used the letters
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Tore = &saTdcr Case = 80aCa’c
Rabc = gadedc) Pabc = gadedc’ Sabc = gadsbdc .

Finally, we shall pay attention to the simplest case where the
original metric G is Riemannian and the Finsler connection (T", H)
is linear, that is, G and (T", H) are Riemannian in essential. It
then follows from [11, Proposition 1] that non-zero components
of (7.7) are

Z(Klzl)abc = _ydRa'bcal Z(an)abc = .ydecab ’

where R, are components of the curvature tensor constructed
from the Riemann metric G. Therefore, the strain tensor K does
not vanish in general, even if G and (T, H) are Riemannian.

§8. Normal Finsler connections

In this section, we shall treat one of the essential problems
of the theory of Finsler spaces, that is, to find the most natural
connection. It may be admitted that one of the most essential
conditions satisfied by the connection is to be metrical with respect
to a given Finsler metric G. Therefore, we shall consider only
a metrical Finsler connection in the following.

Next, we shall pay attention to the parallel displacement of
tangent vectors to T(M) with respect to the linear connection of
Finsler type I' derived from the metrical Finsler connection (T", H)
under consideration, and compare it with the parallel displacement
with respect to the Riemann connection T' as above treated.

Y. (I',H)in @ — TIVin FT(M),
Finsler metric G A
Gon T(M) — T in FT(M),

T, H) «-- metrical with respect to G,
T/ eeeeee derived from (T', H) by &,
G e the lifted Riemann metric of G,
| ANETERPS Riemannian with respect to G.

Let C: [0,1]—>T(M), be a differentiable curve on T(M)
and let C’ and C be lifts of C to FT(M) with respect to the
connection IV and T respectively, where their starting points
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coincide each other with z). Then, C’(¢#) and C(#) are frames at
the point C(¢)e T(M) obtained from z{ by parallel displacements
along C with respect to IV and T' respectively.

Generally speaking [5, p. 59], if 8 is a curve on FT(M)
which covers C and issues from zj, the lift C is given from §
by modification by the suitable right translation as follows:

C(t) = 8()g'(®), g'Hed,

where the curve f—g’(¢) on G’ satisfies the differential equation
dg’ _(dz’ /
e tawl 2= )g'(t) =0,
dt ' \at Je'®

with the initial condition g’(0)=¢’ (the unit of G’), where {—2'(¢)
expresses the curve §.
Now, take §=C’, and it follows from (7. 2) that g’(¢) satisfies

dg/ /—ldy 7

8.1 e K hucd =0,

(8.1) e _K( D))

where t—y(¢) is the original curve C on T(M) and ¢—2'(t) is
the lift C’. Summing up the result, we have

Proposition 4. In the notation of Theorem 1, let C(t) and C'(t)
be lifts of a curve C(t) on T(M) to FT(M) with respect to the
connections T and TV respectively. Then we have C(t)=C'(t)g’(t),
where t—g'(t) is the curve on the structural group G’ of FT(M),
satisfying (8.1), where t—y(t) is the curve C and t—2z2'(t) is the
curve C’.

The above curve t—g’(¢) on G’ is called the strain of parallel
displacements with respect to the Finsler connection (I", H) under
consideration.

We now restrict our discussion to the case where C is
horizontal with respect to the non-linear connection H of the
Finsler connection (I, H). Then, in general, C’ is written in the
form ®C*, where C* is a lift of C to the Finsler bundle @ with
respect to I'. It then follows from the definition of the bundle
homomorphism & that
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dy 24y _
@ = @) = A0, 0),

where t—f(¢) is a curve on F. Thus, (8.1) is written in the form

(8. 1h) d—d% — K(p(f(£), 0))g’(t) = 0.,

On the other hand, if C is supposed to be vertical, we obtain

similarly
(8. 1v) i’jz' — K(p(0, f(t)g'(t) = 0.

Since g’(0)=¢’ is supposed, we obtain (dg’/dt),.,=A which is an
element of the Lie algebra L(G’). When C is horizontal, it follows
from (8.1/4) that A= K(p(f(0), 0)) and hence, for f,€F, we obtain

A(p(f1, 0)) = K(p(f1, 0), p((0), 0))
= (Klll(fl ) f(O)), Klzl(fl ’ f(O))) ’

where we made use of the Finsler decomposition of the strain
tensor K. Further we have

AP0, 1)) = (K.'\(f1, £(0), K(f1, F(0))).

Consequently we obtain, for the case of a horizontal curve C, A=
A,:
(8. 2h) A, = (Kl‘, 0) K2 (O)) .

K, f(0) K/ f(0)

When C is vertical, we similarly obtain from (8.1v) A=A4,:
(8.2v) A, = (Kl‘zf 0)  Kz2f (0)>.
K., f(0) K..f(0)

In order to compare (8.2) with the simplest case where G and
(T, H) are Riemannian, we shall find A,=Aj and A,=A) in the
latter case, and then obtain
Al = (0 =R, S (0)"), Al = (Rcaf’f 0)° 0),
R, f0) 0 0 0



Theory of Finsler spaces and differential geometry 195

where R?*,=y'R}., and R, '=g%g.R,,.
Here, let us remember the definition of the homomorphism
@ : G—G’, that is, p(g)=(g 0\, g=G, and hence an element of
0

g
the Lie algebra of @(G) is of the form <* 0). Therefore, it seems
0 x

natural to pay attention to the places denoted by * of A, and A4,,
and to compare them with those of AJ and AJ respectively. For
the purpose to find natural and simple Finsler connections, we are
led to the following definition.

Definition. A Finsler connection is said to be normal of the
first kind, if the following two conditions are satisfied :

(1) Metrical.

(2) K'=K};=K/,=0, where K’s are components of the
Finsler decomposition of the strain tensor K.

Then, as for a normal Finsler connection of the first kind,
we shall show

Theorem 2. The connection parameters F, F;, and C;j, of
a normal Finsler connection of the first kind are given by

(1) Cije = &8ijk»

10g;

where Cijk:gjlcilk and 8ijk= 26y" ’

(2) Fi=g,F, must satisfy the following differential
equations .

oF,, oF, 0F, OF,;
ay/;"k_ ayi + ay,’-a - ayjk_Z(gilszla—gkljFu)“"ink‘“')’jlzi =0,

where g/';=g'"g;,; and ;. are Christoffel’s symbols constructed
from g;(x, y) with respect to x*.
3) Fir=g;F! are given by

1 <aF,,, OF

Fin =2\ a9 + yijk—«y,-,-k)—gi’ij.

Therefore the connection is uniquely determined, if F;; are given
such as to satisfy (2).
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Proof. It follows from (7.7) that the conditions for a Finsler
connection (T', H) to be normal of the first kind are given by

ag;
(8.3) ax/: —2g/iF; = Fijp+Fji,
(8.4) 28k = Ciip+Cii,
(8.5) Tije— Tipi+Tpj =0,
(8.6) Pijr = Pyji,
(8.7) Sije—Siki+Sw;=0.

It is easy to show that (8.5) and (8.7) give T;;,=S,;,=0, namely,
Fi,=Fy; and C;,=C,*;. Then (1) is a direct result from (8.4).
It follows from the definition of P;, that

P —% 28/ F,;—F
ik = pyk T ikl 1= L pij»

and hence (8.6) is written in the form

oF;; 0OFy;
Frij—Fi; = @k{— a;il'

Combining the above with (8.3), we immediately obtain (3), and
then (2) means F;;,=F,;;. Thus the proof is complete.

In order to consider (2) in Theorem 2, let us suppose as usual
that F;;(x, ) be homogeneous of degree 1 with respect to y [7].
Then, the contraction of (2) by y* gives

oF,, 0F, OF;

3F;;—F;; = oy + 8y7 by +Yji0— YV joi — 28 iF o -

Therefore, F;; will be uniquely determined if F;, and F,, are given.
It is noticed that, if the non-linear connection H is supposed to
be metrical, then F;, and F,; are already determined by Proposi-
tion 2.

Theorem 3. A normal Finsler connection (T, H) of the first
kind is Cartan’s connection, provided that the non-linear connection
H be metrical and F'(x, y) are homogeneous of degree 1 with respect
to y.

Proof. As already observed, the connection satisfying all of
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the conditions as mentioned above are uniquely determined. On
the other hand, Cartan’s connection satisfies those conditions, and
hence the proof is complete.

Consequently, we may say that Cartan’s connection seems to
be quite natural from our standpoint.

In the above discussion, we considered general horizontal
and vertical curves on T(M), and (dg’/dt),.,=L(G’). We shall
now be concerned with an H-intrinsic curve (horizontal) and an
intrinsic curve (vertical). As for an H-intrinsic curve which has
in §2, f(¢#) in (8.14) is equal to y°(¢)e,, and hence (8.1%) is then
been defined written down

18— (K)iugs— (KD = 0,
(8. 8) a=1,--,2n,
’(a)
d%T; - (Klzl)baog/g— (Kzzl)baog/(«;‘) =0.

In particular, as for Cartan’s connection (T, H), (8.8) becomes
quite simple:
dg/g 1 /(a)

a dg @ 1
—Ro-o = 0, hat= + —RJ.'O ‘a=0,
a2 v a2

from which we have
dit(g/%B -8’ — %Ro?w(g,(g)'Fg/(g) =0,
i 7y ’a lRa ple _ pl(e) — 0
dl‘(g P+g's)+ > (85— 8'3) .

Since the curve {—g’(¢) satisfies g’(0)=¢’ the equations
gi)—g'at) =0, gPB)+g'a) =0

must hold for #=0. Therefore, the above differential equations
show that these two equations hold for any ¢.

Next, we shall consider an intrinsic curve as defined in § 2.
In this case, f(¢#) in (8.1v) is equal to »%(¢)e,, and hence (8. 1v) is
then written down
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dg’t a 1 a s
—dg;— —(K'),% 8"~ (K1), g = 0,

(8.9) a=1 - 2n,
d /‘(;l) a 7 a h
RE (K g (K8 = 0.
In particular, if we consider Cartan’s connection, (8.9) becomes
solely dg’/dt=0, and hence g’(¢) is reduced to the point ¢’
We sum up these facts as for Cartan’s connection in the
following.

Theorem 4. Let (I', H) be Cartan’s connection constructed from
a Finsler metric G. The strain of parallel displacements g'(t) with
respect to (T", H) is of the following form :
(1) For an H-intrinsic curve, g’(t)=<g‘,} g{,;), where g5
—8a &
and g &, are determined by the differential equations

dg? 1 a ¢ dgé 1 @ e
28%4— ?Ro-org(ll) =0, —glf—b) - ERo-()cgb =0.

with the initial conditions gy(0)=38y, g&,(0)=0.

(2) For an intrinsic curve, g'(t) is rveduced to the unit of G'.

It is observed that the differential equations in the above
(1) which give g§ and g3, will not become simpler formally, even
if G and (T, H) are Riemannian. Thus, we may say that Cartan’s
connection gives the simplest parallel displacements of frames
along an H-intrinsic curve and an intrinsic curve.

From the viewpoint of Theorem 4, we now lay down the
following definition.

Definition. In the notation of Theorem 4, a Finsler connec-
tion is said to be normal of the second kind if it is metrical and
the strain of parallel displacements g’(¢) is of the following form :

(1) For an H-intrinsic curve, g’'(¢)= (g’,}' g&).

—&5 &

(2) For an intrinsic curve, g’(f) is reduced to the unit.

It will be easy to show from (8.8) and (8.9) that the condi-
tions (1) and (2) as above are expressed
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(8 10) (Klll)bao = (Kzzl)bao: (Kzll)bao = _(K121)baoy
(Kllz)bao = (Kzlz)bao = (Klzz)bao = (Kzzz)bao =0.

Theorem 5. Let F}i, F;/, and C;, be the connection parameters
of a normal Finsler connection of the second kind. If F'(x, y) be
assumed to be homogeneous of degree 1 with vespect to y, these
connection parmeters are as follows :

(1) Cijs+Cjin = 28i54, Cijo=0.

2 Fij_Fji = Yoi; — Yoji» Fio = Yoios Foi = Youi -
0gi;

(3) Fijk + Fj{k = ﬂ—lj‘ _zginFlk )

where the same notation of Theorem 2 is used.

Proof. The first equation of (1) and (3) mean solely that the
connection is metrical. According to (7.7), the equation (8.10)
are written down

(8.11) Siie—Sii+Su; =0,

(8.12) Tijo— Tjoi+ Toij = Pij— Pjo; s
(8.13) R,;;+C;;,—C;i, =0,

(8~ 14) Rioj_coji_cjoi = Rjni_coij_cioj ’
(8. 15) Pyj+ P, = 0.

It follows from the definition of S;;, that (8.11) becomes C,;,=0,
where we used the first of (1). Thus we obtain R,;=0 from
(8.13). It follows from the first of (1) and (8.14) that R,,;=R,,.
Hence (8.13) and (8.14) become

(8.16) R,i; =0, Ry;= R, .

J

Next, by the same way as in the proof of Theorem 2, we obtain

— 6I?oi

Poij = By’ _Fji—Fjoi’ P'io = Fji_Fo

7

YR

where we have to notice that the homogeneous condition on F}
was used. Then, (8.15) gives

(8.17) OF,,

ayii = 'y:)ji+'yj()i'
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Similarly (8.12) is written

0F, OF
oy’ aye‘—Fij"‘Fii = Yiio™ Yijo-

(8.18)

Contractions of (8.17) and (8.18) by »' give the second and the
third equations of (2), and then, inserting F;,=1v,, in (8.18), we
obtain the first of (2). It now remains to treat (8.16), but it will
be shown by direct calculation that (8. 16) is an automatical result
of the facts as have been already verified.

It follows immediately from (2) in the above theorem and
Proposition 2 that

Corollary 1. The non-linear connection H of a normal Finsler
connection of the second kind (T', H) is metrical, provided that
Fi(x, y) be homogeneous of degree 1 with respect to y.

For the purpose to make little the strain of parallel displace-
ments of a Finsler connection (I', H), we are finally led to the
following definition.

Definition. A Finsler connection is called normal, if it is
normal of the first kind and of the second kind.
Then, we establish from Theorem 3 and Corollary 1 that

Corollary 2. A normal Finsler connection is definitely Cartan’s
one, provided that F'(x,y) of the comnection parameters be homo-
geneous of degree 1 with respect to y.

89. Curvature tensors

It will be rather complicated to find the curvature tensor R
of the Riemann connection T' with respect to the lifted Riemann
metric G by referring to the local coordinate (x¢, y') on the tangent
bundle T(M). In this section, we shall do by making use of the
frame ®(q), g=Q. The curvature tensor R has been expressed
by the curvature tensor R’ and the torsion tensor 7 of the linear
connection of Finsler type I, together with the strain tensor K,
in the abstract form (7.4). In that equations, if f{, f4€F’ are
taken as p(f,0) or p(0, f), fEF, we shall obtain the Finsler
decomposition of the curvature tensor R as follows :
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(Rus)asea = Ravea— 3Roas R s+ 3 Roco— Goet) 3RS s — 84°2)

_ — (3R oas— 8ear) 3R . — 8.5)
(Iglllz)abcd = — $(Racars— Racora) — (Gacato — Guacvia) = Pecala’s »
(Ruzaved = Reaas + (3Riao— 8aae) 3R " — 8.%)

9.1) B —(3Rupe— 8are) GR.0I— 8.50) »

(Rin2abea = $Rbcal a— Gbeatat Pavare— PaveP.’a

_ +(3Ryea— 810a)8: a+ 53 Ryce— Gpce) Rua
(Ifzzzx)abcd = Poals— Pyl a+3(Paf Rose— Py* Raae)
(Ro22)aboa = Gaaels’c— 8avela' e+ Poda Po’c— PoarPo’. -

Remarks. (i) Since the lifted Riemann metric G is determined
by the original Finsler metric G and the non-linear connection H,
the above R does not depend on the choice of T of the Finsler
connection (I', H). In the above formulas, the lifted Riemann
metric is given by means of Berwald’s non-linear connection H.
The symbols in the right-hand members are that of Cartan’s
connection. (i) It follows from the meaning of the Finsler
decomposition, components of R are given by (9.1), referring to
the frame ®(g), that is, for example,

Rabcd = (Ellu)abcd’ R?a(b)c(rb = (EIZIZ)ade’
a,bc,d=1,-,n; b)=n+b; [d)=n+d.

Since the general formulas (9.1) are complicated, we next
consider the case where G is Riemannian. In this case, the non-
linear connection H used to obtain the lifted Riemann metric G
is naturally the associated linear connection with the Riemann
connection with respect to G. Then, we obtain

D _ _ 1 e 1 e e
R = Ropea— 3Roeas Ryl ca+ 1 (R Ry ga— RogsaRolse) 5

5] 1
Rabc(d) - fRodab;c ’

(9' 2) Rab(c)(d) = Rabcd + %(RﬂdaeRb?OC - RMbeRa?OC) ’

— 1 1 e
Ropear = $Racsat iRop o Ro0a

R(a)(b)(c)d = 0» E(a)(b)(c)(d) =0.
a, b c,d=1,--,n.
(@) = n+a, (b)=mn+b, (c)=n+c, (d)=n+d.

Remarks. (i) In (9.2), R,,, are, of course, components of
the curvature tensor R of the Riemann connection I" with respect
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to the Riemann metric G on the base manifold M. The index 0
means the contraction by y as usual, and the semi-colon means
the covariant derivative with respect to the connection T. (ii)
Members in the right-hand sides of (9. 2) are components referring
to the frame z, while members in the left-hand sides are com-
ponents referring to the frame ®(q), ¢=(y, 2).

From (9. 2), we shall obtain some interesting theorems as for
sectional curvatures of the Riemann manifold T(M).

Theorem 6. Let M be a Riemann manifold with a Riemann
metric G. Then the tangent bundle T (M) over M is regarded as a
Riemann manifold with the lifted Riemann metric G of G. Let
S(X, Y) be the sectional curvature of a 2-section spanned by tangent
vectors X and Y to T(M).

(1) If X and X are vertical, then S(X, Y)=0 [13, Theorem 18].

(2) If X is the intrinsic vector v, then S(X, Y)=0 for any Y.

Proof. Suppose that X and Y be vertical, and hence there
exist f,, f,€F such that X=®(q)(0, f,) and Y=®(q)(0, f,). It then
follows from (9.2) that

RX, Y, X, Y)= @(p(O, 1, p0, £2), p(0, £1), p(0, £2))
= Rzzzz(fnfz»fnfz) = 0,

which proves (1). Next, if X=b, X is expressed X=®(q)(0, »),
where y=3"¢,F. Hence we see

R(Xy Yv X’ Y) = E_(P(fl ’ f2)7 P(0> y)’ P(f] ’ fz)’ p(o; y))
= (Rlzlz)abcdftllybf‘i‘y, =0,

where we put Y=®&(¢)f,, f2), fi, [,EF. Thus, (2) is proved.

It follows from Theorem 6 that, if the Riemann manifold
T(M) is of constant curvature, the curvature must vanish iden-
tically, and hence we obtain

Corollary 3. If the tangent bundle T(M) over a Riemann
manifold M is considered as a Riemann manifold with the lifted
Riemann metric, it is impossible that T(M) is of non-vanishing
constant curvature.

Next, let us compare a sectional curvature of 7(M) with one
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of M, corresponding to each other by lifting tangent vectors. Let
X and Y be tangent vectors to M, and we have the vertical lifts
X? and Y? of X and Y respectively. It follows from Theorem
6 that the sectional curvature S(X?, ¥Y?)=0. On the other hand
we shall obtain

Theorem 7. In the notation of Theorem 6, we denote by S(X, Y)
the sectional curvature of a 2-section spanned by tangent vectors X
and 'Y to M. Then

(D S(X*, YN<S(X, Y),

where X* and Y" are horizontal lifts of X and Y respectively. The
equality holds good, if and only if R(y, X, Y)=R; .y’ X*Y'=0.

2 S(x*, Y")=0,

where Y?® is the vertical lift of Y. The equality holds good, if and
only if RX,Y,y)=R; ., X’Y*y'=0.

Proof. If XM, is expressed X=zf, zex(x), fEF, we
obtain

X'=®(q)(f, 0), X*=@(¢9)O0, f), g=(3,2).
It then follows from (9.2) that

§(Xh: Yh) = S(X» Y)_%lR(y) X’ Y)lz’
S(X* Y") = }RX, Y, y)°,

where |---| denotes the length with respect to the original Riemann
metric G on M. As a consequence of the above equations, we
have the theorem.

Institute of Mathematics, Yoshida College,
Kyoto University
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