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Introduction

Let W be a Riemann surface of infinite genus. A connected
subregion Q of W will be called normal if it has positive finite
genus and its relative boundary consists of a finite number of mutual-
ly disjoint dividing analytic Jordan curves. We stress that a normal
subregion is not necessarily a relatively compact region. It may
have, besides the relative boundary, the ideal boundary.

In §§2, 3, we introduce two intrinsic conformal invariants x(Q)
and M(Q) for a normal subregion Q.

Suppose that W is decomposed into a sequence {Q,}i~. of nor-
mal subregions. Consider a canonical homology basis {A4%, B'}4, of
Q, modulo dividing cycles. Set D,=U};-1Q;. The main purpose of
this paper is to establish the following evaluations which lead to a
generalized bilinear relation:

Suppose p(QI=<n (resp. M(QIM), k=1,2,---. Then, we
have

1on-2 2([, A,a-{,00,.a)
= A+wllsllw-pllollw-o, (resp. 2M/|ls|lw_p.ll®/lw-p,)
for all o, *TW(WHYNTE.(W).2

1) This is a revised version of the contents of the talk given at a seminar held
at Kyoto University on March 14, 1966.
2) In this paper, differentials are complex in general.
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Most of the ideas in this work have their origins in R. Accola
[1], [3], M. Mori [7] and K. Matsui [6]. In this note, as for the
notation and terminology, we follow L. Ahlfors and L. Sario [4].

§1. Preliminaries

Periods reproducing differentials. We shall recall some of
the basic properties of period reproducing differentials. A detailed
explanation is found in M. Yoshida [13].

Let W be an arbitrary Riemann surface, and ¢ be a finite 1-

cycleon W. Then w—»S o (0€Ty,.,(W)) is a continuous linear func-

tional on Ty.(W). By an elementary theorem in Hilbert space
theory, there exists a unique §(¢)*€T,,.(W) such that

S w=(0,5()%)  for all wer,,(W).

When it is needed to indicate the basic surface W, 5(¢) is written
as aw(c). It is called the T,.-period reproducing dijfferential for
c. It follows immediately from the definition that

(i) ORI HO!

2
.

The following properties of 5(c) are well-known:
(ii) &(c) is a real distinguished differential in Ahlfors’ sense.
(i) (6(c),5(d)*)=cXd, i.e, S;?(c)=c><d for any cycle d.
(iv) If ¢ runs through all non-dividing cycles, then 5(c) span
T (W) NTE(W).
The following interesting fact was found by B. Rodin [6]®
(v) la(e)l*=2(&

where ¢ denotes the family of cycles which are homologous to o
modulo dividing cycles, and 1(&) denotes the extremal length of é&.

3) It is R. Accola [2] who first gave an extremal length interpretation to the
norm of a I'n-period reproducing differential.
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Approximation theovems. We shall state two 'lemmas which
will be needed later.

Lemma 1. Let Q denote any regularly imbedded relatively
compact subregion of W which contains ¢ and each of whose
contours is a dividing cycle of W. Then

léga(c) —Gw(C)lla—0 as Q1 W.
Proof. Let & be another such region containing . Then, the

restriction of 6(¢)* to Q is semi-exact. Hence, by making use of

(i), we have

G (€)%, 3a(€))a=\ dar(©)* = liwr (O 13-

Hence
l6a(€) —dar(e) o= lldale) o —2lldar () lor + lloar () I
<llga(e)la—llgar () lIo.

Therefore ||Go(c)||o decreases as Q1 W. Hence, the above inequality
implies '

6a(c) —Gar(c)]lo—>0 as Q1 W.
We conclude that 6o(c) tends to a differential of I'.(W) which we
denote, temporarily, by ¢. Then it follows that

ll6a(€) —al| =0 as Q1 W.
For any weT,,. (W) we have
(0, 6®*)=1lim (0, 6*)o=Ilim (o, 59(6)*)Q:S w.
Qrw Qrw c

This shows that s=4x(c).

Consider the exterior V of a regularly imbedded relatively com-
pact subregion of W. Let C“(@V) be the space of real analytic
functions on 8V, and HD(V) the space of Dirichlet finite real har-
monic functions on V.

Sario’s principal operator L,, is a linear mapping of C*(@V)
into HD(V), which is characterized by the following properties (cf.
(13]):



218 Michio Yoshida

1) L,,f=f on aV for all f€C*(@@V),
2)  (dLiyf, 0*)y= —gav f&  for any weTh.(W),

3) S (dL,yf)*=0 for any dividing cycle y of W contained in
Y
V.

If we adopt this characterization as the definition of L, as in
[13], we need to give a proof of the following fact.”

Lemma 2. Let Q be a regularly imbedded relatively compact
subregion of W such that QDO W—V, and let f€C*@V). Then

ld(Livf—Livoaf)llvae—0 as Q1 w.

Proof. For the brevity of notation, put L, ynof=uo. Let Q
be another regularly imbedded relatively compact subregion contain-
ing Q. Then we have

(dug, duar) yng = Sa‘,uﬂ(dugr)* =|lduar||Vner
and
”d(uﬂ—uQ’) IFhe= ”duQ”%’nQ'—2”du9'”%’09’+ ”duQ'”lgnQ
<lduallvna —llduerllvner .
We can infer, by a customary reasoning, that u#, converges to a
harmonic function locally uniformly and in norm on V. It is evident
that this limit function satisfies the above conditions 1) —3) which

characterize L, ,f. We thus conclude that L, ynof converges to Ly yf

in norm.

Generalized bilinear relation. Now suppose W has infinite
genus and let {A;, B;} -, be a canonical homology basis of W mecdulo
dividing cycles. {A;, B;} has the following intersection property:

AjXAh:BijkZO al’ld AjXBkZB;[, fOI‘ all j, k.

Let {p(n)}; ., be a strictly increasing sequence of natural numbers.

4) Both in L. Ahlfors and L. Sario [4] and B. Rodin and L. Sario [9], the
convergence of Li,vnof is first proved and then L. v f is defined as the limit of
Liyvoa f.
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We will say that the generalized bilinear relation holds with respect
to {A;, B;} and {p(n)} if we have

. p(n)
@ (oo =lim%({ of a-{ o 5)

n—>e0 j=1 A B; B; A

J J J

for all s€T, (W) and o€, (W).

Theorem of R. Accola and M. Mori. In the rest of this sec-
tion we shall write T, I'un, etc. for TwW(W), Tw.(W), etc. We use
the orthogonal decompositions

Tiwo=Thn+ (TWwNTH),
The =T+ (THNTs.)
to obtain
s=a,+0,, where ¢;ET}, and o.T, NIk,

o=w;+w.,, where v,€T}, and w,=T5NT,...

Then, (s, ©*) = (0., w¥) because of the orthogonalities: T, I'¥, and
T, 1 T#. On the other hand, since ¢, and o, are exact, ¢, and w,
have the same periods as ¢ and w respectively. We have thus shown
that (1) holds for all 6T}, and w<T,,, if and only if it holds for
all ¢, 0*€T,MNT%.. The idea of this reduction process is due to M.
Mori [7], p. 93.

Now, after K. Virtanen [12], R. Accola [1] and M. Mori [7],
we introduce linear operators 7, on T, (T, as follows:

p(n)

To= 2{— (gﬁja)&(B,-) + <gBja)&(Aj)} for seTWNT¥E..

i=1

This is the distinguished differential characterized by the property
that it has the same periods as s along A;, B;, 1<j < p(#n), and has
vanishing periods along A;, B;, j >p(n). Since

()
(T, 0*) ZPZ(S aS E)—S o SA d)> for all o*eT, Tk,
i=1\J4; B i

B;
the generalized bilinear relation (1) holds for all ¢, w*E TN, if
and only if 7,0 converges to ¢ weakly for all =T T%..
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If T.s converges weakly for a fixed o, || T,s| is bounded in vir-
tue of the principle of uniform boundedness; see, for example, [10],
p. 174, Problems 25. a. If || 7,s| is bounded for every 6=T,,(\T'%, (the
bound may depend on s), the same principle implies the boundedness
of || 7,]|; see [10], p. 171, Proposition. The validity of (1) thus
implies the boundedness of || 7,|.

Conversely suppose [|T,|< M. As stated in (iv), {5(c)} span
T,.NT%.. Hence given ¢TI, NI'%. and ¢ >0, there exists a finite
linear combination, say &, of §(A;) and §(B;) such that |[¢—d[[<e.
For a sufficiently large #, we have T,5,=¢, and hence

lo— Tl <llo—.ll + | T (e — )<< A+ Me.

Therefore, T,s converges to ¢ strongly. Consequently, the bound-
edness of ||7,] implies the validity of (1). This completes a proof

of the following theorem.

Theorem 1. (R. Accola [1], M. Mori [7]) If T, converges
to ¢ weakly for all ¢TIk, | T.| is bounded. Conversely if
I T.| is bounded, T,s converges to s strongly for all ¢=T,,(\Tk..
Thus the gemeralized bilinear relaiton (1) holds with respect to
{A;, B} and {p(n)} if and only if the norms |T,|| of the linear
operators T, associated with {A;, B;} and {p(n)} are bounded.

If the generalized bilinear relation (1) holds, we have (I'y(T%.)
L T#, and hence TMNTWCIh,. On the other hand, it holds always
that T Ts DOTh.. Thus the validity of (1) implies Tw\Th=T1n.

However, R. Accola [1] showed that the relation T Th =T
is not always true. Therefore there exists a surface on which the
generalized bilinear relation does not hold with respect to any {4;, B;}
and {p(n)}. In the following sections we shall introduce two con-
formal invariants of a normal subregion Q of W in order to establish
criteria which ensure the validity of (1).
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§2. Conformal invariant x(Q)

Let Q be a normal subregion of W. Let {4;, B;}%-; be a canon-
ical homology basis of  modulo dividing cycles. We define a con-
tinuous linear operator Tq .y on W (W) NTE. (W) by setting

Towo= 3~ ([, 0)on B+ ([, o)aw(a))}
for s€TW(W)NT¥.(W). We shall use a shorter notation 7T, for
Tow in case this abbreviation causes no ambiguity.

Observe that Tg o is the regular distinguished differential which
is characterized by the property that ¢— T ¢ is exact in Q and Tg ¢
is exact in W—Q. Hence, Tq is defined independently of the choice
of {A;, B,}. Furthermore To= Ty if Q and €’ share the same
canonical homology basis. In particular, if Q'CQ and if ' has the
same genus as (), then To=Ty. We note

(Tgo, w*)w=zg‘,(g GS a‘)—g aS a‘)) for all wET,...
i=1\Ja4; Js; B; Ja;

We shall prove

Lemma 3. Let ¢s€Tw(W) and o=T¥,(W). Let V be a reg-
ularly imbedded planar subregion of W such that 8V is compact.

Let u be a harmonic function in a neighborhood of V such that
du=¢.> Then

(o, 0));,:8 ud*.
av

Proof. Let D be a regularly imbedded relatively compact sub-
region of W such that DDaV. Denote by o, the projection of the
restriction ¢|DeT, (D) on the subspace I'y(D). Then it is well-
known (see pp. 292-293 of [4]) that

HO'_UD”D‘-)() asDT w.

Let #, be the harmonic function on V(D such that dup=a, and

5) This is possible because Tno(W)CTuse(W ).



222 Michio Yoshida

up=u at a fixed point of 8V. It follows that #, converges to # uni-
formly on V. Since a,ET4 (D), #, is constant on each contour of
D contained in V. Hence,

(o», w)vnD:S Up™*.
av
By letting D1 W, we obtain the desired equality.
Lemma 4. Let Q be a normal subregion of W. Suppose that
6, o*ETW(W)NTX(W). Then,
(ﬂ, w*)n= (TQ g, w*)w—g Uw ,

3Q

where the integration Sag is taken in the positive sense along 9

and u is a harmonic function defined separately on each contour
of 0Q such that du=o.

Proof. Let D be a relatively compact region of W such that
9QC D and Q—D consists of a finite number of regions of the char-
acter described in Lemma 3. Denote by # a harmonic function on
Q— D such that du=o¢. By Green’s formula we have

(6,00 ano=(Ta s, 00—\ wa+| o
Lemma 3 yields
(0,000 0= |, o
and our lemma is proved.

Next, after R. Accola [1] and [3], we introduce a conformal
invariant for a family of subregions. Let R;, 1<i<k, be regularly
imbedded subregions of finite genus of W with compact relative
boundaries @R; such that the number of the components of 9R; is
greater than one for each ¢. Suppose R, are mutually disjoint. Let
0R.=a;\UB; be a partition of dR; into two disjoint non-empty cosets
of contours. Let #; be the harmonic function on E such that #,=0
on a;, #;=1 on B; and u; has L,-behavior along the ideal boundary
of R;. Denote the union of R; by R. Setting a= Ua;, 8= U8B, define
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ux(a, B) = max ||du|*.
1Sisk
We define a harmonic function # on R by #=u; on R; and state

Lemma 5. Suppose that the number of the components of
the ideal boundary of R is finite. Let v and w be square integra-

ble harmonic functions on R. Then

1§ vl <t l1dvlal
for some te [0, 1].

Proof. Regard each R, as the interior of a compact bordered
surface. In other words, we may suppose that each component of
the ideal boundary of R, is realized as an analytic Jordan curve or
as a point. Consequently we may assume that #; is constant and
has zero flux along each ideal contour of R;, and that #; is harmonic
at each point-like component. The rest of the proof is similar to
that of the lemma of R. Accola [3].

We now return to a normal subregion  of W and define an
intrinsic conformal invariant #(Q)) of Q in the following manner.
Consider a normal subregion , of W such that Q,CQ, that Q, has
the same genus as ) and that the relative boundary of each com-
ponent of Q—Q, contains points of both 8Q and 6Q,. Such a sub-
region will be called admissible. We define

#(ﬁ) = igf Ho-g, (092, 092)
where Q, runs through admissible normal subregions of W.
With these definition and notation, we state

Theorem 2. Let 6, o*ETW(W)NTE(W). Then

2) [(Tao, 0*)w| {1+ 2(Q)} ollollofa
and
3 [ Tol|<1+2(Q).

Proof. We first treat the case where the number of the com-
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ponents of the ideal boundary of  is finite. For any ¢_>0 there
exists a normal subregion Q:C ) such that  has the same genus
as Q and that po_5.(0Q¢, 0Q0)<pu(Q)+e. In Q—Qf, o and o are
exact, and hence can be expressed as s=dv and o=dw respectively
in Q—Q¢. Taking Q—Q¢ as R in Lemma 5, we find that there
exists te [b, 1] such that the level curve u=t¢ is composed of a finite

number of mutually disjoint analytic dividing Jordan curves and that

1\ vdwl <@+ Iolla-allolo-a..

By Q' we denote the normal subregion of W bounded by the level
curve #=¢. Then Q:CQ'CQ and To'=T,. It follows from Lem-
ma 4 that

(Tq o, 0*)w= (o, w*)Q'+S vdiw.

u=

Hence
| (Tao, 0®)w| < (s, 0®)ar| + {2(Q) +e} llollo-a.llola-a.
< {1+2(Q) +é} lallallo]la.

Next we treat the general case. Recall that {54(c)} span
TW(W)NTE (W) as stated in (iv). Therefore, in proving (2) we
may assume that both ¢ and o are expressed as finite linear com-
binations:

o= mi_lamaw(c,,,) and w*=2ub,. Gw(ch).

n=1
Let D be a relatively compact normal subregion of W such that D
contains 8Q, all ¢, and ¢, and such that QD is connected. Set

3 v
0p— Z am 50(6»1) and (0?)‘ = 2 bn &D (crlt)-
n=1

m=1

Then by Lemma 1
lop—ollpb—0 and [lwp—w|,—0 as D} W.

As we have already proved,
(4) l (TQnD.DO‘D. w;)ol g {1 +ll(ﬁﬂ D)} ”UD”QnD”CDD”QnD-

To complete the proof, observe first that
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” TQnD.DO'D_ TQ O'HD

— £ (= Gou, 30(A)*Vo(B) + (o, 50(BY*)i0(A)))

= 3= (o, 5 (A)¥iw(B) + (o, iw(B))iw (A} [0
as D1 W.

We shall next show that 2(QND) | x(Q) as Dt W. It is eas-
ily seen that 2(QND)=x(Q) and x(QND) decreases as D1 W.
Consequently lblﬂlv n(QND)=p(Q). To establish the opposite ine-
quality take an Q, which is admissible in the sense described in
the definition of #(Q)). We may assume 8Q,CD. Let {R;} be the
components of Q—8,. Let # be the harmonic function in Q—Q,
which is equal to 0 on 69, and 1 on 8Q and which has L,-behavior
along the ideal btoundary of Q—Q,. Define #, in (Q—Q,)ND
similarly so that #,=0 on 8Q,, #,=1 on 8Q and %, has L,-behavior
along 86D (Q—Q,). By Lemma 2 ||d(up—u)|/a-0pno—0 as D 1+ W
Hence

ra-5,(6Q0, 6Q) = max||du||k, = lim max||duo| ka0
15igk DAW 15i<k
=lim #(‘Q‘-Qo)no(aﬂo , 00) =1lim #(QN D).
DtW DAW
On account of the arbitrariness of ,, it follows that n(Q)

l%vlyim 2(QND). Letting Dt W in (4), we obtain (2).
By setting o*= Tqo, we derive (3) frqm (2).

Corollary 1. Let {Q.} 1 be a decomposition of W into normal
subregions. Set D,=Uji.y Q. and T,=>iy To,. Suppose n(Qy)
<n k=12 ---. Then

IT<1+n

and
[ (g, 0w — (Too, ®)w| KA+ lallw-sllo]lw-»p,
for any o, 0¥ T, (W)NTE(W).

6) If W-q is not compact, we imbed © in another Riemann surface W’ so that
W’-0 is compact and apply Lemma 2.
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Proof. For g, o*T\W(W)NTE(W),

| (T, 0| S 3 (Tans, 0¥ | <A+ ) S llallaullo* o
A+ wllalpllo* o, <A+ ) llollwllo*|lw.

Substituting 7T,s¢ for «* in this inequality, we obtain | 7T,s|} (1
+m)llollwll T,ollw. Hence, || Tuollw<(1+ 2)|sllw for any sET\WNT%., ie.,

IT.J<1+z.
Therefore, by Theorem 1, 7,6 converges to ¢ strongly. We have

| (5, @)= (Tug, 0w | <3 | (Tas, 0|

(¢! +u)k§+1|lallmllwllm$(1 + ) llollw-oullllw-b, -

This corollary, together with the reduction process given in §1,
implies

Corollary 2. Under the same condition as in the above coro-
llary,

for any s=Tw(W) and o=\, (W).

§3. Conformal invariant M(Q)

Let Q be an arbitrary Riemann surface of positive finite genus
g, and {A4;, B;}%., be a canonical homology basis of Q modulo divid-
ing cycles. The well-known relation: (5(4;), §(B.)*)=A4;%XB,,
together with Rodin’s result mentioned in §1, implies
A(ADMBH=1.
Set

M(Q) =inf zl/ A(ADA(B),
j=1
where {A;, B,} ranges over all canonical homology bases. Note that

M(Q)=g. The sum il/ /I(AN,-)X(E,) was first introduced by
=1



Open Riemann Surfaces 227

Y. Kusunoki [5], and then utilized by K. Matsui [6] although they
did not consider its infimum.
For w;, .€T.()), we set

R(w,, »,) =J§: (Sﬁiwl 88@2— Sa,wl SM@) .

J

It should be remarked that this quantity does not depend on the
particular choice of a homology basis {A4;, B,}. This is seen from
Green’s formula as follows: Take a canonical subregion , which
contains all A;, B;. Then

g
(031, a’z*)Qo:2<S 0’18 a_)z—g wlg E)z>—g Uw, ,
j=1 a; B; B; A; Qo

7 7

where # is a harmonic function defined separately on each contour
of 0Q, such that du=w,.
We shall now give the key lemma.

Lemma 6. Suppose o, @,€T4.(Q). Then
IR(wly wz)léZM(Q)”leQ“wa”n.
Proof. Tt holds that Sﬁ_wlz(w,,&(/l,)*),g a.=(ax, (B,
16(A)I= /2(4) and 3(B)|=/2(B)). Hence, by the Schwar

inequality we have

1, o, @<l lalloslo /2CADACE).

i

Thus
| R(an, )| 2lonllaloulla 339/ 2CD)a(B) .

Let W be a Riemann surface of infinite genus, and Q be a nor-
mal subregion of W. With the same notation as in §2, the above

lemma implies
[ (0¥, To o)w| Z<2M(Q) | ollallslla
tor any g, 0o*€TW(W)NTX(W). From this follows

Theorem 3. Let {Qu}ii, be a decomposition of W into normal
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subregions, and {A%, B}}i*, be a canonical homology basis of Q.
modulo dividing cycles (k=1, 2, ---). Suppose M(Q)<M. Then

] (G, 0)*>W_Z‘Z<SA,; 4 SBECD_SB?G SA?(D> lgZMHGHW—D..”w”w—D..

k=1j=1

for any ¢, o*ETW(W)NTE(W), and
(o “*)”:/%é(gaﬁ“SB:“_’_SB:"SA??’)

for any ¢=T,W(W) and o=T,..(W).

§4. Conformal invariant x(892)

Let Q be a normal subregion of W, and consider two normal
subregions Q, and Q. of W such that Q,CQ, QCQ, and that these
three regions have the same genus. We shall call such a pair (Q,,
Q.) admissible. With the notation in §2, we define

2(0Q) =inf pg, 5,00, 8Qs),

where {{,, Q,} ranges over all admissible pairs of normal subregions.
By the same reasoning as in §2, we obtain

Theorem 4. | Tol|<<1+4(09).

Corollary. Let {W,} be an increasing sequence of normal
subregions of W such that the genus of W, is strictly smaller
than the genus of W,., and W=UW,. Let {A;, B}, be a ca-
nonical homology basis of W modulo dividing cycles such that
{A;, B}!%} forms a basis of W,. If u(6W,) is bounded, then it
holds that

(on=timZ{{ 6§ o-f,0f o}
for any s=Tw(W) and o=T,,.(W).

We have p(0Q)<u(Q)). However, x(0Q) is not an intrinsic
invariant of Q. It may be properly called a relative invariant. This
corollary is a generalization of Theorem 2 of R. Accola [1], p. 155;
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see also Remarks in R. Accola [3], p. 610, 5. ‘

It is easy to find a Riemann surface and a decomposition into
normal subregions {Q,} such that the genus g, of Q, is not bound-
ed while x(Q,) is bounded. Since M(Q,)=g., M(Q,) is not bound-
ed in this case. However, it is an open questionn whether there exists
an example in which M(Q,) is bounded while x(£,) is not bounded.

§5. Special case where M(Q,) is bounded

Let {Q:}r, be a decomposition of W into normal subregions.
In this section, we fix a canonical homology basis {A%, B!}, of Q,
once for all. The notation (;ﬁ-)m((%)w resp.) will be used to in-
dicate that the curves are in Q, (W resp.). The same remark ap-
plies to (Ba, and (BY,. With K. Matsui [6] we consider the
special case that g,<{ g<Too, /1((2?)9,,)§,{0<°o and x((Eﬁ)Qk)gxo.

Theorem 5. For any o<T,.. (W),
D3 an 1+ b <28 ko] <o,

where “'«-JZS,““’ and b,.',zgﬂw.
Conversely, fo;' any system ]of complex numbers {a,;, b.;} satis-
fying g%(la.,jl+ | by, ;1)< oo, there exists a unique differential
in Tw(W)YNTXk (W), which has a.; and b, ; as Al-and B}-periods
respectively.

Proof. Since a,,= (o, 6a,(AD*)a, and b= (o, 0,(B)*)a,,
21,1+ 10, ISZ (D0 +A((Ba} ol

<2gilollz,.
Hence

333 (@l + 16| D= 2825 0]ls, = 288 o]

In order to prove the converse, we note a((&)w)gx((%)g,) and
A((BDw<a((BYa,) and have
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23—, 3 (B + buy 3w (ADY S A 2 @] + 1))

&
Therefore, > >\{—a, ; 6w(B?) +b:; 6w(A})} converges. It is easy to
¥ =1

check that this differential has the required properties.

§6. Covering surfaces of Schottky type

In this last section, we shall give some examples of Riemann
surfaces which admit such decompositions as described in §§3, 4.

Let R be a Riemann surface with finite genus g=2. We draw
mutually disjoint non-dividing loops ¢;, ---, ¢; on R, and cut R along
¢y, *+, ¢, We denote by ) the resulting surface, which we assume
to be connected. Consequently /<{g and the genus of Q is g—/.

We take an infinite number of replicas of , and glue them
along opposite shores of ¢;(1<j=< /) so that we obtain a regular
covering surface W of R, on which all the inverse images of ¢, are
dividing curves. It is konwn that We Oy if [==2; see [11].

Next we construct a little more general surfaces in the following
manner. We consider a finite number of not necessarily compact
bordered Riemann surfaces Q@, ---, Q@ of positive finite genus with
compact borders and we prepare an infinite number of replicas of
each of them. Glue them along contours so that on the surface W
thus constructed all the joints are dividing curves. Write W
= Cjﬁ,,, where Q. is one of the replicas of Q®, ---, Q™. Evidently
boﬁl1 2(Q,) and M(Q,) are bounded, and hence the generalized bi-
linear relation of the type described in the introduction holds for W.

Finally we remark the following fact: Suppose that Q® are all
compact and that in W=Q, no contour of Q, is left unglued.
Then WeOk,°. (We&Ok, means T (W)NTE (W)= {0}, or equiv-
alently Tw.(W)=T,,.(W).) To prove this, take any dveTl,.(W)
ATE(W). We shall define {W,} by induction. Set W,=Q,, and
denote by W,,, the surface obtained by gluing all the adjacent Q.’s

7) This class Oxp is denoted by Oy in [4].
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to W,. By Lemma 5

Idolfyor=1{

v(d?))* l gﬂwn+1—w_n(a Wn ,0 Wn+1) ”dv”a'uﬂ—W"r

where # is the harmonic measure of 8 W,,; with respect to W,.,—
W,, t, is some value of [0,1] and W is the part of W,,; whose
boundary is the level curve u=¢,. As n—>oo, ||dv|¥m tends to
ldv|l% and |dvl|}...-w. tends to O while uw,.,-w.(OW,, 0W,) is
bounded. This shows that [dv|%=0.
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