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§0. Introduction.

One-dimensional diffusion processes were studied by Feller, Itd,
McKean and Dynkin. On the other hand multi-dimensional diffusion
processes have been studied in various points of view. Ventcel’[15]
pointed out that under suitable regularity conditions, a diffusion process
on a smooth manifold D=D\JdD of n dimensions with a smooth
boundary is determined by the following (A4, L, p). Suppose (¢, U) is
a coordinate mapping with the following property,

PY(x)>0xeDNU,
PN x)=0xc0DNU.

A is an elliptic differential operator of second order which is expressed

in the form,
Af)= 3 a)Dyf () + EH@D (x)+e(x) )
where (a(x)) is symmetric and positive semi-definite and ¢(x)<<0. L

is an operator which maps a smooth function on D to a function on

0D given in the form,
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Lg(x)= 31 a(x)Dyg(x)+ 3 B)Dig(x) +1(x)g()+0(x)Drg ()

+{ Lo — 6~ () Sy'—+)Dig (0o dy),

where (a”(x)) is symmetric and positive semi-definite, 7(x)<<0, 0(x)=>0
and v,(dy) is a o-finite measure on D\ {x} satisfying a usual con-
vergence condition. o is a non-negative function on 90D. Ventcel’
showed that if & is the infinitesimal generator with domain 2(®) of
the semigroup of the diffusion, then, for fe€2(®)NCYD), Bf=Af
and f satisfies Lf=pAf on 0D (Ventcel’s boundary condition).

Now it is an important problem to find regularity conditions of
(A, L, p) under which the diffusion process corresponding to it exists.
Roughly speaking, there have been two ways of attacking this problem;
analytic way and probabilistic way. In analytic way, such a problem
has been discussed by Sato-Ueno [ 7] and Bony-Courrége-Priouret [17].
In probabilistic way, using stochastic differential equations, Skorohod
[8] studied one-dimensional reflecting diffusion processes and Tkeda [ 2]
studied two-dimensional diffusion processes. S. Watanabe [137] [14]
constructed, combining the methods of [8] and [2], the class of diffu-
sion processes on the upper half space of R” corresponding to (A4, L, p)
in case that c=y=v,=0 and d(x) is positive. Stroock-Varadhan [10]
formulated this problem as a submartingale problem and showed the
existence and uniqueness of solutions by using several results on differ-
ential equations. The aim of this paper is, following the formulation
of [13] [14], to prove the existence of solutions of stochastic differ-
ential equations with boundary conditions for continuous coefficients.
The uniqueness fails in general and it is important to obtain the condi-
tions of coefficients which guarantee the uniqueness of solutions. It
should be remarked that Stroock-Varadhan [107] proved the uniqueness
for a general class of coefficients.

§1 is devoted to give the precise formulation of stochaétic differ-

ential equations with boundary conditions, In §2 we shall prove the
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existence of solutions in case that each coefficient is bounded and con-
tinuous and p is identically zero (the non-sticky case). In §3 we shall
prove the existence of solutions in case that p is not identically zero
(the sticky case).

Finally the author wishes to express his hearty thanks to Profes-

sors M. Nisio and S. Watanabe for their valuable advices.

§1. The formulation of stochastic differential equations with

boundary conditions.

Let n>2, D={x=(x',..., x")ER"; x* >0}, D={x€ D; x'> 0}
and 0D={x€D; x'=0}. For x=(x',..., x")€ D, we define Z=(0,
x%,..., x")€0D. We will be given the following quantities;

o=(0i(t, x))} -1 : [0, 2)x D —>R"QR",
b=(bi(t, x))i-1 :[0, ©)xD —>R",
t=(ti(t, x))} j=2 : [0, 20) x0D—>R"'QR""},
B=(B(t, x))i-2 :[0, ®0)xdD—>R"",
p=0(t, x) : [0, 00) X 0D—>[0, o0),

where R"QR" (resp. R* '@R"!) is the class of linear applications of
R” into R” (resp. R*"! into R*'). In this paper, we shall assume
that each component is bounded and Borel measurable. If coefficients
are time independent, they are denoted by ¢(x), b(x), v(x), B(x) and
o (x).

If =0, it is called the non-sticky case and if pz£0, it is called
the sticky case. We shall consider a stochastic differential equation

with boundary conditions in the non-sticky case, in the following form;
dxl=0'(t, x,)dB,+b(t, x,)dt+ dg;,
(1.1) dxi=0"(t, 2,)dB,+b'(¢, x,)dt+ (¢, %)dM,+ B(t, %:)do;
1=2,..., n.

We shall consider a stochastic differential equation with boundary
conditions in the sticky case, in the following form;
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dx} :Gl(t, x,)ID(x,)dB,-I- bl(t, x,)ID(x,)dt + d¢;,

(12) dxi=0%(t, x:)Ip(x:)d B+ b(t, %) Ip(w,)dt + (¢, X)dM,
1.2
+Bi(t, &;)d(ﬂ; i:2)"'9 n,

Iop(xy)dt=0(t, %;)des.

Now we shall discuss the meaning of the equation (1.1) and (1.2).
In this paper, we shall understand that a quadruplet written by (2, &,
P; {Z}ier1,,-)) satisfies the following conditions;

(i) (2, #, P) is a standard probability space (cf. It6 [3]),

(ii) to is non-negative and {&}icr,) is a right continuous and
increasing system of sub-g-fields of &#. I, is an indicator function of
a set 4. The following definitions are due to S. Watanabe [137] [14].
Let # be a probability law on D.

Definition 1.1. By a solution of (1.1) with initial distribution
at time t,2>0, we mean a stochastic process r={x;=(x},..., x%), B;=
(B}, BY), My=(M3,..., M?), ¢:}1ert,,), defined on a quadruplet (2, &,
P; {Z:}iers,, =), satisfying the following conditions (i)~(iv);

(i) with probability one, x, B;, M; and ¢; are continuous in t€&
[to, &) such that B, =(0,..., 0), M;=(0,.--, 0), ¢;,;=0 and P(x; € dx)

=ﬂ(dx)a
(ii) with probability one, x,€ D for all ¢ €[y, o) and ¢; is non-

decreasing; furthermore,

t
St Iip(xs)des=o; t =to,
0

(iii) «; and ¢@; are adapted to {#;} and (B;, M;) is a system of
{#:}-martingales such that

<B, Bi’>,=0;(t—ty) i,j=1,-, m, t=to,
<Bi5 Mj>t:0 i=]-a"') n7j=23"': n, tgt%

<M‘.y Mj>t:6ij¢t i)j=2a"'; n, 52130,
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where < , >, is the usual notation ([4] pp. 211),

(iv) r={x, B, M,, ¢} satisfies

t ¢
sh=al+ B 016, 2)dBi+( b1, x)ds+ oy
0 0

n ~t t
si=alt 2| ol 2B+ (s, 20)ds
(1.3) i=1/h o

n (¢ . L
+ 50 it moami+ 86, 2)do,
0 0

1=2,..., n,

where the integrals by dB and dM are understood in the sense of

stochastic integrals, cf. [4].

Definition 1.2. By a solution of (1.2) with initial distribution
at time £y=>0, we mean a stochastic process = {x,=(x},--., x%), B;=
(B, BY), My=(M2,..., M%), ¢:}1er1,,=y defined on a quadruplet (&2,
F, P; {F}ier1,,-)), satisfying the following conditions (i)~(iv);

(i), (i) and (iii) are same as (i), (ii) and (iii) of Definition 1.1,

(iv) xr=A{xs, B;, My, ¢,} satisfies ‘

n (t !
xi=x5,+ 2 St ai(s, xs)lv(xs)dBf‘i'St b'(s, 25) In(xs)ds+ ¢,
i=1J% 0
n (t Ly
xi=xi+ 2 St 0i(s, xs)ID(xs)dBZ"I'St b'(s, x5) In(xs)ds
=1/t 0

(1.4)
n (t t
+ 50 it zaamit | 6 zadp. =2, m,

ji=2

t t
St IaD(xs)dS=St p(s, Es)d¢sa

where the integrals by dB and dM are understood in the sense of

stochastic integrals,
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When ¢, b, 7, 8 and p are time independent, the solutions of (1.1)
and (1.2) are defined in a similar way. In this case we may take
always t,=0.

When o is identically zero, a solution of (1.2) is a solution of

(1.1), but the converse is not always true.

§2. The existence of solutions in the non-sticky case.

In this section we shall prove the existence of solutions of (1.1)
for bounded and continuous coefficients. The following theorem is due
to S. Watanabe [ 13]].

Theorem 2.1. Suppose 0, b, v and B are all time independent and
bounded Lipschitz functions. Further, suppose a constant ¢>0 exists such
that

F@ =B ze  for all .

Then, for any probability law u on D, there exists a solution of (1.1)
with initial distribution p and the uniqueness holds in the sense of pro-

bability law.

In order to obtain a solution of (1.1) under the weaker conditions,
namely, all coefficients are bounded and continuous, we shall prepare

several fundamental lemmas. We set
lloC)l=C 22 1652(96)2)1’2, 16(x)[|=( Zlb"(x)z)”z,
1»J= 1=

le@li=C 5 ci™ la@l=(E A

We shall assume that o, b, ¢ and [ satisfy the conditions of Theorem
2.1 and that

llo()ll < €1, [1B(0)]| = 2, I = €3, 18| = ca.
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Let t={x:, Bi, M;, ¢:} be a solution of (1.1) for coefficients 0, b, v and
B stating from x,€ D defined on (£, #, P; {#}). Following Lemma

2.1-2.5 are concerned with this process ¢.

Lemma 2.1.
(2.1) E[(x)2] < {(x3)* +(ci+2¢2)t} exp (2¢2¢) t =0,
(2.2) E[p2]<4[(x5)?+ cit+ cde®+ {(ah)’+ (i + 2¢2)t} exp (2¢2t) ]

t=0.

Proof. Set for N>0,
{ inf{s; |x}| =N}
N=

+o0 it{ =4

As Ty is an {&,}-stopping time, using the generalized Itd’s formula on
stochastic integral [47], we have
) . n (INT N . AT »
har =42 5 [ it a2 b e ds
i=1
INT A
0 0

N n Ty
+z§ xldpt+ 3 S oY(x0)Pds
ji=1

n (¢ . 4
=(x(1))2+2j§1S0x16}'(xs)I{TN>s}dBé+zsoxébl(xS)I{Thos}ds
t n (¢
+2S0x}I{1N>s}d¢s+ZISOG}(xs)ZIWps}dS-
j=

£ is a solution of (1.1). Hence the condition (ii) of Definition 1.1
implies that

t
Sox‘l,I{TN>s}d(ﬂs=0 5_20.

n (F
Since ZSoxgd}(xs)I{TPs}dB;' is a martingale with mean 0, we find
i=1
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that

t
0

n t
E[Gelnr, 1= e+ B2 10 ) L oy dst 55 03wz oy ds]
i=

t

< (w124 c2t+2¢, SOE[ngTdes
t
< (xh)?+ clo+ 2¢, SOE[<ngTN)ZjU2ds

t
S (D) chit 26 | {14 EQGwar, 2T ds.
This functional inequality provides us with the estimate

E[(xiar)"I<A(35)7 + (ci +2¢2)t} exp(2eat).

Letting N—+ oo, we obtain (2.1).
It follows from (1.3) that

n t 2 t 2
2 12 12 1 i 1
ast{Ghi+ @+ (5 oieeass) +(( pioas) |
Taking the expectation with respect to P, we have
7 t t 2
2 12 12 1 2 1
ELe<{ELGD I+ G+ S E| § aieotds |+ B[ ({ pieeaas) )

SA{EL(x)* ]+ (xb)+ ce+ c3e?}.
Hence (2.2) follows from (2.1). Q.E.D.
Let
Ki(xh, 0)={(x§)*+ (ci+2co)t} exp(2¢st),
Ky(xh, 1) =4{(x})*+ cie+ c§t® + Ku(xh, 1)}

Recalling the condition (iii) of Definition 1.1, we get
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(2.3) EL(M)D*]=E[oJ<Ky(xb, 0)'"*  i=2,..5n, 20
Lemma 2.2.
(2.4) E[| Mi|3]<6Ky(xh, t)¥* i=2,..,n, t=0.
Proof. Set, for N >0,

{inf {s; |M{|=N}
TN:
+oo if{ }

é.
The formula on stochastic integral states that
; 3 INT § . . INTy
Minr,17=30" g a3 1Ml do,

t . . t .
=3’ gDI o M43 | M| Lz o

x? for x=>0

where g(x)={
—x? for x<0.

t
Now Sog(M;')I{TN>s}dM;' is a martingale with mean 0. Therefore,

taking the expectation, we have
t
EL | Minr, | 1=35] | 1M:1 T >0 do. |

t
<3u[ { | w11 dp. ]

Since |Mi| is a non-negative continuous submartingale, we can apply a
Doob’s inequality (cf. [6] pp.94) to |Mi| and get

E[ sup | Mi|*]"?<2E[|M{|*I
oss=st

Because of this, we have
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B[ )11 do. | < EC sup, | Mo EL sup | 11|72 E 7]
<2E[|M]|*]'?E[pi]"* <2 E[p3]*".
Thus we see from (2.2) that
E[|Minr, 1< 6Ky (5, 1)¥4,

Letting N— + o0, we obtain the inequality (2.4). Q.E.D.

Lemma 2.3. There exist positive constants Ks, Ky, Ks, hy and h,

depending only on c¢i and cy such that

(2.5) E[(x}—aD)" 1< Ks3|t—s|? for all t, s=0 such that
lt—s| <hi,

(2.6) El(pi—o ) 1< K4lt—s|? for all t, s =0 such that
[t —s| <hs,

2.7 E[IMi—M:|"]<Ks|t—s|5*  for all t,s=>0 such that
|t_3|§h23 i=2,~~, n.

Proof. We begin by proving the estimate (2.5). According to

the formula on stochastic integral, for ¢ =s>>0, g satisfies the equation
(=) =4 5 [ i s 0w aBi+4f (vi— 210 (e du
+4{ i—ardet6 5[ (i - 1roitendu.
From the same argument given in Lemma 2.1, we see
E[gg's(x;—xg)Sa;.(x,,)dB,{]=o.

Since ¢ is a solution of (1.1), we have by the condition (ii) of Definition
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1.1 that
(' (st dp= [ a0,
Taking the expectation, we have
ECGi— 2 I { (i = )0 (1) du
+6§E[S:(x,a—xg)z(r}.(x,,)Zdu]
g4CZS:E[(x;—xg)**]wdu+6C§S:E[(x,l,—xg)4]“2du.

This functional inequality provides us with the estimate (2.5).
Next we shall prove (2.6). It holds from (1.3) that

n (t t 4
(=g ={xi—ai+ £ o3z aBi+ | ey duf
i=1)s

t 4 t 4
<@+ {wi-a'+ 5 ([ oo ang) +({ peadu) |
. =1 s s
Taking the expectation, we have

El(pi— 0] <+ 2°{ BLG -1+ B B[ ([ oteany) |

+E[<S:b‘(xu) du>4 )
<2 {pist=e T+ 30 B[ ([ oionrau) |
G —3)4}

< (n+2){E[(x} —2)*]+36c1(t —5)*+ cf(e —5)*}.

Combining this inequality with (2.5), we obtain the estimate (2.6).
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Finally we shall prove the estimate (2.7). It follows by using the

formula on stochastic integral that
t t
iy =af (= bty anti+ 6 (Mi— iy do.

t
S (Mi— M:)3dM} is a martingale with mean 0. Hence, taking the ex-
s

pectation, we have
t
ECMi— M =8| | (M- M do, |
=6E[ sup |M,—M;| or—¢s)]

< 12E[(Mi— M) ]V2E[(9i— @) TH4.

Using the formula on stochastic integral and taking the expectation, we

see
ECIMi— M 1) =10 B[ (| | Mi— M} *de, |
<A0E[(Mj—MH*PIE[(gs— ) I
<40-12°PE[(¢:— o) "
Hence we obtain (2.7) from (2.6). Q.E.D.
Let

Ai=t+o, r1@)=A7'=inf{s: 4;>1t}.
Obviously 7(t) is an {&;}-stopping time.
Lemma 2.4. There exist positive constants K¢ and hs depending

only on ¢y, ¢y, c3 and c4 such that

(2.8) E[(xf —x4e) 1< Ks|t—s|*

for all t,s=0 such that |t—s|<hs, i=2,--.,n.



On the existence of solutions 163

Proof. The formula on stochastic integral states that, for : =>s=>0,
. C I O .
(rico—wh) =45 (' (rim vl i) dB]
j= s
v(t) . . X
+4{" " (wh = whn) V()
7(s)
noeve .
+4 3" iz ei(zIAM;
i=2Jv(s)
S x'r(S)) B (x,,)d%,
GZS (xi— xa’}(s))zo‘j-(xu)zdu
=
oo N2/~ N2
+63 (' (i ad)ei(E) o
j=2J7(s)

By an argument similar to Lemma 2.1, we see

=1J7(s)

n ()
[ £ et wieo oitedBL]
J

zo(r® ; ; ;
=5 5[ (st —wheoeiaaam; |=o.
j=2

7(s)

Taking the expectation, we have

; . 7(8) A .
E[(xiw —x-’y(s))4:|§402E[S ) )lx,;—xl,(s)lsdu:l
(s
7(s)

7(‘) ; A 3
+4cE S — x| d%]

”/(t) ; X
+66% FS x.‘,(s)lzdu:l
7(s)

—I—6c2E W) P —xin|id
3 7(8) 7(s) Pu

"y o ,
§4(cz+c4)E[S ( )|x,’,—x!,(s)|3dAu}
v(s
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v(t) . .
+6(ct+eDE[ [ |wi—wio|*dd, ]
7(s
&
<4(c2t+ C4)S E[(xiw—xi)* ¥ du

t
+6(c§+c§)$ E[(xia— i) T2 du.

This functional inequality provides us with the estimate (2.8).
Q.E.D.

Remark 2.1. Lemma 2.3 and Lemma 2.4 hold for a solution of
(1.1) with any initial distribution.

Lemma 2.5. Let N and T be arbitrary positive numbers. Then

we have

1
(2.9 P{max |¢:| >N} é_—KZ(xOE D )
0StST N

1 2
(2.10)  P{max |x}| >3N} <Igadise,rsmy+ Ko(x5, T2)+c1T ’
0stsT N

1=2,.--y n,

1 1/2
(211)  P{max |Mi| >N} < Kalab IV
0stsT N

(2.12) P{orsn‘z;}; |2 >4N}Y < Igadise,r>Ny

n c2Ky(xb, T)+ 3T+ ciKo(x}, T)'?
N2

i=2,..., n.

Proof. By (2.2) and éebyéev’s inequality, we obtain the estimate
(2.9).
The estimate (2.11) is an immediate consequence of (2.2), (2.3)

and the martingale inequality.
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Now we shall prove (2.10). We have

max | x}| < | x}| + max
0stsT 0sts

5 {\ o1tz anl|

Tlj=1J0

t
+ max | b'(x,)ds

0s?tsT |0

+or

n (t .
< | x}| + max ggoa;(xs)dB; +o T+ or.

0stsT | j=1

n (t .
Since ZS 03(xs)dB] is a martingale, an application of the martingale
j=1Jo

inequality gives

£ o3z 0an!

Pl <2

0stsT

Eln

5{(£],ne0emt) |

el a3

I

2!

Hence (2.10) follows from (2.9).
Finally we shall prove (2.12). In the same way as (2.10), namely,
noting that the following inequality, we obtain (2.12),

P{ max

0stsT

n n T ;
5 ( cioami| > Ny < B0 | eiz)amy)

j=e = N? =2)0

= _1? i} E[Srrj-(?cs)zd(as:I

Q.E.D.

Now we shall prove the following theorem by appealing the above
lemmas.

Theorem 2.2. Suppose 6, b, t and [ are all time independent,
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bounded and continuous. Then, for any probability law p on D, there
exists a solution of (1.1) for coefficients 0, b, v and B with initial distri-

bution p.

Proof. Our method is similar to Skorohod [9] (cf. [117]). First
we shall prove the existence of a solution starting from xo€D. We
can take an approximate sequence (0™, b, (™ R(™) such that

(i) (6™, p\™, M B _, ,. . satisfy the conditions of Theorem
2.1,

(i) (g™, ™, ™ RUM) _, . . converges uniformly on every com-
pact set to (0, b, 7, ).

Let t™={x, B, M{"™, ¢} be a solution of (1.1) for coeffici-
ents g™, b, t(™ and B™ starting from x, defined on (™, F™),
P (1)),

Let

AP =1+, r"()=inf{s: 47" >1}.

Lemma 2.5 implies that

lim sup P™{ max I(p"”’l >N}=0 T>0,
Nodoa mz1

lim sup P™ ){max |2 | >N}=0 T=0,
Notoo mz1

lim sup P™{ max |M‘”” | >N}=0 T=0.
Notoo mz1

Lemma 2.3 implies that, for any ¢>0,

lim sup P™{ max |x™1—x™1|>e}=0 T=0,
kLo mz1 lt—s|sh

051,557
lim sup P™{ max |(p‘"’)—¢‘s""| >e}=0 T=0,
rio mz1 If=s|

oSt 2%

lim sup P™{ max |[M{" —M{|>e}=0 T=0.
Klo mz1 1t—s|sh
0s7,55T
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It follows from (2.9) that, for any &>0, a constant T’'>0 exists such
that

sup P {y™(T)< T} < ET/ .

mz1

From (2.6), an application of Kolmogorov’s theorem (cf.[12] pp. 32)

assures us the existence of a constant K such that

sup PO{| 4" — AP | <K |t —s|"®

mz1
/
for all 0<¢, s<< T” such that [t—s]| g1}g1—87.
Since 7™ is the inverse function of 4™, we see

y(m) [ M) () ﬁjl)a
sup P {Irm@—r o1 = (12

e/

5

for all 0<t, s<< T” such that |[t—s] él}gl—

Therefore

sup P™{ max |x"™i—x™i]>e}
mz1 |1—s|=h
0s)s5T

<sup PM{y™(T)=T and max | x™i— x™Mi| >e}
b

+sup P {y™(T )< T}
<sup P™{y™(T")=T and
mz1

(my i (m) i ’

max 2 mI() — X oy () >e g,
”_s|§Kh,,,| Py — 2 Pihisy | >e} +
0st,ss7T’

Hence it follows by Lemma 2.4 that, for any >0,

}tlln(;l 7?;;1) P(m){ltl}lall;{h |x(m);_x(m)§| >€}=0 i=29"'n> Tgo'
0st,ssT
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Consequently we see that {r™} is conditionally compact in Prohorov
topology (cf.[97]). Therefore, for a suitable subsequence {m,}, we can
construct a family of stochastic processes {f"®} and a stochastic pro-
cess £ on Wiener space (2, z, P) which satisfy the following pro-
perties;
(i) for k=1, 2,..., t""¥) has the same finite dimensional distribu-
tion as ¥ and is continuous almost surely,
(ii) g is continuous almost surely,
(iii) for any &>0,
lim P{ max | —yx,| >e} =0 T=0.
kot 0SIST
For simplicity we write {k} instead of {m,}.
Let

g(k): {'&;(tk)v Bik)3M(tk)a @gk)} k=1, 2,..., L= {xta By, M, ¢t}’

gP=0{i; s<1} k=12, #=0{5; <1},
'@(tk)z/-\é(sk) k=1, 2,.., yt:[\gu
s>t s>1

where 0{%¥; s=<t}(resp. 6{t;; s=1t}) denotes the smallest o-field rela-
tive to which {§¥; st} (resp. {t;; s<t}) are all measurable. Then,
noting that £® has the same finite dimensional distribution as r®, it
is simple to check that £® is a solution of (1.1) for coefficients g®,
b®, ¢® and B® starting from x, defined on (2, Z, P: {#®}). Since
{(B®)?} is uniformly integrable, it is easily seen that B, is an {&}-
martingale such that

<B', B'>,=6t i, j=1,--, n.

Lemma 2.1 and Lemma 2.2 imply that {$®®} and {(#/®)?} are uni-
formly integrable. Therefore we can easily verify that M, is an {&#}-

martingale and
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<Bi, Mi>‘=0 i:]_,..., n,j:Z,..‘, n,

<M, Mi>,=00; iy =250 M.

t

n
From a result of Skorohod [9] (cf. [11]), for i=1,..-, n, 2, oo‘(”)}(ﬁc‘s’”)

1
t
[ oiea

J

t n

dB®i (resp. S b®i(£¥)ds) converges in probability to 2 .
0

(resp. S;b‘(xs)ds).

i=
Now we shall verify that

-

n t n Ct
@19)  Efemiaman @i 5 @]

in probability 1=2,-.y 1.

Let

t A . 2~
= COIBAA®E, = WIGE) k=12

t
y=| FiEdM, a,= (%)

For any positive numbers &, ¢ and any partition of [0, ¢], 0=t <t <
I S0=t,

Py ~ -1 A .
PAI = ol >ey= P10 — D alb (s~ 101 >4
o~ -1 . ; €
B G115
- -1 . A . -1 . .
+P{ Dol — A — 5 o0, O, — M) | > 5

:I1+I2+I3.

We put 6 =max|ty,1—t,|. An application of the martingale inequality
»
gives
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< 9 AP w2 gpm
Il=—e—2—E pzo t |as —a"’l s
- r4
g_g_ E[ sup |al® —a®|2p®]
8 |u—s| =8
0s%,ss¢
< E U g 412 (Y2112
<5 B sup o TPECH®Y]
0s#%,s=t

The equicontinuity and uniform boundedness of {r*i} assure us the

estimate

lim sup El: sup la —al® |4 ]=0.
§10 k=1 lu—s|
0=u, sgt

From (2.2), E’[((Z‘,"’)Z:} is bounded in k. Hence there exists a constant

’

01>0, which is independent of k, such that I, <8T for all §<4d,. By

4
the same argument, a constant 0,>0 exists such that I, <—83— for all
0=<0;. When we fix a partition satisfying & <0, AJ., it is clear that a
7/
positive integer k; exists such that I <~§— for all k=k,. Hence it

follows that
Py —y|>e<e’ k=h
and (2.13) is proved. In the same way as (2.13), we can verify that

S B@H(EPYdPP oz S Bi(z,)dy, in probability i=2,..., n.
Therefore, with probability one,

xl=xf+ Z S o¥(x;)dB] —I—S b xs)ds+ ¢,
n ct t n ot .
xi=xit zg o‘j-(xg)ng'+S bi(x)ds+ zg ci(x,)dM
ji=1Jo 0 j=2Jo

t
+( #Gade. =2,
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Since the convergence of {%'¥!} and {@'¥} is locally uniform in ¢, we
find that

t
[ Lo(xdg =

Hence r is a solution of (1.1) for coefficients 0, b, 7 and (8 starting
from x.
The proof in the case of a general x4 is similar to above, if we
note that we have similar estimates by Remark 2.1 and Lemma 2.5.
Q.E.D.

Now we shall state the theorem in the case of time dependent

coefficients corresponding to Theorem 2.2.

Theorem 2.3. Suppose 6,b, v and B are all time dependent,
bounded and continuous. Then, for any probability law u on D and any
to=0, there exists a solution of (1.1) for coefficients ¢, b, v and B with

initial distribution u at time tg.

Proof. By setting

g1+ 1=0 j=1, nt1, Gia=0  i=1,..., n,
brt=1, =0 j=2,..,n+1, tia=0  i=2,..,n,
grl =0, x=(xl, 5",

oi(x)=0i(x"*, xt,-, ") i, j=1,., n+1,

bi(x) =bi(x"*, x1,..., x™) i=1,., n+1,
ti@)=ti(x"*, 0, x%..., ") i, j=2,..., n+1,

Bi(}’)zﬁi(x"-*la 03 xz,"" x”) i=2,"‘3 n_l'la

the case of Theorem 2.3 is reduced to the case of Theorem 2.2.
Q.E.D.
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§3. The existence of solutions in the sticky case.

In this section we shall discuss the existence of solution of (1.2).

Theorem 3.1. Suppose ¢, b, v and B are all time independent,
bounded and continuous and t={x; B, Mi, ¢:} is a solution of (1.1)
for coefficients 0, b, t and B defined on (2, F, P; {F:}). Further, sup-
pose |6Y(x)| is positive for all x €D. Then

(3.1) E[S;Iap(xs)ds =o] =0

Proof. First we shall prove in case that a constant ¢>0 exists
such that |0'(x)|=c for all x€D. From a result of S. Watanabe

[13], there exists a continuous orthogonal matrix Q such that

Io-l(x)|’ 03"'; 0
0'Q'1=< >
* *

Let
W=gQ1, ¢®=__L o0 po=_1 g
’ 0% (2)] 0%
d= (gt 0s 0)s BB+,
1, 0., 0
Then ¢ = and b®*=0.
% *

Let rM={x, BV, MV, ¢!} be a solution of (1.1) for coefficients

6@, 5, ¢ and B defined on a quadruplet (2, #, P; {#{}), where
F=FL.

Since x{’! is a one-dimensional reflecting Brownian motion, it is

well known that

t
(3.2) E<1>[Soza,,(xgv) ds]=o £=>0.
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Let P® be a probability measure on (£, &) such that, for BEF o

n n t
PO(B)= SBexp[— 5 S' Z(x 1) dBY — % > So d‘(x‘sl’)zds:ldP‘l)
0

i=1 i=1
and define
) S )
B(t2)1=B(‘1)t+Sodt(x(sl))ds i=1,..., n,
(2) — A (1) 2 — 1) p(2) — (1) 2) — gz (1)
x@P=x, M; =MY, P =@, F=F .

By the Cameron-Martin’s formula (cf. [5]), (P={x?, BP, M{®, ¢}
is a solution of (1.1) for coefficients 0¥, b, ¢ and 8 defined on (2,
F, P®; {#?®}). Then we have

E(Z{S;Iap(x‘sz’)ds]=E(‘)[<S;Iap(x gv)ds) x

exp[— i S;di(x(sl)) dB(sl)i __;__ i S;di(x(sl))zds:l:l
i=1

i=1

t 2712 nocto . .
gyn[(gozw(xgv)ds) ] E®[exp| 23] Sod*(x;v)ngw
-1

n t 1/2
-2 dGpyds]]
i=1Jo
The boundedness of d(x) assures us that
n (t . .oonot
E(D[exp[—zz Sod'(xgv)ngw— 5 Sodf(xgv)st]] is finite for all 1=
i=1 i=1
0. Hence (3.2) shows that

t
(3.3) E<2>[S013D(xgz))ds]= 0 t>o0.
Define

t 1 o
A,=SOW¢1§, A7 =inf{s; 4,>1},
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3)__ p(2 (3) — g (2) (3) — ,.(2) — g2 — (2
PO =p®, F =F 4 xta)_‘xffh’l) M(ts)_MEA;)ls (0;3)_4054;)"

¢ 1
=\ - - (2)
B(’s)—go )] dBYy}s.

By the theory of time change (Doob’s optional sampling theorem), r®=

{x{¥, B®, MP®, ¢} is a solution of (1.1) for coefficients ¥, b, ¢
and B defined on (2, &, P®; {#F®}). Therefore it follows that

t t
I [

A-1

=£O[(* Lox)d, .
If ¢<|6'(x)|<c), then we have
A7t clt ds
EO| [ Lap(a@)ad, |<EO[ (¥ Lote) %]
Therefore we see from (3.3) that
t
(3.4) E<3>[Sozap(xg8>)ds]=o =0,
Define
PO=PO,FW =g, 0=, M=, g0 =i,
3 n t . :
BWi— ZISOQ'I}(x§3’)dB§3“ i=1,.., n.
F=
As is well known, = {x®, B®, M® ¢®} is a solution of (1.1) for
P t

coefficients ¢, b,  and 8 defined on (2, &, P™; {#¥}). Hence it fol-
lows from (3.4) that

'
E(4)[SOIaD(x§4’)dsi|=O 1 =0.

Since any solution of (1.1) can be constructed in this way, the asser-
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tion in this case is proved.
Now we shall prove (3.1) in the general case. There exists a sequ-
ence {0}, 1.2, such that, for m=1, 2,..., 6" satisfies the conditions

in the above case and ¢ (x)=0(x) for |x| <m. Set, for m=1, 2,...,

{ inf {s; | .| Zm}
" e it{ Y=g

Then the above result shows that
NS,
E[S IaD(xs)ds]:o m=1, 2,..
0

Noting that we lim S,,= -+ oo, we obtain (3.1). Q.E.D.

M= oo

Theorem 3.2. Suppose 6,b, v and [ are all time independent,
bounded and continuous and 0 is time independent, bounded and Borel
measurable. Further, suppose |6'(x)| is positive for all x €D. Then,
for any probability law u on D, there exists a solution of (1.2) for
coefficients 0,b, v, 8 and o with initial distribution u.

Proof. By Theorem 2.2, there exists a solution ¢ of (1.1) for
coefficients ¢, b, ¢ and 8 and by Theorem 3.1, it satisfies (3.1). In the
same way as [ 14 ], we can get a solution g of (1.2) from Z.

Q.E.D.

Now we shall state the theorem in the case of time dependent

coefficients corresponding to Theorem 3.2.

Theorem 3.3. Suppose ¢, b, v, 8 and 0 are all time dependent,
bounded and continuous and |6*(t, x)| is positive for all (¢, x) €[0, o)
x D. Then, for any probability law 1 on D and any ty==0, there exists a
solution of (1.2) for coefficients G, b, v, B and p with initial distribution
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UL at time t,.

Proof. By setting

0i1=0 i=1,..,n, 071=0 i=1,..., n+1,
b"tl=1,1i,,=0 i=2,..,n, rI'=0 i=2,..., n+1,
B**1=p,

the case of Theorem 3.3 is reduced to the case of Theorem 3.2.
Q.E.D.

In Theorem 3.3, we cannot remove the continuity of p. This situa-

tion is different from Theorem 3.2.

10
Example. Let n=2, x,=(0, 0), 6=(0, 1), r=0, 3=0, o‘=<O O>

1 for x%>t
0 for =x%<t.
Then, by Theorem 2.2 and Theorem 3.1, there exists a solution of (1.1)
for coefficients 0, b, 7 and [ starting from x, and it satisfies the pro-

and p(z, x) ={

perty (3.1). But there exists no solution of (1.2) for coefficients 0, b,
7, B and p starting from x, at time £,=0.

Proof. Suppose that there exists a solution = {x;, B;, M;, ¢;} of
(1.2) starting from x, at time t,=0 defined on (8, &#, P; {#:}).
Let

inf {s; x2<s}
T= )

+oo if{ }=¢.
Then T is an {&;}-stopping time and we put £2,={w; T(w)>0}.
The condition (iv) of Definition 1.2 implies that
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t
x?—x§=S Ip(x)du<t—s t>=>s=>0.

Since x?=t for t <X T, we have

t
Solap(xs)ds=0 1< T.

Therefore

t
S 0(33 is)d¢s=¢t:0 téT.
0

By the definition of stochastic integral, this implies that

t
x}=SOID(xs)dB}=B} t<T.

Therefore, B}1=>0 for tT. Hence P(£,)=0. Because of this, we

have

t ¢ '
x2= SOID(xs)ds=t — golap(xs) ds=t— Sop(s, X )des

I
=~

t =0,

and this is a contradiction. Q.E.D.

(1]
£2]

£31]

[4]
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