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§ 1 .  The purpose o f this paper is to generalize the result o f our previ-

ous paper [ 2 ]  to  the analytically unramified local ring case. Let R  be

a  one-dimensional analytically unramified noetherian local integral domain

with maximal ideal nt. Let K  be the quotient fie ld  o f R, R the in-

tegral closure o f R  in K  and c  the conductor o f R  in  R. It is clear

that the length l(R / R ) o f th e R -m odule R / R  is finite since R  is a

finitely generated R -m o d u le . The length / (R / R ) is called the degree
o f  singularity  o f  R  (c f. [3 1). Since c  is  a non-zero ideal in R, the

length / (i"? /c )  o f th e  R-m odule R/c is finite, and similarly l(R/c) is
finite. Set =1 (R/R ), c=1 (R/c) and d-=1(R/c). Since R  is a  one-

dimensional Macaulay local ring, the length / (Extlz(R /m , R ))  of the

R -m odule  E xtV R /m , R ) is an invariant of R  and is called the ty pe of

R (c f. D D . Set ,ct --= / (Exti(R/m, R)).
We shall prove the following theorem which is a  generalization of

Theorem 2  in  [2 ] .

Theorem. T he assum ptions and notations being as  above, suppose
furtherm ore that R/O=R/ni f o r  a l l  m ax im al ideals UN o f  R. T h e n
the follow ing inequalities hold:

(1+1/,a)6<c
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Coro llary . With th e  same assumptions a s  in  t h e  above theorem,
R  is  a Gorenstein ring i f  and  on ly  if c=26. 1 )

§ 2. In this section we shall prove the Theorem and the Corollary in §1.
W e will use the same notation as in §1. Throughout this section R
is  a  one-dimensional analytically unramified noetherian local integral
domain such that R/931=R/in for all maximal ideals 937 of R. We
say that an ideal in R  is  a  contracted ideal i f  it  is  the contraction
of an ideal o f R .  We first show the following:

Lemma 1. There exists a  strictly descending chain o f  contracted

ideals in  R:

R -- = a0D a1 j•••D ad - 1 ad=c

where d=1(R /c).

P ro o f. Let c ' be the length of the R-module R/c. Then there is

a strictly descending chain of ideals in R:

R=130 OiD

Since 0 i-1/ 0 i is a simple R - module, for some maximal

ideal T1 o f R .  Hence, by our assumption, Vii-1/0;: -__' R / m . This shows

that Oi_i/Oi is a simple R-module, i.e., / M i_0130=1 2 ) and that c '=
c ( =l( R /c ) ) .  Hence the R-module Oi+ RrAii_ i  coincides with 58 i  or

Consider the chain of R-modules

(4) R=RnO0DRn931)•••DRnOc_ipRn0,--c.

Since (R n01_1)/ (R w e  have either R n
Oi_1=RnO i o r  /((Rn81_1)/ (Rn81))=1 . Therefore we have the

1) In  case when R  is  a  locality over an  algebraically closed field Serre has
proved this fact by using differentials (cf. [4]).

2) We denote by l(M ) the length of an  R-module M.
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required chain by deleting the superfluous terms of the chain (*).
q. e. d.

Let a be an ideal in R .  We denote by a- 1 - the fractional ideal of

R  consisting of the elements x  in K  such that x aCR .

Lemma 2 .  c '  =

P ro o f »  Since R  i s  a semi-local Dedekind domain, R  i s  a  princi-
p a l id ea l d o m ain  (cf. D a Let c= aR and let x  be an element in c- 1 .
Then we have xa E C=aR and whence x E R .  This shows that c- 1  R .
The opposite inclusion is obvious.

q. e. d.

Consider a strictly  descending chain of contracted ideals in R:

R =aoDaiD•••Dad_iDad=c

where d =l( R / c ) .  Then / (ai _ i /ai ) = 1 for i =1 ,..., d, and w e have the
following chain o f (fractional) ideals of R:

R=a,7 1 DclViD •••DaT I DRDaiD •••pcid-iDad=c.

Set d1=/(a/a7 1 ). W e have the equalities :

(1)
d

c = d + 6  and 6 = E
1=1

where c = / (R/c) and 6 =l(R /R ).
Let us now prove the following inequalities :

(2) 1 .<6 i.</i for i = 1,..., d

w here a  is the type of R ,  e., it = / (Ext1
R (R/m, R)).

The first inequality 1 Si i s  the direct consequence of the follow-

3 ) The author's original proof is not simpler than the present one which is
due to the referee.
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ing  two lemmas.

Lemma 3 .  L et a  be a n  ideal in  R  a n d  b a  contracted ideal i n  R.
I f  b is properly  contained in  a , then th e  extended ideal b R  is also proper-
ly  contained i n  aR.

P ro o f . Suppose that aR =  b R . Then a C aR nR = bR n R = b , and
this is a contradiction. q. e. d.

Lemma 4 .  L et a  a n d  b  be ideals i n  R  su c h  th at c b  ( a .  I f
a R  b R ,  then 1(b - 1 / a - 1 ) > 1.

P ro o f . L et T t i ,• V s b e  the m ax im al ideals of the sem i-local
Dedekind domain R .  Let c = Ttp• • •Tries , br?= TVit'...931'p and aR = VT' • • •
11flns

4 . Since c b R  aR, ci ni > m i fo r all i. Since b R  is properly

contained in  aR , w e m ay assum e that n >  mi. Let %  b e  th e  ideal

931f1- 1 - m iTip...ncs s in  R .  We first show that b-1. Since the pro-

duct K bR is T lf. ' - 1 - 7 " n 1 1 4 2 ' 2 •••sffle» + ns and since c  —  1 — m i+  n  > ci,
% b R  c .  Hence ab c R  and  this shows th a t 1cb-1. Next we must

show that a - 1 .  Suppose that C a- 1 . S ince Ka( = K aR ) is an ideal

in  R  and is also an  ideal in  R  and since the conductor c is the largest

ideal in  R  which is also an  ideal in  R, we h a v e  a a  c .  O n  th e  other

hand, Kci =KaR = p+m2...nsc,+m,. Hence we h av e  c1 - 1 >c 1 ,
and this is a contrad iction . Thus we have Therefore a - 1  is

properly contained in b ' hence / (b- 1 /a - 1 ) > 1. q. e. d.

T h e proof of the second inequality <a i n  ( 2 )  is entirely the

same a s  that of Proposition 3 in [2] and we omit it.

Notice that /1=6 1 since In -= a l  (cf. [2 1). T h e  Theorem in  § 1

follows directly from (1) and  (2 ) (see Remark 3  below).

Remark 1. I n  Lemma 1  th e  ideals a i are  d iv iso ria l,  e . ,  a • =

(a7 1 ) - 1 . I n  f a c t ,  since a l  = ni, w e  see  eas ily  th a t a l  i s  divisorial.

Hence, for i > 1 it is sufficient to see that if  a 1 _1 i s  divisorial, then so
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i s  a i . Since a i a i _ 1 ,  w e  have a i  (c i7 1 ) - o v i y i  = c i i  1 . Suppose

th a t  (oil.) - 1  = (a7_1
1 ) - '. Then c17 ' =  ( (c i ')  ')_ 1-1 ( ( a 7 21 )-1)-1. a 7 11 .

This contradicts /(a7 1/a7l 1 ) > 1. Hence (a7 l- ) - 1  is properly contained

in n.1_1 . Since /(cti_ i /a i ) = 1 , we have a i = (a7 1 ) - 1 .

Rem ark 2 . Since ,a = d i  <6 , we have 6 + 1 <(1+1/ /06. Hence

the inequalities in  th e Theorem in  § 1  are better than the inequalities

6 +1<c < 2 6  in  DU, and the lower bound (1+  1/p) for the ratio c/6
is obviously the best possible. It may happen that (1+ 1/07 =c< 26

(see Examples 1  and 2  in  D I .

d
Remark 3•4 )  S in c e  6 — a= E 61 > d — 1  b y  ( 2 ) ,  w e  have the

i= 2
inequality /.1 <26 —  c +1 (cf. Bemerkung h ) in  § 2 , EC).

EHIME UNIVERSITY

References

[1] T. Matsuoka, Some remarks on a certain transformation of Macaulay rings,
J. Math. Kyoto Univ. 11 (1971), 301-309.

[2] ,  On the degree o f  singularity o f  one-dimensional analytically irre-
ducible noetherian local rings, J. Math. Kyoto Univ. 11 (1971), 485-494.

[3] M. Rosenlicht, Equivalence relations on algebraic curves, Ann. M ath. 56
(1952), 169-191.

[4] J.-P. Serre, Groupes algébriques et corps de classes, Hermann, Paris 1959.
[5] O. Zariski and P. Samuel, Commutative algebra I, Van Nostrand, Princeton

1958.
[6] J. Herzog und E. Kunz, Die Wertehalbgruppe eines lokalen Rings der Dimen-

sion 1, S.-B. Heidelberger Akad. Wiss. Math. -naturw. 1971, 2. Abh..

4 )  Th is remark was added on September, 1971 and the second inequality in the
Theorem in §1 was amended to the present form.


