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§1. The purpose of this paper is to generalize the result of our previ-
ous paper [ 2] to the analytically unramified local ring case. Let R be
a one-dimensional analytically unramified noetherian local integral domain
with maximal ideal m. Let K be the quotient field of R, R the in-
tegral closure of R in K and ¢ the conductor of R in R. It is clear
that the length [(R/R) of the R-module R/R is finite since R is a
finitely generated R-module. The length I(R/R) is called the degree
of singularity of R (cf. [3]). Since ¢ is a non-zero ideal in R, the
length I(R/c) of the R-module R/c is finite, and similarly [(R/c) is
finite. Set 0=I(R/R), c=Il(R/c) and d=I(R/c). Since R is a one-
dimensional Macaulay local ring, the length I(Extk(R/m, R)) of the
R-module Exth(R/m, R) is an invariant of R and is called the fype of
R (cf. [1]). Set x=I(Extj(R/m, R)).

We shall prove the following theorem which is a generalization of
Theorem 2 in [2].

Theorem. The assumptions and notations being as above, suppose
furthermore that R/M=R/m for all maximal ideals MM of R. Then
the following inequalities hold:

A+1/m)0<c<20—p+1.
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Corollary. With the same assumptions as in the above theorem,

R is a Gorenstein ring if and only if ¢=20.V

§2. In this section we shall prove the Theorem and the Corollary in §1.
We will use the same notation as in §1. Throughout this section R
is a one-dimensional analytically unramified noetherian local integral
domain such that R/9=R/m for all maximal ideals M of R. We
say that an ideal in R is a contracted ideal if it is the contraction

of an ideal of R. We first show the following:

Lemma 1.  There exists a strictly descending chain of contracted

ideals in R:
R=a D0 D Dag_1Daz=¢

where d=I1(R/c).

Proof. Let ¢’ be the length of the R-module R/c. Then there is

a strictly descending chain of ideals in R:
R=%,2>%,>- DB, _; DB, =c.

Since B;_,/B; is a simple R-module, B;_,/B;~R/M for some maximal
ideal M of R. Hence, by our assumption, B;_;/B; ~ R/m. This shows
that B;_;/B; is a simple R-module, i.e., [(B;_1/B;)=1? and that ¢'=
c(=I(R/c)). Hence the R-module B;+ RNB;_; coincides with B; or
B;_,. Consider the chain of R-modules

(*) R=RNBDRNB; D - DRNB,_1 DRNB,=c.

Since (RN\B;_1)/(RNB;)~(B;+RNB;_1)/B;, we have either RN
B;_1=RNB; or I(RNB;_1)/(RNB;))=1. Therefore we have the

1) In case when R is a locality over an algebraically closed field Serre has
proved this fact by using differentials (cf. [4]).
2) We denote by [(M) the length of an R-module M.
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required chain by deleting the superfluous terms of the chain (x).

q.e.d.

Let a be an ideal in R. We denote by a~! the fractional ideal of

R consisting of the elements x in K such that xaCR.
Lemma 2. ¢ !'=R.

Proof.Y Since R is a semi-local Dedekind domain, R is a princi-
pal ideal domain (cf. [5]). Let c=aR and let x be an element in ¢7?,
Then we have xa€c=aR and whence x € R. This shows that ¢"*CR.

The opposite inclusion is obvious.

q.e.d.

Consider a strictly descending chain of contracted ideals in R:

R=aDa1D-Dag-1Dag=c

where d=I(R/c). Then l(a;.1/a;)=1 for i=1,..., d, and we have the
following chain of (fractional) ideals of R:

R=a;'D0a71;, D Dai'DRDa; D - Dag_1Dag=c.

Set 0;=I(a;l/a;1,). We have the equalities:

1) c=d+8 and 0= 30

i=1

where ¢c=I(R/c) and 0 =I(R/R).

Let us now prove the following inequalities:
(2) 1< <<u for i=1,...,d

where # is the type of R, i.e., #=1(Extk(R/m, R)).
The first inequality 1< 0; is the direct consequence of the follow-

3) The author’s original proof is not simpler than the present one which is
due to the referee.
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ing two lemmas.

Lemma 3. Let a be an ideal in R and b a contracted ideal in R.
If b is properly contained in a, then the extended ideal bR is also proper-

ly contained in aR.

Proof. Suppose that aR=DbR. Then aCaRNR=bRNR=0, and

this is a contradiction. q.e.d.

Lemma 4. Let a and b be ideals in R such that ¢ CbCa. If
aR bR, then L(b™'/a"})>1.

Proof. Let I,..., WM be the maximal ideals of the semi-local
Dedekind domain R. Let c=9M{"... s, bR=Ip... % and aR=T...
s, Since ¢cCORCaR, ¢;>n;>m; for all i. Since bR is properly
contained in aR, we may assume that n;>m;. Let 9 be the ideal
WM -mgpez.. NS in R, We first show that ACb~!. Since the pro-
duct ADR is P§—1-m+mgRge*n2. N+ and since ¢;—1—my+n,>cy,
AObR Ce. Hence AbC R and this shows that ACb™L. Next we must
show that ¢ a'. Suppose that A Ca~'. Since a(=WaR) is an ideal
in R and is also an ideal in R and since the conductor ¢ is the largest
ideal in R which is also an ideal in R, we have WaCc. On the other
hand, a=WaR = P~ 1Pege*m2.. . INes*™,  Hence we have c;—1>cy,
and this is a contradiction. Thus we have 20¢a"!. Therefore a~! is

properly contained in b~! and hence [(b™'/a"!)>1. q.e.d.

The proof of the second inequality 0;<lx in (2) is entirely the
same as that of Proposition 3 in [2] and we omit it.

Notice that g#=0; since m=aq; (cf. [2]). The Theorem in §1
follows directly from (1) and (2) (see Remark 3 below).

Remark 1. In Lemma 1 the ideals q; are divisorial, i.e., a;=
(a71)~! In fact, since a;=m, we see easily that a; is divisorial.

Hence, for i>1 it is sufficient to see that if a;_; is divisorial, then so
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is . Since a;Ca;_1, we have a;C(a71)"*C(aj};) '=a;_1. Suppose
that (a7 =(a72)™ Then a;j'=((a7)™")*=((a;2) ) =a7l.
This contradicts I(a;!/a7l;)>>1. Hence (a;!)”! is properly contained
in a;_;. Since I(a;_1/a;)=1, we have aq;=(a7!)""

Remark 2. Since x#=0,<0, we have 0 +1<(1+1/4)0. Hence
the inequalities in the Theorem in §1 are better than the inequalities
04+1<c<20 in [4], and the lower bound (1+41/x) for the ratio ¢/0
is obviously the best possible. It may happen that (141/#)0=c<20
(see Examples 1 and 2 in [2]).

Remark 3. Since 0 —u= Z&Zd—l by (2), we have the
inequality #<{20—c+1 (cf. Bemerkung b) in §2, [6]]).
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