On some doubly transitive groups of degree even such that a Sylow 2-subgroup of the stabilizer of any two points is cyclic

By

Hiroshi Kimura

(Communicated by Professor Nagata, November 13, 1971)

1. Introduction

Let \mathcal{Q} be the set of points $1, 2, \dots, n$, where *n* is even. Let \mathfrak{G} be a doubly transitive permutation group in which the stabilizer $\mathfrak{G}_{1,2}$ of the points 1 and 2 is of even order and its Sylow 2-subgroup \mathfrak{R} is cyclic. Let τ be the unique involution in $\mathfrak{R} = \langle K \rangle$. By a theorem of Witt ([13 Theorem 9.4]) the centralizer $C_{\mathfrak{G}}(\tau)$ of τ in \mathfrak{G} acts doubly transitively on the set $\mathfrak{I}(\tau)$ consisting of points in \mathcal{Q} fixed by τ . We shall consider the case such that the image $\chi(\tau)$ of this representation of $C_{\mathfrak{G}}(\tau)$ contains a regular normal subgroup. In this paper we shall prove the following result.

Theorem 1. Let \mathfrak{G} be a doubly transitive group on $\mathfrak{Q} = \{1, \dots, n\}$, where n is even, not containing a regular normal subgroup. Assume $\mathfrak{X}(\tau)$ contains a regular normal subgroup and all Sylow subgroups of $C_{\mathfrak{G}_{1,2}}(\tau)$ are cyclic. Then one of the following holds:

- (a) n=q+1 and $PSL(2,q)\subseteq \bigotimes \subseteq Pl^{\prime}L(2,q)$,
- (b) n=28 and $\ B \Gamma L(2,8),$
- (c) n=28 and $(3, 3^2)$.

This theorem is a corollary of Theorem 2, Lemma 20 and Lemma 21. In the case n is odd we considered in [8] and [9].

Notation

 $\langle \cdots \rangle$: the subgroup generated by ...,

 $N_{\mathfrak{Y}}(\mathfrak{X}), C_{\mathfrak{Y}}(\mathfrak{X})$: the normalizer and the centralizer of a subset \mathfrak{X} in a group \mathfrak{Y} , respectively,

 $Z(\mathfrak{Y})$: the center of \mathfrak{Y} ,

- $O(\mathfrak{Y})$: the largest normal subgroup of odd order,
- $|\mathfrak{Y}|, |Y|$: the order of \mathfrak{Y} and an element Y of \mathfrak{Y} , respectively,
- $\mathfrak{J}(\mathfrak{U})$: the set of points of Λ fixed by a subset \mathfrak{U} of a permutation group on Λ .

 $\alpha(\mathfrak{U})$: the number of symbols in $\mathfrak{J}(\mathfrak{U})$.

2. Proof of Theorem 1

Let \mathfrak{G} be a doubly transitive group on \mathfrak{Q} not containing a regular normal subgroup in which the stabilizer $\mathfrak{G}_{1,2}$ of the points 1 and 2 has a cyclic Sylow 2-subgroup $\mathfrak{R} = \langle K \rangle (\neq 1)$. Set $|K| = 2^t$ and $\tau = K^{2^{t-1}}$. Let I be an involution with the cycle structure $(1,2)\cdots$. Then I is contained in $N_{\mathfrak{G}}(\mathfrak{G}_{1,2})$. In particular we may assume I is contained in $N_{\mathfrak{G}}(\mathfrak{R})$. Let us denote $O(\mathfrak{G}_{1,2})$ by \mathfrak{H} and $[\mathfrak{G}_{1,2}: C_{\mathfrak{G}_{1,2}}(\tau)]$ by r.

Let τ fix $i(\geq 2)$ points of \mathcal{Q} , say $1, 2, \dots, i$. Let \mathfrak{X} be a subgroup of $\mathfrak{G}_{1,2}$ satisfying the condition of Witt. Then $N_{\mathfrak{G}}(\mathfrak{X})$ act doubly transitively on $\mathfrak{I}(\mathfrak{X})$ by a theorem of Witt. Let $\chi_1(\mathfrak{X})$ and $\chi(\mathfrak{X})$ be the kernel of this permutation representation and its image, respectively. Then $\chi(\tau)$ is doubly transitive on $\mathfrak{I}(\tau)$. In this paper we assume $\chi(\tau)$ has a regular normal subgroup. Since n is even, iequals a power of two, say 2^m . Let \mathfrak{R}_0 be the set of elements in \mathfrak{R} inverted by I. Let d be the number of elements in $\mathfrak{G}_{1,2}$ inverted by I and for an element X of \mathfrak{R}_0 , let d(IX) be the number of elements in \mathfrak{P} inverted by IX. In [8] we proved the following three lemmas.

Lemma 1. $n=i(\beta(i-1)+\gamma)/\gamma$, where $\beta=d-g^*(2)/(n-1)$ and $g^*(2)$ is the number of involutions in \mathfrak{G} which fix no point of \mathfrak{Q}

22

and $r = [\mathfrak{G}_{1,2}; C_{\mathfrak{G}_{1,2}}(\tau)].$

Lemma 2. $d = \sum_{X \in \Re_0} d(IX)$ and d(IX) is odd. If $|\Re_0| > 2$, then β is even.

Lemma 3. (b) has one or two classes of involutions and every involution is conjugate to I or I_{τ} .

Remark 1. If \mathfrak{G} has a regular normal subgroup \mathfrak{S} , then \mathfrak{S} is elementary abelian and there exists an involution J in \mathfrak{S} contained in $C_{\mathfrak{G}}(\mathfrak{G}_{1,2})$. We may assume J=I, Thus $\beta=\gamma$ and $n=i^2$ since \mathfrak{G} has two classes of involutions.

Lemma 4. (C. Hering [5]). If i=2, then $PSL(2,q) \subseteq \mathfrak{G} \subseteq P\Gamma L(2,q)$ and n=q+1.

By this lemma we may assume $i \ge 4$. Let us denote $\Re \cap \chi_1(\tau)$ by \Re_1 .

Lemma 5. $N_{(\mathfrak{G})}(\mathfrak{R}_1) = C_{(\mathfrak{G})}(\mathfrak{R}_1)$.

Proof. By the Frattini argument $\chi(\Re_1) = \chi(\tau)$. Since it contains a regular normal subgroup and $N_{\mathfrak{G}}(\Re_1)/\mathcal{C}_{\mathfrak{G}}(\Re_1)$ is 2-group and $i \ge 4$, $N_{\mathfrak{G}}(\Re_1)$ must equal $\mathcal{C}_{\mathfrak{G}}(\Re_1)$.

Let \mathfrak{N} be a normal subgroup of $C_{\mathfrak{V}}(\tau)$ containing $\mathfrak{X}_1(\tau)$ such that $\mathfrak{N}/\mathfrak{X}_1(\tau)$ is a regular normal subgroup of $\mathfrak{X}(\tau)$. Let \mathfrak{S} be a Sylow 2-subgroup of \mathfrak{N} containing \mathfrak{R}_1 . By the Frattini argument it may be assumed that \mathfrak{S} is normalized by \mathfrak{R} and it normalizes \mathfrak{R}_1 . Thus $\mathfrak{S}/\mathfrak{R}_1$ is elementary abelian.

Lemma 6. We may assume that I is contained in \Re .

Proof. If \mathfrak{N} contains an involution J not contained in $\chi_1(\tau)$, then we may take J instead of I. Assume τ is the unique involution in \mathfrak{S} . If $\mathfrak{R} = \mathfrak{R}_1$, then \mathfrak{N} contains a Sylow 2-subgroup of $C_{\mathfrak{G}}(\tau)$ and hence it contains I. Since $\mathfrak{S}/\mathfrak{R}_1 \cong \mathfrak{N}/\chi_1(\tau)$ is elementary abelian and

 \mathfrak{S} is a quaternion group, i=4. Thus $\mathfrak{RS}/\mathfrak{R}_1$ is a Sylow 2-subgroup of symmetric group of degree four. Since $IK_1 = (1, 2)(3, 4)$, IK_1 is contained in the four group $\mathfrak{S}/\mathfrak{R}_1$. Therefore I is contained in \mathfrak{S} . This is a contradiction.

By Lemma 6 we may assume that \mathfrak{S} contains *I*. By the Frattini argument $N_{\mathfrak{S}}(\mathfrak{S}) \cap N_{\mathfrak{S}}(\mathfrak{R}_1)$ acts doubly transitively on $\mathfrak{F}(\tau)$ and the image of this representation equals $\mathfrak{X}(\tau)$. Thus every element not contained in \mathfrak{R}_1 of \mathfrak{S} can be represented in the form JK', where *J* is an involution and K' is an element of \mathfrak{R}_1 .

Lemma 7. If $i \ge 4$ and $\Re \supseteq \langle \tau \rangle$, then $\Re \supseteq \Re_1$.

Proof. Assume $\Re = \Re_1$. Let S be an element of order 2' in \mathfrak{S} . Since S^2 is contained in \Re , $S^{2^{l-1}}$ equals τ . Thus $N^{2^{l-1}} = \tau$ for every element N of order 2' in \Re . Assume that I is conjugate to τ . Since $C_{\mathfrak{G}}(\tau)$ and $C_{\mathfrak{G}}(I)$ are conjugate and K is contained in $C_{\mathfrak{G}}(I)$ by Lemma 5, $K^{2^{l-1}}$ must be equal to I. This is a contradiction.

Lemma 8. $\Re_0 = \langle \tau \rangle$.

Proof. Assume $\Re_0 \neq \langle \tau \rangle$ and $\langle K, I \rangle$ is dihedral or semi-dihedral. By Lemma 5 $\Re_1 = \langle \tau \rangle$. Since I is an element of \Re , so is I^{κ} . Thus II^{κ} is an element of \Re and $K^2 = \tau$. Therefore $\langle K, I \rangle$ is dihedral of order 8. By Lemma 2β is even and hence a Sylow 2-subgroup of $C_{\mathfrak{G}}(\tau)$ is that of \mathfrak{G} . If $\alpha(\mathfrak{K}) > 2$, then $C_{\mathfrak{G}}(\mathfrak{K}) = N_{\mathfrak{G}}(\mathfrak{K})$ since $\alpha(\mathfrak{K})$ contains a regular normal subgroup (cf. Lemma 5). Since $\langle K, I \rangle$ is non abelian, $\alpha(\mathfrak{K}) = 2$ and by Remark 1 $i = \alpha(K)^2 = 4$. Thus $\langle \mathfrak{K}, \mathfrak{S} \rangle$ is of order 16 and its exponent equals 4. By [2, Lemma 3] \mathfrak{G} contains a solvable normal subgroup. Hence \mathfrak{G} contains a regular normal subgroup. This proves the lemma.

Lemma 9. If $\Re \supseteq \Re_1 \supseteq \langle \tau \rangle$, then $|\Re_1| = 4$, and $K' = K\tau$.

Proof. Assume $|\Re_1| > 4$ and I is conjugate to τ . $\mathfrak{S}' = \mathfrak{R}\mathfrak{S}$ is a Sylow 2-subgroup of $C_{\mathfrak{S}}(\tau)$. Let S be an element of \mathfrak{S}' of order

 2^{l-1} . $S^{2^{l-j}}$ is contained in \mathfrak{S} , where $j = |\mathfrak{R}_1|$. Since $\mathfrak{S}/\mathfrak{R}_1$ is elementary abelian, $S^{2^{l-j+1}}$ is contained in \mathfrak{R}_1 . Since j > 2, $S^{2^{l-j+1}}$ is not identity element. Thus $S^{2^{l-2}}$ is equal to τ . This proves that $T^{2^{l-2}} = \tau$ for every element T of $C_{\mathfrak{S}}(\tau)$ of order 2^{l-1} . Since $K^I = K$ or $K\tau$, K^2 is contained in $C_{\mathfrak{S}}(I)$. $(K^2)^{2^{l-2}} = \tau$ must be equal to I. This is a contradiction. Assume I is contained in $C_{\mathfrak{S}}(K)$. Similarly it may be proved that $T^{2^{l-1}} = \tau$ for every element T of $C_{\mathfrak{S}}(\tau)$ of order 2^{l} . Thus $K^{2^{l-1}} = \tau$ must be equal to I since $C_{\mathfrak{S}}(\tau)$ is conjugate to $C_{\mathfrak{S}}(\tau)$. This proves the lemma.

Lemma 10. Let \Re_1 be as in Lemma 9. Then $|\Re| = 8$.

Proof. Assume that $|\Re| > 8$ and I is conjugate to τ . Let X be an element of \Re of order 8. Let J be an involution of $N_{\mathfrak{G}}(\langle X \rangle)$. Then $\langle X, J \rangle$ must be abelian, for if it is not abelian, then $\langle K^2, I \rangle$ must be dihedral.

We shall prove that every element of the coset $X \otimes$ is of order 8. Let XJK' be an element of $X \otimes$, where J is an involution and K' is an element of K_1 . If $(XJK')^2 = 1$, then XJXJ is contained in \Re_1 and hence J is contained in $N_{(\mathfrak{S})}(\langle X \rangle)$. Thus X' = X and $|XJK'| \neq 2$, which is a contradiction. Assume $(XJK')^4 = 1$. Then $(XJK')^2 = XJXJK'^2$ is contained in \mathfrak{S} . If $(XJK')^2 = \tau$, then X' is contained in $\langle X \rangle$, X' = X and |XJK'| = 8, which is a contradiction. If $(XJK')^2 = J'$ or J'K'', where J' is an involution $\neq \tau$ of \mathfrak{S} and K'' is an element of \mathfrak{S}_1 , then $X' = X^{-1}J'K'^{-2}$ or $X^{-1}J'K''K'^{-2}$. Hence $X^2 = (X^J)^2 = (X^{-1}J''')^2$ where J''' is an involution $(\neq \tau)$ of \mathfrak{S} and $(X^{-1})^{J'''}$ is contained in $\langle X \rangle$. Thus $X^{J'''} = X$, $X^2 = X^{-2}$ and $X^4 = 1$. This is a contradiction.

Let S be an element of order 8 in $K\mathfrak{S}$, and let \overline{S} be the image of S by the natural homomorphism of \mathfrak{RS} onto $\mathfrak{RS}/\mathfrak{S}$. Since the exponent of \mathfrak{S} equals four, $\overline{S} \neq 1$. If $|\overline{S}| \neq 2$, then $X\mathfrak{S}$ must contain an element of order two or four. This is a contradiction. Thus S contained in $X\mathfrak{S}$. Since $\mathfrak{S}/\mathfrak{R}_1$ is elementary abelian, $S^4 = \tau$.

Hiroshi Kimura

Since $\Re \mathfrak{S}$ is a Sylow 2-subgroup of $C_{\mathfrak{S}}(\tau)$, for every element Y of order 8 in $C_{\mathfrak{S}}(\tau)$, $Y^4 = \tau$. Since $C_{\mathfrak{S}}(\tau)$ is conjugate to $C_{\mathfrak{S}}(I)$ and X is contained in $C_{\mathfrak{S}}(I)$, $X^4 = I$, which is a contradiction. This proves the lemma.

Lemma 11. Let \Re_1 be as in Lemma 9. Then i=4 and \mathfrak{G} is $PSU(3, 3^2)$.

Proof. Since $\chi(\tau)$ contains a regular normal subgroup, so does $\chi(\Re)$ and $i = \alpha(K)^2$. Since I is not contained in $C_{\mathfrak{G}}(\Re)$, it may be proved by the same way as in Lemma 5 that $\alpha(K)$ must be equal to two. Thus i=4. Since $n-i=i(i-1)\beta/r$ is divisible by 8, β is even. Therefore $\Re \mathfrak{S}$ is a Sylow 2-subgroup of \mathfrak{S} of order 32. If \mathfrak{S} has subgroup \mathfrak{S}' of index 2, then it is doubly transitive on \mathcal{Q} and \Re_1 is a Sylow 2-subgroup of $\mathfrak{S}'_{1,2}$. If \mathfrak{S}' does not contain a regular normal subgroup, then by Lemma 7 the order of a Sylow 2-subgroup \Re_1 of $\mathfrak{S}'_{1,2}$ must be greater than 8. Thus \mathfrak{S}' has a regular normal subgroup and so does \mathfrak{S} . Thus \mathfrak{S} has no subgroup of index 2. By [1] \mathfrak{S} is $PSU(3, 3^2)$ since $C_{\mathfrak{S}}(\tau)$ is solvable.

Next we shall study the following two cases.

- (A) $\Re_1 = \langle \tau \rangle$ and \Im has one class of involutions
- (B) $\Re_1 = \langle \tau \rangle$ and \Im has two classes of involutions.

Since every element not contained in \Re_1 of \mathfrak{S} can be represented in the form J or $J\tau$, where J is an involution in $C_{\mathfrak{G}}(\tau)$, every element $(\neq 1)$ of \mathfrak{S} is of order two and hence \mathfrak{S} is elementary abelian.

Lemma 12. Every involution of $\Re \mathfrak{S}$ is contained in \mathfrak{S} .

Proof. Let $K^{2^{l-2}}S$ be an involution in a coset $K^{2^{l-2}}\mathfrak{S}$, where S is an involution of \mathfrak{S} . Then $(K^{2^{l-2}})^s = K^{-2^{l-2}}$. Thus S is contained in $N_{\mathfrak{S}}(\langle K^{2^{l-2}} \rangle)$ and $\langle S, K^{2^{l-2}} \rangle$ is dihedral. This contradicts Lemma 8.

Corollary 13. Every involution of $C_{\mathfrak{G}}(\tau)$ is contained in \mathfrak{R} .

27

Proof. Since $\Re \mathfrak{S}$ is a Sylow 2-subgroup of $C_{\mathfrak{S}}(\tau)$, this is trivial by Lemma 12.

The case (A).

Corollary 14. Let $(\Re \mathfrak{S})^*$ be the focal subgroup of $\Re \mathfrak{S}$. Then $(\Re \mathfrak{S})^* \subsetneq \Re \mathfrak{S}$ if $|\Re| > 2$.

Proof. By Lemma 12 an element X of $\Re \mathfrak{S}$ is of order $|\mathfrak{R}|$ if and only if $\langle X, \mathfrak{S} \rangle = \Re \mathfrak{S}$. The lemma follows from this.

By Corollary 14 and [3, Theorem 7.3.1] 8 has normal subgroup 8' of index 2^{l-1} . Trivially 8' is doubly transitive on \mathcal{Q} and satisfies the conditions in the case (A).

Lemma 15. (3) is $P\Gamma L(2, 8)$ and n=28.

Proof. A Sylow 2-subgroup of \mathfrak{G}' is elementary abelian. Since $C_{\mathfrak{G}}(\tau)$ is solvable and \mathfrak{G}' has one class of involutions, by [11] \mathfrak{G}' contains a normal subgroup $\mathfrak{G}''=PSL(2,q)$ of odd index, where $q>3, q=3, 5 \pmod{8}$ or $q=2^r$. Since $C_{\mathfrak{G}'}(\mathfrak{G}'')$ is normal in \mathfrak{G}' , if it is not identity, it is transitive and hence it is of even order. Since \mathfrak{G}'' is a normal subgroup \mathfrak{G}' of odd index, a Sylow 2-subgroup of $C_{\mathfrak{G}'}(\mathfrak{G}'')$ is contained in \mathfrak{G}'' . Thus $Z(\mathfrak{G}'')\neq 1$, which is a contradiction. We have $PSL(2,q)\subseteq\mathfrak{G}'\subseteq Q\Gamma L(2,q)$. By [10] \mathfrak{G}' is $P\Gamma L(2,8)$ and hence $\mathfrak{G}=\mathfrak{G}'$. The proof is completed.

The case (B). Assume $\alpha(I) = 0$.

Lemma 16. Every involution in \mathfrak{S} which is conjugate to τ is already conjugate to τ in $N_{\mathfrak{N}}(\mathfrak{S})$.

Proof. Let τ' be an involution of \mathfrak{S} which is conjugate to τ . Set $\tau' = \tau^c$ for an element G of \mathfrak{G} . Then $\tau = \tau'^{c^{-1}}$ is contained in \mathfrak{S} and $\mathfrak{S}^{c^{-1}}$. By Corollary 13 $\mathfrak{S}^{c^{-1}}$ is contained in \mathfrak{N} . By the Sylow's theorem there exists an element H of $O(\mathfrak{X}_1(\tau))$ such that $S^H = \mathfrak{S}^{c^{-1}}$. Thus HG is an element of $N_{\mathfrak{N}}(\mathfrak{S})$. Set HG = G'. $\tau^c = \tau^{\mu^{-1}G'} = \tau^{c'}$.

Hiroshi Kimura

This proves the lemma.

Corollary 17. $|N_{\mathfrak{G}}(\mathfrak{S})| = i^2(i-1) |N_{\mathfrak{G}}(\mathfrak{S}) \cap C_{\mathfrak{G}_{1,2}}(\tau)|.$

Proof. This follows form the Frattini argument and Lemma 16 since the number of involutions in \mathfrak{S} which are conjugate to τ equals *i*.

Lemma 18. \mathfrak{S} is normal in \mathfrak{N} if and only if $g^*(2) = n-1$.

Proof. Since \mathfrak{S} is normal in \mathfrak{N} , $\mathfrak{N}=O(\mathfrak{N})\times\mathfrak{S}$. Since $\mathfrak{N}/\mathfrak{X}_1(\tau)$ is a regular normal subgroup of $\mathfrak{X}(\tau)$, for every element G of $C_{\mathfrak{H}}(\tau)$, $I^c \equiv I(\mod \mathfrak{X}_1(\tau))$. Thus $I^c = I$ or $I\tau$. If $I^c = I\tau$, then $(I\tau)^c = I$ and |G| must be even. Therefore $I^c = I$ and $C_{\mathfrak{H}}(I\tau)$ contains $C_{\mathfrak{H}}(\tau)$. Thus $\beta = [\mathfrak{H}: C_{\mathfrak{H}}(I\tau)] \leq [\mathfrak{H}: C_{\mathfrak{H}}(\tau)] = r$. On the other hand $n = i(\beta(i-1) + r)/r$ is divisible by i^2 by Corollary 17. Therefore $\beta = r$, $n = i^2$ and $C_{\mathfrak{H}}(\tau) = C_{\mathfrak{H}}(I\tau) = C_{\mathfrak{H}}(\langle I, \tau \rangle)$. By the Braur-Wielandt's theorem [12]

$$|\mathfrak{H}||C_{\mathfrak{H}}(\langle I,\tau\rangle)|^{2} = |C_{\mathfrak{H}}(\tau)||C_{\mathfrak{H}}(I)||C_{\mathfrak{H}}(I\tau)|.$$

Thus $\mathfrak{H} = C_{\mathfrak{H}}(I)$ and $g^{*}(2) = [\mathfrak{H}: C_{\mathfrak{H}}(I)](n-1) = -1$.

Next if $g^*(2) = n-1$, then $O(\mathfrak{N})$ is contained in $C_{\mathfrak{G}}(I)$. Since $N_{\mathfrak{G}}(\mathfrak{S}) \cap C_{\mathfrak{G}}(\tau)$ acts doubly transitively on $\mathfrak{F}(\tau)$, \mathfrak{S} is contained in $C_{\mathfrak{G}}(O(\mathfrak{S}))$. Thus \mathfrak{S} is normal in \mathfrak{N} . This completes the proof.

Lemma 19. Let η be an involution which is not contained in \mathfrak{S} . If $g^*(2) = n-1$ and $\alpha(\eta) = 0$, then $\alpha(\tau\eta) = 0$ and $|\tau\eta|$ is equal to 2^r with r > 1.

Proof. It can be proved by the same way as in the proof of [7, Lemma 4, 10] that $\alpha(\tau\eta) = 0$. Let p be an old prime factor of $|\tau\eta|$. Put $pq = |\tau\eta|$. Then $\alpha((\tau\eta)^q) \ge 1$. If $\alpha((\tau\eta)^q) = 1$, then $\alpha(\tau\eta) = 1$. Thus $\alpha((\tau\eta)^q) \ge 2$. Let a and b be two points of $\Im((\tau\eta)^q)$. Then $(\tau\eta)^q$ is contained in $\mathfrak{G}_{a,b}$. Since $\langle \eta, (\tau\eta)^q \rangle$ is dihedral of order 2p, $g^*(2) = [\mathfrak{G}_{a,b}: C_{\mathfrak{G}_{a,b}}(\eta)](n-1) > n-1$. This is a contradiction. The lemma is proved.

28

Lemma 20. If \mathfrak{S} is normal in \mathfrak{N} , then \mathfrak{G} has a regular normal subgroup.

Proof. Since \mathfrak{S} is normal in \mathfrak{N} , Lemma 4.5-4.9 in [7] are also true. By Lemma 19, Lemma 4.11 in [7] can be proved in this case. Thus it can be shown in same way as in [7, p. 273] that \mathfrak{S} has a regular normal subgroup.

Lemma 21. If all Sylow subgroup of $O(\mathfrak{N})$ are cyclic, then \mathfrak{S} is normal in \mathfrak{N} .

Proof. Let p be a prime factor of $|O(\mathfrak{N})|$. Let \mathfrak{P} be a Sylow p-subgroup of $O(\mathfrak{N})$ normalized by \mathfrak{S} . By the Frattini argument $N_{\mathfrak{G}}(\mathfrak{PS}) \cap C_{\mathfrak{G}}(\tau)$ acts doubly transitively on $\mathfrak{F}(\tau)$. Therefore $N_{\mathfrak{G}}(\mathfrak{S}) \cap N_{\mathfrak{G}}(\mathfrak{PS}) \cap C_{\mathfrak{G}}(\tau)$ acts also doubly transitively on $\mathfrak{F}(\tau)$. Since i>4 and Aut(\mathfrak{P}) is cyclic, \mathfrak{S} is contained in $C_{\mathfrak{G}}(\mathfrak{P})$. Thus \mathfrak{S} is normal in \mathfrak{N} .

Lemma 22. $\langle K, I \rangle$ is abelian.

Proof. Assume $\langle K, I \rangle$ is non-abelian. Then $K' = K_{\tau}$ and |K| > 4. Thus $I^{\kappa} = I_{\tau}$. Since every involution of \mathfrak{G} is conjugate to I or I_{τ} by Lemma 3, \mathfrak{G} has one class of involutions. This is a contradiction and $\langle K, I \rangle$ is abelian.

Thus we proved the following:

Theorem 2. Let Ω be the set of points $1, 2, \dots, n$, where n is even. Let \mathfrak{G} be a doubly transitive group on Ω not containing a regular normal subgroup. Assume a Sylow 2-subgroup \mathfrak{R} of $\mathfrak{G}_{1,2}$ is cyclic of order $2^t > I$ and $\chi(\tau)$ contains a regular normal subgroup, where τ is an involution of \mathfrak{R} . Then one of the following holds:

- (a) n=q+1 and $PSL(2,q) \subseteq \mathfrak{G} \subseteq P\Gamma L(2,q)$,
- (b) n=28 and \otimes is PI'L(2,8),
- (c) n=28 and \otimes is $PSU(3, 3^2)$,

Hiroshi Kimura

(d) ^(b) satisfies the following:

(1) a Sylow 2-subgroup of $\chi(\tau)_{1,2}$ is of order 2^{i-1} , (2) \mathfrak{B} has two classes of involutions and (3) $\langle K, I \rangle$ is abelian, where I is involution $(\neq \tau)$ of $\mathfrak{N}_{\mathfrak{B}}(\mathfrak{K})$.

From Theorem 2, Lemma 20 and Lemma 21 we obtain Theorem 1.

Depertment of Mathematics Faculty of Science Hokkaido University Sappro, Japan

References

- [1] P. Fong, Some Sylow subgroups of order 32 and a characterization of U(3, 3), J. Alg., 6 (1976), 65-76.
- [2] ____, Sylow 2-subgroup of small order, I (to apperar).
- [3] D. Gorenstein, Finite groups, Harper and Row, New York, 1968.
- [4] ———— and J. H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, I. II, III, J. Alg., 2 (1965), 85-151, 218-270, 334-393.
- [5] C. Hering, Zweifach transitive Permutations gruppen in deren 2 die maximale Anzahl von Fixpunkten von Involutionen ist, Math. Z., 104 (1968), 150-174.
- [6] N. Ito, On doubly transitive groups of degree n and order 2(n-1)n, Nagoya Math. J., 27 (1966), 409-417.
- [7] H. Kimura, On some doubly transitive permutation groups of degree n and order 2ⁱ(n-1)n, J. Math. Soc. Japan, 22 (1970), 263-277.
- [8] —, A characteization of PSL(2,11) and S_5 (to appear).
- [9] _____, A remark on doubly transitive groups (to appeor).
- [10] H. Lünebug, Characterisierungen der endlichen desarguesschen projectiven Ebenen, Math. Z., 85 (1964), 419-450.
- [11] J. H. Walter, The characterization of finite groups with ablian Sylow 2-subgroups, Ann. Math., 89 (1969), 405-514.
- [12] H. Wielandt, Beziehungen zwische den Fixpunktzahlen von Automophismengruppen einer endlichen Gruppe, Math. Z., 73 (1960), 146-158.
- [13] ———, Finite permutation groups, Academic Press, New York, 1964.

30