On some doubly transitive groups of degree even such that a Sylow 2-subgroup of the stabilizer of any two points is cyclic

By
Hiroshi Kimura
(Communicated by Professor Nagata, November 13. 1971)

1. Introduction

Let Ω be the set of points $1,2, \cdots, n$, where n is even. Let (\$3 be a doubly transitive permutation group in which the stabilizer $\mathbb{E}_{1,2}$ of the points 1 and 2 is of even order and its Sylow 2 -subgroup Ω is cyclic. Let τ be the unique involution in $\Re=\langle K\rangle$. By a theorem of Witt ([13 Theorem 9.4]) the centralizer $C_{\mathscr{G}}(\tau)$ of τ in (5) acts doubly transitively on the set $\mathfrak{Y}(\tau)$ consisting of points in Ω fixed by τ. We shall consider the case such that the image $\chi(\tau)$ of this representation of $C_{(\mathscr{S}}(\tau)$ contains a regular normal subgroup. In this paper we shall prove the following result.

Theorem 1. Let ©S be a doubly transitive group on $\Omega=\{1, \cdots$, $n\}$, where n is even, not containing a regular normal subgroup. Assume $\mathfrak{X}(\tau)$ contains a regular normal subgroup and all Sylow subgroups of $C_{\mathbb{G 1}_{1,2}}(\tau)$ are cyclic. Then one of the following holds:
(a) $n=q+1$ and $P S L(2, q) \subseteq \mathscr{B} \subseteq P \Gamma L(2, q)$,
(b) $n=28$ and © $P \Gamma L(2,8)$,
(c) $n=28$ and (S) is $\operatorname{PSU}\left(3,3^{2}\right)$.

This theorem is a corollary of Theorem 2, Lemma 20 and Lemma 21. In the case n is odd we considered in [8] and [9].

Notation

$\langle\cdots\rangle$: the subgroup generated by ...,
$N_{\mathfrak{Y}}(\mathfrak{X}), C_{\mathfrak{Y}}(\mathfrak{X})$: the normalizer and the centralizer of a subset \mathfrak{X} in a group \mathfrak{Y}, respectively,
$Z(\mathfrak{Y})$: the center of \mathfrak{V},
$O(\mathfrak{Y})$: the largest normal subgroup of odd order,
$|\mathfrak{Y}|,|Y|:$ the order of \mathfrak{V} and an element Y of \mathfrak{V}, respectively,
$\mathfrak{J}(\mathfrak{l})$: the set of points of Λ fixed by a subset \mathfrak{l} of a permutation group on Λ.
$\alpha(\mathfrak{U})$: the number of symbols in $\mathfrak{J}(\mathfrak{U})$.

2. Proof of Theorem 1

Let ($\$$) be a doubly transitive group on Ω not containing a regular normal subgroup in which the stabilizer $\mathbb{S}_{1,2}$ of the points 1 and 2 has a cyclic Sylow 2 -subgroup $\Omega=\langle K\rangle(\neq 1)$. Set $|K|=2^{r}$ and $\tau=K^{2^{l-1}}$. Let I be an involution with the cycle structure $(1,2) \cdots$. Then I is contained in $N_{(\mathscr{F}}\left(\mathscr{S}_{1,2}\right)$. In particular we may assume I is contained in $N_{(\mathscr{B}}(\Re)$. Let us denote $O\left(\mathscr{G}_{1,2}\right)$ by \mathfrak{S} and [$\left.\oiint_{1,2}: C_{\mathscr{\oiint}_{1,2}}(\tau)\right]$ by r.

Let τ fix $i(\geq 2)$ points of Ω, say $1,2, \cdots, i$. Let \mathfrak{X} be a subgroup of $\mathscr{G}_{1,2}$ satisfying the condition of Witt. Then $N_{(5)}(\mathfrak{X})$ act doubly transitively on $\mathfrak{J}(\mathfrak{X})$ by a theorem of Witt. Let $\chi_{1}(\mathfrak{X})$ and $\chi(\mathfrak{X})$ be the kernel of this permutation representation and its image, respectively. Then $\chi(\tau)$ is doubly transitive on $\mathfrak{J}(\tau)$. In this paper we assume $\chi(\tau)$ has a regular normal subgroup. Since n is even, i equals a power of two, say 2^{m}. Let Ω_{0} be the set of elements in Ω inverted by I. Let d be the number of elements in $\mathbb{S}_{1,2}$ inverted by I and for an element X of Ω_{0}, let $d(I X)$ be the number of elements in \mathfrak{S} inverted by $I X$. In [8] we proved the following three lemmas.

Lemma 1. $n=i(\beta(i-1)+\gamma) / r$, where $\beta=d-g^{*}(2) /(n-1)$ and $g^{*}(2)$ is the number of involutions in (S) which fix no point of Ω
and $r=\left[\mathbb{\Xi}_{1,2}: C_{\mathscr{\oiint}_{1,2}}(\tau)\right]$. then β is even.

Lemma 3. (8) has one or two classes of involutions and every involution is conjugate to I or I.

Remark 1. If (5) has a regular normal subgroup \mathfrak{C}, then \mathfrak{S} is elementary abelian and there exists an involution J in \mathbb{S} contained in $C_{\mathscr{G}}\left(\mathscr{B}_{1,2}\right)$. We may assume $J=I$, Thus $\beta=\gamma$ and $n=i^{2}$ since (S) has two classes of involutions.

Lemma 4. (C. Hering [5]). If $i=2$, then $\operatorname{PSL}(2, q) \subseteq(\mathbb{S} \subseteq$ $P \Gamma L(2, q)$ and $n=q+1$.

By this lemma we may assume $i \geq 4$. Let us denote $\Omega \cap \chi_{1}(\tau)$ by Ω_{1}.

Lemma 5. $N_{(5)}\left(\Omega_{1}\right)=C_{(5)}\left(\Omega_{1}\right)$.
Proof. By the Frattini argument $\chi\left(\Omega_{1}\right)=\chi(\tau)$. Since it contains a regular normal subgroup and $N_{\mathscr{G}}\left(\Omega_{1}\right) / C_{\mathscr{G}}\left(\Omega_{1}\right)$ is 2 -group and $i \geq 4$, $N_{\mathscr{G}}\left(\Re_{1}\right)$ must equal $C_{(\Im)}\left(\Re_{1}\right)$.

Let \mathfrak{N} be a normal subgroup of $C_{(5)}(\tau)$ containing $\chi_{1}(\tau)$ such that $\Re / \chi_{1}(\tau)$ is a regular normal subgroup of $\chi(\tau)$. Let \mathfrak{S} be a Sylow 2 -subgroup of \mathfrak{R} containing Ω_{1}. By the Frattini argument it may be assumed that \mathscr{S} is normalized by Ω and it normalizes Ω_{1}. Thus \mathbb{S} / Ω_{1} is elementary abelian.

Lemma 6. We may assume that I is contained in \mathfrak{N}.
Proof. If \mathfrak{R} contains an involution J not contained in $\chi_{1}(\tau)$, then we may take J instead of I. Assume τ is the unique involution in \subseteq. If $\Re=\Re_{1}$, then \Re contains a Sylow 2 -subgroup of $C_{\mathscr{F}}(\tau)$ and hence it contains I. Since $\subseteq / \Omega_{1} \cong \mathfrak{R} / \chi_{1}(\tau)$ is elementary abelian and
\mathfrak{S} is a quaternion group, $i=4$. Thus $\Omega \subseteq / \Omega_{1}$ is a Sylow 2 -subgroup of symmetric group of degree four. Since $I K_{1}=(1,2)(3,4), I K_{1}$ is contained in the four group $\mathfrak{S} / \Omega_{1}$. Therefore I is contained in \mathbb{S}. This is a contradiction.

By Lemma 6 we may assume that \mathfrak{S} contains I. By the Frattini argument $N_{\mathfrak{G}}(\mathfrak{S}) \cap N_{\mathfrak{G}}\left(\Omega_{1}\right)$ acts doubly transitively on $\mathfrak{F}(\tau)$ and the image of this representation equals $\chi(\tau)$. Thus every element not contained in Ω_{1} of \mathfrak{S} can be represented in the form $J K^{\prime}$, where J is an involution and K^{\prime} is an element of Ω_{1}.

Lemma 7. If $i \geq 4$ and $\Omega \supsetneq\langle\tau\rangle$, then $\Omega \nsupseteq \Omega_{1}$.
Proof. Assume $\Omega=\Omega_{1}$. Let S be an element of order 2^{l} in \mathfrak{S}. Since S^{2} is contained in $\Omega, S^{2 l-1}$ equals τ. Thus $N^{2^{l-1}}=\tau$ for every
 Since $C_{\mathscr{G}}(\tau)$ and $C_{\mathscr{F}}(I)$ are conjugate and K is contained in $C_{\mathscr{G}}(I)$ by Lemma $5, K^{2 l-1}$ must be equal to I. This is a contradiction.

Lemma 8. $\mathfrak{R}_{0}=\langle\tau\rangle$.
Proof. Assume $\Omega_{0} \neq\langle\tau\rangle$ and $\langle K, I\rangle$ is dihedral or semi-dihedral. By Lemma $5 \Omega_{1}=\langle\tau\rangle$. Since I is an element of \mathfrak{R}, so is I^{K}. Thus $I I^{K}$ is an element of $\mathfrak{\Re}$ and $K^{2}=\tau$. Therefore $\langle K, I\rangle$ is dihedral of order 8. By Lemma 2β is even and hence a Sylow 2 -subgroup of $C_{\mathscr{G}}(\tau)$ is that of ©S. If $\alpha(\Omega)>2$, then $C_{(5)}(\Omega)=N_{\text {बS }}(\Omega)$ since $\chi(\Omega)$ contains a regular normal subgroup (cf. Lemma 5). Since $\langle K, I\rangle$ is non abelian, $\alpha(\Omega)=2$ and by Remark $1 \quad i=\alpha(K)^{2}=4$. Thus $\langle\Omega, \mathfrak{S}\rangle$ is of order 16 and its exponent equals 4. By [2, Lemma 3] (8) contains a solvable normal subgroup. Hence (5) contains a regular normal subgroup. This proves the lemma.

Lemma 9. If $\Omega \nsupseteq \Omega_{1} \supsetneq\langle\tau\rangle$, then $\left|\Omega_{1}\right|=4$, and $K^{1}=K \tau$.
Proof. Assume $\left|\Re_{1}\right|>4$ and I is conjugate to $\tau . \quad \mathfrak{S}^{\prime}=\Re \subseteq$ is a Sylow 2 -subgroup of $C_{\mathscr{G}}(\tau)$. Let S be an element of \mathbb{S}^{\prime} of order
2^{l-1}. $S^{2^{2-9}}$ is contained in \mathfrak{S}, where $j=\left|\Re_{1}\right|$. Since $\mathfrak{S} / \Omega_{1}$ is elementary abelian, $S^{2^{l-j+1}}$ is contained in \Re_{1}. Since $j>2, S^{2^{l-j+1}}$ is not identity element. Thus $S^{2^{l-2}}$ is equal to τ. This proves that $T^{2 l-2}=\tau$ for every element T of $C_{(\mathscr{S}}(\tau)$ of order 2^{l-1}. Since $K^{I}=K$ or $K \tau$, K^{2} is contained in $C_{(3)}(I)$. $\left(K^{2}\right)^{2 l-2}=\tau$ must be equal to I. This is a contradiction. Assume I is contained in $C_{65}(K)$. Similarly it may be proved that $T^{2 l-1}=\tau$ for every element T of $C_{\mathscr{G}}(\tau)$ of order 2^{l}. Thus $K^{2 l-1}=\tau$ must be equal to I since $C_{\mathscr{6}}(I)$ is conjugate to $C_{\mathscr{G}}(\tau)$. This proves the lemma.

Lemma 10. Let \Re_{1} be as in Lemma 9. Then $|\Omega|=8$.

Proof. Assume that $|\Re|>8$ and I is conjugate to τ. Let X be an element of Ω of order 8 . Let J be an involution of $N_{\mathscr{G}}(\langle X\rangle)$. Then $\langle X, J\rangle$ must be abelian, for if it is not abelian, then $\left\langle K^{2}, I\right\rangle$ must be dihedral.

We shall prove that every element of the coset $X \subseteq$ is of order 8. Let $X J K^{\prime}$ be an element of $X \subseteq$, where J is an involution and K^{\prime} is an element of K_{1}. If $\left(X J K^{\prime}\right)^{2}=1$, then $X J X J$ is contained in \Re_{1} and hence J is contained in $N_{\mathscr{S}}(\langle X\rangle)$. Thus $X^{J}=X$ and $\left|X J K^{\prime}\right| \neq 2$, which is a contradiction. Assume $\left(X J K^{\prime}\right)^{4}=1$. Then $\left(X J K^{\prime}\right)^{2}=X J X J K^{\prime 2}$ is contained in \subseteq. If $\left(X J K^{\prime}\right)^{2}=\tau$, then X^{J} is contained in $\langle X\rangle, X^{J}=X$ and $\left|X J K^{\prime}\right|=8$, which is a contradiction. If $\left(X J K^{\prime}\right)^{2}=J^{\prime}$ or $J^{\prime} K^{\prime \prime}$, where J^{\prime} is an involution $\neq \tau$ of \mathfrak{S} and $K^{\prime \prime}$ is an element of \mathfrak{S}_{1}, then $X^{J}=X^{-1} J^{\prime} K^{\prime-2}$ or $X^{-1} J^{\prime} K^{\prime \prime} K^{\prime-2}$. Hence $X^{2}=\left(X^{J}\right)^{2}=\left(X^{-1} J^{\prime \prime \prime}\right)^{2}$ where $J^{\prime \prime \prime}$ is an involution $(\neq \tau)$ of \mathfrak{S} and $\left(X^{-1}\right)^{J^{\prime \prime \prime}}$ is contained in $\langle X\rangle$. Thus $X^{J^{\prime \prime \prime}}=X, X^{2}=X^{-2}$ and $X^{4}=1$. This is a contradiction.

Let S be an element of order 8 in $K \subseteq$, and let \bar{S} be the image of S by the natural homomorphism of $\Omega \subseteq$ onto $\Omega \subseteq / \subseteq$. Since the exponent of \mathfrak{S} equals four, $\bar{S} \neq 1$. If $|\bar{S}| \neq 2$, then $X \subseteq$ must contain an element of order two or four. This is a contradiction. Thus S contained in $X \subseteq$. Since $\subseteq\left(\Omega_{1}\right.$ is elementary abelian, $S^{4}=\tau$.

Since $\Omega \subseteq$ is a Sylow 2 -subgroup of $C_{(S)}(\tau)$, for every element Y of order 8 in $C_{\mathscr{F}}(\tau), Y^{4}=\tau$. Since $C_{\mathscr{6}}(\tau)$ is conjugate to $C_{\mathscr{F}}(I)$ and X is contained in $C_{\mathscr{F}}(I), X^{4}=I$, which is a contradiction. This proves the lemma.

Lemma 11. Let Ω_{1} be as in Lemma 9. Then $i=4$ and (5) is $\operatorname{PSU}\left(3,3^{2}\right)$.

Proof. Since $\chi(\tau)$ contains a regular normal subgroup, so does $\chi(\Omega)$ and $i=\alpha(K)^{2}$. Since I is not contained in $C_{(\sqrt{3}}(\Omega)$, it may be proved by the same way as in Lemma 5 that $\alpha(K)$ must be equal to two. Thus $i=4$. Since $n-i=i(i-1) \beta / r$ is divisible by $8, \beta$ is even. Therefore $\mathfrak{\Re S}$ is a Sylow 2 -subgroup of $\mathbb{E S}$ of order 32. If (5) has subgroup ${ }^{\left(\mathcal{B H}^{\prime}\right.}$ of index 2 , then it is doubly transitive on Ω and Ω_{1} is a Sylow 2 -subgroup of $\left(\mathscr{S H}_{1,2}^{\prime}\right.$. If $\left(3^{\prime}{ }^{\prime}\right.$ does not contain a regular normal subgroup, then by Lemma 7 the order of a Sylow 2 -subgroup Ω_{1} of $\left(\mathscr{S}_{1,2}^{\prime}\right.$ must be greater than 8 . Thus $\mathscr{S H}^{\prime}$ has a regular normal subgroup and so does (5 . Thus (5) has no subgroup of index 2. By [1] © is $\operatorname{PSU}\left(3,3^{2}\right)$ since $C_{[3}(\tau)$ is solvable.

Next we shall study the following two cases.
(A) $\Omega_{1}=\langle\tau\rangle$ and (5) has one class of involutions
(B) $\Omega_{1}=\langle\tau\rangle$ and ($\$$ has two classes of involutions.

Since every element not contained in Ω_{1} of \mathfrak{S} can be represented in the form J or $J \tau$, where J is an involution in $C_{(\xi)}(\tau)$, every element $(\neq 1)$ of \mathfrak{S} is of order two and hence \mathfrak{S} is elementary abelian.

Lemma 12. Every involution of $\Omega \subseteq$ is contained in \mathfrak{S}.
Proof. Let $K^{2^{2-2}} S$ be an involution in a coset $K^{2 l-2} \mathfrak{S}$, where S is an involution of \mathfrak{G}. Then $\left(K^{2 l-2}\right)^{s}=K^{-2^{l-2}}$. Thus S is contained in $N_{\mathfrak{G}}\left(\left\langle K^{2 l-2}\right\rangle\right)$ and $\left\langle S, K^{2 l-2}\right\rangle$ is dihedral. This contradicts Lemma 8.

Corollary 13. Every involution of $C_{(5)}(\tau)$ is contained in \mathfrak{r}.

Proof．Since $\sqrt[\Omega]{ }$ S is a Sylow 2－subgroup of $C_{(5)}(\tau)$ ，this is trivial by Lemma 12.

The case（A）．
Corollary 14．Let（爪ভ）＊be the focal subgroup of $\Re \subseteq$ ．Then （爪ভ）＊〒 $\ddagger \subseteq$ if $|\Re|>2$ ．

Proof．By Lemma 12 an element X of $\Omega \subseteq$ is of order $|\Omega|$ if and only if $\langle X, \mathfrak{S}\rangle=\Re \subseteq$ ．The lemma follows from this．

By Corollary 14 and［3，Theorem 7．3．1］（S）has normal subgroup （83）of index $2^{\prime-1}$ ．Trivially（ \mathscr{S}^{\prime} is doubly transitive on Ω and satisfies the conditions in the case（A）．

Lemma 15．（S）is $P \Gamma L(2,8)$ and $n=28$ ．
Proof．A Sylow 2－subgroup of $\mathbb{E S}^{\prime}$ is elementary abelian．Since $C_{\mathscr{F}}(\tau)$ is solvable and ${ }^{(5)}{ }^{\prime}$ has one class of involutions，by［11］（ （3）$^{\prime}$ contains a normal subgroup $\left(\mathcal{H}^{\prime \prime}=P S L(2, q)\right.$ of odd index，where $q>3, q \equiv 3,5(\bmod 8)$ or $q=2^{r}$ ．Since $C_{G^{\prime}}\left(\mathbb{B}^{\prime \prime}\right)$ is normal in $\mathbb{G 3}^{\prime}$ ， if it is not identity，it is transitive and hence it is of even order． Since（ $5^{\prime \prime}$ ）is a normal subgroup（ $\mathcal{S H}^{\prime}$ of odd index，a Sylow 2 －subgroup of $C_{\left(G^{\prime}\right)}\left(\mathcal{S V}^{\prime \prime}\right)$ is contained in $\left(3^{\prime \prime}\right.$ ．Thus $Z\left(\mathbb{S H}^{\prime \prime}\right) \neq 1$ ，which is a contra－ diction．We have $P S L(2, q) \subseteq\left(\mathcal{B}^{\prime} \subseteq Q \Gamma L(2, q)\right.$ ．By［10］ （3＇$^{\prime}$ is $P \Gamma L(2,8)$ and hence $\left(\mathscr{S}=\left(\mathscr{S}^{\prime}\right.\right.$ ．The proof is completed．

The case（B）．Assume $\alpha(I)=0$ ．
Lemma 16．Every involution in \mathfrak{S} which is conjugate to τ is already conjugate to τ in $N_{\circledast}(\mathbb{S})$ ．

Proof．Let τ^{\prime} be an involution of \mathfrak{S} which is conjugate to τ ． Set $\tau^{\prime}=\tau^{G}$ for an element G of \mathscr{G} ．Then $\tau=\tau^{\prime G^{-1}}$ is contained in \mathbb{S} and $\mathfrak{S}^{\sigma^{-1}}$ ．By Corollary $13 \mathfrak{S}^{\sigma^{-1}}$ is contained in $\mathfrak{\Re}$ ．By the Sylow＇s thenrem there exists an element H of $O\left(\chi_{1}(\tau)\right)$ such that $S^{H}=\mathfrak{S}^{\sigma^{-1}}$ ． Thus $H G$ is an element of $N_{\mathbb{Q}}(\mathbb{S})$ ．Set $H G=G^{\prime} . \tau^{G}=\tau^{H^{-1} G^{\prime}}=\tau^{G^{\prime}}$ ．

This proves the lemma.
Corollary 17. $\left|N_{\mathfrak{G}}(\mathbb{S})\right|=i^{2}(i-1)\left|N_{\mathscr{G}}(\mathbb{S}) \cap C_{\mathscr{犬}_{1,2}}(\tau)\right|$.
Proof. This follows form the Frattini argument and Lemma 16 since the number of involutions in \mathfrak{S} which are conjugate to τ equals i.

Lemma 18. \mathfrak{S} is normal in \mathfrak{R} if and only if $g^{*}(2)=n-1$.
Proof. Since \mathfrak{S} is normal in $\mathfrak{R}, \mathfrak{R}=O(\mathfrak{R}) \times \mathfrak{S}$. Since $\mathfrak{R} / \chi_{1}(\tau)$ is a regular normal subgroup of $\chi(\tau)$, for every element G of $C_{5}(\tau)$, $I^{G} \equiv I\left(\bmod \chi_{1}(\tau)\right)$. Thus $I^{G}=I$ or $I \tau$. If $I^{G}=I \tau$, then $\left(I_{\tau}\right)^{G}=I$ and $|G|$ must be even. Therefore $I^{G}=I$ and $C_{\mathfrak{j}}(I \tau)$ contains $C_{5}(\tau)$. Thus $\beta=\left[\mathfrak{F}: C_{\mathfrak{5}}\left(I_{\tau}\right)\right] \leq\left[\mathfrak{5}: C_{\mathfrak{5}}(\tau)\right]=r$. On the other hand $n=i(\beta(i-1)$ $+\gamma) / \gamma$ is divisible by i^{2} by Corollary 17. Therefore $\beta=\gamma, n=i^{2}$ and $C_{\mathfrak{5}}(\tau)=C_{\mathfrak{5}}\left(I_{\tau}\right)=C_{\mathfrak{5}}(\langle I, \tau\rangle)$. By the Braur-Wielandt's theorem [12]

$$
|\mathfrak{j}|\left|C_{\mathfrak{5}}(\langle I, \tau\rangle)\right|^{2}=\left|C_{\mathfrak{5}}(\tau)\right|\left|C_{\mathfrak{j}}(I)\right|\left|C_{\mathfrak{5}}\left(I_{\tau}\right)\right| .
$$

Thus $\mathfrak{S}=C_{\mathfrak{5}}(I)$ and $g^{*}(2)=\left[\mathfrak{S}: C_{\mathfrak{5}}(I)\right](n-1)=-1$.
Next if $g^{*}(2)=n-1$, then $O(\mathfrak{R})$ is contained in $C_{(5)}(I)$. Since $N_{\mathscr{G}}(\mathfrak{S}) \cap C_{\mathscr{G}}(\tau)$ acts doubly transitively on $\mathfrak{J}(\tau)$, \mathfrak{S} is contained in $C_{\mathscr{G}}(O(\mathfrak{S}))$. Thus \mathfrak{S} is normal in \mathfrak{R}. This completes the proof.

Lemma 19. Let η be an involution which is not contained in ©. If $g^{*}(2)=n-1$ and $\alpha(\eta)=0$, then $\alpha(\tau \eta)=0$ and $|\tau \eta|$ is equal to 2^{r} with $r>1$.

Proof. It can be proved by the same way as in the proof of [7, Lemma 4, 10] that $\alpha(\tau \eta)=0$. Let p be an old prime factor of $|\tau \eta|$. Put $p q=|\tau \eta|$. Then $\alpha\left((\tau \eta)^{q}\right) \geqq 1$. If $\alpha\left((\tau \eta)^{q}\right)=1$, then $\alpha(\tau \eta)$ $=1$. Thus $\alpha\left((\tau \eta)^{q} \geqq 2\right.$. Let a and b be two points of $\mathfrak{J}\left((\tau \eta)^{q}\right)$. Then $(\tau \eta)^{q}$ is contained in $\mathbb{E}_{a, b}$. Since $\left\langle\eta,(\tau \eta)^{q}\right\rangle$ is dihedral of order $2 p, g^{*}(2)=\left[\oiint_{a, b}: C_{\oiint_{a, b}}(\eta)\right](n-1)>n-1$. This is a contradiction. The lemma is proved.

Lemma 20. If \mathfrak{S} is normal in \mathfrak{R}, then (5) has a regular normal subgroup.

Proof. Since \mathfrak{S} is normal in \mathfrak{R}, Lemma 4.5-4.9 in [7] are also true. By Lemma 19, Lemma 4.11 in [7] can be proved in this case. Thus it can be shown in same way as in [7, p. 273] that (S) has a regular normal subgroup.

Lemma 21. If all Sylow subgroup of $O(\mathfrak{N})$ are cyclic, then \mathfrak{S} is normal in \mathfrak{N}.

Proof. Let p be a prime factor of $|O(\mathfrak{R})|$. Let \mathfrak{F} be a Sylow p-subgroup of $O(\mathfrak{R})$ normalized by \mathfrak{S}. By the Frattini argument $N_{\mathscr{G}}(\mathfrak{H} \mathfrak{S}) \cap C_{\mathscr{G}}(\tau)$ acts doubly transitively on $\mathfrak{J}(\tau)$. Therefore $N_{\mathfrak{G}}(\mathfrak{S})$ $\cap N_{\mathfrak{B}(\mathfrak{B C}}(\mathfrak{S}) \cap C_{(3)}(\tau)$ acts also doubly transitively on $\mathfrak{J}(\tau)$. Since $i>4$ and $\operatorname{Aut}(\mathfrak{F})$ is cyclic, \mathfrak{S} is contained in $C_{\mathscr{G}}(\mathfrak{P})$. Thus \mathbb{S} is normal in $\mathfrak{\Re}$.

Lemma 22. 〈 $K, I\rangle$ is abelian.
Proof. Assume $\langle K, I\rangle$ is non-abelian. Then $K^{\prime}=K \tau$ and $|K|$ >4. Thus $I^{K}=I \tau$. Since every involution of \mathbb{C} is conjugate to I or $I \tau$ by Lemma 3, (5) has one class of involutions. This is a contradiction and $\langle K, I\rangle$ is abelian.

Thus we proved the following:
Theorem 2. Let Ω be the set of points $1,2, \cdots, n$, where n is even. Let \mathbb{S} be a doubly transitive group on Ω not containing a regular normal subgroup. Assume a Sylow 2-subgroup \AA of $\mathbb{E}_{1,2}$ is cyclic of order $2^{\prime}>I$ and $\chi(\tau)$ contains a regular normal subgroup, where τ is an involution of Ω. Then one of the following holds:
(a) $n=q+1$ and $P S L(2, q) \subseteq \mathscr{S} \subseteq P \Gamma L(2, q)$,
(b) $n=28$ and (5) is PI'L(2,8),
(c) $n=28$ and (5) is $\operatorname{PSU}\left(3,3^{2}\right)$,
(d) (8) satisfies the following:
(1) a Sylow 2-subgroup of $x(\tau)_{1,2}$ is of order 2^{l-1}, (2) (S) has two classes of involutions and (3) $\langle K, I\rangle$ is abelian, where I is involution $(\neq \tau)$ of $\mathfrak{R}_{\mathscr{\nwarrow}}(\Re)$.

From Theorem 2, Lemma 20 and Lemma 21 we obtain Theorem 1.

Depertment of Mathematics
Faculty of Science
Ноккaido University
Sappro, Japan

References

[1] P. Fong, Some Sylow subgroups of order 32 and a characterization of $U(3,3)$, J. Alg., 6 (1976), 65-76.
[2] - Sylow 2-subgroup of small order, I (to apperar).
[3] D. Gorenstein, Finite groups, Harper and Row, New York, 1968.
[4] and J. H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, I. II, III, J. Alg., 2 (1965), 85-151, 218-270, 334393.
[5] C. Hering, Zweifach transitive Permutations gruppen in deren 2 die maximale Anzahl von Fixpunkten von Involutionen ist, Math. Z., 104 (1968), 150-174.
[6] N. Ito, On doubly transitive groups of degree n and order $2(n-1) n$, Nagoya Math. J.. 27 (1966), 409-417.
[7] H. Kimura, On some doubly transitive permutation groups of degree n and order $2^{l}(n-1) n$, J. Math. Soc. Japan, 22 (1970), 263-277.
[8] - A characteization of $P S L(2,11)$ and S_{5} (to appear).
[9] , A remark on doubly transitive groups (to appeor).
[10] H. Lünebug, Characterisierungen der endlichen desarguesschen projectiven Ebenen, Math. Z., 85 (1964), 419-450.
[11] J. H. Walter, The characterization of finite groups with ablian Sylow 2-subgroups, Ann. Math., 89 (1969), 405-514.
[12] H. Wielandt, Beziehungen zwische den Fixpunktzahlen von Automophismengruppen einer endlichen Gruppe, Math. Z., 73 (1960), 146-158.
[13] - Finite permutation groups, Academic Press, New York, 1964.

