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Introduction

The purpose of the present paper is to give the details of the
results announced in [5].

Let D be a Siegel domain of the second kind associated with a
convex cone V in a real vector space R and a V-hermitian from F
on a complex vector space W. Denote by Aut(D) the Lie group of
all holomorphic transformations of the domain D and by g(D) the
Lie algebra of Aut(D). From Kaup, Matsushima and Ochiai [1],
we know that g(D) has the following graded structure:

g(D)=g*+g7'+g'+g'+¢° [a* g TCg*"
r=r"+17+1", *=rNng,

where t denotes the radical of g(D). With relation to the semi-
simple part of g(D), we shall construct a symmetric Siegel domain
S with dim, S=dimg ¢’+ % dimy ¢' which is invariant under a suitable
equivalence. At the same time, we establish structure theorems of
the Lie algebra g(D).

In §1 we prepare some algebraic facts. The most important one
is the following: For any graded Lie algebra g=3,¢*(A€Z), we
can choose a graded subalgebra as a semi-simple part of ¢ (Theorem
1.1). By using this fact, we can show in § 2 that there exists a
semi-simple graded subalgebra 8=3)_ ;8" of g(D) such that g'=g,
g=q’ and the adjoint representation of § on 8+ & is faithful
(Theorem 2.1).



304 Kazufumi Nakajima

Let 8 be as above. Then we have g?=8*+1* and g'=38"
+17%. The space g7' (resp. ¢”°) can be identified with W (resp.
with R) in a natural manner. Then 87! is a complex subspace of

q

the results in § 3 concerning the structure of r, we can see that V,

-1

Let V, be the image of V by the projection of g% to 8%, From

is a convex cone in 3% and that the restriction Fy; of F to 8§ 'x 3!
is a Vi hermitian form. We shall prove in § 4 that the Siegel domain
S of the second kind associated with V, and F, is symmetric and
that the Lie algebra § is identified with g(S) (Theorem 4. 4). Moreover
in § 5 we can show the uniqueness of the domain S. From construction,
the domain S is contained in D. Let & be another semi-simple graded
subalgebra of g(D) having the properties stated before. And let S’
be the corresponding symmetric domain. Then there exists Xeg'
such that Ad(exp X)38=28" and exp X(S) =S" (Theorem 5. 2).

As an application, we investigate the case where V is the cone
of all positive definite real symmetric matrices, the cone of all positive
definite complex hermitian matrices or the cone of all positive definite
quaternion matrices. In §6, we shall prove that if D is a Siegel
domain over a cone of this type and if D is degenerate, then ¢'=0
(Proposition 6.4). And in § 7 we shall find out the symmetric domain
S for any homogeneous Siegel domain constructed in Pyatetski-Shapiro
[6] over these cones. In particular we can calculate dim ¢' and dim
a’. In these calculations, we partially use an idea, due to T. Tsuji,
of considering the case where W=W,+ W, (direct sum) and F(W,
- W,) =0. Starting from this idea, but by different methods, Tsuji
[10]" also calculated @' and g* in our Theorem 7.6, Theorem 7.8 and
special cases in Theorem 7.12,

Throughout this paper we use the following notations. For a
real vector space R, denote by R, its complexification. And for an
element z of R, denote by Rez (resp. by Imz) its real (resp.
imaginary) part. Let f be an endomorphism of a vector space W
and let W’ be a subspace of W invariant by f. We then denote by
Flw- the restriction of f to W’.

Finally the author should express his thanks to N. Tanaka for

his constant encouragement.

Y The author received [10] as a preprint during the preparation of this paper.
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§ 1. Levi decompositions of graded Lie algebras and algebraic

preliminaries.

1.1. Let g=>4uqa"(A€Z, [¢", ¢*] Cg***) be a graded Lie algebra
over R with dim g<{oo. And let t be its radical. Being invariant
by the derivation of g defined by: X—1X for Xeg", r is a graded
ideal of g, i.e., t=2, t*(t*=1tNng*). Concerning Levi decompositions

of g, we can prove the following

Theorem 1.1. There exists a semi-simple graded subalgebra 3
of § such that g=1+73 (direct sum).

Proof. We shall prove this by induction with respect to dim .
Suppose that 1t is not abelian. We put t/=[1,t] and ¢ =g/t".
Since t is a graded ideal of g, so is t’. Therefore ¢’ has a natural
graded structure such that g¢”*=n(g"), where 7 is the projection of
g onto g’. Clearly the radical of ¢" is t/t” and dim t/1t’<ldim 1.
Thus from the inductive hypothesis, there exisis a semi-simple graded
subalgebra 8" of q” such that ¢’=t/1"+ 8" (direct sum). We put
g*=7"1(8"). We assert that 8* is a graded subalgebra of g. Indeed,
let Xeg*. We write X=),X*(X*eg"). Then z(X)=>n(X".
Since 7(X) 4" and 8 is a graded subalgebra of g’, we have 7 (X?)
€ 8/, proving our assertion. Now 1’ is the radical of 8* and dim 1’
<dim r. Thus there exists a semi-simple graded subalgebra 8 of 8*
(and hence a graded subalgebra of @) such that 8*=1"+ 8 (direct
sum). Clearly q=1+ 8 (direct sum).

Next we investigate the case where 1 is abelian. Let g=1+ 8 be
a Levi decomposition of gq. Denote by 7z the natural projection of g
onto g/r. Being isomorphic to g/r, the semi-simple subalgebra 8 has
a graded structure such that 8=3, 8* and #(8") =n(g*). Let X8
We write X=3X"(Xeg"). Since n(X) €n(g*), we get X 1" for
y##A. Clearly the correspondence: X—X* gives an injective linear
mapping 0, of 8 to g We extend the mapping p, to a mapping
of 8 to g by defining as follows:

0.(8) =0 for y=A.
Then the mapping p=3_p, is an injective linear mapping of 8 to g

such that p(8*) Ccg* Let X8 and Yeg. We write X=3,X"
and X=3),Y" (X", Y’eg). Then



306 Kazufumi Nakajima
[X Y]=[X" Y]+ 2[X" Y]+ 2[X7, Y]
viu v

+ 3 [XX].
vefd, v' o u
Since X*e1* for y#1 and Y" er* for y's£4, we have [X* Y*']=0
for y=2 and y’=u. Then from the definition of the mapping p, we
get o([X,Y])=[X* Y*], because [X,Y]eg*"** Clearly [p(X),
o(Y)]=[X*Y*]. As a result, p is an injective homomorphism and
the decomposition g=1+0(8) has the desired properties. q.e.d.

1.2. Let 38 be a semi-simple graded Lie algebra such that §=g*
+87'+8+8+8. The killing form ¢ of 8 gives dualities between
87! and 8 and between 8% and &. Therefore dim3g?*'=dimg' and

dim 3~?=dim &.

Lemma 1.2 (cf. [8]).

(1) Let X *'eg?® (resp. Yeg?). Suppose that [X7? &]1=0
(resp. [Y? 87%]1=0). Then X *=0 (resp. Y*=0).

(2) Let X '8! (resp. Y'e8"). Supppose that [ X', 8]=0
(resp. [Y*!, 87]1=0). Then X '=0 (resp. Y'=0).

Proof. (1) Let Ze 8. Clearly ad X %cad Z(8'4+ &) =0. And
ad X %ad Z(8") Cad X*(8)=0. Moreover ad X %oad Z(37'+87%)
Cad([XZ]) (87" + 8% +ad Zoad X2 (57 + 87%) =0. Therefore
¢(X7* &) =0 and hence X*=0. We can verify the second assertion
similarly.

(2) Let Ze 8. By the same argument as in Proof of (1) we
can show that ad X 'oad Z(87*+ 8+ 8'+ 8)=0. We set 8 '={Xeg™;
[X, 8'7=0}. Then [&, 8’""]Jc 8~". Therefore ad X 'oad Z(g™)cC g'~!
and ad X 'ead Z(8’7') =0. Thus we get ¢(X™', 8)=0 and hence

X"'=0. Second assertion follows similarly. q.e.d.

Lemma 1.3 (cf. [8]). Under the assumption that 8 is simple,
we have

1) If 8=0 and &0, then [87%, & =48

(2) If 840, then 87:=[s"",871], 8=[87", 8] and §=[8, 8'].

3) If 8£0, then 8'=[8",87"] and 87'=[877 8'].

Proof. (1) Clearly the subspace 37+ [87% 8*] + & is an ideal
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of 8 and hence 8"=[37% &*].

(2) We set 8'=[8""8"1+8"+[87, 8']+8+[8",8]. Then
8’ is an ideal of 8, proving our assertion.

(8) It is sufficient to consider the case where 8'£0. we set
8’?=8%and g*'=[8"* 8'] inductively. And put 8’ =8 *+g '+38"
+8"'+8?% Then [8,8+8]cCg. Since g=[8, 8] by Assertion
(2), we get [8'7% 8] C 8" and hence [87% 8] C 8’. Assume that [8,
gl cg’. Then[8™*, 8]=[[8", 8],8] C[[8™ 8], 8]+ [87 8]C[8,s]
+8 C8. As a result, 8 is an ideal of 3 and hence §'=[87% &'].
We can verify the equation 8'=[g, 87'] analogously. g.e.d.

The correspondence: X—21X for Xe 8" is a derivation of the
semi-simple Lie algebra 8.  Therefore there exists a unique ele-
ment E of 8 such that 8*={Xe8;ad EX=1X}. It is easy to see
that E belongs to 8’. Being invariant by ad E, each ideal of 8 is a
graded ideal.

Colollary 1.4. Let q=35_ .q"(A€Z) be a graded Lie algebra
whose radical t is of the form:r=1r"+1r7'+1°(x*=1rNng"). Suppose
that §7*=[g7",¢7"]. Then ¢’=[g’,¢'].

Proof. By considering g/t instead of g, we may assume that g
is semi-simple. And by considering the decomposition into simple
ideals, we may assume that ¢ is simple. Then our assertion follows

immediately from Lemma 1. 3. q.e.d.

1.3. Let R be a real vector space with dim R<oco. A linear
endomorphism A of R is called real-diagonal if it can be written as

a diagonal matrix with respect to some basis of R.

Lemma 1.5. Let 8 be a semi-simple Lie algebra and let f be
a representation of 8 on a real wvector space R. Assume that ad E
(E€8) is real diagonal. Then f(E) is real-diagonal.

Proof. We first assert that all eigenvalues of f(E) are real?
In fact, we set for ¢€C,

U,={XeR.; (f(E)—a)"X=0 for some ncN}.
Then R, =3 ,U,. Let 1 be an eigenvalue of f(E) and put U’ = Z u,,

2)

This fact is also proved in [1‘7] by different methods.
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where Y’ indicates the sum is taken only over the spaces U, with
Ima=ImA. It is easy to see that U’ is &invariant. It follows
that Im 77 f(E)|p-=dim, U’ XxIm A. On the other hand, we know
that 77 f(E)|y-=0, because E< [3, 8]. Therefore we have Im 1=0,
proving our assertion.

Now we may assume that the representation f is irreducible.
Denote by A the associative algebra of operators generated by f(3).
Then A is a Lie algebra in the usual braket rule. It is not difficult
to show that ad f(E) is a real-diagonal element in A. Therefore
we can write A =>acn A, where A,={XeA; [f(E), X]=aX}.
Put R,={veR; (f(E) —a)"v=0 for some n= N}, for each eigenvalue
a of f(E). Then R=>)R,. We consider the case where there
exists a non-zero eigenvalue 1 of f(E). Let v be an eigenvector
corresponding to the eigenvalue A, i.e., f(E)v=2Av(v50). Then the
space {Awv} coincides with R, because {Awv} is g-invariant. Let
R, There exists AeJ such that Av=u. We can write
A=Y As(Age Ag). Since AgweRg,,, we have A, ,v=u. It

follows
fEYu=f(E)Aqv
=[f(E), Aus]v+Au f(E)v
=(a— VDA, \v+iA, ww=au.

As a result R,={veR; f(E)v=av}. Next we consider the case
where all eigenvalues of f(E) are zero. Let 8 =3/f'(0) and let E’
be the image of E in 8’. Since f(E) is nilpotent, so is ad E’. On
the other hand, ad E’ is a real-diagonal element in &’. Therefore
[E’, 8]=0 and hence E’=0. This implies that f(£)=0 and completes
the proof. q.e.d.

§2. A Siegal domain D and the Lie algebra of Aut(D).

2.1. Let R (resp. W) be a real (resp. complex) vector space
of finite dimension. An open set V of R is called a convex cone if
it satisfies the following conditions:

1) For any x= V and for any >0, txe V.

2) For any z, '€V, x+z’€V.

3) V contains no entire straight lines,
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We say a mapping F of WX W into R, is a V-hermitian form on
W if it satisges the following conditions:
1) F(w,w’) is complex linear in w and F(w, w’) =F(w’, w).
2) F(w,w) eV, where V denotes the closure of V in R.
3) F(w,w) =0 implies w=0.
We define a domain D in R, x W by

D={(z,w)eR xW; Imz—F(w,w) e V}.

The domain D is called a Siegel domain of the second kind. In the
special case where W =0, the domain D is called a Siegel domain
of the first kind.

Denote by Aut(D) the group of all holomorphic transformations
of D and by g(D) the Lie algebra of Aut(D). Define a subgroup
GL(D) of Aut(D) by

GL(D)=Aut(D)NGL(R . x W),
An element feGL(R,x W) belongs to GL(D) if and only if f
satisfies the following conditions (Pyatetski-Shapiro [6]):

AR)=R, A(W)=W and A(V)="V.
2.1)
AF(w, w’) =F(Aw, Aw’) for w w e W.

Let E (resp. I) be the element of g(D) induced by the following
one parameter group in GL(D) (with parameter £):

(2.2) (z, w) > (e7¥2, e"‘w)
(resp. (2.2) (z, w) > (2, e"Yw) ).

For every ae R (resp. ce W) we denote by s(a) (resp. by s(c))
the element of g(D) induced by the following one parameter group

(with parameter ¢):
(z, w) > (z+ta, w)
(resp. (2, w)— (z+2V —1F(w, tc) + v —1F (¢c, tc), w +tc)).

Then s gives an injective linear mapping of R+ W to g(D). We
set for 1=—2, —1, 0, 1 and 2

g*={Xeg(D): [E, X]=2X}.
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Kaup, Matsushima and Ochiai [1] showed that the Lie algebra q(D)
has the graded structure as follows:

1) g(D) :g—2+g-—l + g0+ gl _}_gz’ [g)‘.’ gl"] C gk“‘l"-

2) r=17"+17'+1°(t*=1Nng*), where 1 denotes the radical of
q(D). And dim g?=dim ¢*+dim 7%, dim ¢~'=dim ¢'+dim v

3) g ={s(a);asR}, g'={s(c); ce W} and ¢’ is the subalgebra
corressonding to the subgroup GL (D) of Aut(D).

From 3) and (2.1), we know that ¢’ consists of all Aegl(R,
x W) satisfying the following conditions:

[AR)cR, A(W)cW and exptA(V)=V (t€R).
(2.3)
AF (w,w") =F(Aw, w") +F(w, Aw’) (w,w e W).

Cleary E and I are in the center of g and the equality s(v —1c)
=[1I,s(c)] holds for any ce W. In what follows, we identify the
space R (resp. W) with q7® (resp. with ¢7') by the isomorphism s.
Then a complex subspace of ¢7'is an ad I-invariant subspace and the
following equalities hold (cf. [9]):

2.4 [A,c]=Ac for Aeq’ and for ceq®+q7L

(2.5)  F(c,¢)=%([[Lc], ']+ —1[c,c’]) for ¢,c’eg™

2,2, Let §=Y1-_,3 be a semi-simple graded subalgebra of
q(D) given by Theorem 1.1. Then 3 =g' and F=g’. We set
t={Xe¥; [X,3+F]=0}. Let ¢ be the killing form of 3. Then
e([f,371],8) =0 and ¢([f, 37%], %) =0. Therefore we have [f, 37']
=0 and [f, §%]=0. Clearly [f,8]Ct. As a result, f is an ideal
of 3. Let 3 be the orthogonal complement of f with respect to ¢.

~

Then 8 is an ideal of § such that §=8+f (direct sum). Since & is
a graded ideal of 3, 8 is a graded subalgebra of (D), i.e., 8= . _,8"
(8*=8ngq"). Clearly 8'=¢q', 8=¢q’ and the adjoint representation

of 8 on &'+ & is faithful. Therefore we have proved the following

Theorem 2.1. There cxists a semi-simple graded subalgebra
3=8"24 87"+ 8"+ 8'+ & having the following properties:

1) §'=q' and &=g"

2) Let Ac®. The condition [A, 8+ 8]=0 implies A=0.
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A Siegel domain of the second kind is called irreducible if it is
an irreducible riemannian manifold with respect to the Bergman
metric, (Note that every Siegel domain of the second kind is a
connected simply connected complete Kihler manifold with respect
to the Bergmann metric and that every irreducible component of a
Siegel domain is also a Siegel domain ([3]).) By using Theorem

1.1 we can also prove the following

Proposition 2.2. Let D be an irreducible Siegel domain of
the second kind such that t'=0 and §'s<0. Then D is a symmetric

homogencous domain.

Proof. Let 8=>13__,3" be a semi-simple graded subalgebra of
g(D) given by Theorem 1.1. Then from our hypothesis, we have
[x,3]=0. We set [ ={Xe3; [X,1t]=0}. Clearly §, is an ideal
of 3. Therefore there exists an ideal [, of § such that §=0,+b,
(direct sum). Then (D) =0;+h.+1r (direct sum) and both [); and
h.+1 are ideals of q(D). Now the irreducibility of D implies g(D)
=0,([3]), and hence g(D) is semi-simple. As a result, the domain
D is homogeneous ([11]) and hence symmetric. q.e.d.

By using expressions of elements of q(D) as polynomial vector
fields in [1], we can easily observe the followings:
adI=0 on q7?+¢'+¢"

2. 6)
(adIyY=—id. on g '+g.

Proposition 2.3. Let 8=>1%__, 8 be a semi-simple graded sub-
algebra of q(D) as in Theorem 2.1. Then

1) grt=8t+17? (direct sum),

a =8+ (direct sum).

2 adl scs. .

3 s'=[8%38], 8=[&,8"] and 8=[87", 87+ [87 1.
Moreover if the domain D is non-degenerate, ie., ¢ =[g™", q7"].
Then 87=[5",87"], 8'=[8", 8'] and &'=[37",3"].

Proof. Assertion (1) follows immediately from the equalities
dim ¢?=dim17?+dim&~* and dimq'=dimr7'+dimg~". Let 8=>1,8;
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be the decomposition of § into simple ideals. Then each §; is a
graded subalgebra of q(D), i.e., 8;=>% ,8,(8,>=8;ng"). Suppose
that 8,'#0. Then from [4], we know that [8,', [, 8,'[]5~0. On the
other hand, [8,, [, 8,11 [8,,8]7cC8,’” As a result 8,°50. Thus
each 8; is of one of the following two types.

(1) 8,=877+8;"+8,°+8,'+3, (8,50, 3,/50).
(1) 8,=8;+8,°+8, (8,/+0).

In the case where q~*=[g7', q '], each ideal 8; is clearly of the type
(1). Now Assertion (3) follows immediately from Lemma 1.3.
Finally by using (2.6), we have [I,87"]=[I, [87% 8"1]1=1[87% [[, 8']]
=[87% 8'1=2&"". This implies Assertion (2). g.e.d.

Corollary 2.4. Let Xeq'. If [g7% [X,q¢']1]1=0. Then X
—1

Proof. Let 8§ be as in Theorem 2.1, and let X, be the 3
component of X with respect to the decomposition g™'=8 '+ 1" in
Proposition 2.3. Then [87% [X,, 8']]=0. And hence [X,, 37']=0,
because 87'=[87% 8'] by Proposion 2.3. In particular, [[I, X,], X,]
=0. Therefore by using (2.5) we have X,=0, q.e.d.

[S3Y

Corollary 2.5. 17'={Xeq™; [X, ¢*] =0}.

Proof. Denote by 1’7' the right side of the above equality.
Clearly t~'ct’~". Conversely let Xe1’7! and let X, be the 3 -
component as in Proof of Corollary 2.4. Then [X|, 8°]=0. There-
fore [[[Z, X.], X;], 8)]=0 by (2.6). Since [[I,X,], X,] belong to
37% we obtain [[[, X,], X;]=0 by Lemma 1.2 and hence X,=0.

q.e.d.

§ 3. The structure of the radical r.

3.1. Let 8=>35__,8" be a semi-simple graded subalgebra of
q(D) as in Theorem 2.1. There exists a unique element E, of g’
such that

3.1) ={Xes: [E, X]=1X}.
We set
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,'={Xer’; [8 X]=0},
(3.2
170={Xer?; [E, X]=—-X}.

3.3 ]To°= {Xer’; [8, X]=0},
' leo= (xer; [E, X]=X}.

In the notations as above we shall show the following theorem.

Theorem 3.1. The radical t has the following structure.
@) r7t=rt4? (direct sum), 7’2 [, 17'] and v7i=[17
8 =081 [x, 87"].
2 t'=r'+1" (direct sum) and tv,'=[r", 8]=[1" 8] > [t
8'l.
3) dimr;’=dim1,".
(4) adE,=0 on 17",
(®B) 1t is an abelian ideal of ° satisfying the followings:
a) [t r?+17]=0
b) [r 7t Crit

3.2. We first show the following

Lemma 3.2. [[t7}, 8'],t7']=0.

Proof. Since [8,17']=0, we have by (3) of Proposition 2.3
[[v7 8], v =[x [8, 871, v ] =118, [v7, 87']], v "1 =[[&, +7"],
[x7, 87']]=0. q.e.d.

Next we verify

Lemma 3.3. [8, [}, t7']]=0.

Proof. By Lemma 3.2 [8', [v7},17']] =0. Clearly [87%+ 387"+ &,
[x7%,17"]]=0. Since 8'=[87% 81+ [87,8], we get [8 [v7",v7"]]
=0. q.e.d.

Since 17!
to TTiX”
F(c,c) (cer™) is contained in [t~',17'] NV. Therefore there exists

is a complex subspace of g7, the restriction F, of F

"is an [v7!, t7"].-valued hermitian form on 1r~'. Clearly

a linear coordinate system z2’, -+, 2" of [x7!, 17!], such that a hermitian

form H(c,c’)=>_,;2’0F,(c,c’) on t7" is positive definite. From Lemma
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3.3, (2.3), (2.4) and (2.5), we have
3.4 H(ad Xc,¢’) + H(c,ad Xc’) =0 (Xe38"),

because I is in the center of g’

Lemma 3.4. The following equalities hold:

ad E;=0 on 17!

adE,=id. on [17',&'],
(ldEsz—ld on [T—la g—l]‘

Proof. By (3.1) we have only to prove the first equation. From
(3.4), we know that the endomorphism ad E, of t~' is semi-simple
and its eigenvalues are purely imaginary. On the other hand, ad E;
has only real eigenvalues on v by Lemma 1.5, because 1 is an invariant
space under the action of the semi-simple Lie algebra 3 and ad E, is

real diagonal in 8. Therefore we can conclude that ad E;=0 on 17.

g.e.d.

By using Lemma 1.5, we can also see that ad E|y* and ad E,|,
are real diagonal. Therefore if we set for i€ R

af={Xexr?; [E, X]=21X}
(3.5)

a'={Xenr'; [E, X]=1X}.
Then we have

=3’
(3.6) 4

r°=; a,’.

We know from Lemma 3.3 and Lemma 3.4,

J a’o[r e,

@B.7 Jaio[r7Y, 87,

a’>[x7 8.

And by considering the eigenvalues of ad E;, we have from Lemma
3.4,
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[a7% 8']1=0 for A=-1,
(3.8)
[a,%, 8711 =0 for 1+1.

Lemma 3. 5.
1) ai*=0 for 2= -2 or 1>0,
a"=0 for 1<0 or A=2.
(@) [ai? 8] =al. for —2<a<0,
[a)', 87%] =ai% for 0<a<2.
Proof. From (3.1), [ai? 8] Cal,. and [a,’, 87%] Ca;%. Clearly

® and qa,° are ad 8%invariant subspaces, because [E,, 8] =0. There-

ax
fore by (3. 8) the space aj’+a},. is ad 3-invariant for 1= —1. Since
E,=[8, 8], we have

Trad Eslﬁ_§+02+z:O .
In the case A= —1, the space aZi+17'+a,’ is also ad 8-invariant by

(3.7). And by Lemma 3.4, we get the above equality for A= —1.
It follows

Adim a;*+ (A+2)dim a},,=0.
If 720, then we have

—2dim 02 2
3.9 P
(3.9) dim a;?+dim a},.

Therefore we get —2<{21=<0. We can verify the fact that a,°=0 for
1<0 or 1=2 by the same way. Thus we obtain Assertion (1). For
15 —1, the space a7+ [a7? §°] is also ad 8-invariant. And for 1=
—1, the space aZl+17'+ [aZ} 8] is ad 8-invariant, because by (3.7)

we have
[t 8)=[c"" [8 8 ]]=[[v""87"],8"] c [aZ}, 87].
Thus we have
Adim ai*+ (A+2)dim[a;?, 8] =0.

As a result we get dim a},,=dim[a;? 8] for —2<1<C0. Similarly
we can prove dim ai’;=dim[a,’,87*] for 0<{1<(2. Therefore we
obtain Assertion (2). q.e.d.

Lemma 3.6. [a;%+a,’, 8] =0.
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Proof. By (3.8) and Lemma 3.5, we have [a;? 8'+8%]=0.
Since 8'=[87% 8] +[87}, 8'], we get [a;? 8] =0. The fact [a,", 8] =0
can be verified similarly. q.e.d.

3.3. In the next section, we shall prove the followings:

Ia;2=0 for 1#=—1, 0.
(8.10) 17a,'=0 for A0, 1.
l dim aZ!=dim a,".

We can now prove Theorem 3.1 under the assumption that (3.10)
holds. From (3.6), (3.10), Lemma 3.5 and Lemma 3.6, it follows

(v~ 8] =[aZ}, 8'] =q,".
And a,'=ad E,(a,") C [8°, 1"]. On the other hand,
[x%, 8" c [x', [87% 811 + [x°, [37, 8']]

c v 81+ 17, 8]

=a,.
Therefore we have
(3.11) a’=[r7% 8] =[1", 8.
Similarly
(3.12) aZi=[v"%38"]=[x"87"].

From (8.2), (3.3), (3.5) and Lemma 3.6, we known a;’=1;% aZ}
=174 a'=1" and a,'=1". Then Assertions (1), (2) and (8) of
Theorem 3.1 follows from (3.7), (3.10), (3.11) and (3.12). Asser-
tion (4) is already proved in Lemma 3.4. Since r,=[v7?% §]=[r"7
a’], 1" is clearly an ideal of ¢’. And by considering the eigenvalues
of ad E,, we get Assertion (5).

Corollary 3.7. Let 3 be as in Theorem 2.1. Assume that the
domain D is non-degenerate. Then we have
i =[rv" 87", vvi=[v"v7"] and vS'=[1r7}, 8'].

Proof. Since g7'=1"'4+8"", we have
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a?=[g7 ¢ 1=[8"8" T+ 87 v T+ [x 7, x7].

Now our assertions follow immediately from Theorem 3.1. q.e.d.

Remark 1. We can easily observe
17:={Xeqg™?; [X, ¢’] =0}.

Therefore the space 1;? is independent of the choice of the semi-
simple graded subalgebra 8. Clearly so is t,".

§ 4. The subalgebra ¢ and the symmetric domain S.

4.1. Let D be a Siegel domain of the second kind in R, x W
associated with a convex cone V in R and a V-hermitian form F on
W. We use the notations given in §2 and § 3.

The subalgebra g’ may be identified with a subalgebra of the
Lie algebra of all graded derivations of the graded Lie algebra ¢7°
+q7" Let §=>i2_,§" be the algebraic prolongation of (gq7*+g¢7", a")
(cf. [9]). In earlier paper [3], the author proved the following
theorem which is a generalization of Tanaka’s result [9].

Theorem 4.1. The Lie algebra §(D) can be imbedded as a
graded subalgebra of § and (' and § are determined as follows:

(1) 91:_@1.

(2) @ consists of all Xe§* such that Im ad([X, Y])|g.=0 for
all Yeq™, where ad([X, Y])|g- is considered as a complex linear
endomorphism of g with the complex structure ad I.

4,2, Let 8 be as in Theorem 2.1. Denote by 7, the projection
of a;+q7'(=R.x W) onto 8 *+87! corresponding to the direct sum:
al+q 7 =8+ +r P+ v, We put

4.1) Vi=29,(V).
Lemma 4.2. The set V, is a convexr cone in 372
Proof. It is sufficient to prove that V, contains no entire straight

lines. Let vegq™® Then we can wright v=v,+v, where v,€§*
and v,etr”®. We assert

lim —12 exp(—tE)v,=0.
t>o g%t
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In fact, by Lemma 3.5, we can write

v,=; U, ey’ (—2<21=<0)
Then

. 1 . 1
Llilg —w exp(—tE)u,= lzl_x.ll ;@T)”* =0,

proving our assertion. As a result
lirn—lr—ex (—tE)v=v,=7:(v)
lim — exp : =7:(v).

Since exp(—tE,) V=1V, V, is contained in VN3~ This fact implies
that V, contains no entire straight lines. q.e.d.

The restriction F,; of F to the complex subspace 87'x87! of g™*

x@q7' is clearly a Vihermitian form. Denote by S the Siegel domain
of the second kind in 38724 37! associated with V, and F,.

Proposition 4.3. The projection 73, maps D onto S.

Proof. Let z+weg’+q7"' (zeq¢.’, weg™). Then 7,(Imz—
F(w,w)) =Im y,(z) —F,(y,(w), y,(w)). Therefore %,(D)cS. Con-
versely, let z+weS(ze8;’, wed™). Then Imz— F(w, w)e V,. There
exists ye1? such that Imz—F(w,w)+y€V. We then have =z
+vV—ly+weD. As a result z+w=17,(z+v—1y+w) ey,(D).

q.e.d.

Next we shall prove the following

Theorem 4.4. The domain S is symmetric and & may be
identified with the Lie algebra of Aut(S).

Proof. Let q(S)=8""+8""4+8°+8"+8" be the graded Lie
algebra of Aut(S). Then 8 7?=8% and g''=8"'. Since expiA
(V) =V, for any A8’ 8° may be identified with a subalgebra of
8%, (Note that the adjoint representation of 8° on 872+8~' is faith-
ful.) Let 3=23_,3" be the algebraic prolongation of (8’7%-+g ',
8’). By Lemma 1.2, the Lie algebra 8 can be imbedded as a graded
subalgebra of 3’. Therefore by Theorem 4.1, we know that 38'is a
subspace of.3”'. Let Xeg’. Then for any Yeg™?
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Im Trad([X, Y])|gn=0 (cf. Theorem 4.1).
Since ad([X,Y]) =0 on 17!, we have
4.2) ImTrad([X, Y]ls'=0.

Let I, be the element of 8”° given by (2.2)" for the domain S. It
is clear that ad I=ad I, on 87'. Thereby from (4.2) and Theorem
4.1, we know g'C8’%. Since dim 8'<dim §7'=dim §' and dim §”
<dim 3?=dim &, we have 8'=3""' and &=2&". As a result, the
radical of q(S) is trivial® and hence S is a symmetric homogeneous
domain. Since the adjoint representation of 8’° on 8 72+3’~! is faith-

ful, by using Lemma 1.3, we have
g/l]: [g/—z’ g/Z] _|_ [Q’_l, S'l] zgo’

which completes the proof. q.e.d.

4.3. Let S’ be the Siegel domain of the first kind associated

with the cone V. It is well known that the domain S’ is symmetric.

Proposition 4.5.Y The subalgebra 87°4[87°, 8] +8" is semi-
simple and may be identified with the Lie algebra of Aut(S’).

Proof. Let q(S’) =8"*+8°+8" be the graded Lie algebra of
Aut(S”). There exists a natural homomorphism a, of 87*+8"+§’ to
q(S”) as graded Lie algebras ([1]) such that «, is injective on §~*
+8% and @, (87 =87 (cf. [4]). Since dim 8”<dim 8§’ *=dim 8~*
=dim 8, we have ,(8%) =8’% and dim §’*=dim 8’~%. (From this fact,
we known that g(S”) is semi-simple and that S’ is symmetric.) Since
the adjoint representation of 8’° on 8’ 7% is faithful, we obtain 3”°
=[8""% 8] by Lemma 1.3. As a result, o, is surjective. Let ¢ be
the radical of 872+8"'+ 8% Since a, is surjective, a,(c) is a solvable
ideal of ¢(S”) and hence is trivial. Therefore ¢ is contained in
8°'Na;'(0). By Theorem 1.1, there exists a semi-simple graded
subalgebra 8, such that

877+ 8"+ 8*=8,+¢ (direct sum),

8,=87"+8'+8 (8."'=8,n3".

»  For any graded ideal § of g(S), the condition h=*=0 implies h=0.
# This proposition holds for any symmetric Siegel domain of the second kind.
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We set 8,"= {Xe8,"; [X,8*]=0}. Then by considering the decompo-
sition of &, into simple ideals and by Lemma 1.3, we know that &,
=874+ [87% 8] +8°+8," (direct sum) and that the subalgebra g~?
+ [87%, 8%] + &° is semi-simple. It follows that 8,"+¢= {Xe8’; [X, 87*]
=0} =a;'(0). And a, is an isomorphism of 8724 [37% 8%] +3&° onto
a(S”). g.e.d.

Corollary 4.6. The element E, belongs to [87% 8],

Proof. Since the Lie algebra 8%+ [87% 8] +&* is semi-simple,
there exists a unique element E,” of [87% 8%] such that ad E,” = —2id.
on 875 ad E/=0 on [87% 8"] and ad E/=2id. on §’. By Lemma 1.5,
the endomorphism ad E,” of 8 is real diagonal. As a result

37'=>18;", where g;'={Xeg; [E/, X]=aX}.
Let Xe3;'. Then [E/,[[L, X], X]]=2[[I, X], X]. It follows that
82'=0 for ¢==—1. Therefore ad(E,—E,’) =0 on 8>+ 8! and hence

E,=E/./, because the representation of §° on §*+8" is faithful.

q.e.d.

4.4. We can now prove (3.10). Let vV, Then the cor-
respondence: X—[v, [v, X]](Xe€§’) is an injective linear mapping
of 8 to 37 ([11]). Since dim $~*=dim &*, we have

4.9 37 =[v, [v, 8]].
For 0<<21<2, by Lemma 3.5
aity=[a\', 871 =[a\, [v, [v, 8"1]]
c [[a', v], [v, 811+ [v, [a\, [v, 8°]1]
C [aiZ, [v, 811 + [v, a,”]
= [v, [ai%, 811 + [v, a\"]
=[v,a].

Therefore ai%=[v,a,"] and hence dim a;%=dim q,’. It is well known
that there exists an involutive automorphism ¢ of the semi-simple Lie
algebra 37 24[877% 8°]+ 8 such that ¢(87?)=8" and ¢(8)=8""" Then

9 of. [8).
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from (4.4) we have
g'=[0(v), [0(v),s"]].

Therefore we get a,°=[0(v), ai’,] similarly and hence dim a;7%=dima,".
Thus we' have dim a;%=dim a,". And by using (3.9), we get 1=1
if a,°%0. This implies (3. 10).

4.5. The projection 7, gives a *fibering” of D in which the
bace space is the symmetric space S. We shall show that any two
fibers are holomorphically equivalent to each other and are equivalent
to a bounded domain.

Let a=z,+w,eS(z,€8;%, w,=87"). We set

V)={yer™®; y+Imz,— F(w,, w,) € V}.

Clearly V(a) is an open convex set in 17* and contains no entire
straight lines. And
@z {ztwer’+1r7;
Im 2 — F(w, w) —2 Re F(w, w,) € V{(a)}.
Therefore the fiber 7;!(a) is a domain in 172417 Let a’=2,—+V —1

F(w,,w,). Then a’€S and V(a’) =V (a). And

@) ={z+wer*+17; Im2—F(w, w) € V(a)}.

Lemma 4.7. (1) The domains 3;'(a) and y;'(a’) are holomor-
phically equivalent to each other.

(@) The domain 3;'(a’) is holomorphically equivalent to a
bounded domain.

Proof. Assertion (2) follows immediately from the fact that
V(a) is an open convex set, containing no entire straight lines. We
can easily observe that the automorphism of 17?4 1r~! defiined by

2+w—oz—2V-1F(w,w)+w (zer;,,wer™)
maps 7, '(a) onto 3;'(a’). Thus we get Assertion (1). q.e.d.

Let b=z/+w,/eS and &'=z'—v—-1F(w,/,w’). The homo-
geneity of S implies that V, is affine homogeneous. Therefore there
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exist A, -+, A,€8" such that
exp Ajo---oexp A, (Im a’) =Im &’.

We set f=exp Ajo---0oexp A,. THhen the linear transformation of 1;*
+17! defined by

zt+wofzt+fw (zerlwer™)

maps V(a) onto V(b) and hence maps 73;'(a’) onto #;'(&"). As a
result, by Lemma 4.7, we get 5;'(a)=7%;'(8). Thus we have proved

Theorem 4.8. Let a, beS. Then the two fibers y;'(a) and
7:1(b) are holomorphically equivalent to each other. Moreover
every fiber is holomorphically equivalent to a bounded domain.

The domain S is contained in R, X W in a natural manner. Let
z+weS. Then Imz—F(w,w)eV,CV (cf. Proof of Lemma 4. 2).
Hence z+weD. Thus we know that S is contained in D. Moreover
we can prove the following

Proposition 4.9. If v=0, then S=D. And if t+#0, then S
is contained in the boundary of D.

Proof. It is clear from the construction that S coincides with
D in the case where t=0. We now assume that t£0. And suppose
that there exists peSND(p=2+w). Let E’=E—E, Since ad E’
=0 on §, E’ is contained in the isotropy subalgebra of gq(D) at peD.
Hence all eigenvalues of ad E’ are purely imaginary. On the other
hand, ad E’= —id. on t;® and ad E’= —2id. on t;:. Therefore by
Theorem 3.1 we have t=0. As a result r=0, contradicting the
assumption that 1t=~0. q.e.d.

Remark 2. For every simple ideal of 8, we can construct a
symmetric domain in D, for which similar assertions in Theorem 4. 4

and Theorem 4.8 hold.

Remark 3. If 1£0. Then the domain S is contained in the
boundary of D by Proposition 4.9. Moreover we can show that S
is a regular boundary component of D, i.e., a regular analytic set in
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R, X W contained in the boundary of D with the property that every
analytic curve ¢ (¢) in the boundary of D which meets S is completely
contained in S (cf. [6]).

§ 5. The uniqueness of the domain S.

5.1. The symmetric domain S is constructed from the semi-simple
graded subalgebra 8. Let g’=>__, 8’* be another semi-simple graded
subalgebra of g(D) having the properties 1) and 2) in Theorem 2. 1.
And let E,.,, be corresponding element of 8’° defined by (3.1) for the
subalgebla &’.

Lemma 5.1. E,.—E,e1,.
Proof. 1t follows from Theorem 3.1 and Corollary 4.6

E.e[87% 8" ct?+87% 8] g+,

Thus we can write E,=E’+A, where E‘’c3" and A=1,. Since
adE'=ad E,,=ad E, on 8'+8%, we have E’=E, because E’ and E,
belong to 3&°. q.e.d.

Now we con prove the following theorem which implies the
uniqueness of the symmetric domain S.

Theorem 5.2. Let 8 and 8" be two semi-simple garded sub-
algebra as in Theorem 2.1. And let S and S’ be the symmetric

domains corresponding to 8 and @’ respectively. Then there exists
Aeq’ suct that

1) Ad(exp A)g’ =3.

2) exp AS=S’ and pcexp A=exp Aoy,.

Proof. Let A=E, —E, Then by Lemma 5.1, we have ad E, A
=A. (Note that 1r,'=[r7? g’]=1’) Thus we get Ad(expA)E,
=E,—A=E, Clearly Ad(expA)8’*=8" for =1, 2. From Theorem
3.1, we know

g ={Xeg"; [E, X]=21X} for 1=-2, —1
(resp. 8= {Xeg*; [E,, X]=2X} for 21=-2, —1).

Therefore Ad(expA)E, =E, implies Ad(exp A)8’*=8" for 1= —2,
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—1. It follows
Ad(exp A)3"'=Ad (exp A) ([8’7% 8]+ [8"7 ']
=[87% 8]+ [387,8]=g"

Thus we have proved 1). Let z+weqg;’+q~". We write 2=3,+z,
(zy€8.7"
expA (z+w)=7,0exp A (2, + wy)=exp A(z, + w,) =expAoy (2 + w).

Therefore 7,0exp A=exp Aoy,.. As a result S=7,(D) =y,cexp A (D)

=expAoy, (D) =exp AS’. Thus we get 2). q.e.d.

,2.€1.8) and w=w, +w,(w, €8, w,e17). Then y,0

By Theorem 5.2, the domain S has an invariant meaning. In

what follows we call S the associated symmetric domain.

Corollary 5.3. Let D (resp. D’) be a Sicgel domain of the
second kind in R, X W (resp. in R,/ XW’). And let S (resp.S’) be
the associated symmetric domain corresponding to D (resp. to D).
Assume that the two domains D and D’ are holomorphically
equivalent. Then there exists a linear isomorphism f of R.XW
onto R/’ X W’ such that

fD)=D" and [f(S)=5".

Proof. From [1], we know that there exists a linear isomorphism
g of R, x W onto R,” X W7’ such that g(R) =R, g(W) =W and ¢ (D)
=D’. The isomorphism ¢ induces an isomorphism ¢, of g(D)
(=X5-20") onto g(D)(=23%-_29""). Clearly g,(g® =g’ and
9+(@™) =g’~". From this fact we can easily observe that g,(g*) =g
for all 1. Let 8 be the semi-simple graded subalgebra corresponding
to S. Then ¢, (8) satisfies the properties in Theorem 2.1 and ¢(S)
is just the symmetric domain corresponding to ¢,(8). By Theorem
5.2, there exists Aeq’® such that exp A(9(S)) =S". Now the map-
ping f=exp Aog has the desired properties. q.e.d.

5.2. We set
f={Xeq¢'; [X, a'+¢']=0}.

Clearly f is an ideal of q’. The following proposition means that
any semi-simple graded subalgebra as in Theorem 2,1 is obtained
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only by the method in the proof of Theorem 2. 1.

Proposition 5.4, Let & be as in Theorem 2.1. Then there
exists a semi-simple part t of f such that

1) f=f+1° (direct sum).

2) The direct sum t+§ is a semi-simple part of §(D) and
[t,8]=0.

Proof. Let § be as in Theorem 1.1. Then from the proof of
Theorem 2.1, there exist ideals §’ and t’ of 3§ such that

i) 8’ satisfies the properties 1) and 2) in Theorem 2. 1.

ii) 3=28"+f’ (direct sum) and hence ¢ Ct.
We then have f=¢ +1° (direct sum). Therefore f’ is a semi-simple
part of f and 1 is the radical of f. By Theorem 5.2, there exists
Aeq® such that Ad(exp A)8’=8. We put f=Ad(exp A)f’. Since
f is invariant by Ad(exp A), f is a semi-simple part of f and has
the desired properties. q.e.d.

Theorem 2.1, Proposition 2.3, Theorem 3.1 and Proposition 5.

-2

4 give structure equations of q(D). Note that the spaces r;* and 1,

are ad f-invariant (cf. Remark 1).

§ 6. Siegel domains over classical cones, 1.

6.1. In this and the next paragraphs, F denotes the field R or
C. We denote by M(p, q, F) the vector space of all p X ¢ matrices
over F. For a matrix A, denote by A* the transpose of the conjugate
matrix A of A. And denote by ¢, the unit matrix of degree p. We
set

H(m,F)={AesM(m,m,F); A*=A},
H*(m,F)={A€H(m, F); A is positive definite}.

Then H*(m,F) is a convex cone in the vector space H(m,F). Let
D be a Siegel domain of the second kind associated with the cone
V=H*(m,F) in H(m, F) and a V-hermitian form F on some vector
space W. And let q(D)=g +g'+q"+q'+g° be the graded Lie
algebra of Aut(D). Denote by D’ the Siegel domain of the first
kind associated with the cone H*(m, F), and by q(D’) =g’ *+q"°+¢q"*
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the graded Lie algebra of Aut(D’). There exists a natural homomor-
phism « of g7*+¢’+q* to ¢’ *+¢’°+q’* as graded Lie algebras such
that ¢ is injective on g*+¢° and a(g™) =g¢’~* ([1], [4]). Therefore
we identify g~* with q’~* and ¢* with the subspace a(g®) of g”. Let
AeGL(m,F), the group of all non-singular matrices of degree m.
Denote by 0(A) the transformation of H(m, F) defined by

0(4) X=AXA* (XeH(m,F)).

Clearly the cone H* (m, F) is invariant by § (A). Therefore 0 defines
a homorphism: GL(m, F) >Aut(D’). Denote by 6, the corresponding
homomorphism: gl (m, F) —q(D’), where gl(m, F) is the Lie algebra
of GL(m,F), ie., gl(m, F)=M(m,m,F). It is well known that
0,(gl(m,F))=g’°. The kernel 3 of 0, is trivial if F=R and is
{AV—=1len; 2R} if F=C. We set

_ B,CeH(m,F)
a= .

<AB

C —A*> eM@m,2m,F);

Aegl(m, F)
Then ¢ is a Lie algebra in a usual bracket rule. The center 3 of §

is trivial if F=R and is {1V —1em; A€ R} if F=C. We also know
that the Lie algebra q(D’) is isomorphic to §/3 and that

g =(BeHm ) ={(0 5)=d

8= {=alom, 1) /5= {(§ _4:) <8} /3

gf?:{CeH(m,F)};{(g 8)e§}.

For Aegl(m,F), we shall denote by the same latter A the image
of A in gl(m,F)/3=q". Let Acq” (=gl(m,F)/3), Beg (=
H(m,F)) and Ceq” (=H(m,F)). Then

[A, B]=AB+BA*, [A,C]=—(A*C+CA),
6.1

[B,C]=BC.

6.2. Let A=sGL(m,F) and put F,(c,c’) =AF(c,c’)A*, (¢, ¢

€ W). Then F, is also a V-hermitian from on W. Let D, be the
Siegel domain of the second kind corresponding to H*(m, F) and
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F,. The automorphism of R, X W(R=H(m, F)) defined by the rule:
(z,w)—>(0(A)z,w) maps D onto D,. Denote by 0, the induced
isomorphism of g(D) onto q(D,) (=23-_.q4"). Clearly 0,(a™) =q.*
and the following equalities hold:

0,(B) =ABA* for Beqg’=q *=H(m,F),
(6.2)
as00,(P) =Aa(P)A™" for Peg’,

where «, is the homomorphism of q,° into gl (m, F)/j corresponding
to the domain D,. .

Let 3 be a semi-simple graded subalgebra of g(D) given in
Theorem 2.1 and let V, be the cone in 8% given by (4.1). Then
V.cV. Let veV, and p be the rank of the matrix v. (Note that
the rank of each matrix which belongs to V, is constant, because V|
is homogeneous.) Then p=0 if and only if 3+0.

Lemma 6.1. For a sutable D,, the following equalities hold
under the identification of q3* with H(m,F).

§—2:{<8 B(:)}eH(m,F): BzzEH(P,F)},
;= {(l?;’; Zé”)eH(m,F); BreM(@m—p, p, F)},

N {(%ﬂ 8) e H(m, F): Bye H(m —p, F)}.

Proof. Let R_,, R_, and R, denote the right sides in the above
equations. Let v V,. There exists A= GL(m, F) such that AvA*
= <g 2) € H(mn, F). Therefore from (6. 2), by considering D, instead
of D, we may assume v= 8 2) Then by (6.1), we have [v, [v,
X11€R_; for any Xeg’. Since 87*=[v, [v,8"]], we know that §~*

CR_,. Then by using (6.1) we have
<O 0>'A21€M([),7n—P,F)[
An Ao’ ppeqln P
(mod 3).

Since E,=[87% 8] by Corollary 4.6, we can write

a([87 8] C
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=4, 4)

The equation [E,, v] = —2v implies Ayp+ A¥= —2¢,. Therefore the
matrix A, is non-singular. We put

A= (G, o)

We then have A a(E,) A™'= <8 AO > Thus by considering D, instead
22

of D, we may assume by (6.2)

0 O
«®E)=(o aL):
Ap= _C’p+A;2, ;2+A;2* =0.

By a direct calculation we can see that ad E, leaves R_, invariant

and that the following equality holds:
(6.3) [E,Z]=—-2Z+ALZ+ZA* for ZeR_,(=H(p, F)).

Recall that ad E, has only real eigenvalues. Then from (6.3), we
know that A,=0 if F=R and A§2=}n/je,,(/IER) if F=C. In the
case F=C, for any XeR_,, we have

ad E,X=— 141V -1 X.

Therefore A=00or R_,=0. If R_.,=0. Thenp=m and ad E,= —2id.

9-2

on g%, As a result, 3*=g" and hence we have nothing to prove.
0

Thereby we can assume a(E,)=<0 —g,) in both cases F=R and
F=C. If follows

adE,=—-2id. on R_,,

ad E;= —id. on R_;,

ad E;=0 on R,.

Now our assertion follows immediately from Theorem 3.1. q.e.d.

6.3. We next investigate domains over cones of another type.
We set

H(m,K)={YeH@2m,C); YJ=JY},
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where J= <(J)J]O> and j= <—(l) (1)> If we write Y=(y,,), &, ¢=1, -+,

m, where y,, is a 2X2 matrix. Then

. 0
Vik = <u6k ukk> (ukkeR))

Vi = <_g{{ :.:_:j) (ukt, 'UkLEC) fOI‘ k#t.

Put H*(m, K)=H(m,K) nH*(2m,C). Then H*(m,K) is a
convex cone in H(m,K). Let D (resp. D’) be a (resp. the) Siegel
domain of the second kind (resp. of the first kind) with H*(m, K)

as a convex cone. We set
GL(m,K)={AeGL(2m,C); AJ=JA}.

Then GL(m,K) is a closed subgroup of GL(2m,C). The Lie
algebra ql(m,K) of GL(m,K) consists of all Aegl(2m,C) such
that AJ=JA. Let AGL(m,K). The correspondence: X—>AXA*
(XeH(m,K)) is a linear transformation of H(m, K) leaving the
cone H*(m, K) invariant. Therefore there exists a natural homo-
morphism of gl (m, K) to g’° which is an isomorphism if m>1. We
identify q’~* and ¢’* with H(m, K) and ¢° with g((m, K) as before.
Then the bracket rule is also given by a similar fashion to (6.1).
We can also consider the domain D, for A€ GL(m, K) defined similarly

as before. The following lemma is verified analogously to Lemma
6. 1.

Lemma 6.2. Let D be a Siegel domain over the cone H* (m,
K). For a suitable D,, the following equalities hold under the
identification of q1° with H(m, K):

S X —
N {(81,,; Bé?) € H(m, K); BueM@m—2p,2p, C)}.

- {(1(9)1. 8) e H(m,K); Bue H(m—p,K)

Proof. We may assume m>1. Let veV,. By considering D,

0 0). Therefore

for suitable A GL(m, K), we may assume v=<0 e
2p
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0 0 A
aE)=(, 4 )eglonK), where Au=—c,+Al, Abt Al =0.

We can easily observe that the matrix A=<62"_‘72” 0) belongs to
An'A,y Cap

GL(m,K). We can therefore assume that o (E,) = <8 AO ) Suppose
22

that p>1. Then A5, =0 because «(E,) has only real eigenvalues.

Hence we get a(Ex)=<8 60>' In the case p=1, we can write

— €y

A.§2=<_% g) The fact that Aj+ A3*=0 implies that a is purely

imaginary. Let

O B U v
R, = < . ”)eH(m,K);Bmz 5 @w\eM@mn—2p2 C)b.
B12 O 0 O

Clearly ad E,R_;CR’”,. Let X(#0) be an eigenvector for an eigen-
value A(€R) of ad E,, where

0 B ,
S

oQ R
o
== =

Then ad E, X= )X implies

(o DG ~=asn(_y 7).

From this relation we can see that A= —1. Therefore ad E,= —id.

on R’, and hence

<_g ;)(g —2>=0 for any u, veC.

As a result a=06=0 and «(E,) = <8 —eO
2p

immediately. q.e.d.

>. Now our assertion follows

6.4. In this paragraph we consider a domain D over the cone
H*(m,F), where F=R, C or K. As an immediate corollary of

Lemma 6.1 and Lemma 6.2, we have

Proposition 6.3. Let D be a Siegel domain of the second kind
with H*(m,F) as a convex cone, where F=R, C or K. Then the

associatd symmetric domain S is an irreducible classical domain,
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Next we shall prove the following

Proposition 6.4. Let D be a Siegel domain of the second kind
with H*(m, F) as a convex cone, where F=R, C or K. Assume
that ¢7°+[q7",q7"]. Then ¢'=0.

Proof. Suppose that g's~0. Then 8%0. By using Lemma 6.1
and Lemma 6.2, we may assume, (by considering D, instead of D)

3= {<8 ng) eH(m, F); Bpe H(p, F)} >

< O* BO’2> € H(m, F)} ,
(

[=Ne)]

) e H(m, F); Bue H(m—p, F)}.

Cll CIZ
5 Co

>e§2(=H(m,F)) and B:(If)" 8>er;2.

Let C= <
By (6.1) we have
a([B,C]) =BC= (BUOCH BuOC12> )

Since [1;2, 8] =0, we have C;;=0 and C,;,=0. Recalling that dim §~*
=dim &, we get

gt = {(8 C(;)eH(m,F); szEH(P,F)}-

It follows
() =a(lt, &) = {(§ “5) coton, P},
Let B= ( 0{"2 B62> er;? and A= <8 A(;2> ea(ry). Then

* *
[A’ B] — <A12Bl2 —'(—)BI2A1‘.’ O)

o)
Clearly {ApB%+ Bp,A}; Aea(r,’), Be1;’} spans the space H(m
—p,F). Therefore v;7=[1,", 1s%]. On the other hand, the associated
symmetric space is irreducible and hence § is simple. Therefore §~*
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=[87%,87"] and §=[8',8"] by Lemma 1.3. As a consequence,
=00 87 87 c v 87 cs
Thus tv;2=[t"" 8""]. Ane hence
[, 1 = [, 571, 1 =[x, [67, 1)
clr v ] crt

Therefore v7°=[r"",v7"] and hence g*=[g™",g7"]. This contradicts
the assumption. q.e.d.

§ 7. Siegel domains over classical cones, 1L

7.1. Let D be a Siegel domain of the second kind in R, x W
associated with a convex cone V in R and a V-hermitian form F on
W. We now consider the case where the space W and the form F
satisfy the following conditions®.

1) W=W,+W, (direct sum), where W, is a complex subspace
(=1,2).

2) F(W, W, =0.

Under the identification of W with g7, the condition 2) is equivalent
to the condition “[W,, W,]=0".

The restriction F; of F to W; X W, is a V-hermitian form on W,
(t=1,2). Denote by D; the Siegel domain of the second kind
associated with V and F; and denote by g(D;) =2 ., q:* the graded
Lie algebra of Aut(D;). Then we can identify q;* with R(=g7®)
and g;* with the complex subspace W;of W(=g™"). Denote by p{™"

the projection of g7 onto ¢;!

with respect to the sum: g7 =gq;"'+q;".
Let §=>% 28" (resp. §:=2 3 »8:") be the algebraic prolongation

of (a*+¢g7',q") (resp. of (7 +@a:’,a:)). Then we have

Lemma 7.1." There exists a unique system of linear mappings
o of @ to §5 (A=0) such that

[P @, XT =00 (4, XD (Xe=g)
lLo® (), Y1 =08 ([4, YD)  (Yeg),

®  The idea of considering this case is originally due to T. Tsuji (cf. [10]).
D cf. [10].
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where A€@* and p{"? denotes the identity.

Proof. From (%), the uniqueness is obvious. Let Aeg'(=g").
We can define by (%) the element p{®(A4) of gl(g°+ga:i"), ie.,
0" (A) X=T[A, X] for Xeqg™® and p{”(A) Y=p{"([A4, Y]). Clearly
o (E) and p{”(I) are elements of g;’ obtained from (2.2) and (2.2)
for the domain D;. Since [ is in the center of ¢’ and ¢;' is a complex
subspace, we get for any Yegq;'

o (A) oo () Y=0{"([A, [L, YD =0 ([, [4, Y1D)
=" (1) =pf" (A) Y.
Therefore p{”(A) is a complex linear endomorphism of g;'. And for
any X, Yegq;', from (2.3) we get (cf. (2.4))
"(AFX, Y)=[AFX,V)]=F([A, X],Y)+F(X,[4,Y])
=F(o{"([4, XD, Y) +F(X, 0f " ([A, Y])),
because F(gi',q;") =0. Therefore we have
P (A F(X, YY) =F:(p"(A) X, Y) +Fu(X, o" (A Y).

Since exp tp® (A) V=exptAV =V for any t€ R, we can conclude by
(2.3) that pf”(A) belongs to g’

We now assume that there exist mappings p{? (0<p<CQ) satisfying
(). Define the element p®(A) of Hom (g% §i* +Hom(g;', 8}~
for A§* by

p? (A) X=p{?([4, X]) Xeg~,
e (A Y=p{""([4,Y]) Yegi

In order to prove that p{’(A) belongs to §, we have only to check
the following equalities:®

(1) [P (AX X]+[X 0 (A)X]=0 (X, X' eg™)
(i) [P AX Y]+[X 0(A)Y]=0 (Xeg™, Yeg™
(i) o (A (LY, YD =[ (A Y, Y]+ [Y, o’ (A) Y]
Y, Yeg.
It follows

& of. [9].
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[of (A) X, X'] + [X, o® (4) X’]
=Lt ([A4, XD, X T+ [X, 0f 2 ([4, X'])]
=0 ([[A, X1, X1+ [X, [4, X']D),

where we put p®=0 if 1—4<—2. Then the equality [[A4, X], X’]
+[X, [4, X]]1=[A4, [X, X’]]=0 proves (i). The equalities (ii)

and (iii) are verified similary. q.e.d.
Let pf” and p{® be as in Lemma 7.1. Then

Lemma 7. 2.

1) Ker p®n Ker pP=0.

(2) 0? is injective on ¢ (1=1,2).

Proof. (1) Let AeKer p{®nKer p{®. Then we have [q7,
[g7, A]]=0 and hence [q7', [g7%, A]]=0. Therefore [q7% A]=0.
As a result A=0 ([3]).

(2) Let Aeg® such that p®(A) =0. Then [q7% [q7%, A]]=0.
Therefore we know A=0 by Vey’s result ([11]). q.e.d.

Now we can prove the following proposition which is convenient

to calculate dim ¢' and dim ¢°.

Proposition 7.3. Assume that q,'=0. Then

(1) Under the identification of W with o', W, is contained
in 7.

(2) The mapping ¥ (resp. p$°) is an injective linear mapping
of §' (resp. of §°) to @' (resp. to g°).

B) 7' is contained is v7', where v7'=1,Nnq7" and 1, is the
radical of q(D).

Proof. Since g,'=0, p{"(g")=0. Therefore p{”([W}, ¢']) =0 and
hence [g7% [W,,g']]1=0. Now Assertion (1) follows immediately
from Corollary 2. 4.

In order to prove (2), from Theorem 4.1. and Lemma 7.2. we
have only to show that p{®(¢®) Cg’. Let Aeqg’ and Zeg™® Then
[[A4,Z], W]c[[8, a%],v7']=0. Therefore

Im Tr ad([A, ZDlg-=Im Tr ad o" ([A, Z])lg,
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=Im Tr ad ([0§? (A), Z])lg,

By using Theorem 4.1, we have p{” (4) g".

Finally since [r;', g.*] =0, we have [1;7, pf?(g®)] =0 and hence
0 ([t7%,9]) =0. From (2), we get [1;',¢*]=0. Now Assertion
(3) follows from Corollary 2.5. q.e.d.

Next we put [H*=[gr',gr']. By regarding [~ as a subspace of
g(D;) we set

t*={Xegq; [X,)7*] =0}, 1=0, 1, 2.
And put
t=qg g+t 1R

It is easy to see that t is a subalgebra of g(D,).

Proposition 7.4. The Lic algebra t can be imbedded as a
graded subalgebra of q(D).

Proof. The Lie algebra q*+q;' is clearly a graded subalgebra
of g(D). For any Aet’, define an element ¢*(A) of ql(g™*+g~") by
(A)X=[A, X] for Xeg?+g;"' and ¢"(A)g;7'=0. Clearly '(A4) is
complex linear on g~' and by using the fact F(gi’, g;)) =0, we can
see that (2.3) is holds for ¢"(A). Therefore ¢"(A) =g’ And the
correspondence ¢’: t'—¢° is an injective homomorphism of Lie algebras
as is easily observed. Let Aet'. Define an element ¢'(4) of
Hom (g™, g™ +Hom (g™, g¢° by (/(A) X=[A4, X] (eq;") for Xeg7?
CA)Y="([A,Y]) for Yeg;' and ¢'(A)gi'=0. We can see that
¢'(A) belongs to the first prolongation of (g7°+¢7',¢’) and hence
¢'(A) belongs to g'. Clearly the correspondence ¢' is injective.
Finally for any Aet’, we set #(A)X=(([4,X]) for Xegq7
CA)YY=I([A,Y]) for Yegq;! and #(A)gi'=0. Then we can see
that ¢*(A) belongs to §°. And for any Xeg7?

Im Tr ad (¢ (A) X)lg.=Im Tr ad ([A, X])| g,+=0.

Therefore ¢(*(A) €g® by Theorem 4.1. The injectivity of ¢* is clear.
Thus we have constructed the imbedding ¢ of t into g(D). It is not
difficult to see that ¢ is a homomorphism of graded Lie algebras.

q.e.d.
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Note that pPo¢(X) =X for Xet™

7.2. In this paragraph, we determine the associated symmetric
domain for every homogeneous Siegel domain with H*(m, R) (m=2)
as a convex cone constructed in [6].

Let »(¢) be a non-decreasing positive integer valued function on
an interval [1,s] (s&N) such that (s) <m. And let W be a complex
vector space defined by

W={(uw) €M@n,s C); u,=0 for k>r()}.
Define an H* (m, R)-hermitian form F on W by
F(u,v) =% (uv* +7'),
(*u =the transpose of the matrix u).
The Siegel domain D obtained from H* (m, R) and F is homogeneous

and non-symmetric (Pyatetski-Shapiro [6]).

Lemma 7.5. If r(¢) is constant. Then g'=0.

Proof. Put n=r(¢)<m. Denote by u, the k-th row vector of
the matrix « (1=k<m). Then u,=0 for £>n. Let A,(1<k=<n) be
the m X m matrix such that the (%, £)-component of A, is 1 and others
are zero. Clearly the endomorphism ¢, of H(m, R) Xx W defined by
the following equalities is belongs to g° (cf. (2.3)):

0, (X)=A, X+ XA, for XeH(m,R)
g,(w) =Au for uesW.

Note that [¢y, #:] =0uu: Let By (1=i,k=<n) be the m Xm matrix
such that the (¢, k), (k, i) and (h, h)-components are 1 (h==i, k) and
others are zero. Then the following linear transformation f;, of

of H(m, R) X W belongs to GL(D) (cf. (2.1)):
Ffu(X) =By XB:, for XeH(m, R)
Fu(w) =Byu for uesW.
Clearly Ad fi(we)=ui, Ad fu(u)=u, and Ad fu(u)=u, for h+i, k.

Recall that the domain D is non-symmetric and irreducible.
Therefore there exists an element z(5£0) of t~' by Proposition 2. 2.
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Since ad g,(x7™") cr™' and Adf,(r7") =1"', we may assume that
u,=0 for k%#1. Then for any ve W such that v,=0 for k=1, we
have [[I,v], v]=4F(v, v) =c4F(u, u) =c[|[I, u], u] (ce€R). As a
19)

result we get [[[, v],v] €17* and hence ver~ Now by considering

the transformation Ad fi, we have g '=17" q.e.d.

We turn to general cases. We set W,={ucs W; u,,=0 for t<s}
and Wy,={ueW;u,=0}. Clearly W=W;+ W, (direct sum) and
F(W,, W,) =0. Let D, be the domain as in 7.1. Then D, is the
domain corresponding to H*(m, R) and the function 7(¢) such that
s=1. Therefore by Lemma 7.5 we have g,'=0. Hence by Proposition
7.3, W, is contained in tr7' Since [W,W]=[W, W,]cC1t7? we
have W=g'=1"". And hence ¢'=0. Put n=#(s). Then

[, —q—{(” O>EH(m R); ze H(n, R)}

Therefore by Lemma 6.1, we have dim ¢°<Xdim H(m —n, R), because
[x7% t7'] is contained in 1;°

Next we change the decomposition of W by putting W,=W and
W,=0. Then the domain D, constructed in 7.1 is of the first kind
associated with the cone H*(m, R). And the Lie algebra g(D,) is
given as follows (cf. §6).

o(Dy) = {(g _B)eat@m B); Acgion, R), B,C<H(m, R)}.

We put

[(2m, R); .
<gl(2m, R) b,ce Him—n, R)

SO OO
S O O

00
0 b ‘ asqgl(m—n, R)
0 0
0 —

Then 8 is a semi-simple graded subalgebra of g(D,) and [h7% 3] =0,
where §7% is a subspace of g% given by §h*=[r"",1r7']. Therefore 8
can be imbedded as a graded subalgebra of g(D) by Proposition
7.4. As a result dim ¢*=dim H(m —n, R) and hence the equality
holds. Now it is clear that the semi-simple graded subalgebra 3 of

If we write v=v,+v, (v,€17", v,€87 ), then [[/, v,], v;]Er7?N8 =0 and hence
v, =0.

®
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g(D) has the properties 1) and 2) in Theorem 2.1 and that the
corresponding symmetric domain is of the first kind associated with

the cone H*(m—n, R). Thus we have proved the following

Theorem 7.6.° Let D be the Siegel domain corresponding to
the cone H*(m, R) (m=2) and the function r(t) on the interval
[1,5s]. Then ¢'=0, ¢*=H(m—n, R) and the associated symmetric
domain is of the first kind corresponding to the cone H* (m —n, R),
where n=r(s).

7.3. Next we investigate domains for the cone H* (m, C) (m=2).
Let 7,(¢) (resp. r,(¢)) be a function on the interval [1,s] (resp. [1,
sp]) as before. And let W® (resp. W®) be the vector space cor-
responding to the function 7(¢) (resp. r,(¢)), constructed in 7.2.
We set W=W®n 4+ W®, Let R=H(m,C) and V=H"(m,C). Define
a V-hermitian form F on W by

F(u, 'U) = % (u(l).v(l)* + ﬁ(z)lu(z)) ,

where z=u"+u® and v=v"+v®. Let D be the Siegel domain
associated with V and F. We may assume that r,(s;) =7,(s;). And
W® may be 0. The domain D is symmetric if and only if W®=0
and r;(1) =m (Pyatetski-Shapiro [6]). In what follows we put
71(0) =0 for convenience.

Lemma 7.7. In the following cases we have g'=0.

1) ri(s) =r(s).

2) r(s) <.

Proof. In the case (2), ¢'=0 follows immediately from Proposi-
tion 6.4 because g7’ [g~',g7']. But here we give a simpler proof.
We first consider the case where s;=s,=1 and r,(1) =r,(1) or the
case where W® =0, s;,=1 and (1) <<m. In each case there exist
g, A=k=<r;(1)) of ¢° and f;, (A1=i, k<r;(1)) of GL(D) such that

0. (X) =A.X+ XA, for XeH(m,C)

1 Tanaka [9] and Murakami [2] calculated g' and g° in the case s=1. Sudo [7] cal-
culated g' in the case s=1 and r(1)=m. And Tsuji [10] obtained the same
results for g' and g¢® of this theorem.
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Ge(@) =Au®+Au® for u=uV+uPeW
fie(X) =B, XB;, for XeH(m,C)
fue (@) =Byu® + B, u® for wu=u®+u®eW,

where A, and B;, are m Xm matrices as in Proof of Lemma 7.5.
Thus by using the fact that D is non-symmetric, we can see that
g'=0 analogously.

Now in the case (1), we set Wy={ue W; u?=0 for t<s; and
uR =0 for t<ls;}, and W,={ucW; u{ =0 and «{ =0}. In the
case (2), we put Wi={ue W; u{)=0 for t<s; and «® =0} and W,
={ucW;u{]} =0}. Then in both cases (1) and (2), W=W,+ W,
(direct sum) and F(W,;, W,) =0. And the domain D, constructed in
7.1 corresponding to this decomposition is just the domain considered
above. Therefore g,'=0 and hence by Proposition 7.3, we get W,
ct”'. Since [W, W]=[W, W,], we have W=g '=1"" and hence
g'=0. g.e.d.

We shall prove the following

Theorem 7.8. Let D be the Siegel domain corresponding to
the cone H*(m,C) and functions ri(t) and r,(t) on the intervals
[1, 5] and [1,s,] respectively. Assume that r,(s) =ry(sy).

1) If ri(sp) =m. Then ¢'=0, ¢°=0 and the associated sym-
metric domain S is trivial, i.e., S= (0).

2) If r(s)y<<m. Then ¢'=0, ¢=H(m—r(s),C) and the
associated symmetric domain S is of the first kind corresponding to
the cone H* (m—r,(s),C).

B) If ri(s) =m and ry(s)) <m. Let s’ be the integer (0<s,
<s1) such that ri(sy)<ry(s/+1)=m. And put n=WMax (r,(s’),
ro(s)). Then ¢'=M(m—n,s,—s/’,C), ¢*=H(m—n,C) and the as-
sociated symmetric domain S is the domain corresponding to the
cone H*(m—mn, C) and the function r,(t) on the interval [1, s, —s’]
such that s,(1) =m —n.

Proof. (1) In this case, r,(s) =7,(s;) =m. Hence by Lemma

'Y Sudo [7] calculated g' in the case si=1, s;=1 and r(1)=r(1)=1. Tsuji [10]
calculated g' and g¢* of this theorem by different methods.
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7.7, we get ¢'=0. We then have ¢°=0 by using the fact that g~*
=[g7% g7"] and by Corollary 1.4. Therefore S is trivial.

(2) Since g7°#*[g7",¢7"], we have g'=0 by Lemma 7.7 or by
Proposition 6.4. Other assertions can be proved by almost similar
way as in the proof of Theorem 7.6.

(B8) We set Wy={ueW; «f)=0 for t>s} and W,={ucs W;
ui)=0 for t<s/ and u®=0}. Then W=W,+ W, (direct sum) and
F(W,, W,) =0. Since ¢,'=0 by Lemma 7.7 or by Proposition 6.4,
we get W;C17! by Proposition 7.3. Let W’ be the subspace of W
defined by

W ={ueW;ul)=0 for k>n}.

Note that W/ oW, 2 W®,  Since [W’, W]=[W,, W,], we have
W’cr™'. As a result dim ¢'<dim M (m —n,s,—s,, C), because dim
g'=dimg™'—dim t™". Let D, be the Siegel domain as in 7.1. The
domain D, is symmetric and the semi-simple Lie algebra g(D,) (=

- _.0.") is expressed as follows. We set

A U X X, YeH(@mn,C), Asgl(m,C)
g=1{|v—-1V* C —V—-1U*|; Cegl(si—s’,C), C+C*=0,
Y vV —A*

U, VE M(m, S1 "Sll, C)

Then § is a subalgebra of g[(2m+s5,—s/’,C) and its center 3} is one
dimensional generated by V=1 €mys,—s,. 1t is well known that the
Lie elgebra g(D;) is isomorphic to §/3 and that

b

0 0 X
g{z’;{(O 0 0)6@; XeH(n,C)
000

s

oU o0
g{I;{<O O——\/—lU*)E@;UEM(m,sl—sl’,C)
0 0 0

0

A0 O
Aegl(m,C),
O = (OC O)efj =al(m, €)
0 —A*

0 Vicegln-s, €, C+C* =0

mod 3,
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’

0 0 0
gzlg{(J_lv* 0 O)eﬁ; VeM(@nm,s —s/’,C)
0o Vo '

g = .

0 00
(0 0 0)6@; Ye H(m,C)
Y 00O

Note that if we put g=[g,§] then §=g+3 and that g=g (D).

Now we set

JO 0 0 0 0 z,ye Hm—n, C) ]

O ¢ u 0 =z }

220 VolorC 0 —v_1ar |, 2S8R O, |
0o 0 0 0 0 Cegl(si—s’,C), C+C*=0,
0 y v 0 —a* u,?)EM(m—n’sl_sl/’C)

Clearly 3 is a subalgebra of §. And §=8+c¢ where 8=[3, 3] and ¢
denotes the center of 8. Then the semi-simple Lie algebra 3 has the
graded structure (8=3_3__,8") and can be imbedded as a graded
subalgebra of gq(D,) in obvious manner. Then we have [, 8] =0,
where h~* denotes the subspace of g;*(=g7%) given by )7?=[W,, W,].
Therefore by Proposition 7.4, § can be imbedded as a graded sub-
algebra of q(D). Consequently, dim g'=dim M (m —»,s,—s’, C) and
hence the equality holds. We assert that & has the properties 1)
and 2) in Theorem 2.1. Since the domain D is non-degenerate, we
get ¢*=[g', '] by Corollary 1.4. Clearly 8 =[8',8']. Thus we have
g*=8% proving 1). The property 3) is obvions. Therefore g’=
H(m—n,C) and the associated symmetric domain S is given by

S={(z,v)eM(m—n,m—n,C) XM(m—n,s;—s’,C);
V—=1@E*—2) —uu*€ H(m—n,C)}. q.ed.
7.4. In this paragraph R denotes the vector space H(m, K)
(m=2) and V denotes the cone H*(m,K). Let »(¢) be a function,
as in 7.2, on the interval [1,s] such that 1<r()<2m. And let W

be the corresponding vector space, i.e., W= {(uy) EM2m,s, C); uy
=0 for £>7r()}. Define a V-hermitian form F on W by

F(u,v) =%@v* +Jo'u'J).
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The Siegel domain D associated with V and F is symmetric if and
only if s=1 and (1) =2m (Pyatetski-Shapiro [6]).

Lemma 7.9. The following cases, ¢'=0.

1) r=2m-2.

@) rG—=1=2m (s=2).

Proof. In the case (1), g°#[g7',g""]. Therefore we have
g'=0 by Proposition 6.4. In the case (2), it is sufficient to prove
our assertion with the assumption that s=2 (cf. Proof. of Lemma
7.7). Let A, (1=k<<im) be the 2m X2m matrix such that the (2k
—1,2k—1) and (2k, 2k)-components are 1 and others are zero. Then
the following endomorphism g, of RX W belongs to g':

0, (X)=A, X+ XA, for XeH(mn, K)

0e(w) =Au for uesW,.
Let B;,(1=i{ k<m) be the 2m X2m matrix such that the (2{—1, 2%
—-1), (24,2k), (2k—1,2:—1), (2k,2:) and (h, h)-components are 1

(h:2{—1,2{ 2k—1,2k) and others are zero. Then the following
transformation f;, of R X W belongs to GL(D):

fiue(X) =By XBy, for XeH(m, K)
fu(@w) =Byu for ueW.

For every ue W, denote by u;(i=1,---,2m) the i-th row vector.

Then we have
0 (up) =u, for h=2k—1, 2k,
0 (uy) =0 for h=+#£2k—1, 2k,
Sie (Uat) =i, S (i) =21,
Sir Uair) =tsr_ry fix(Usr_1) =ty ,

Foelw) =up for h#2i—1, 2i, 2k—1, 2k.

Since D is non-symmetric, there exists «(#£0) 1~

Changing by
Su9e (@) if necessary, we may assume that %,=0 for A>2. Then
for any ve W such that v,=0 for A>2, we have [[I,v], v]=c[[{,
u],u] (ceR). Therefore ve1™.

fix, we have W=1"1 q.e.d.

By considering the transformation
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Next we shall prove

Lemma 7.10. If r(1) =r(s) =2m—1. Then

1) ¢'=M(@,s,C) and ¢'=R".

@ [r 1= {(g 8) eH(m, K); e H(n—1, K)}.

B) S={(z,w)eC'xXMA,s, C); Im z—LFuu*>0}.

Proof. Let u,veg™. Then the bracket rule is given by

(7.1 [u, v] =V —1(va* + Jatv'J —uv* — Jo'u'J).
We set
0 * *\ qeC! )
t'= (A,C)eg[(m,K)XgI(s,C);A=<0 o O), .
0 0a@ C+C*=0

For any (A4,C) &t’, define an element ¢'(A4,C) of gl(RX W) by

P"(A,C) X=AX+XA*, XeH(m, K)
(7.2)
' P"A,CQu=Au+uC, ucW.

By direct calculations, we can see that ¢°(A,C) belongs to g’. Next
we put

t'={XeM@m,s, C); X,,=0 for all k+#£2m—1}
(=M(1,s,0)).

Let Xet', YeW. By direct calculations, we easily see that the pair
(A, C) belongs to t°, where A=V —1(YX*+JY'XJ), C=v —1(X*Y
+Y*X). And for any Z€ H(m, K), ZX belongs to W. Therefore
we can define an element ¢'(X) of Hom(q™* g7 + Hom (g™, ¢°) by

V' (X)Z=ZX for Zeg7,
(7.3)

PX)Y=¢"(4,C) for Yegqg7,
where A=V -1(YX*+JY'XJ), C=+v -1(Y*X+X*Y). Clearly
¢! is injective. We shall show that ¢'(X) belongs to g'. By Theorem
4.1, it is sufficient to check the following equalities:

@ ¢ (X ([, v]) = [9" (X u, v] + [u, " (X)v] (u,veg™),



344 Kazufumi Nakajima
®) [W(XDZ,u]l+[Z,¢(X)u] =0 (ueg™,Zeg™).

From (7.1), (7.2) and (7.3), we have

9 (X) ([u, v]) = [4, v] X=V —1 (vu* —uv*) X,
because ‘v'JX='4'JX=0 as is easily observed. And

[p" (XD u, v] + [, ¢ (X)) v]
=v —1(va*X—uv*X) + vV —1(Ja' XJv — Jo' XJu)
=V —1(vu*X —uv*X),

where we use the facts that ‘XJv="'('v'"JX) =0 and ‘XJu="'(4'JX)
=0. Thus we get (a). And

(0" (X)Z, u] =V —1(u(ZX)* +JZX'u'T — ZXu* + Ja* (ZX)J)
oV 1 (uX*Z 4 ZIX U — Z X — Ja X Z),
because JZ=2ZJ and Z*=Z. On the other hand
[Z, o' (X)u]l = —V —1@X*+Ja* XT) Z+ vV —1Z (Xu* + I X ‘uJ)
=V -1wuX*Z-2ZJX 'uJ — ZXu* + Ja* XJZ).

Therefore we have (b) because ‘J= —J. Consequently we have
dim ¢'=dim M (1,s,C).
We put

W={uesqg; up=0 for k>2m—2}
W’={ueqg™; un=0 for k=2m—2}.

Then q'=W’+W” (direct sum). We assert that v7'=W’ or 17!
=W?”. In fact, there exist ¢,(1=<k<m) of ¢° and fi; (1=4, k<m —1)
of GL(D) as in Proof of Lemma 7.8. Let ue W’(u5£0). Then
W’ is generated by the elements Adfi ad ¢.u(1<i, k<m—1).
Therefore if there exists #(#0) e W’ nt~', then W’c1~'. Further-
more if #(£0) e W”n17!, then W”C1t™ because the space [W”,
W”] is generated by the element [[I,#],%] in 172 On the other
hand, there exists #(50) in 17!, since D is non-symmetric. If ¢, (x)
=0, then ¥ W’ and hence W’cr~'. And if ¢, ()50, then ¢, (%)
e1r7'NW” and hence W” C ™', Therefore the fact that g'~0 implies
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our assertion. We now suppose that t~'=W?”. Then [[W”, W"],
g cfr !, r7'], ¢'1=0. Clearly from (7.3), we have [[W”, W"],
¢'(t)]=£0. This is a contradiction. Thus we can conclude that
v'=W’. Hence dim g'=dim g7’ —dim v '=dimW” and dim ¢’=1 by
Lemma 6.2 and from the fact that v;*=[vr"" v7']. It is not difficult
to see that the graded subalgebra [W”, W”] 4+ W” +[W”, g'] +g'+¢’
has the properties 1) and 2) in Theorem 2.1. q.e.d.

Lemma 7.11. If s=2, r(1) =2m—1 and r(2) =2m. Then ¢
=0 and ¢*=0.

Proof. Suppose that g's+0. We set W,= {<g 8> eM(2m, 2, C),
ueM(@m—1,1,C)} and Wy={0w)eM(2m,2,C); uc M(2m,1,C)}.
Then W=W,+ W, (direct sum) and F(W;, W,) =0. Then the domain
D, is one considered in Lemma 7.10. Put R,= {(g 8> eH(m,K);
reH(m—1,K)}. Then from (2) of Lemma 7.10, the subspace R,
of g~ is invariant by ad p{”(g’). Therefore any element of (g’ is
of the form:

Ay A\ 2m—2
.4 - (5 Al

2m—2 2

where o is the mapping of ¢° to gl(m,K) as in §6. We put

W':{<g>eM(27n,2,C); ueM(zm—z,z,C)}

0 0\
W7 ={u, uz)EM(Zm,Z,C); Uy, Uy, s C
0 us

Then W=W’+W” (direct sum) and by the arguments as in Proof
of Lemma 7.10, we have t"'=W’ or t='=W”. Suppose that 1!
=W?”. Then we have (cf. Proof of Proposition 6. 4)

a@?) = {(2 o) Ealm, K); acM (@, 2m—2, C)}.

This contradicts (7.4). Therefore v"'=W’. And hence
[x™, v 1=R,
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00 )
g2={(0 A>EH(m,K): A=<g a)’ aER}
(cf. Proof of Proposition 6. 4).

Thus by using (6.1), we can write a(E,,)=<8 g) Let Xeg?

(cH@n,K)). Then [E,? X]=—(a¢E)*X+ Xa(E,))=2X. Hence

we have C= —62+<‘/_51“ «/[2‘“1 >(a=R,bEC). We put P=
— —v —1a
00

_ -1
<e2'6-2 Be(j ) Then Pa(E)P'= (O C>' It is easy to see that the

matrix P belongs to GL(m, K). Hence we can define the element P of
GL (D) by

P(X)=PXP* for XeH(m, K)
P(u) =Pu for uesW.

Since «(Ad PE,) = <8 g), we may assume that a(E,) = <8 8.) Then

we get a=b=0 as in Proof of Lemma 6.2. As a result a(E,)

=<O 0 > and hence
0 —e

e Yoo x=(s Y

Let ues W”(cgq™"). Then [[I,u],2] 8% Hence we have uesg™
Thus we get 87'=W”, because W’ C1t™'. Let X, (resp. X;) be the
element of &' such that u#;=1, uy=u;=0 (resp. u,=1, u;=u;=0).
By using the fact that the associated symmetric domain is given
by {(z, us, ts, us) € C*; Imz—>3 1|u;/" >0}, we can easily observe
that there exist Ay, ---, A, of 8’ such that Ad(exp A;o---cexp 4,) X,
=X, We set ;={Xer™; F(X, X;) =0} (f=1,2). We then have
Ad fq1=qs where f=exp A;o---0exp A, Clearly

0= {(8 g) eM@mn,2,C); ucM@n—2,1, C)}
(7.5)

Q= {<8 8) eM(?@m,2,C); ueM(@2m—2,1, C)}.

Next we set p;={Xeq™; F(X,q) =0} ¢=1,2). Then from (7.5)
we have dimep,=2m—1 and dimgp,=2m. On the other hand p,
=Adfp, and hence dim.p,=dim.,. This contradiction arises from
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the first assumption that g's=0. Therefore ¢'=0. Since D is non-
degenerate we have ¢°=0 by Corollary 1.4. q.e.d.

We are now in a position to prove the following

Theorem 7.12.® Let D be the Siegel domain of the second
kind corresponding to the cone HY(m,K) (m=2) and the function
7(¢) on the interval [1,s]. And let S be the associated symmetric
domain.

1) If r(s)<2m—1 and n=[(r(s) +1)/2]. Then ¢'=0, ¢’
=H(m—n,K) and S is of the first kind corresponding to the cone
Ht(m—n, K).

2) If r(s)=2m—1. Let s’ be the integer (s’<s) such that
r(s)<2m—1 and r(s’+1)=2m—1. (In the case r(1) =2m—1, we
put s’=0.) Then ¢g=M(A,s—s,C), ¢>=R' and S={(z,w)eC'
xM(,s—s’,C); Im z —ww*>0}.

B3) If r(s—1)=2m(s=2). Then ¢'=0, =0 and S=(0).

4) If r(s) =2m and r(s—1)<2m. (In the case s=1, we put
r(0)=0.) Let n=[(@(s—1)+1)/2]. Then g'=M@2m—2n,1,C),
G“=H(m—n,K) and S is the domain corresponding to the cone
H*(m—n, K) and the function r(t) such that s=1, r(1) =2(m—n).

Proof. (1) In this case, ¢'=0 by Proposition 6.4. Other
assertions can be proved similarly as Theorem 7. 6.

(2) We set Wi={uesW; u,=0 for t>s} and W,={ucW,;
u,, =0 for ¢=<s’}. Then W=W,+ W, (direct sum) and F(W,, W,)
=0. The domain D, (resp. D) is one considered in Lemma 7.9
(resp. in Lemma 7.10). Let =% _,8" be the semi-simple graded
subalgebra of q(D,) as in Theorem 2.1. By Proposition 7.3, Lemma
7.9 and Lemma 7. 10, we have dim ¢'=dim ¢7'—dim 1 7'<Xdim8~". On
the other hand by Proposition 7.4 and Lemma 7.10, the Lie algebra
8 is imbedded as a garded subalgebra of g(D). Therefore we have
g'=8". Since D is non-degenerate, we know that ¢’=[g, ¢'] from
Corollary 1.4. As a result g*=g%, because §=[8,8"]. Now it is
clear that the subalgebra 8 of q(D) has properties 1) and 2) in
Theorem 2. 1.

' Tsuji [10] calculated g' and g* in special cases of this theorem.
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B) We set W,={usW; u,,=0 for t==s—1} and W,={ucW;
#, =0 for k<s—1}. Then W=W,+ W, (direct sum) and F(W,, W,)
=0. Then the domain D, is one considered in Lemma 7.9. Therefore
W,cr™ by Proposition 7.3. Since [W, W]=[W,, W,] =g we

have W=1"" and g?=1"%

Hence ¢'=0 and ¢*=0.

4) If n=m, then r(s—1)=2m—1. We set Wi={ueW; u,,
=0 for t=s—1} and W,={ucsW; u,=0 for t<s—1}. Then the
domain D, is one considered in Lemma 7.11. Therefore we have
q'=0 and ¢g*=0 by the same reason as in (3).

We now consider the case where n<lm, ie., 7(s—1)<2m—1, We
set Wi={ueW,; u,=0} and Wy={ueW; u,=0 for £<s}. Then
W=W,+ W, (direct sum) and F(W,, W,) =0. We have W,cC17},
because the domain D, is degenerate. Put W/ ={ue W; u,,=0 for
kE>2n} and W’ ={ue W; u,=0 for k<2a}. Since [W’, W ]=[W,,
W], we have W’/cr™'. Therefore dim ¢'<<dim W”. On the other
hand, the domain D, is symmetric. By using the well known expres-
sions of g(D,), as in Proof of (3) of Theorem 7.8, we can show
that there exists a semi-simple graded subalgebra §=>17__,8" of
q(D;) such that 37'=W”, [87,87"] =87 [8,[W,, W,]]=0 and the
adjoint representation of 8° on 872+ 87! is faithful. Now our assertions

can be verified similarly as (3) of Theorem 7. 8. g.e.d.

Remark 4. Let D be a Siegel domain of the second kind and
let g(D) =2i-_:g" be the graded Lie algebra of Aut(D). Take a
point ve V. Then the domain D is homogeneous if and only if g~°
=[g° v]. Therefore the homogeneity of D implies that ¢° is fairly
large. By Theorem 4.1, g' is the first prolongation of (g*+¢7', ¢").
Thus the following question arises: Is there an irreducible inhomogene-
ous Siegel domain with ¢'s<0? As an answer, we give the following
example.

Let R=H(m,C) (m=3), V=H*(m,C). And let W=C!'xC"?
X H(m,s,C) (s==1). Define a V-hermitian form F on W by

ww, 0 0
Fu,w)={ 0 ww, 0|+ usws*,
0 0 0

where u= (u,, t, us), w= (w;, W, Ws).
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It is not difficult to see that the domain D associated with V
and F is irreducible and inhomogeneous. By the same methods as
in Proof of Theorem 7.8, we get ¢'=M(m—2,s,C) and ¢’=H(m
-2,0).
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