Symmetric spaces associated with Siegel domains

By

Kazufumi NAKAJIMA

(Received, April 16, 1974)

Introduction

The purpose of the present paper is to give the details of the results announced in [5].

Let D be a Siegel domain of the second kind associated with a convex cone V in a real vector space R and a V-hermitian from F on a complex vector space W. Denote by $\operatorname{Aut}(D)$ the Lie group of all holomorphic transformations of the domain D and by $\mathfrak{g}(D)$ the Lie algebra of $\operatorname{Aut}(D)$. From Kaup, Matsushima and Ochiai [1], we know that $\mathfrak{g}(D)$ has the following graded structure:

$$\begin{split} g\left(D\right) &= g^{-2} + g^{-1} + g^{0} + g^{1} + g^{2}, \ \left[g^{\lambda}, g^{\mu}\right] \subset g^{\lambda + \mu}, \\ & r = r^{-2} + r^{-1} + r^{0}, \ r^{\lambda} = r \cap g^{\lambda}, \end{split}$$

where \mathfrak{r} denotes the radical of $\mathfrak{g}(D)$. With relation to the semi-simple part of $\mathfrak{g}(D)$, we shall construct a symmetric Siegel domain S with $\dim_C S = \dim_R \mathfrak{g}^2 + \frac{1}{2} \dim_R \mathfrak{g}^1$ which is invariant under a suitable equivalence. At the same time, we establish structure theorems of the Lie algebra $\mathfrak{g}(D)$.

In § 1 we prepare some algebraic facts. The most important one is the following: For any graded Lie algebra $\mathfrak{g} = \sum_{\lambda} \mathfrak{g}^{\lambda} (\lambda \in \mathbb{Z})$, we can choose a graded subalgebra as a semi-simple part of \mathfrak{g} (Theorem 1.1). By using this fact, we can show in § 2 that there exists a semi-simple graded subalgebra $\mathfrak{g} = \sum_{\lambda=-2}^2 \mathfrak{g}^{\lambda}$ of $\mathfrak{g}(D)$ such that $\mathfrak{g}^1 = \mathfrak{g}^1$, $\mathfrak{g}^2 = \mathfrak{g}^2$ and the adjoint representation of \mathfrak{g}^0 on $\mathfrak{g}^1 + \mathfrak{g}^2$ is faithful (Theorem 2.1).

Let $\mathfrak g$ be as above. Then we have $\mathfrak g^{-2}=\mathfrak g^{-2}+\mathfrak r^{-2}$ and $\mathfrak g^{-1}=\mathfrak g^{-1}+\mathfrak r^{-1}$. The space $\mathfrak g^{-1}$ (resp. $\mathfrak g^{-2}$) can be identified with W (resp. with R) in a natural manner. Then $\mathfrak g^{-1}$ is a complex subspace of $\mathfrak g^{-1}$. Let V_s be the image of V by the projection of $\mathfrak g^{-2}$ to $\mathfrak g^{-2}$. From the results in § 3 concerning the structure of $\mathfrak r$, we can see that V_s is a convex cone in $\mathfrak g^{-2}$ and that the restriction F_s of F to $\mathfrak g^{-1}\times\mathfrak g^{-1}$ is a V_s -hermitian form. We shall prove in § 4 that the Siegel domain S of the second kind associated with V_s and F_s is symmetric and that the Lie algebra $\mathfrak g$ is identified with $\mathfrak g(S)$ (Theorem 4.4). Moreover in § 5 we can show the uniqueness of the domain S. From construction, the domain S is contained in \overline{D} . Let $\mathfrak g'$ be another semi-simple graded subalgebra of $\mathfrak g(D)$ having the properties stated before. And let S' be the corresponding symmetric domain. Then there exists $X \in \mathfrak g^0$ such that $Ad(\exp X) \mathfrak g = \mathfrak g'$ and $\exp X(S) = S'$ (Theorem 5.2).

As an application, we investigate the case where V is the cone of all positive definite real symmetric matrices, the cone of all positive definite complex hermitian matrices or the cone of all positive definite quaternion matrices. In § 6, we shall prove that if D is a Siegel domain over a cone of this type and if D is degenerate, then $\mathfrak{g}^1=0$ (Proposition 6.4). And in § 7 we shall find out the symmetric domain S for any homogeneous Siegel domain constructed in Pyatetski-Shapiro [6] over these cones. In particular we can calculate dim \mathfrak{g}^1 and dim \mathfrak{g}^2 . In these calculations, we partially use an idea, due to T. Tsuji, of considering the case where $W=W_1+W_2$ (direct sum) and $F(W_1,W_2)=0$. Starting from this idea, but by different methods, Tsuji [10]¹⁾ also calculated \mathfrak{g}^1 and \mathfrak{g}^2 in our Theorem 7.6, Theorem 7.8 and special cases in Theorem 7.12.

Throughout this paper we use the following notations. For a real vector space R, denote by R_c its complexification. And for an element z of R_c , denote by $\operatorname{Re} z$ (resp. by $\operatorname{Im} z$) its real (resp. imaginary) part. Let f be an endomorphism of a vector space W and let W' be a subspace of W invariant by f. We then denote by $f|_{W'}$ the restriction of f to W'.

Finally the author should express his thanks to N. Tanaka for his constant encouragement.

¹⁾ The author received [10] as a preprint during the preparation of this paper.

§ 1. Levi decompositions of graded Lie algebras and algebraic preliminaries.

1.1. Let $\mathfrak{g} = \sum_{\lambda} \mathfrak{g}^{\lambda} (\lambda \in \mathbb{Z}, [\mathfrak{g}^{\lambda}, \mathfrak{g}^{\mu}] \subset \mathfrak{g}^{\lambda+\mu})$ be a graded Lie algebra over \mathbb{R} with dim $\mathfrak{g} < \infty$. And let \mathfrak{r} be its radical. Being invariant by the derivation of \mathfrak{g} defined by: $X \to \lambda X$ for $X \in \mathfrak{g}^{\lambda}$, \mathfrak{r} is a graded ideal of \mathfrak{g} , i.e., $\mathfrak{r} = \sum_{\lambda} \mathfrak{r}^{\lambda} (\mathfrak{r}^{\lambda} = \mathfrak{r} \cap \mathfrak{g}^{\lambda})$. Concerning Levi decompositions of \mathfrak{g} , we can prove the following

Theorem 1.1. There exists a semi-simple graded subalgebra \tilde{g} of g such that $g = r + \tilde{g}$ (direct sum).

Proof. We shall prove this by induction with respect to dim \mathfrak{r} . Suppose that \mathfrak{r} is not abelian. We put $\mathfrak{r}'=[\mathfrak{r},\mathfrak{r}]$ and $\mathfrak{g}'=\mathfrak{g}/\mathfrak{r}'$. Since \mathfrak{r} is a graded ideal of \mathfrak{g} , so is \mathfrak{r}' . Therefore \mathfrak{g}' has a natural graded structure such that $\mathfrak{g}'^{\lambda}=\pi(\mathfrak{g}^{\lambda})$, where π is the projection of \mathfrak{g} onto \mathfrak{g}' . Clearly the radical of \mathfrak{g}' is $\mathfrak{r}/\mathfrak{r}'$ and $\dim \mathfrak{r}/\mathfrak{r}' < \dim \mathfrak{r}$. Thus from the inductive hypothesis, there exisis a semi-simple graded subalgebra \mathfrak{g}' of \mathfrak{g}' such that $\mathfrak{g}'=\mathfrak{r}/\mathfrak{r}'+\mathfrak{g}'$ (direct sum). We put $\mathfrak{g}^*=\pi^{-1}(\mathfrak{g}')$. We assert that \mathfrak{g}^* is a graded subalgebra of \mathfrak{g} . Indeed, let $X \in \mathfrak{g}^*$. We write $X = \sum_{\lambda} X^{\lambda} (X^{\lambda} \in \mathfrak{g}^{\lambda})$. Then $\pi(X) = \sum_{\lambda} \pi(X^{\lambda})$. Since $\pi(X) \in \mathfrak{g}'$ and \mathfrak{g}' is a graded subalgebra of \mathfrak{g}' , we have $\pi(X^{\lambda}) \in \mathfrak{g}'$, proving our assertion. Now \mathfrak{r}' is the radical of \mathfrak{g}^* and dim \mathfrak{r}' < dim \mathfrak{r} . Thus there exists a semi-simple graded subalgebra \mathfrak{g} of \mathfrak{g}^* (and hence a graded subalgebra of \mathfrak{g}) such that $\mathfrak{g}^*=\mathfrak{r}'+\mathfrak{g}$ (direct sum). Clearly $\mathfrak{g}=\mathfrak{r}+\mathfrak{g}$ (direct sum).

Next we investigate the case where \mathfrak{r} is abelian. Let $\mathfrak{g}=\mathfrak{r}+\mathfrak{g}$ be a Levi decomposition of \mathfrak{g} . Denote by π the natural projection of \mathfrak{g} onto $\mathfrak{g}/\mathfrak{r}$. Being isomorphic to $\mathfrak{g}/\mathfrak{r}$, the semi-simple subalgebra \mathfrak{g} has a graded structure such that $\mathfrak{g}=\sum_{\lambda}\mathfrak{g}^{\lambda}$ and $\pi(\mathfrak{g}^{\lambda})=\pi(\mathfrak{g}^{\lambda})$. Let $X\in\mathfrak{g}^{\lambda}$. We write $X=\sum X^{\nu}(X\in\mathfrak{g}^{\nu})$. Since $\pi(X)\in\pi(\mathfrak{g}^{\lambda})$, we get $X^{\nu}\in\mathfrak{r}^{\nu}$ for $\nu\neq\lambda$. Clearly the correspondence: $X\to X^{\lambda}$ gives an injective linear mapping ρ_{λ} of \mathfrak{g}^{λ} to \mathfrak{g}^{λ} . We extend the mapping ρ_{λ} to a mapping of \mathfrak{g} to \mathfrak{g} by defining as follows:

$$\rho_{\lambda}(\mathfrak{F}^{\nu}) = 0$$
 for $\nu \neq \lambda$.

Then the mapping $\rho = \sum \rho_{\lambda}$ is an injective linear mapping of \mathfrak{F} to \mathfrak{F} such that $\rho(\mathfrak{F}^{\lambda}) \subset \mathfrak{F}^{\lambda}$. Let $X \in \mathfrak{F}^{\lambda}$ and $Y \in \mathfrak{F}^{\mu}$. We write $X = \sum_{\nu} X^{\nu}$ and $X = \sum_{\nu} Y^{\nu} (X^{\nu}, Y^{\nu} \in \mathfrak{F}^{\nu})$. Then

$$[X, Y] = [X^{\lambda}, Y^{\mu}] + \sum_{\nu' \neq \mu} [X^{\lambda}, Y^{\nu'}] + \sum_{\nu \neq \lambda} [X^{\nu}, Y^{\mu}] + \sum_{\nu \neq \lambda} [X^{\nu}, X^{\nu'}].$$

Since $X^{\nu} \in \mathfrak{r}^{\nu}$ for $\nu \neq \lambda$ and $Y^{\nu'} \in \mathfrak{r}^{\nu'}$ for $\nu' \neq \mu$, we have $[X^{\nu}, Y^{\nu'}] = 0$ for $\nu \neq \lambda$ and $\nu' \neq \mu$. Then from the definition of the mapping ρ , we get $\rho([X, Y]) = [X^{\lambda}, Y^{\mu}]$, because $[X, Y] \in \mathfrak{g}^{\lambda + \mu}$. Clearly $[\rho(X), \rho(Y)] = [X^{\lambda}, Y^{\mu}]$. As a result, ρ is an injective homomorphism and the decomposition $\mathfrak{g} = \mathfrak{r} + \rho(\mathfrak{g})$ has the desired properties. q.e.d.

1.2. Let \mathfrak{F} be a semi-simple graded Lie algebra such that $\mathfrak{F} = \mathfrak{F}^{-2} + \mathfrak{F}^{-1} + \mathfrak{F}^0 + \mathfrak{F}^1 + \mathfrak{F}^2$. The killing form φ of \mathfrak{F} gives dualities between \mathfrak{F}^{-1} and \mathfrak{F}^1 and between \mathfrak{F}^{-2} and \mathfrak{F}^2 . Therefore $\dim \mathfrak{F}^{-1} = \dim \mathfrak{F}^1$ and $\dim \mathfrak{F}^{-2} = \dim \mathfrak{F}^2$.

Lemma 1.2 (cf. [8]).

- (1) Let $X^{-2} \in \mathfrak{g}^{-2}$ (resp. $Y^2 \in \mathfrak{g}^2$). Suppose that $[X^{-2}, \mathfrak{g}^2] = 0$ (resp. $[Y^2, \mathfrak{g}^{-2}] = 0$). Then $X^{-2} = 0$ (resp. $Y^2 = 0$).
- (2) Let $X^{-1} \in \hat{\mathfrak{g}}^{-1}$ (resp. $Y^1 \in \hat{\mathfrak{g}}^1$). Supppose that $[X^{-1}, \hat{\mathfrak{g}}^1] = 0$ (resp. $[Y^1, \hat{\mathfrak{g}}^{-1}] = 0$). Then $X^{-1} = 0$ (resp. $Y^1 = 0$).
- Proof. (1) Let $Z \in \mathfrak{F}^2$. Clearly $ad \ X^{-2} \circ ad \ Z(\mathfrak{F}^1 + \mathfrak{F}^2) = 0$. And $ad \ X^{-2} \circ ad \ Z(\mathfrak{F}^0) \subset ad \ X^{-2}(\mathfrak{F}^2) = 0$. Moreover $ad \ X^{-2} \circ ad \ Z(\mathfrak{F}^{-1} + \mathfrak{F}^{-2}) \subset ad \ ([X^{-2}, Z]) \ (\mathfrak{F}^{-1} + \mathfrak{F}^{-2}) + ad \ Z \circ ad \ X^{-2} \ (\mathfrak{F}^{-1} + \mathfrak{F}^{-2}) = 0$. Therefore $\varphi(X^{-2}, \mathfrak{F}^2) = 0$ and hence $X^{-2} = 0$. We can verify the second assertion similarly.
- (2) Let $Z \in \mathfrak{g}^1$. By the same argument as in Proof of (1) we can show that $ad \ X^{-1} \circ ad \ Z(\mathfrak{g}^{-2} + \mathfrak{g}^0 + \mathfrak{g}^1 + \mathfrak{g}^2) = 0$. We set $\mathfrak{g}'^{-1} = \{X \in \mathfrak{g}^{-1}; [X,\mathfrak{g}^1] = 0\}$. Then $[\mathfrak{g}^0,\mathfrak{g}'^{-1}] \subset \mathfrak{g}'^{-1}$. Therefore $ad \ X^{-1} \circ ad \ Z(\mathfrak{g}^{-1}) \subset \mathfrak{g}'^{-1}$ and $ad \ X^{-1} \circ ad \ Z(\mathfrak{g}'^{-1}) = 0$. Thus we get $\varphi(X^{-1},\mathfrak{g}^1) = 0$ and hence $X^{-1} = 0$. Second assertion follows similarly. q.e.d.

Lemma 1.3 (cf. [8]). Under the assumption that § is simple, we have

- (1) If $\hat{\mathbf{g}}^1 = 0$ and $\hat{\mathbf{g}}^2 \neq 0$, then $[\hat{\mathbf{g}}^{-2}, \hat{\mathbf{g}}^2] = \hat{\mathbf{g}}^0$.
- (2) If $\mathfrak{g}^1 \neq 0$, then $\mathfrak{g}^{-2} = \lceil \mathfrak{s}^{-1}, \mathfrak{g}^{-1} \rceil$, $\mathfrak{g}^0 = \lceil \mathfrak{g}^{-1}, \mathfrak{g}^1 \rceil$ and $\mathfrak{g}^2 = \lceil \mathfrak{g}^1, \mathfrak{g}^1 \rceil$.
- (3) If $\hat{\mathbf{g}}^2 \neq 0$, then $\hat{\mathbf{g}}^1 = [\hat{\mathbf{g}}^2, \hat{\mathbf{g}}^{-1}]$ and $\hat{\mathbf{g}}^{-1} = [\hat{\mathbf{g}}^{-2}, \hat{\mathbf{g}}^1]$.
- *Proof.* (1) Clearly the subspace $\hat{\mathbf{g}}^{-2} + \lceil \hat{\mathbf{g}}^{-2}, \hat{\mathbf{g}}^2 \rceil + \hat{\mathbf{g}}^2$ is an ideal

of $\hat{\mathfrak{g}}$ and hence $\hat{\mathfrak{g}}^0 = [\hat{\mathfrak{g}}^{-2}, \hat{\mathfrak{g}}^2]$.

- (2) We set $\mathfrak{g}' = [\mathfrak{g}^{-1}, \mathfrak{g}^{-1}] + \mathfrak{g}^{-1} + [\mathfrak{g}^{-1}, \mathfrak{g}^{1}] + \mathfrak{g}^{1} + [\mathfrak{g}^{1}, \mathfrak{g}^{1}]$. Then \mathfrak{g}' is an ideal of \mathfrak{g} , proving our assertion.
- (3) It is sufficient to consider the case where $\mathfrak{g}^1 \neq 0$. we set $\mathfrak{g}'^{-2} = \mathfrak{g}^{-2}$ and $\mathfrak{g}'^{\lambda+1} = [\mathfrak{g}'^{\lambda}, \mathfrak{g}^1]$ inductively. And put $\mathfrak{g}' = \mathfrak{g}'^{-2} + \mathfrak{g}'^{-1} + \mathfrak{g}'^0 + \mathfrak{g}'^1 + \mathfrak{g}'^2$. Then $[\mathfrak{g}', \mathfrak{g}^0 + \mathfrak{g}^1] \subset \mathfrak{g}'$. Since $\mathfrak{g}^2 = [\mathfrak{g}^1, \mathfrak{g}^1]$ by Assertion (2), we get $[\mathfrak{g}'^{-2}, \mathfrak{g}^2] \subset \mathfrak{g}'^0$ and hence $[\mathfrak{g}'^{-2}, \mathfrak{g}] \subset \mathfrak{g}'$. Assume that $[\mathfrak{g}'^{\lambda}, \mathfrak{g}] \subset \mathfrak{g}'$. Then $[\mathfrak{g}'^{\lambda+1}, \mathfrak{g}] = [[\mathfrak{g}'^{\lambda}, \mathfrak{g}^1], \mathfrak{g}] \subset [[\mathfrak{g}'^{\lambda}, \mathfrak{g}], \mathfrak{g}^1] + [\mathfrak{g}'^{\lambda}, \mathfrak{g}] \subset [\mathfrak{g}', \mathfrak{g}^1] + \mathfrak{g}' \subset \mathfrak{g}'$. As a result, \mathfrak{g}' is an ideal of \mathfrak{g} and hence $\mathfrak{g}^{-1} = [\mathfrak{g}^{-2}, \mathfrak{g}^1]$. We can verify the equation $\mathfrak{g}^1 = [\mathfrak{g}^2, \mathfrak{g}^{-1}]$ analogously. q.e.d.

The correspondence: $X \to \lambda X$ for $X \in \mathfrak{F}^{\lambda}$ is a derivation of the semi-simple Lie algebra \mathfrak{F} . Therefore there exists a unique element E of \mathfrak{F} such that $\mathfrak{F}^{\lambda} = \{X \in \mathfrak{F}; ad\ EX = \lambda X\}$. It is easy to see that E belongs to \mathfrak{F}^{0} . Being invariant by $ad\ E$, each ideal of \mathfrak{F} is a graded ideal.

Colollary 1.4. Let $\mathfrak{g} = \sum_{\lambda=-2}^{2} \mathfrak{g}^{\lambda}(\lambda \in \mathbb{Z})$ be a graded Lie algebra whose radical \mathfrak{r} is of the form: $\mathfrak{r} = \mathfrak{r}^{-2} + \mathfrak{r}^{-1} + \mathfrak{r}^{0}(\mathfrak{r}^{\lambda} = \mathfrak{r} \cap \mathfrak{g}^{\lambda})$. Suppose that $\mathfrak{g}^{-2} = [\mathfrak{g}^{-1}, \mathfrak{g}^{-1}]$. Then $\mathfrak{g}^{2} = [\mathfrak{g}^{1}, \mathfrak{g}^{1}]$.

Proof. By considering \mathfrak{g}/r instead of \mathfrak{g} , we may assume that \mathfrak{g} is semi-simple. And by considering the decomposition into simple ideals, we may assume that \mathfrak{g} is simple. Then our assertion follows immediately from Lemma 1.3.

- **1.3.** Let R be a real vector space with $\dim R < \infty$. A linear endomorphism A of R is called *real-diagonal* if it can be written as a diagonal matrix with respect to some basis of R.
- **Lemma 1.5.** Let \mathfrak{F} be a semi-simple Lie algebra and let f be a representation of \mathfrak{F} on a real vector space R. Assume that ad E $(E \in \mathfrak{F})$ is real diagonal. Then f(E) is real-diagonal.

Proof. We first assert that all eigenvalues of f(E) are real.²⁾ In fact, we set for $\alpha \in C$,

$$U_{\alpha} = \{X \in R_c; (f(E) - \alpha)^n X = 0 \text{ for some } n \in \mathbb{N}\}.$$

Then $R_c = \sum_{\alpha} U_{\alpha}$. Let λ be an eigenvalue of f(E) and put $U' = \sum' U_{\alpha}$,

²⁾ This fact is also proved in [12] by different methods.

where \sum' indicates the sum is taken only over the spaces U_{α} with $\operatorname{Im} \alpha = \operatorname{Im} \lambda$. It is easy to see that U' is \mathfrak{F} -invariant. It follows that $\operatorname{Im} Tr f(E)|_{U'} = \dim_{\mathcal{C}} U' \times \operatorname{Im} \lambda$. On the other hand, we know that $Tr f(E)|_{U'} = 0$, because $E \in [\mathfrak{G}, \mathfrak{F}]$. Therefore we have $\operatorname{Im} \lambda = 0$, proving our assertion.

Now we may assume that the representation f is irreducible. Denote by $\mathcal A$ the associative algebra of operators generated by $f(\mathfrak F)$. Then $\mathcal A$ is a Lie algebra in the usual braket rule. It is not difficult to show that adf(E) is a real-diagonal element in $\mathcal A$. Therefore we can write $\mathcal A = \sum_{\alpha \in R} \mathcal A_\alpha$, where $\mathcal A_\alpha = \{X \in \mathcal A; [f(E), X] = \alpha X\}$. Put $R_\alpha = \{v \in R; (f(E) - \alpha)^n v = 0 \text{ for some } n \in N\}$, for each eigenvalue α of f(E). Then $R = \sum R_\alpha$. We consider the case where there exists a non-zero eigenvalue λ of f(E). Let v be an eigenvector corresponding to the eigenvalue λ , i.e., $f(E)v = \lambda v(v \neq 0)$. Then the space $\{\mathcal Av\}$ coincides with R, because $\{\mathcal Av\}$ is $\mathfrak F$ -invariant. Let $v \in R_\alpha$. There exists $v \in \mathcal A$ such that $v \in R_\alpha$. We can write $v \in R_\alpha$. There exists $v \in \mathcal A$ such that $v \in R_\alpha$. We can write $v \in R_\alpha$. Since $v \in R_{\beta + \lambda}$, we have $v \in R_{\alpha - \lambda}v = u$. It follows

$$f(E) u = f(E) A_{\alpha-\lambda} v$$

$$= [f(E), A_{\alpha-\lambda}] v + A_{\alpha-\lambda} f(E) v$$

$$= (\alpha - \lambda) A_{\alpha-\lambda} v + \lambda A_{\alpha-\lambda} v = \alpha u.$$

As a result $R_{\alpha} = \{v \in R; f(E)v = \alpha v\}$. Next we consider the case where all eigenvalues of f(E) are zero. Let $\mathfrak{g}' = \mathfrak{g}/f^{-1}(0)$ and let E' be the image of E in \mathfrak{g}' . Since f(E) is nilpotent, so is ad E'. On the other hand, ad E' is a real-diagonal element in \mathfrak{g}' . Therefore $[E', \mathfrak{g}'] = 0$ and hence E' = 0. This implies that f(E) = 0 and completes the proof.

§ 2. A Siegal domain D and the Lie algebra of Aut(D).

- **2.1.** Let R (resp. W) be a real (resp. complex) vector space of finite dimension. An open set V of R is called a *convex cone* if it satisfies the following conditions:
 - 1) For any $x \in V$ and for any t > 0, $tx \in V$.
 - 2) For any $x, x' \in V, x+x' \in V$.
 - 3) V contains no entire straight lines.

We say a mapping F of $W \times W$ into R_c is a V-hermitian form on W if it satisges the following conditions:

- 1) F(w, w') is complex linear in w and F(w, w') = F(w', w).
- 2) $F(w, w) \in \overline{V}$, where \overline{V} denotes the closure of V in R.
- 3) F(w, w) = 0 implies w = 0.

We define a domain D in $R_c \times W$ by

$$D = \{(z, w) \in R_c \times W : \text{Im } z - F(w, w) \in V\}.$$

The domain D is called a Siegel domain of the second kind. In the special case where W=0, the domain D is called a Siegel domain of the first kind.

Denote by $\operatorname{Aut}(D)$ the group of all holomorphic transformations of D and by $\mathfrak{g}(D)$ the Lie algebra of $\operatorname{Aut}(D)$. Define a subgroup $\operatorname{GL}(D)$ of $\operatorname{Aut}(D)$ by

$$GL(D) = Aut(D) \cap GL(R_c \times W)$$
.

An element $f \in GL(R_c \times W)$ belongs to GL(D) if and only if f satisfies the following conditions (Pyatetski-Shapiro [6]):

(2.1)
$$\begin{cases} A(R) = R, \ A(W) = W \ \text{and} \ A(V) = V. \\ AF(w, w') = F(Aw, Aw') \ \text{for} \ w \ w' \in W. \end{cases}$$

Let E (resp. I) be the element of $\mathfrak{g}(D)$ induced by the following one parameter group in GL(D) (with parameter t):

(2. 2)
$$(z, w) \to (e^{-2t}z, e^{-t}w)$$
 (resp. (2. 2)' $(z, w) \to (z, e^{\sqrt{-1}t}w)$).

For every $a \in R$ (resp. $c \in W$) we denote by s(a) (resp. by s(c)) the element of $\mathfrak{g}(D)$ induced by the following one parameter group (with parameter t):

$$(z, w) \rightarrow (z + ta, w)$$

(resp.
$$(z, w) \to (z + 2\sqrt{-1}F(w, tc) + \sqrt{-1}F(tc, tc), w + tc)$$
).

Then s gives an injective linear mapping of R+W to $\mathfrak{g}(D)$. We set for $\lambda=-2,\ -1,\ 0,\ 1$ and 2

$$g^{\lambda} = \{X \in \mathfrak{g}(D); [E, X] = \lambda X\}.$$

Kaup, Matsushima and Ochiai [1] showed that the Lie algebra $\mathfrak{g}(D)$ has the graded structure as follows:

- 1) $g(D) = g^{-2} + g^{-1} + g^0 + g^1 + g^2$, $[g^{\lambda}, g^{\mu}] \subset g^{\lambda + \mu}$.
- 2) $\mathfrak{r} = \mathfrak{r}^{-2} + \mathfrak{r}^{-1} + \mathfrak{r}^0 (\mathfrak{r}^{\lambda} = \mathfrak{r} \cap \mathfrak{g}^{\lambda})$, where \mathfrak{r} denotes the radical of $\mathfrak{g}(D)$. And $\dim \mathfrak{g}^{-2} = \dim \mathfrak{g}^2 + \dim \mathfrak{r}^{-2}$, $\dim \mathfrak{g}^{-1} = \dim \mathfrak{g}^1 + \dim \mathfrak{r}^{-1}$.
- 3) $\mathfrak{g}^{-2} = \{s(a); a \in R\}, \mathfrak{g}^{-1} = \{s(c); c \in W\}$ and \mathfrak{g}^0 is the subalgebra corresponding to the subgroup GL(D) of Aut(D).

From 3) and (2.1), we know that \mathfrak{g}^0 consists of all $A \in \mathfrak{gl}(R_c \times W)$ satisfying the following conditions:

$$(2.3) \begin{cases} A(R) \subset R, \ A(W) \subset W & \text{and} \quad \exp tA(V) = V \ (t \in \mathbf{R}). \\ AF(w, w') = F(Aw, w') + F(w, Aw') \ (w, w' \in W). \end{cases}$$

Cleary E and I are in the center of \mathfrak{g}^0 and the equality $s(\sqrt{-1}c) = [I, s(c)]$ holds for any $c \in W$. In what follows, we identify the space R (resp. W) with \mathfrak{g}^{-2} (resp. with \mathfrak{g}^{-1}) by the isomorphism s. Then a complex subspace of \mathfrak{g}^{-1} is an ad I-invariant subspace and the following equalities hold (cf. [9]):

- (2.4) [A, c] = Ac for $A \in \mathfrak{g}^0$ and for $c \in \mathfrak{g}^{-2} + \mathfrak{g}^{-1}$.
- (2.5) $F(c,c') = \frac{1}{4}([[I,c],c'] + \sqrt{-1}[c,c'])$ for $c,c' \in \mathfrak{g}^{-1}$.
- **2.2.** Let $\tilde{g} = \sum_{k=-2}^{2} \tilde{g}^{k}$ be a semi-simple graded subalgebra of $\mathfrak{g}(D)$ given by Theorem 1.1. Then $\tilde{g}^{1} = \mathfrak{g}^{1}$ and $\tilde{g}^{2} = \mathfrak{g}^{2}$. We set $f = \{X \in \tilde{g}^{0}; [X, \tilde{g}^{1} + \tilde{g}^{2}] = 0\}$. Let φ be the killing form of \tilde{g} . Then $\varphi([f, \tilde{g}^{-1}], \tilde{g}^{1}) = 0$ and $\varphi([f, \tilde{g}^{-2}], \tilde{g}^{2}) = 0$. Therefore we have $[f, \tilde{g}^{-1}] = 0$ and $[f, \tilde{g}^{-2}] = 0$. Clearly $[f, \tilde{g}^{0}] \subset f$. As a result, f is an ideal of \tilde{g} . Let g be the orthogonal complement of f with respect to φ . Then g is an ideal of \tilde{g} such that $\tilde{g} = \tilde{g} + f$ (direct sum). Since g is a graded ideal of g, g is a graded subalgebra of g(D), i.e., $g = \sum_{k=-2}^{2} g^{k} (g^{k} = g \cap g^{k})$. Clearly $g^{1} = g^{1}$, $g^{2} = g^{2}$ and the adjoint representation of g^{0} on $g^{1} + g^{2}$ is faithful. Therefore we have proved the following

Theorem 2.1. There exists a semi-simple graded subalgebra $\mathfrak{g} = \mathfrak{g}^{-2} + \mathfrak{g}^{-1} + \mathfrak{g}^0 + \mathfrak{g}^1 + \mathfrak{g}^2$ having the following properties:

- 1) $\mathfrak{g}^1 = \mathfrak{g}^1$ and $\mathfrak{g}^2 = \mathfrak{g}^2$.
- 2) Let $A \in \mathfrak{g}^0$. The condition $[A, \mathfrak{g}^1 + \mathfrak{g}^2] = 0$ implies A = 0.

A Siegel domain of the second kind is called *irreducible* if it is an irreducible riemannian manifold with respect to the Bergman metric. (Note that every Siegel domain of the second kind is a connected simply connected complete Kähler manifold with respect to the Bergmann metric and that every irreducible component of a Siegel domain is also a Siegel domain ([3]).) By using Theorem 1.1 we can also prove the following

Proposition 2.2. Let D be an irreducible Siegel domain of the second kind such that $\mathfrak{r}^{-1}=0$ and $\mathfrak{g}^1\neq 0$. Then D is a symmetric homogeneous domain.

Proof. Let $\tilde{\mathfrak{g}} = \sum_{\lambda=-2}^{2} \tilde{\mathfrak{g}}^{\lambda}$ be a semi-simple graded subalgebra of $\mathfrak{g}(D)$ given by Theorem 1.1. Then from our hypothesis, we have $[\mathfrak{r}, \tilde{\mathfrak{g}}^{1}] = 0$. We set $\mathfrak{h}_{1} = \{X \in \tilde{\mathfrak{g}}; [X, \mathfrak{r}] = 0\}$. Clearly \mathfrak{h}_{1} is an ideal of $\tilde{\mathfrak{g}}$. Therefore there exists an ideal \mathfrak{h}_{2} of $\tilde{\mathfrak{g}}$ such that $\tilde{\mathfrak{g}} = \mathfrak{h}_{1} + \mathfrak{h}_{2}$ (direct sum). Then $\mathfrak{g}(D) = \mathfrak{h}_{1} + \mathfrak{h}_{2} + \mathfrak{r}$ (direct sum) and both \mathfrak{h}_{1} and $\mathfrak{h}_{2} + \mathfrak{r}$ are ideals of $\mathfrak{g}(D)$. Now the irreducibility of D implies $\mathfrak{g}(D) = \mathfrak{h}_{1}([3])$, and hence $\mathfrak{g}(D)$ is semi-simple. As a result, the domain D is homogeneous ([11]) and hence symmetric. q.e.d.

By using expressions of elements of $\mathfrak{g}(D)$ as polynomial vector fields in [1], we can easily observe the followings:

(2.6)
$$\begin{cases} ad \ I = 0 \text{ on } \mathfrak{g}^{-2} + \mathfrak{g}^{0} + \mathfrak{g}^{2}. \\ (ad \ I)^{2} = -id. \text{ on } \mathfrak{g}^{-1} + \mathfrak{g}^{1}. \end{cases}$$

Proposition 2.3. Let $\mathfrak{g} = \sum_{\lambda=-2}^{2} \mathfrak{g}^{\lambda}$ be a semi-simple graded subalgebra of $\mathfrak{g}(D)$ as in Theorem 2.1. Then

- (1) $g^{-2} = g^{-2} + r^{-2}$ (direct sum), $g^{-1} = g^{-1} + r^{-1}$ (direct sum).
- (2) $ad I \mathfrak{s} \subset \mathfrak{s}$.
- (3) $\mathfrak{g}^{-1} = [\mathfrak{g}^{-2}, \mathfrak{g}^1], \ \mathfrak{g}^1 = [\mathfrak{g}^2, \mathfrak{g}^{-1}] \ \text{and} \ \mathfrak{g}^0 = [\mathfrak{g}^{-1}, \mathfrak{g}^1] + [\mathfrak{g}^{-2}, \mathfrak{g}^2].$ Moreover if the domain D is non-degenerate, i.e., $\mathfrak{g}^{-2} = [\mathfrak{g}^{-1}, \mathfrak{g}^{-1}].$ Then $\mathfrak{g}^{-2} = [\mathfrak{g}^{-1}, \mathfrak{g}^{-1}], \ \mathfrak{g}^2 = [\mathfrak{g}^1, \mathfrak{g}^1] \ \text{and} \ \mathfrak{g}^0 = [\mathfrak{g}^{-1}, \mathfrak{g}^1].$

Proof. Assertion (1) follows immediately from the equalities $\dim \mathfrak{g}^{-2} = \dim \mathfrak{r}^{-2} + \dim \mathfrak{g}^{-2}$ and $\dim \mathfrak{g}^{-1} = \dim \mathfrak{r}^{-1} + \dim \mathfrak{g}^{-1}$. Let $\mathfrak{g} = \sum_{j} \mathfrak{g}_{j}$

be the decomposition of \mathfrak{F} into simple ideals. Then each \mathfrak{F}_f is a graded subalgebra of $\mathfrak{F}(D)$, i.e., $\mathfrak{F}_f = \sum_{\lambda=-2}^2 \mathfrak{F}_f^{\lambda} (\mathfrak{F}_f^{\lambda} = \mathfrak{F}_f \cap \mathfrak{F}^{\lambda})$. Suppose that $\mathfrak{F}_f^{1} \neq 0$. Then from [4], we know that $[\mathfrak{F}_f^{1}, [I, \mathfrak{F}_f^{1}]] \neq 0$. On the other hand, $[\mathfrak{F}_f^{1}, [I, \mathfrak{F}_f^{1}]] \subset [\mathfrak{F}_f^{1}, \mathfrak{F}^{1}] \subset \mathfrak{F}_f^{2}$. As a result $\mathfrak{F}_f^{2} \neq 0$. Thus each \mathfrak{F}_f is of one of the following two types.

(i)
$$\mathfrak{g}_{j} = \mathfrak{g}_{j}^{-2} + \mathfrak{g}_{j}^{-1} + \mathfrak{g}_{j}^{0} + \mathfrak{g}_{j}^{1} + \mathfrak{g}_{j}^{2} \quad (\mathfrak{g}_{j}^{1} \neq 0, \mathfrak{g}_{j}^{2} \neq 0).$$

(ii)
$$\hat{g}_{j} = \hat{g}_{j}^{-2} + \hat{g}_{j}^{0} + \hat{g}_{j}^{2} (\hat{g}_{j}^{2} \neq 0).$$

In the case where $\mathfrak{g}^{-2} = [\mathfrak{g}^{-1}, \mathfrak{g}^{-1}]$, each ideal \mathfrak{F}_f is clearly of the type (i). Now Assertion (3) follows immediately from Lemma 1.3. Finally by using (2.6), we have $[I, \mathfrak{F}^{-1}] = [I, [\mathfrak{F}^{-2}, \mathfrak{F}^{1}]] = [\mathfrak{F}^{-2}, [I, \mathfrak{F}^{1}]] = [\mathfrak{F}^{-2}, \mathfrak{F}^{1}] = \mathfrak{F}^{-1}$. This implies Assertion (2). q.e.d.

Corollary 2.4. Let $X \in \mathfrak{g}^{-1}$. If $[\mathfrak{g}^{-2}, [X, \mathfrak{g}^{1}]] = 0$. Then $X \in \mathfrak{r}^{-1}$.

Proof. Let \mathfrak{F} be as in Theorem 2.1, and let X_s be the \mathfrak{F}^{-1} component of X with respect to the decomposition $\mathfrak{F}^{-1} = \mathfrak{F}^{-1} + \mathfrak{r}^{-1}$ in Proposition 2.3. Then $[\mathfrak{F}^{-2}, [X_s, \mathfrak{F}^1]] = 0$. And hence $[X_s, \mathfrak{F}^{-1}] = 0$, because $\mathfrak{F}^{-1} = [\mathfrak{F}^{-2}, \mathfrak{F}^1]$ by Proposion 2.3. In particular, $[[I, X_s], X_s] = 0$. Therefore by using (2.5) we have $X_s = 0$. q.e.d.

Corollary 2.5. $\mathfrak{r}^{-1} = \{X \in \mathfrak{g}^{-1}; [X, \mathfrak{g}^2] = 0\}.$

Proof. Denote by \mathfrak{r}'^{-1} the right side of the above equality. Clearly $\mathfrak{r}^{-1}\subset\mathfrak{r}'^{-1}$. Conversely let $X\in\mathfrak{r}'^{-1}$ and let X_s be the \mathfrak{g}^{-1} -component as in Proof of Corollary 2.4. Then $[X_s,\mathfrak{g}^2]=0$. Therefore $[[[I,X_s],X_s],\mathfrak{g}^2]=0$ by (2.6). Since $[[I,X_s],X_s]$ belong to \mathfrak{g}^{-2} , we obtain $[[I,X_s],X_s]=0$ by Lemma 1.2 and hence $X_s=0$.

q.e.d.

§ 3. The structure of the radical r.

3.1. Let $\mathfrak{F} = \sum_{k=-2}^{2} \mathfrak{F}^{k}$ be a semi-simple graded subalgebra of $\mathfrak{F}(D)$ as in Theorem 2.1. There exists a unique element $E_{\mathfrak{F}}$ of \mathfrak{F}^{0} such that

$$\mathfrak{g}^{\lambda} = \{X \in \mathfrak{g} \, ; \, [E_s, X] = \lambda X\}.$$

We set

(3.2)
$$\begin{cases} \mathfrak{r}_{0}^{-2} = \{X \in \mathfrak{r}^{-2}; \ [\mathfrak{g}, X] = 0\}, \\ \\ \mathfrak{r}_{s}^{-2} = \{X \in \mathfrak{r}^{-2}; \ [E_{s}, X] = -X\}. \end{cases}$$

(3.3)
$$\begin{cases} r_0^0 = \{X \in r^0; \ [\hat{\mathfrak{g}}, X] = 0\}, \\ r_s^0 = \{X \in r^0; \ [E_s, X] = X\}. \end{cases}$$

In the notations as above we shall show the following theorem.

Theorem 3.1. The radical r has the following structure.

(1)
$$\mathfrak{r}^{-2} = \mathfrak{r}_0^{-2} + \mathfrak{r}_s^{-2}$$
 (direct sum), $\mathfrak{r}_0^{-2} \supset [\mathfrak{r}^{-1}, \mathfrak{r}^{-1}]$ and $\mathfrak{r}_s^{-2} = [\mathfrak{r}^{-2}, \mathfrak{g}^0] = [\mathfrak{r}^0, \mathfrak{g}^{-2}] \supset [\mathfrak{r}^{-1}, \mathfrak{g}^{-1}].$

- (2) $r^0 = r_0^0 + r_s^0$ (direct sum) and $r_s^0 = [r^{-2}, \, \hat{g}^2] = [r^0, \, \hat{g}^0] \supset [r^{-1}, \, \hat{g}^1]$.
 - (3) $\dim \mathfrak{r}_s^{-2} = \dim \mathfrak{r}_s^0$.
 - (4) $ad E_s = 0$ on \mathfrak{r}^{-1} .
 - (5) r_{s}^{0} is an abelian ideal of g^{0} satisfying the followings:
 - a) $[r_s^0, r_0^{-2} + r^{-1}] = 0$
 - b) $\left[\mathfrak{r}_{s}^{0}, \mathfrak{r}_{s}^{-2}\right] \subset \mathfrak{r}_{0}^{-2}$.

3.2. We first show the following

Lemma 3.2. $[[\tau^{-1}, \hat{\mathfrak{g}}^1], \tau^{-1}] = 0.$

Proof. Since $[\hat{\mathfrak{g}}^2, \mathfrak{r}^{-1}] = 0$, we have by (3) of Proposition 2.3 $[[\mathfrak{r}^{-1}, \hat{\mathfrak{g}}^1], \mathfrak{r}^{-1}] = [[\mathfrak{r}^{-1}, [\hat{\mathfrak{g}}^2, \hat{\mathfrak{g}}^{-1}]], \mathfrak{r}^{-1}] = [[\hat{\mathfrak{g}}^2, [\mathfrak{r}^{-1}, \hat{\mathfrak{g}}^{-1}]], \mathfrak{r}^{-1}] = [[\hat{\mathfrak{g}}^2, \mathfrak{r}^{-1}], \mathfrak{r}^{-1}] = 0.$ q.e.d.

Next we verify

Lemma 3.3. $[\mathfrak{g}, [\mathfrak{r}^{-1}, \mathfrak{r}^{-1}]] = 0.$

Proof. By Lemma 3.2 [\$\mathref{g}^1\$, [\$\mathref{r}^{-1}\$, \$\mathref{r}^{-1}\$] = 0. Clearly [\$\mathref{g}^{-2} + \mathref{g}^{-1} + \mathref{g}^2\$, [\$\mathref{r}^{-1}\$, \$\mathref{r}^{-1}\$]] = 0. Since \$\mathref{g}^0 = [\mathref{g}^{-2}\$, \$\mathref{g}^2\$] + [\$\mathref{g}^{-1}\$, \$\mathref{g}^1\$], we get [\$\mathref{g}^0\$, [\$\mathref{r}^{-1}\$, \$\mathref{r}^{-1}\$]] = 0. q.e.d.

Since \mathfrak{r}^{-1} is a complex subspace of \mathfrak{g}^{-1} , the restriction F_r of F to $\mathfrak{r}^{-1} \times \mathfrak{r}^{-1}$ is an $[\mathfrak{r}^{-1}, \mathfrak{r}^{-1}]_c$ -valued hermitian form on \mathfrak{r}^{-1} . Clearly F(c,c) ($c \in \mathfrak{r}^{-1}$) is contained in $[\mathfrak{r}^{-1},\mathfrak{r}^{-1}] \cap \overline{V}$. Therefore there exists a linear coordinate system z^1, \dots, z^n of $[\mathfrak{r}^{-1}, \mathfrak{r}^{-1}]_c$ such that a hermitian form $H(c,c') = \sum_j z^j \circ F_r(c,c')$ on \mathfrak{r}^{-1} is positive definite. From Lemma

3.3, (2.3), (2.4) and (2.5), we have

(3.4)
$$H(ad Xc, c') + H(c, ad Xc') = 0 \ (X \in \mathfrak{g}^0),$$

because I is in the center of \mathfrak{g}^0 .

Lemma 3.4. The following equalities hold:

$$ad E_s = 0$$
 on \mathfrak{r}^{-1} , $ad E_s = id$. on $[\mathfrak{r}^{-1}, \mathfrak{g}^1]$, $ad E_s = -id$. on $[\mathfrak{r}^{-1}, \mathfrak{g}^{-1}]$.

Proof. By (3.1) we have only to prove the first equation. From (3.4), we know that the endomorphism $ad E_s$ of \mathfrak{r}^{-1} is semi-simple and its eigenvalues are purely imaginary. On the other hand, $ad E_s$ has only real eigenvalues on \mathfrak{r} by Lemma 1.5, because \mathfrak{r} is an invariant space under the action of the semi-simple Lie algebra \mathfrak{g} and $ad E_s$ is real diagonal in \mathfrak{g} . Therefore we can conclude that $ad E_s = 0$ on \mathfrak{r}^{-1} .

By using Lemma 1.5, we can also see that $ad E_s|_{\tau^{-2}}$ and $ad E_s|_{\tau^0}$ are real diagonal. Therefore if we set for $\lambda \in \mathbf{R}$

(3.5)
$$\begin{cases} \alpha_{\lambda}^{-2} = \{X \in \mathfrak{r}^{-2}; [E_s, X] = \lambda X\} \\ \alpha_{\lambda}^{0} = \{X \in \mathfrak{r}^{0}; [E_s, X] = \lambda X\}. \end{cases}$$

Then we have

(3.6)
$$\begin{cases} r^{-2} = \sum_{\lambda} \alpha_{\lambda}^{-2} \\ r^{0} = \sum_{\lambda} \alpha_{\lambda}^{0}. \end{cases}$$

We know from Lemma 3.3 and Lemma 3.4,

$$(3.7) \begin{cases} \mathfrak{a}_0^{-2}\supset \left[\mathfrak{r}^{-1},\,\mathfrak{r}^{-1}\right],\\ \mathfrak{a}_1^{-2}\supset \left[\mathfrak{r}^{-1},\,\mathfrak{g}^{-1}\right],\\ \mathfrak{a}_1^{0}\supset \left[\mathfrak{r}^{-1},\,\mathfrak{g}^{1}\right]. \end{cases}$$

And by considering the eigenvalues of $ad E_s$, we have from Lemma 3.4,

(3.8)
$$\begin{cases} \left[\mathfrak{a}_{\lambda}^{-2},\,\mathfrak{g}^{1}\right] = 0 & \text{for } \lambda \neq -1, \\ \left[\mathfrak{a}_{\lambda}^{0},\,\mathfrak{g}^{-1}\right] = 0 & \text{for } \lambda \neq 1. \end{cases}$$

Lemma 3.5.

(1) $\mathfrak{a}_{\lambda}^{-2} = 0$ for $\lambda \leq -2$ or $\lambda > 0$, $\mathfrak{a}_{\lambda}^{0} = 0$ for $\lambda < 0$ or $\lambda \geq 2$.

(2)
$$\left[\mathfrak{a}_{\lambda}^{-2}, \mathfrak{g}^{2}\right] = \mathfrak{a}_{\lambda+2}^{0} \text{ for } -2 < \lambda < 0,$$
 $\left[\mathfrak{a}_{\lambda}^{0}, \mathfrak{g}^{-2}\right] = \mathfrak{a}_{\lambda-2}^{-2} \text{ for } 0 < \lambda < 2.$

Proof. From (3.1), $[\mathfrak{a}_{\lambda}^{-2},\mathfrak{g}^2] \subset \mathfrak{a}_{\lambda+2}^0$ and $[\mathfrak{a}_{\lambda}^{-0},\mathfrak{g}^{-2}] \subset \mathfrak{a}_{\lambda-2}^{-2}$. Clearly $\mathfrak{a}_{\lambda}^{-2}$ and $\mathfrak{a}_{\lambda}^{0}$ are $ad \mathfrak{g}^0$ -invariant subspaces, because $[E_s,\mathfrak{g}^0] = 0$. Therefore by (3.8) the space $\mathfrak{a}_{\lambda}^{-2} + \mathfrak{a}_{\lambda+2}^0$ is $ad \mathfrak{g}$ -invariant for $\lambda \neq -1$. Since $E_s \in [\mathfrak{g},\mathfrak{g}]$, we have

Tr ad
$$E_s|_{\mathfrak{a}^{-2}_{\lambda}+\mathfrak{a}^0_{\lambda+2}}=0$$
.

In the case $\lambda = -1$, the space $\mathfrak{a}_{-1}^{-2} + \mathfrak{r}^{-1} + \mathfrak{a}_1^0$ is also ad 3-invariant by (3.7). And by Lemma 3.4, we get the above equality for $\lambda = -1$. It follows

$$\lambda \dim \mathfrak{a}_{\lambda}^{-2} + (\lambda + 2) \dim \mathfrak{a}_{\lambda+2}^{0} = 0.$$

If $\mathfrak{a}_{\lambda}^{-2} \neq 0$, then we have

(3.9)
$$\lambda = \frac{-2 \dim \mathfrak{a}_{\lambda+2}^0}{\dim \mathfrak{a}_{\lambda}^2 + \dim \mathfrak{a}_{\lambda+2}^0}.$$

Therefore we get $-2 < \lambda \le 0$. We can verify the fact that $\mathfrak{a}_{\lambda}^{0} = 0$ for $\lambda < 0$ or $\lambda \ge 2$ by the same way. Thus we obtain Assertion (1). For $\lambda \ne -1$, the space $\mathfrak{a}_{\lambda}^{-2} + \left[\mathfrak{a}_{\lambda}^{-2}, \, \mathfrak{g}^{2}\right]$ is also ad \mathfrak{g} -invariant. And for $\lambda = -1$, the space $\mathfrak{a}_{-1}^{-2} + \mathfrak{r}^{-1} + \left[\mathfrak{a}_{-1}^{-2}, \, \mathfrak{g}^{2}\right]$ is ad \mathfrak{g} -invariant, because by (3.7) we have

$$\llbracket \mathfrak{r}^{-1},\,\mathfrak{g}^1 \rrbracket = \llbracket \mathfrak{r}^{-1},\, \llbracket \mathfrak{g}^2,\,\mathfrak{g}^{-1} \rrbracket \rrbracket = \llbracket \llbracket \mathfrak{r}^{-1},\,\mathfrak{g}^{-1} \rrbracket,\,\mathfrak{g}^2 \rrbracket \subset \llbracket \mathfrak{a}_{-1}^{-2},\,\mathfrak{g}^2 \rrbracket.$$

Thus we have

$$\lambda \dim \mathfrak{a}_{\lambda}^{-2} + (\lambda + 2) \dim [\mathfrak{a}_{\lambda}^{-2}, \mathfrak{g}^{2}] = 0.$$

As a result we get $\dim \mathfrak{a}_{\lambda+2}^0 = \dim \left[\mathfrak{a}_{\lambda}^{-2}, \mathfrak{F}^2\right]$ for $-2 < \lambda < 0$. Similarly we can prove $\dim \mathfrak{a}_{\lambda-2}^{-2} = \dim \left[\mathfrak{a}_{\lambda}^{0}, \mathfrak{F}^{-2}\right]$ for $0 < \lambda < 2$. Therefore we obtain Assertion (2).

Lemma 3.6.
$$[\mathfrak{a}_0^{-2} + \mathfrak{a}_0^{0}, \mathfrak{g}] = 0.$$

Proof. By (3.8) and Lemma 3.5, we have $\left[\alpha_0^{-2}, \hat{\mathbf{g}}^1 + \hat{\mathbf{g}}^2\right] = 0$. Since $\hat{\mathbf{g}}^0 = \left[\hat{\mathbf{g}}^{-2}, \hat{\mathbf{g}}^2\right] + \left[\hat{\mathbf{g}}^{-1}, \hat{\mathbf{g}}^1\right]$, we get $\left[\alpha_0^{-2}, \hat{\mathbf{g}}\right] = 0$. The fact $\left[\alpha_0^0, \hat{\mathbf{g}}\right] = 0$ can be verified similarly.

3.3. In the next section, we shall prove the followings:

(3.10)
$$\begin{cases} \alpha_{\lambda}^{-2} = 0 & \text{for } \lambda \neq -1, \ 0. \\ \alpha_{\lambda}^{0} = 0 & \text{for } \lambda \neq 0, \ 1. \\ \dim \alpha_{-1}^{-2} = \dim \alpha_{1}^{0}. \end{cases}$$

We can now prove Theorem 3.1 under the assumption that (3.10) holds. From (3.6), (3.10), Lemma 3.5 and Lemma 3.6, it follows

$$[\mathfrak{r}^{-2},\,\hat{\mathfrak{g}}^2] = [\mathfrak{a}_{-1}^{-2},\,\hat{\mathfrak{g}}^2] = \mathfrak{a}_1^{\ 0}.$$

And $a_1^0 = ad E_s(a_1^0) \subset [\mathfrak{g}^0, \mathfrak{r}^0]$. On the other hand,

$$\begin{split} \left[\mathfrak{r}^{0},\,\mathfrak{S}^{0}\right] &\subset \left[\mathfrak{r}^{0},\,\left[\hat{\mathfrak{S}}^{-2},\,\hat{\mathfrak{S}}^{2}\right]\right] + \left[\mathfrak{r}^{0},\,\left[\hat{\mathfrak{S}}^{-1},\,\hat{\mathfrak{S}}^{1}\right]\right] \\ &\subset \left[\mathfrak{r}^{-2},\,\hat{\mathfrak{S}}^{2}\right] + \left[\mathfrak{r}^{-1},\,\hat{\mathfrak{S}}^{1}\right] \\ &= \mathfrak{q}_{1}^{0}. \end{split}$$

Therefore we have

$$\mathfrak{q}_1^0 = [\mathfrak{r}^{-2}, \mathfrak{g}^2] = [\mathfrak{r}^0, \mathfrak{g}^0].$$

Similarly

$$\mathfrak{a}_{-1}^{-2} = \lceil \mathfrak{r}^{-2}, \mathfrak{g}^{0} \rceil = \lceil \mathfrak{r}^{0}, \mathfrak{g}^{-2} \rceil.$$

From (3.2), (3.3), (3.5) and Lemma 3.6, we known $\mathfrak{a}_0^{-2} = \mathfrak{r}_0^{-2}$, $\mathfrak{a}_{-1}^{-2} = \mathfrak{r}_s^{-2}$, $\mathfrak{a}_0^0 = \mathfrak{r}_0^0$ and $\mathfrak{a}_1^0 = \mathfrak{r}_s^0$. Then Assertions (1), (2) and (3) of Theorem 3.1 follows from (3.7), (3.10), (3.11) and (3.12). Assertion (4) is already proved in Lemma 3.4. Since $\mathfrak{r}_s^0 = [\mathfrak{r}^{-2}, \mathfrak{g}^2] = [\mathfrak{r}^{-2}, \mathfrak{g}^2]$, \mathfrak{r}_s^0 is clearly an ideal of \mathfrak{g}^0 . And by considering the eigenvalues of $ad E_s$, we get Assertion (5).

Corollary 3.7. Let § be as in Theorem 2.1. Assume that the domain D is non-degenerate. Then we have

$$\mathbf{r}_{s}^{-2} = [\mathbf{r}^{-1}, \mathbf{g}^{-1}], \ \mathbf{r}_{0}^{-2} = [\mathbf{r}^{-1}, \mathbf{r}^{-1}] \ and \ \mathbf{r}_{s}^{0} = [\mathbf{r}^{-1}, \mathbf{g}^{1}].$$

Proof. Since $\mathfrak{g}^{-1} = \mathfrak{r}^{-1} + \mathfrak{g}^{-1}$, we have

$$\mathfrak{g}^{-2} \! = \! \left[\mathfrak{g}^{-1}, \, \mathfrak{g}^{-1} \right] \! = \! \left[\mathfrak{F}^{-1}, \, \mathfrak{F}^{-1} \right] \! + \! \left[\mathfrak{F}^{-1}, \, \mathfrak{r}^{-1} \right] \! + \! \left[\mathfrak{r}^{-1}, \, \mathfrak{r}^{-1} \right] \! .$$

Now our assertions follow immediately from Theorem 3.1. q.e.d.

Remark 1. We can easily observe

$$\mathfrak{r}_0^{-2} = \{X \in \mathfrak{g}^{-2}; [X, \mathfrak{g}^2] = 0\}.$$

Therefore the space r_0^{-2} is independent of the choice of the semisimple graded subalgebra \mathfrak{F} . Clearly so is r_s^0 .

§ 4. The subalgebra 3 and the symmetric domain S.

4.1. Let D be a Siegel domain of the second kind in $R_c \times W$ associated with a convex cone V in R and a V-hermitian form F on W. We use the notations given in § 2 and § 3.

The subalgebra \mathfrak{g}^0 may be identified with a subalgebra of the Lie algebra of all graded derivations of the graded Lie algebra $\mathfrak{g}^{-2} + \mathfrak{g}^{-1}$. Let $\hat{\mathfrak{g}} = \sum_{\lambda=-2}^{\infty} \hat{\mathfrak{g}}^{\lambda}$ be the algebraic prolongation of $(\mathfrak{g}^{-2} + \mathfrak{g}^{-1}, \mathfrak{g}^0)$ (cf. [9]). In earlier paper [3], the author proved the following theorem which is a generalization of Tanaka's result [9].

Theorem 4.1. The Lie algebra $\mathfrak{g}(D)$ can be imbedded as a graded subalgebra of $\hat{\mathfrak{g}}$ and \mathfrak{g}^1 and \mathfrak{g}^2 are determined as follows:

- $(1) \quad \mathfrak{g}^1 = \widehat{\mathfrak{g}}^1.$
- (2) \mathfrak{g}^2 consists of all $X \in \widehat{\mathfrak{g}}^2$ such that $\operatorname{Im} ad([X, Y])|_{\mathfrak{g}^{-1}} = 0$ for all $Y \in \mathfrak{g}^{-2}$, where $ad([X, Y])|_{\mathfrak{g}^{-1}}$ is considered as a complex linear endomorphism of \mathfrak{g}^{-1} with the complex structure ad I.
- **4.2.** Let $\hat{\mathbf{g}}$ be as in Theorem 2.1. Denote by η_s the projection of $\mathfrak{g}_c^{-2} + \mathfrak{g}^{-1} (= R_c \times W)$ onto $\mathfrak{g}_c^{-2} + \mathfrak{g}^{-1}$ corresponding to the direct sum: $\mathfrak{g}_c^{-2} + \mathfrak{g}^{-1} = \mathfrak{g}_c^{-2} + \mathfrak{g}^{-1} + \mathfrak{r}_c^{-2} + \mathfrak{r}^{-1}$. We put

$$(4.1) V_s = \eta_s(V).$$

Lemma 4.2. The set V_s is a convex cone in \mathfrak{g}^{-2} .

Proof. It is sufficient to prove that V_s contains no entire straight lines. Let $v\in \mathfrak{g}^{-2}$. Then we can wright $v=v_s+v_r$, where $v_s\in \hat{\mathfrak{g}}^{-2}$ and $v_r\in \mathfrak{r}^{-2}$. We assert

$$\lim_{t\to\infty}\frac{1}{e^{2t}}\exp(-tE_s)v_r=0.$$

In fact, by Lemma 3.5, we can write

$$v_r = \sum_{\lambda} u_{\lambda}, \ u_{\lambda} \in \mathfrak{a}_{\lambda}^{-2} \ (-2 < \lambda \leq 0)$$

Then

$$\lim_{t\to\infty}\frac{1}{e^{2t}}\exp(-tE_s)u_\lambda=\lim_{t\to\infty}\frac{1}{e^{t(2+\lambda)}}u_\lambda=0,$$

proving our assertion. As a result

$$\lim_{t\to\infty}\frac{1}{e^{2t}}\exp\left(-tE_s\right)v=v_s=\eta_s(v).$$

Since $\exp(-tE_s) V = V$, V_s is contained in $\overline{V} \cap \mathfrak{g}^{-2}$. This fact implies that V_s contains no entire straight lines. q.e.d.

The restriction F_s of F to the complex subspace $\mathfrak{g}^{-1} \times \mathfrak{g}^{-1}$ of $\mathfrak{g}^{-1} \times \mathfrak{g}^{-1}$ is clearly a V_s -hermitian form. Denote by S the Siegel domain of the second kind in $\mathfrak{g}_c^{-2} + \mathfrak{g}^{-1}$ associated with V_s and F_s .

Proposition 4.3. The projection η_s maps D onto S.

Proof. Let $z+w\in \mathfrak{g}_c^{-2}+\mathfrak{g}^{-1}$ $(z\in \mathfrak{g}_c^{-2},w\in \mathfrak{g}^{-1})$. Then $\eta_s(\operatorname{Im} z-F(w,w))=\operatorname{Im} \eta_s(z)-F_s(\eta_s(w),\eta_s(w))$. Therefore $\eta_s(D)\subset S$. Conversely, let $z+w\in S(z\in \mathfrak{g}_c^{-2},w\in \mathfrak{g}^{-1})$. Then $\operatorname{Im} z-F(w,w)\in V_s$. There exists $y\in \mathfrak{r}^{-2}$ such that $\operatorname{Im} z-F(w,w)+y\in V$. We then have $z+\sqrt{-1}y+w\in D$. As a result $z+w=\eta_s(z+\sqrt{-1}y+w)\in \eta_s(D)$.

q.e.d.

Next we shall prove the following

Theorem 4.4. The domain S is symmetric and \mathfrak{F} may be identified with the Lie algebra of Aut(S).

Proof. Let $\mathfrak{g}(S) = \mathfrak{g}'^{-2} + \mathfrak{g}'^{-1} + \mathfrak{g}'^0 + \mathfrak{g}'^1 + \mathfrak{g}'^2$ be the graded Lie algebra of Aut(S). Then $\mathfrak{g}'^{-2} = \mathfrak{g}^{-2}$ and $\mathfrak{g}'^{-1} = \mathfrak{g}^{-1}$. Since $\exp tA$ $(V_s) = V_s$ for any $A \in \mathfrak{g}^0$, \mathfrak{g}^0 may be identified with a subalgebra of \mathfrak{g}'^0 . (Note that the adjoint representation of \mathfrak{g}^0 on $\mathfrak{g}^{-2} + \mathfrak{g}^{-1}$ is faithful.) Let $\hat{\mathfrak{g}}' = \sum_{k=-2}^{\infty} \hat{\mathfrak{g}}'^k$ be the algebraic prolongation of $(\mathfrak{g}'^{-2} + \mathfrak{g}'^{-1}, \mathfrak{g}'^0)$. By Lemma 1.2, the Lie algebra \mathfrak{g} can be imbedded as a graded subalgebra of $\hat{\mathfrak{g}}'$. Therefore by Theorem 4.1, we know that \mathfrak{g}^1 is a subspace of \mathfrak{g}'^1 . Let $X \in \mathfrak{g}^2$. Then for any $Y \in \mathfrak{g}^{-2}$,

Im $Tr \ ad([X, Y])|_{g^{-1}} = 0$ (cf. Theorem 4.1).

Since ad([X, Y]) = 0 on \mathfrak{r}^{-1} , we have

(4.2) Im
$$Tr \ ad([X, Y]|_{\hat{g}^{-1}} = 0$$
.

Let I_s be the element of \mathfrak{F}'^0 given by (2.2)' for the domain S. It is clear that $ad\ I=ad\ I_s$ on \mathfrak{F}^{-1} . Thereby from (4.2) and Theorem 4.1, we know $\mathfrak{F}^2\subset\mathfrak{F}'^2$. Since $\dim\mathfrak{F}'^1\leq\dim\mathfrak{F}^{-1}=\dim\mathfrak{F}^1$ and $\dim\mathfrak{F}'^2\leq\dim\mathfrak{F}^{-2}=\dim\mathfrak{F}^2$, we have $\mathfrak{F}^1=\mathfrak{F}'^1$ and $\mathfrak{F}^2=\mathfrak{F}'^2$. As a result, the radical of $\mathfrak{F}(S)$ is trivial³) and hence S is a symmetric homogeneous domain. Since the adjoint representation of \mathfrak{F}'^0 on $\mathfrak{F}'^{-2}+\mathfrak{F}'^{-1}$ is faithful, by using Lemma 1.3, we have

$$\mathfrak{g}^{\prime 0} = [\mathfrak{g}^{\prime -2}, \mathfrak{g}^{\prime 2}] + [\mathfrak{g}^{\prime -1}, \mathfrak{g}^{\prime 1}] = \mathfrak{g}^{0},$$

which completes the proof.

q.e.d.

4.3. Let S' be the Siegel domain of the first kind associated with the cone V_s . It is well known that the domain S' is symmetric.

Proposition 4.5.⁴⁾ The subalgebra $\mathfrak{g}^{-2} + [\mathfrak{g}^{-2}, \mathfrak{g}^2] + \mathfrak{g}^2$ is semisimple and may be identified with the Lie algebra of Aut(S').

Proof. Let $\mathfrak{g}(S') = \mathfrak{F}'^{-2} + \mathfrak{F}'^0 + \mathfrak{F}'^2$ be the graded Lie algebra of Aut(S'). There exists a natural homomorphism α_s of $\mathfrak{F}^{-2} + \mathfrak{F}^0 + \mathfrak{F}^2$ to $\mathfrak{g}(S')$ as graded Lie algebras ([1]) such that α_s is injective on $\mathfrak{F}^{-2} + \mathfrak{F}^2$ and $\alpha_s(\mathfrak{F}^{-2}) = \mathfrak{F}'^{-2}$ (cf. [4]). Since dim $\mathfrak{F}'^2 \leq \dim \mathfrak{F}'^{-2} = \dim \mathfrak{F}^{-2} = \dim \mathfrak{F}^{-2} = \dim \mathfrak{F}^2$ we have $\alpha_s(\mathfrak{F}^2) = \mathfrak{F}'^2$ and dim $\mathfrak{F}'^2 = \dim \mathfrak{F}'^{-2}$. (From this fact, we known that $\mathfrak{g}(S')$ is semi-simple and that S' is symmetric.) Since the adjoint representation of \mathfrak{F}'^0 on \mathfrak{F}'^{-2} is faithful, we obtain $\mathfrak{F}'^0 = [\mathfrak{F}'^{-2}, \mathfrak{F}'^2]$ by Lemma 1.3. As a result, α_s is surjective. Let \mathfrak{C} be the radical of $\mathfrak{F}^{-2} + \mathfrak{F}^0 + \mathfrak{F}^2$. Since α_s is surjective, $\alpha_s(\mathfrak{C})$ is a solvable ideal of $\mathfrak{g}(S')$ and hence is trivial. Therefore \mathfrak{C} is contained in $\mathfrak{F}^0 \cap \alpha_s^{-1}(0)$. By Theorem 1.1, there exists a semi-simple graded subalgebra \mathfrak{F}_1 such that

$$\hat{\mathbf{g}}^{-2} + \hat{\mathbf{g}}^0 + \hat{\mathbf{g}}^2 = \hat{\mathbf{g}}_1 + \mathbf{c} \quad (\text{direct sum}),$$

$$\hat{\mathbf{g}}_1 = \hat{\mathbf{g}}^{-2} + \hat{\mathbf{g}}_1^0 + \hat{\mathbf{g}}^2 \quad (\hat{\mathbf{g}}_1^0 = \hat{\mathbf{g}}_1 \cap \hat{\mathbf{g}}^0).$$

For any graded ideal \mathfrak{h} of $\mathfrak{g}(S)$, the condition $\mathfrak{h}^{-2}=0$ implies $\mathfrak{h}=0$.

⁴⁾ This proposition holds for any symmetric Siegel domain of the second kind.

We set $\hat{\mathbf{g}}_2^0 = \{X \in \hat{\mathbf{g}}_1^0; [X, \hat{\mathbf{g}}^{-2}] = 0\}$. Then by considering the decomposition of $\hat{\mathbf{g}}_1$ into simple ideals and by Lemma 1.3, we know that $\hat{\mathbf{g}}_1 = \hat{\mathbf{g}}^{-2} + [\hat{\mathbf{g}}^{-2}, \hat{\mathbf{g}}^2] + \hat{\mathbf{g}}^2 + \hat{\mathbf{g}}_2^0$ (direct sum) and that the subalgebra $\hat{\mathbf{g}}^{-2} + [\hat{\mathbf{g}}^{-2}, \hat{\mathbf{g}}^2] + \hat{\mathbf{g}}^2$ is semi-simple. It follows that $\hat{\mathbf{g}}_2^0 + \mathbf{c} = \{X \in \hat{\mathbf{g}}^0; [X, \hat{\mathbf{g}}^{-2}] = 0\} = \alpha_s^{-1}(0)$. And α_s is an isomorphism of $\hat{\mathbf{g}}^{-2} + [\hat{\mathbf{g}}^{-2}, \hat{\mathbf{g}}^2] + \hat{\mathbf{g}}^2$ onto $\hat{\mathbf{g}}(S')$.

Corollary 4.6. The element E_s belongs to $[\hat{g}^{-2}, \hat{g}^2]$.

Proof. Since the Lie algebra $\hat{\mathbf{g}}^{-2} + [\hat{\mathbf{g}}^{-2}, \hat{\mathbf{g}}^2] + \hat{\mathbf{g}}^2$ is semi-simple, there exists a unique element E_s' of $[\hat{\mathbf{g}}^{-2}, \hat{\mathbf{g}}^2]$ such that $ad\ E_s' = -2id$. on $\hat{\mathbf{g}}^{-2}$, $ad\ E_s' = 0$ on $[\hat{\mathbf{g}}^{-2}, \hat{\mathbf{g}}^2]$ and $ad\ E_s' = 2id$. on $\hat{\mathbf{g}}^2$. By Lemma 1.5, the endomorphism $ad\ E_s'$ of $\hat{\mathbf{g}}$ is real diagonal. As a result

$$\mathfrak{g}^{-1} = \sum_{\alpha} \mathfrak{g}_{\alpha}^{-1}, \quad \text{where} \quad \mathfrak{g}_{\alpha}^{-1} = \{X \in \mathfrak{g}^{-1}; \ [E_{\mathfrak{s}'}, X] = \alpha X\}.$$

Let $X \in \mathfrak{F}_{\alpha}^{-1}$. Then $[E_{\mathfrak{s}'},[[I,X],X]] = 2\alpha[[I,X],X]$. It follows that $\mathfrak{F}_{\alpha}^{-1} = 0$ for $\alpha \neq -1$. Therefore $ad(E_{\mathfrak{s}} - E_{\mathfrak{s}'}) = 0$ on $\mathfrak{F}^{-2} + \mathfrak{F}^{-1}$ and hence $E_{\mathfrak{s}} = E_{\mathfrak{s}'}$, because the representation of \mathfrak{F}^0 on $\mathfrak{F}^{-2} + \mathfrak{F}^{-1}$ is faithful.

a.e.d

4.4. We can now prove (3.10). Let $v \in V_s$. Then the correspondence: $X \to [v, [v, X]] (X \in \mathfrak{F}^2)$ is an injective linear mapping of \mathfrak{F}^2 to \mathfrak{F}^{-2} ([11]). Since dim $\mathfrak{F}^{-2} = \dim \mathfrak{F}^2$, we have

(4.4)
$$\mathfrak{g}^{-2} = [v, [v, \mathfrak{g}^2]].$$

For $0 < \lambda < 2$, by Lemma 3.5

$$\begin{split} \alpha_{\lambda^{-2}}^{-2} &= \left[\alpha_{\lambda}^{\ 0}, \, \hat{\mathbf{g}}^{-2}\right] = \left[\alpha_{\lambda}^{\ 0}, \, \left[v, \, \left[v, \, \hat{\mathbf{g}}^{2}\right]\right]\right] \\ &\subset \left[\left[\alpha_{\lambda}^{\ 0}, \, v\right], \, \left[v, \, \hat{\mathbf{g}}^{2}\right]\right] + \left[v, \, \left[\alpha_{\lambda}^{\ 0}, \, \left[v, \, \hat{\mathbf{g}}^{2}\right]\right]\right] \\ &\subset \left[\alpha_{\lambda^{-2}}^{-2}, \, \left[v, \, \hat{\mathbf{g}}^{2}\right]\right] + \left[v, \, \alpha_{\lambda}^{\ 0}\right] \\ &= \left[v, \, \left[\alpha_{\lambda^{-2}}^{-2}, \, \hat{\mathbf{g}}^{2}\right]\right] + \left[v, \, \alpha_{\lambda}^{\ 0}\right] \\ &= \left[v, \, \alpha_{\lambda}^{\ 0}\right]. \end{split}$$

Therefore $\alpha_{\lambda-2}^{-2} = [v, \alpha_{\lambda}^{0}]$ and hence $\dim \alpha_{\lambda-2}^{-2} \leq \dim \alpha_{\lambda}^{0}$. It is well known that there exists an involutive automorphism σ of the semi-simple Lie algebra $\mathfrak{g}^{-2} + [\mathfrak{g}^{-2}, \mathfrak{g}^{2}] + \mathfrak{g}^{2}$ such that $\sigma(\mathfrak{g}^{-2}) = \mathfrak{g}^{2}$ and $\sigma(\mathfrak{g}^{2}) = \mathfrak{g}^{-2}$. Then

⁵⁾ cf. [8].

from (4.4) we have

$$\hat{\mathfrak{g}}^2 = [\sigma(v), [\sigma(v), \hat{\mathfrak{g}}^{-2}]].$$

Therefore we get $a_{\lambda}^{0} = [\sigma(v), a_{\lambda-2}^{-2}]$ similarly and hence $\dim a_{\lambda-2}^{-2} \ge \dim a_{\lambda}^{0}$. Thus we have $\dim a_{\lambda-2}^{-2} = \dim a_{\lambda}^{0}$. And by using (3.9), we get $\lambda = 1$ if $a_{\lambda}^{0} \ne 0$. This implies (3.10).

4.5. The projection η_s gives a "fibering" of D in which the bace space is the symmetric space S. We shall show that any two fibers are holomorphically equivalent to each other and are equivalent to a bounded domain.

Let
$$a = z_s + w_s \in S(z_s \in \mathfrak{g}_c^{-2}, w_s \in \mathfrak{g}^{-1})$$
. We set

$$V(a) = \{ y \in \mathfrak{r}^{-2}; y + \operatorname{Im} z_{\mathfrak{s}} - F(w_{\mathfrak{s}}, w_{\mathfrak{s}}) \in V \}.$$

Clearly V(a) is an open convex set in \mathfrak{r}^{-2} and contains no entire straight lines. And

$$\eta_s^{-1}(a) \cong \{z + w \in \mathfrak{r}_c^{-2} + \mathfrak{r}^{-1};$$

$$\operatorname{Im} z - F(w, w) - 2 \operatorname{Re} F(w, w_{\mathfrak{s}}) \in V(a)$$
.

Therefore the fiber $\eta_s^{-1}(a)$ is a domain in $\mathfrak{r}_c^{-2} + \mathfrak{r}^{-1}$. Let $a' = z_s - \sqrt{-1}$ $F(w_s, w_s)$. Then $a' \in S$ and V(a') = V(a). And

$$\eta_s^{-1}(a') \cong \{z + w \in \mathfrak{r}_c^{-2} + \mathfrak{r}^{-1}; \text{ Im } z - F(w, w) \in V(a)\}.$$

Lemma 4.7. (1) The domains $\eta_s^{-1}(a)$ and $\eta_s^{-1}(a')$ are holomorphically equivalent to each other.

(2) The domain $\eta_{s}^{-1}(a')$ is holomorphically equivalent to a bounded domain.

Proof. Assertion (2) follows immediately from the fact that V(a) is an open convex set, containing no entire straight lines. We can easily observe that the automorphism of $r_c^{-2} + r^{-1}$ defined by

$$z+w\to z-2\sqrt{-1} F(w,w_s)+w \ (z\in \mathfrak{r}_c^{-2},w\in \mathfrak{r}^{-1})$$

maps $\eta_s^{-1}(a)$ onto $\eta_s^{-1}(a')$. Thus we get Assertion (1). q.e.d.

Let $b=z_i'+w_i'\in S$ and $b'=z_i'-\sqrt{-1}\,F(w_i',w_i')$. The homogeneity of S implies that V_i is affine homogeneous. Therefore there

exist $A_1, \dots, A_n \in \mathfrak{S}^0$ such that

$$\exp A_1 \circ \cdots \circ \exp A_n(\operatorname{Im} a') = \operatorname{Im} b'.$$

We set $f = \exp A_1 \circ \cdots \circ \exp A_n$. Then the linear transformation of $\mathfrak{r}_c^{-2} + \mathfrak{r}^{-1}$ defined by

$$z+w\rightarrow fz+fw \quad (z\in\mathfrak{r}_c^{-2},\,w\in\mathfrak{r}^{-1})$$

maps V(a) onto V(b) and hence maps $\eta_s^{-1}(a')$ onto $\eta_s^{-1}(b')$. As a result, by Lemma 4.7, we get $\eta_s^{-1}(a) \cong \eta_s^{-1}(b)$. Thus we have proved

Theorem 4.8. Let $a, b \in S$. Then the two fibers $\eta_s^{-1}(a)$ and $\eta_s^{-1}(b)$ are holomorphically equivalent to each other. Moreover every fiber is holomorphically equivalent to a bounded domain.

The domain S is contained in $R_{\mathfrak{c}} \times W$ in a natural manner. Let $z+w \in S$. Then $\operatorname{Im} z-F(w,w) \in V_{\mathfrak{s}} \subset \overline{V}$ (cf. Proof of Lemma 4.2). Hence $z+w \in \overline{D}$. Thus we know that S is contained in \overline{D} . Moreover we can prove the following

Proposition 4.9. If r=0, then S=D. And if $r\neq 0$, then S is contained in the boundary of D.

Proof. It is clear from the construction that S coincides with D in the case where $\mathfrak{r}=0$. We now assume that $\mathfrak{r}\neq 0$. And suppose that there exists $p\in S\cap D$ (p=z+w). Let $E'=E-E_s$. Since $ad\ E'=0$ on \mathfrak{F} , E' is contained in the isotropy subalgebra of \mathfrak{F} (D) at $P\in D$. Hence all eigenvalues of $Ad\ E'$ are purely imaginary. On the other hand, $Ad\ E'=-id$. on \mathfrak{r}_s^{-2} and $Ad\ E'=-2id$. on \mathfrak{r}_0^{-2} . Therefore by Theorem 3.1 we have $\mathfrak{r}^{-2}=0$. As a result $\mathfrak{r}=0$, contradicting the assumption that $\mathfrak{r}\neq 0$.

Remark 2. For every simple ideal of \mathfrak{S} , we can construct a symmetric domain in \overline{D} , for which similar assertions in Theorem 4.4 and Theorem 4.8 hold.

Remark 3. If $r \neq 0$. Then the domain S is contained in the boundary of D by Proposition 4.9. Moreover we can show that S is a regular boundary component of D, i.e., a regular analytic set in

 $R_c \times W$ contained in the boundary of D with the property that every analytic curve $\psi(t)$ in the boundary of D which meets S is completely contained in S (cf. [6]).

\S 5. The uniqueness of the domain S.

5.1. The symmetric domain S is constructed from the semi-simple graded subalgebra \mathfrak{F} . Let $\mathfrak{F}' = \sum_{\lambda=-2}^{2} \mathfrak{F}'^{\lambda}$ be another semi-simple graded subalgebra of $\mathfrak{F}(D)$ having the properties 1) and 2) in Theorem 2.1. And let $E_{\mathfrak{F}'}$, be corresponding element of \mathfrak{F}'^{0} defined by (3.1) for the subalgebla \mathfrak{F}' .

Lemma 5.1. $E_{s'}-E_{s} \in \mathfrak{r}_{s}^{0}$.

Proof. It follows from Theorem 3.1 and Corollary 4.6

$$E_{\mathfrak{s}'} \in [\mathfrak{s}'^{-2}, \mathfrak{s}'^2] \subset [\mathfrak{r}^{-2} + \mathfrak{s}^{-2}, \mathfrak{s}^2] \subset \mathfrak{s}^0 + \mathfrak{r}_{\mathfrak{s}}^0$$

Thus we can write $E_{s'}=E'+A$, where $E'\in\mathfrak{F}^0$ and $A\in\mathfrak{r}_s^0$. Since $ad\ E'=ad\ E_{s'}=ad\ E_s$ on $\mathfrak{F}^1+\mathfrak{F}^2$, we have $E'=E_s$ because E' and E_s belong to \mathfrak{F}^0 .

Now we con prove the following theorem which implies the uniqueness of the symmetric domain S.

Theorem 5.2. Let g and g' be two semi-simple garded subalgebra as in Theorem 2.1. And let S and S' be the symmetric domains corresponding to g and g' respectively. Then there exists $A \in g^0$ suct that

- 1) $Ad(\exp A)\mathfrak{g}'=\mathfrak{g}.$
- 2) $\exp AS = S'$ and $\eta_s \circ \exp A = \exp A \circ \eta_{s'}$.

Proof. Let $A = E_{s'} - E_{s}$. Then by Lemma 5. 1, we have $ad E_{s'}A = A$. (Note that $\mathbf{r}_{s}^{0} = [\mathbf{r}^{-2}, \mathbf{g}^{2}] = \mathbf{r}_{s'}^{0}$.) Thus we get $Ad(\exp A)E_{s'} = E_{s'} - A = E_{s}$. Clearly $Ad(\exp A)\mathfrak{g}'^{\lambda} = \mathfrak{g}^{\lambda}$ for $\lambda = 1$, 2. From Theorem 3. 1, we know

$$\mathfrak{g}^{\lambda} = \{X \in \mathfrak{g}^{\lambda}; [E_s, X] = \lambda X\}$$
 for $\lambda = -2, -1$

(resp.
$$\mathfrak{g}'^{\lambda} = \{X \in \mathfrak{g}^{\lambda}; [E_{\mathfrak{s}'}, X] = \lambda X\}$$
 for $\lambda = -2, -1$).

Therefore $Ad(\exp A)E_{\mathfrak{s}'}=E_{\mathfrak{s}}$ implies $Ad(\exp A)\mathfrak{g}'^{\lambda}=\mathfrak{g}^{\lambda}$ for $\lambda=-2$,

-1. It follows

$$Ad(\exp A)\mathfrak{g}^{\prime 0} = Ad(\exp A) ([\mathfrak{g}^{\prime -2}, \mathfrak{g}^{\prime 2}] + [\mathfrak{g}^{\prime -1}, \mathfrak{g}^{\prime 1}])$$
$$= [\mathfrak{g}^{-2}, \mathfrak{g}^{2}] + [\mathfrak{g}^{-1}, \mathfrak{g}^{1}] = \mathfrak{g}^{0}.$$

Thus we have proved 1). Let $z+w\in \mathfrak{g}_c^{-2}+\mathfrak{g}^{-1}$. We write $z=z_{s'}+z_r$ $(z_{s'}\in \mathfrak{g}_c'^{-2},z_r\in \mathfrak{r}_c^{-2})$ and $w=w_{s'}+w_r(w_{s'}\in \mathfrak{g}'^{-1},w_r\in \mathfrak{r}^{-1})$. Then $\eta_{s'}\circ \exp A(z+w)=\eta_{s}\circ \exp A(z_{s'}+w_{s'})=\exp A(z_{s'}+w_{s'})=\exp A\circ \eta_{s'}(z+w)$. Therefore $\eta_{s}\circ \exp A=\exp A\circ \eta_{s'}$. As a result $S=\eta_{s}(D)=\eta_{s}\circ \exp A(D)=\exp A\circ \eta_{s'}(D)=\exp A\circ \eta_{s'$

By Theorem 5.2, the domain S has an invariant meaning. In what follows we call S the associated symmetric domain.

Corollary 5.3. Let D (resp. D') be a Siegel domain of the second kind in $R_c \times W$ (resp. in $R_c' \times W'$). And let S (resp. S') be the associated symmetric domain corresponding to D (resp. to D'). Assume that the two domains D and D' are holomorphically equivalent. Then there exists a linear isomorphism f of $R_c \times W$ onto $R_c' \times W'$ such that

$$f(D) = D'$$
 and $f(S) = S'$.

Proof. From [1], we know that there exists a linear isomorphism g of $R_c \times W$ onto $R_c' \times W'$ such that g(R) = R, g(W) = W and g(D) = D'. The isomorphism g induces an isomorphism g_* of $g(D) = \sum_{k=-2}^2 g^k$ onto $g(D') = \sum_{k=-2}^2 g'^k$. Clearly $g_*(g^{-2}) = g'^{-2}$ and $g_*(g^{-1}) = g'^{-1}$. From this fact we can easily observe that $g_*(g^k) = g'^k$ for all λ . Let $\mathfrak g$ be the semi-simple graded subalgebra corresponding to S. Then $g_*(\mathfrak g)$ satisfies the properties in Theorem 2.1 and g(S) is just the symmetric domain corresponding to $g_*(\mathfrak g)$. By Theorem 5.2, there exists $A \in \mathfrak g'^0$ such that $\exp A(g(S)) = S'$. Now the mapping $f = \exp A \circ g$ has the desired properties.

5.2. We set

$$\widetilde{\mathfrak{f}} = \{X \in \mathfrak{g}^0; [X, \mathfrak{g}^1 + \mathfrak{g}^2] = 0\}.$$

Clearly \tilde{f} is an ideal of \mathfrak{g}^0 . The following proposition means that any semi-simple graded subalgebra as in Theorem 2.1 is obtained

only by the method in the proof of Theorem 2.1.

Proposition 5.4. Let $\mathfrak g$ be as in Theorem 2.1. Then there exists a semi-simple part $\mathfrak f$ of $\mathfrak f$ such that

- 1) $\tilde{\mathfrak{f}} = \mathfrak{f} + \mathfrak{r}^{\mathfrak{o}} \ (direct \ sum).$
- 2) The direct sum $\mathfrak{f} + \mathfrak{g}$ is a semi-simple part of $\mathfrak{g}(D)$ and $[\mathfrak{f}, \mathfrak{g}] = 0$.

Proof. Let \tilde{g} be as in Theorem 1.1. Then from the proof of Theorem 2.1, there exist ideals \tilde{g}' and f' of \tilde{g} such that

- i) &' satisfies the properties 1) and 2) in Theorem 2.1.
- ii) $\widetilde{\mathfrak{g}} = \widehat{\mathfrak{g}}' + \mathfrak{f}'$ (direct sum) and hence $\mathfrak{f}' \subset \widetilde{\mathfrak{f}}$.

We then have $\tilde{\mathfrak{f}}=\mathfrak{f}'+\mathfrak{r}^0$ (direct sum). Therefore \mathfrak{f}' is a semi-simple part of $\tilde{\mathfrak{f}}$ and \mathfrak{r}^0 is the radical of $\tilde{\mathfrak{f}}$. By Theorem 5.2, there exists $A \in \mathfrak{g}^0$ such that $Ad(\exp A)\tilde{\mathfrak{g}}'=\tilde{\mathfrak{g}}$. We put $\mathfrak{f}=Ad(\exp A)\mathfrak{f}'$. Since $\tilde{\mathfrak{f}}$ is invariant by $Ad(\exp A)$, \mathfrak{f} is a semi-simple part of $\tilde{\mathfrak{f}}$ and has the desired properties.

Theorem 2.1, Proposition 2.3, Theorem 3.1 and Proposition 5. 4 give structure equations of $\mathfrak{g}(D)$. Note that the spaces \mathfrak{r}_s^{-2} and \mathfrak{r}_0^{0} are ad f-invariant (cf. Remark 1).

§ 6. Siegel domains over classical cones, I.

6.1. In this and the next paragraphs, F denotes the field R or C. We denote by M(p,q,F) the vector space of all $p \times q$ matrices over F. For a matrix A, denote by A^* the transpose of the conjugate matrix \overline{A} of A. And denote by e_p the unit matrix of degree p. We set

$$H(m, \mathbf{F}) = \{A \in M(m, m, \mathbf{F}); A^* = A\},$$

$$H^+(m, \mathbf{F}) = \{A \in H(m, \mathbf{F}); A \text{ is positive definite}\}.$$

Then $H^+(m, \mathbf{F})$ is a convex cone in the vector space $H(m, \mathbf{F})$. Let D be a Siegel domain of the second kind associated with the cone $V = H^+(m, \mathbf{F})$ in $H(m, \mathbf{F})$ and a V-hermitian form F on some vector space W. And let $\mathfrak{g}(D) = \mathfrak{g}^{-2} + \mathfrak{g}^{-1} + \mathfrak{g}^0 + \mathfrak{g}^1 + \mathfrak{g}^2$ be the graded Lie algebra of $\operatorname{Aut}(D)$. Denote by D' the Siegel domain of the first kind associated with the cone $H^+(m, \mathbf{F})$, and by $\mathfrak{g}(D') = \mathfrak{g}'^{-2} + \mathfrak{g}'^0 + \mathfrak{g}'^2$

the graded Lie algebra of $\operatorname{Aut}(D')$. There exists a natural homomorphism α of $\mathfrak{g}^{-2}+\mathfrak{g}^0+\mathfrak{g}^2$ to $\mathfrak{g}'^{-2}+\mathfrak{g}'^0+\mathfrak{g}'^2$ as graded Lie algebras such that α is injective on $\mathfrak{g}^{-2}+\mathfrak{g}^2$ and $\alpha(\mathfrak{g}^{-2})=\mathfrak{g}'^{-2}$ ([1], [4]). Therefore we identify \mathfrak{g}^{-2} with \mathfrak{g}'^{-2} and \mathfrak{g}^2 with the subspace $\alpha(\mathfrak{g}^2)$ of \mathfrak{g}'^2 . Let $A \in GL(m, \mathbf{F})$, the group of all non-singular matrices of degree m. Denote by $\theta(A)$ the transformation of $H(m, \mathbf{F})$ defined by

$$\theta(A) X = AXA^* \quad (X \in H(m, F)).$$

Clearly the cone $H^+(m, \mathbf{F})$ is invariant by $\theta(A)$. Therefore θ defines a homorphism: $GL(m, \mathbf{F}) \to \operatorname{Aut}(D')$. Denote by θ_* the corresponding homomorphism: $\mathfrak{gl}(m, \mathbf{F}) \to \mathfrak{g}(D')$, where $\mathfrak{gl}(m, \mathbf{F})$ is the Lie algebra of $GL(m, \mathbf{F})$, i.e., $\mathfrak{gl}(m, \mathbf{F}) = M(m, m, \mathbf{F})$. It is well known that $\theta_*(\mathfrak{gl}(m, \mathbf{F})) = \mathfrak{g'}^0$. The kernel \mathfrak{z} of θ_* is trivial if $\mathbf{F} = \mathbf{R}$ and is $\{\lambda \sqrt{-1} e_m; \lambda \in \mathbf{R}\}$ if $\mathbf{F} = \mathbf{C}$. We set

$$\widetilde{\mathfrak{g}} = \left\{ \begin{pmatrix} A & B \\ C & -A^* \end{pmatrix} \in M(2m, 2m, F); \begin{array}{c} B, C \in H(m, F) \\ A \in \mathfrak{gl}(m, F) \end{array} \right\}.$$

Then $\tilde{\mathfrak{g}}$ is a Lie algebra in a usual bracket rule. The center $\tilde{\mathfrak{z}}$ of $\tilde{\mathfrak{g}}$ is trivial if F = R and is $\{\lambda \sqrt{-1} e_{2m}; \lambda \in R\}$ if F = C. We also know that the Lie algebra $\mathfrak{g}(D')$ is isomorphic to $\tilde{\mathfrak{g}}/\tilde{\mathfrak{z}}$ and that

$$\begin{split} &\mathfrak{g}'^{-2} = \{B \in H(m, \mathbf{F})\} \cong \left\{ \begin{pmatrix} 0 & B \\ 0 & 0 \end{pmatrix} \in \widetilde{\mathfrak{g}} \right\} \\ &\mathfrak{g}'^0 = \{ \in \mathfrak{gl}(m, \mathbf{F})\} / \mathfrak{z} \cong \left\{ \begin{pmatrix} A & 0 \\ 0 & -A^* \end{pmatrix} \in \widetilde{\mathfrak{g}} \right\} / \mathfrak{z} \\ &\mathfrak{g}'^2 = \{ C \in H(m, \mathbf{F})\} \cong \left\{ \begin{pmatrix} 0 & 0 \\ C & 0 \end{pmatrix} \in \widetilde{\mathfrak{g}} \right\}. \end{split}$$

For $A \in \mathfrak{gl}(m, \mathbf{F})$, we shall denote by the same latter A the image of A in $\mathfrak{gl}(m, \mathbf{F})/\mathfrak{z} = \mathfrak{g}'^0$. Let $A \in \mathfrak{g}'^0$ $(=\mathfrak{gl}(m, \mathbf{F})/\mathfrak{z})$, $B \in \mathfrak{g}'^{-2} (=H(m, \mathbf{F}))$ and $C \in \mathfrak{g}'^2$ $(=H(m, \mathbf{F}))$. Then

(6.1)
$$\begin{cases} [A, B] = AB + BA^*, & [A, C] = -(A^*C + CA), \\ [B, C] = BC. \end{cases}$$

6.2. Let $A \in GL(m, F)$ and put $F_A(c, c') = AF(c, c')A^*$, $(c, c') \in W$. Then F_A is also a V-hermitian from on W. Let D_A be the Siegel domain of the second kind corresponding to $H^+(m, F)$ and

 F_A . The automorphism of $R_c \times W(R = H(m, F))$ defined by the rule: $(z, w) \to (\theta(A)z, w)$ maps D onto D_A . Denote by θ_A the induced isomorphism of $\mathfrak{g}(D)$ onto $\mathfrak{g}(D_A)$ $(=\sum_{\lambda=-2}^2 \mathfrak{g}_A^{\lambda})$. Clearly $\theta_A(\mathfrak{g}^{\lambda}) = \mathfrak{g}_A^{\lambda}$ and the following equalities hold:

(6.2)
$$\begin{cases} \theta_A(B) = ABA^* & \text{for } B \in \mathfrak{g}^{-2} = \mathfrak{g}'^{-2} = H(m, \mathbf{F}), \\ \alpha_A \circ \theta_A(P) = A\alpha(P)A^{-1} & \text{for } P \in \mathfrak{g}^0, \end{cases}$$

where α_A is the homomorphism of \mathfrak{g}_A^0 into $\mathfrak{gl}(m, \mathbf{F})/\mathfrak{z}$ corresponding to the domain D_A .

Let $\mathfrak g$ be a semi-simple graded subalgebra of $\mathfrak g(D)$ given in Theorem 2.1 and let V_s be the cone in $\mathfrak g^{-2}$ given by (4.1). Then $V_s\subset \overline V$. Let $v\in V_s$ and p be the rank of the matrix v. (Note that the rank of each matrix which belongs to V_s is constant, because V_s is homogeneous.) Then $p\neq 0$ if and only if $\mathfrak g\neq 0$.

Lemma 6.1. For a sutable D_A , the following equalities hold under the identification of \mathfrak{g}_A^{-2} with $H(m, \mathbf{F})$.

$$\mathfrak{g}^{-2} = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & B_{22} \end{pmatrix} \right\} \in H(m, \mathbf{F}); \ B_{22} \in H(p, \mathbf{F}) \right\},$$

$$\mathfrak{r}_{s}^{-2} = \left\{ \begin{pmatrix} 0 & B_{12} \\ B_{12}^{*} & 0 \end{pmatrix} \in H(m, \mathbf{F}); \ B_{12} \in M(m-p, p, \mathbf{F}) \right\},$$

$$\mathfrak{r}_{0}^{-2} = \left\{ \begin{pmatrix} B_{11} & 0 \\ 0 & 0 \end{pmatrix} \in H(m, \mathbf{F}); \ B_{11} \in H(m-p, \mathbf{F}) \right\}.$$

Proof. Let R_{-2} , R_{-1} and R_0 denote the right sides in the above equations. Let $v \in V_s$. There exists $A \in GL(m, \mathbf{F})$ such that $AvA^* = \begin{pmatrix} 0 & 0 \\ 0 & e_p \end{pmatrix} \in H(m, \mathbf{F})$. Therefore from (6.2), by considering D_A instead of D, we may assume $v = \begin{pmatrix} 0 & 0 \\ 0 & e_p \end{pmatrix}$. Then by (6.1), we have $[v, [v, X]] \in R_{-2}$ for any $X \in \mathfrak{g}^2$. Since $\mathfrak{g}^{-2} = [v, [v, \mathfrak{g}^2]]$, we know that $\mathfrak{g}^{-2} \subset R_{-2}$. Then by using (6.1) we have

$$\alpha([\mathfrak{s}^{-2},\mathfrak{s}^2]) \subset \left\{ \begin{pmatrix} 0 & 0 \\ A_{21} & A_{22} \end{pmatrix}; \begin{array}{l} A_{21} \in M(p, m-p, \mathbf{F}) \\ A_{22} \in \mathfrak{gl}(p, \mathbf{F}) \end{array} \right\}$$
(mod 3).

Since $E_s \in [\mathfrak{g}^{-2}, \mathfrak{g}^2]$ by Corollary 4.6, we can write

$$\alpha(E_s) = \begin{pmatrix} 0 & 0 \\ A_{21} & A_{22} \end{pmatrix}.$$

The equation $[E_s,v]=-2v$ implies $A_{22}+A_{22}^*=-2e_p$. Therefore the matrix A_{22} is non-singular. We put

$$A = \begin{pmatrix} e_{m-p} & 0 \\ A_{22}^{-1} A_{21} & e_p \end{pmatrix}.$$

We then have $A \alpha(E_s) A^{-1} = \begin{pmatrix} 0 & 0 \\ 0 & A_{22} \end{pmatrix}$. Thus by considering D_A instead of D, we may assume by (6.2)

$$\alpha(E_s) = \begin{pmatrix} 0 & 0 \\ 0 & A_{22} \end{pmatrix},$$

$$A_{22} = -c_p + A'_{22}, \ A'_{22} + A'_{22}^* = 0.$$

By a direct calculation we can see that $ad E_s$ leaves R_{-2} invariant and that the following equality holds:

(6.3)
$$[E_s, Z] = -2Z + A'_{22}Z + ZA'_{22}$$
 for $Z \in R_{-2} (= H(p, F))$.

Recall that $ad E_s$ has only real eigenvalues. Then from (6.3), we know that $A'_{22}=0$ if F=R and $A'_{22}=\lambda\sqrt{-1}\,e_p(\lambda\in R)$ if F=C. In the case F=C, for any $X\in R_{-1}$, we have

ad
$$E_s X = -(1 + \lambda \sqrt{-1}) X$$
.

Therefore $\lambda=0$ or $R_{-1}=0$. If $R_{-1}=0$. Then p=m and $ad E_s=-2id$. on \mathfrak{g}^{-2} . As a result, $\mathfrak{g}^{-2}=\mathfrak{g}^{-2}$ and hence we have nothing to prove. Thereby we can assume $\alpha(E_s)=\begin{pmatrix} 0 & 0 \\ 0 & -e_p \end{pmatrix}$ in both cases F=R and F=C. If follows

$$ad\ E_s=-2\ id.$$
 on R_{-2} , $ad\ E_s=-id.$ on R_{-1} , $ad\ E_s=0$ on R_0 .

Now our assertion follows immediately from Theorem 3.1. q.e.d.

6.3. We next investigate domains over cones of another type. We set

$$H(m, \mathbf{K}) = \{ Y \in H(2m, \mathbf{C}); YJ = J\overline{Y} \},$$

where $J = \begin{pmatrix} j & j & 0 \\ 0 & j \end{pmatrix}$ and $j = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. If we write $Y = (y_{kt}), k, t = 1, \dots, m$, where y_{kt} is a 2×2 matrix. Then

$$\begin{aligned} \mathbf{y}_{kk} &= \begin{pmatrix} u_{kk} & 0 \\ 0 & u_{kk} \end{pmatrix} (u_{kk} \in \mathbf{R}), \\ \mathbf{y}_{kl} &= \begin{pmatrix} u_{kl} & v_{kl} \\ -\overline{v}_{kl} & \overline{u}_{kl} \end{pmatrix} (u_{kl}, v_{kl} \in \mathbf{C}) \quad \text{for } k \neq t. \end{aligned}$$

Put $H^+(m, \mathbf{K}) = H(m, \mathbf{K}) \cap H^+(2m, \mathbf{C})$. Then $H^+(m, \mathbf{K})$ is a convex cone in $H(m, \mathbf{K})$. Let D (resp. D') be a (resp. the) Siegel domain of the second kind (resp. of the first kind) with $H^+(m, \mathbf{K})$ as a convex cone. We set

$$GL(m, K) = \{A \in GL(2m, C); AJ = J\bar{A}\}.$$

Then $GL(m, \mathbf{K})$ is a closed subgroup of $GL(2m, \mathbf{C})$. The Lie algebra $\mathfrak{gl}(m, \mathbf{K})$ of $GL(m, \mathbf{K})$ consists of all $A \in \mathfrak{gl}(2m, \mathbf{C})$ such that $AJ = J\bar{A}$. Let $A \in GL(m, \mathbf{K})$. The correspondence: $X \to AXA^*$ $(X \in H(m, \mathbf{K}))$ is a linear transformation of $H(m, \mathbf{K})$ leaving the cone $H^+(m, \mathbf{K})$ invariant. Therefore there exists a natural homomorphism of $\mathfrak{gl}(m, \mathbf{K})$ to $\mathfrak{g'}^0$ which is an isomorphism if m > 1. We identify $\mathfrak{g'}^{-2}$ and $\mathfrak{g'}^2$ with $H(m, \mathbf{K})$ and $\mathfrak{g'}^0$ with $\mathfrak{gl}(m, \mathbf{K})$ as before. Then the bracket rule is also given by a similar fashion to (6.1). We can also consider the domain D_A for $A \in GL(m, \mathbf{K})$ defined similarly as before. The following lemma is verified analogously to Lemma 6.1.

Lemma 6.2. Let D be a Siegel domain over the cone $H^+(m, \mathbf{K})$. For a suitable D_A , the following equalities hold under the identification of \mathfrak{g}_A^{-2} with $H(m, \mathbf{K})$:

$$\mathfrak{g}^{-2} = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & B_{22} \end{pmatrix} \in H(m, \mathbf{K}), \ B_{22} \in H(p, \mathbf{K}) \right\},$$

$$\mathfrak{r}_{\mathbf{s}}^{-2} = \left\{ \begin{pmatrix} 0 & B_{12} \\ B_{12}^{*} & 0 \end{pmatrix} \in H(m, \mathbf{K}); \ B_{12} \in M(2m - 2p, 2p, C) \right\}.$$

$$\mathfrak{r}_{0}^{-2} = \left\{ \begin{pmatrix} B_{11} & 0 \\ 0 & 0 \end{pmatrix} \in H(m, \mathbf{K}); \ B_{11} \in H(m - p, \mathbf{K}) \right\}.$$

Proof. We may assume m>1. Let $v\in V_s$. By considering D_A for suitable $A\in GL(m,\mathbf{K})$, we may assume $v=\begin{pmatrix} 0 & 0 \\ 0 & e_{2p} \end{pmatrix}$. Therefore

 $\alpha(E_s) = \begin{pmatrix} 0 & 0 \\ A_{21} & A_{22} \end{pmatrix} \in \mathfrak{gl}(m, \mathbf{K}), \quad \text{where} \quad A_{22} = -c_{2p} + A_{22}', \quad A_{22}' + A_{22}'^* = 0.$ We can easily observe that the matrix $A = \begin{pmatrix} c_{2m-2p} & 0 \\ A_{22}^{-1}A_{21} & c_{2p} \end{pmatrix}$ belongs to $GL(m, \mathbf{K})$. We can therefore assume that $\alpha(E_s) = \begin{pmatrix} 0 & 0 \\ 0 & A_{22} \end{pmatrix}$. Suppose that p > 1. Then $A_{22}' = 0$ because $\alpha(E_s)$ has only real eigenvalues. Hence we get $\alpha(E_s) = \begin{pmatrix} 0 & 0 \\ 0 & -c_{2p} \end{pmatrix}$. In the case p = 1, we can write $A_{22}' = \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix}$. The fact that $A_{22}' + A_{22}'' = 0$ implies that a is purely imaginary. Let

$$R'_{-1} = \left\{ \begin{pmatrix} 0 & B_{12} \\ B_{12}^* & 0 \end{pmatrix} \in H(m, \mathbf{K}); B_{12} = \begin{pmatrix} u & v \\ -\overline{v} & \overline{u} \\ 0 & 0 \end{pmatrix} \in M(2m - 2p, 2, \mathbf{C}) \right\}.$$

Clearly $ad E_s R'_{-1} \subset R'_{-1}$. Let $X(\neq 0)$ be an eigenvector for an eigenvalue $\lambda (\in \mathbf{R})$ of $ad E_s$, where

$$X = \begin{pmatrix} 0 & B_{12} \\ B_{12}^* & 0 \end{pmatrix} \in R'_{-1}, \ B_{12} = \begin{pmatrix} u & v \\ -\overline{v} & \overline{u} \\ 0 & 0 \end{pmatrix}.$$

Then $ad E_s X = \lambda X$ implies

$$\begin{pmatrix} u & v \\ -\overline{v} & \overline{u} \end{pmatrix} \begin{pmatrix} \overline{a} & -b \\ \overline{b} & a \end{pmatrix} = (\lambda + 1) \begin{pmatrix} u & v \\ -\overline{v} & \overline{u} \end{pmatrix}.$$

From this relation we can see that $\lambda = -1$. Therefore $ad E_s = -id$. on R'_{-1} and hence

$$\begin{pmatrix} u & v \\ -\overline{v} & \overline{u} \end{pmatrix} \begin{pmatrix} \overline{a} & -b \\ \overline{b} & a \end{pmatrix} = 0 \quad \text{for any } u, \ v \in C.$$

As a result a=b=0 and $\alpha(E_s)=\begin{pmatrix} 0 & 0 \\ 0 & -e_{2p} \end{pmatrix}$. Now our assertion follows immediately.

6.4. In this paragraph we consider a domain D over the cone $H^+(m, \mathbf{F})$, where $\mathbf{F} = \mathbf{R}$, \mathbf{C} or \mathbf{K} . As an immediate corollary of Lemma 6.1 and Lemma 6.2, we have

Proposition 6.3. Let D be a Siegel domain of the second kind with $H^+(m, \mathbf{F})$ as a convex cone, where $\mathbf{F} = \mathbf{R}$, \mathbf{C} or \mathbf{K} . Then the associated symmetric domain S is an irreducible classical domain.

Next we shall prove the following

Proposition 6.4. Let D be a Siegel domain of the second kind with $H^+(m, \mathbf{F})$ as a convex cone, where $\mathbf{F} = \mathbf{R}$, C or \mathbf{K} . Assume that $\mathfrak{g}^{-2} \neq [\mathfrak{g}^{-1}, \mathfrak{g}^{-1}]$. Then $\mathfrak{g}^1 = 0$.

Proof. Suppose that $\mathfrak{g}^1 \neq 0$. Then $\mathfrak{g} \neq 0$. By using Lemma 6.1 and Lemma 6.2, we may assume, (by considering D_A instead of D)

$$\mathfrak{g}^{-2} = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & B_{22} \end{pmatrix} \in H(m, \mathbf{F}); B_{22} \in H(p, \mathbf{F}) \right\},$$

$$\mathfrak{r}_{s}^{-2} = \left\{ \begin{pmatrix} 0 & B_{12} \\ B_{12}^{**} & 0 \end{pmatrix} \in H(m, \mathbf{F}) \right\},$$

$$\mathfrak{r}_{0}^{-2} = \left\{ \begin{pmatrix} B_{11} & 0 \\ 0 & 0 \end{pmatrix} \in H(m, \mathbf{F}); B_{11} \in H(m-p, \mathbf{F}) \right\}.$$
Let $C = \begin{pmatrix} C_{11} & C_{12} \\ C_{12}^{**} & C_{22} \end{pmatrix} \in \mathfrak{g}^{2} (=H(m, \mathbf{F})) \text{ and } B = \begin{pmatrix} B_{11} & 0 \\ 0 & 0 \end{pmatrix} \in \mathfrak{r}_{0}^{-2}.$

By (6.1) we have

$$\alpha([B,C]) = BC = \begin{pmatrix} B_{11} C_{11} & B_{11} C_{12} \\ 0 & 0 \end{pmatrix}.$$

Since $[r_0^{-2}, \hat{\mathfrak{g}}^2] = 0$, we have $C_{11} = 0$ and $C_{12} = 0$. Recalling that dim $\mathfrak{g}^{-2} = \dim \mathfrak{g}^2$, we get

$$\hat{\mathbf{g}}^2 = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & C_{22} \end{pmatrix} \in H(m, \mathbf{F}); C_{22} \in H(p, \mathbf{F}) \right\}.$$

It follows

$$\alpha(\mathfrak{r}_s^0) = \alpha([\mathfrak{r}_s^{-2},\mathfrak{g}^2]) = \left\{ \begin{pmatrix} 0 & A_{12} \\ 0 & 0 \end{pmatrix} \in \mathfrak{gl}(m, \mathbf{F}) \right\}.$$

Let $B = \begin{pmatrix} 0 & B_{12} \\ B_{12}^* & 0 \end{pmatrix} \in \mathfrak{r}_s^{-2}$ and $A = \begin{pmatrix} 0 & A_{12} \\ 0 & 0 \end{pmatrix} \in \alpha(\mathfrak{r}_s^0)$. Then

$$[A, B] = \begin{pmatrix} A_{12}B_{12}^* + B_{12}A_{12}^* & 0 \\ 0 & 0 \end{pmatrix}.$$

Clearly $\{A_{12}B_{12}^* + B_{12}A_{12}^*; A \in \alpha(\mathfrak{r}_s^0), B \in \mathfrak{r}_s^{-2}\}$ spans the space $H(m - p, \mathbf{F})$. Therefore $\mathfrak{r}_0^{-2} = [\mathfrak{r}_s^0, \mathfrak{r}_s^{-2}]$. On the other hand, the associated symmetric space is irreducible and hence \mathfrak{g} is simple. Therefore \mathfrak{g}^{-2}

 $= \begin{bmatrix} \hat{\mathbf{g}}^{-1}, \hat{\mathbf{g}}^{-1} \end{bmatrix} \text{ and } \hat{\mathbf{g}}^2 = \begin{bmatrix} \hat{\mathbf{g}}^1, \hat{\mathbf{g}}^1 \end{bmatrix} \text{ by Lemma 1. 3. As a consequence,}$ $\mathbf{r}_s^{-2} = \begin{bmatrix} \mathbf{r}^0, \begin{bmatrix} \hat{\mathbf{g}}^{-1}, \hat{\mathbf{g}}^{-1} \end{bmatrix} \end{bmatrix} \subset \begin{bmatrix} \mathbf{r}^{-1}, \hat{\mathbf{g}}^{-1} \end{bmatrix} \subset \mathbf{r}_s^{-2}.$

Thus $\mathfrak{r}_{\mathfrak{s}}^{-2} = [\mathfrak{r}^{-1}, \mathfrak{F}^{-1}]$. Ane hence

$$[r_s^{-2}, r_s^{0}] = [[r^{-1}, \hat{\mathfrak{g}}^{-1}], r_s^{0}] = [r^{-1}, [\hat{\mathfrak{g}}^{-1}, r_s^{0}]]$$
$$\subset [r^{-1}, r^{-1}] \subset r_0^{-2}.$$

Therefore $\mathfrak{r}_0^{-2} = [\mathfrak{r}^{-1}, \mathfrak{r}^{-1}]$ and hence $\mathfrak{g}^{-2} = [\mathfrak{g}^{-1}, \mathfrak{g}^{-1}]$. This contradicts the assumption.

§ 7. Siegel domains over classical cones, II.

- **7.1.** Let D be a Siegel domain of the second kind in $R_c \times W$ associated with a convex cone V in R and a V-hermitian form F on W. We now consider the case where the space W and the form F satisfy the following conditions⁶.
- 1) $W = W_1 + W_2$ (direct sum), where W_t is a complex subspace (i=1,2).
 - 2) $F(W_1, W_2) = 0.$

Under the identification of W with \mathfrak{g}^{-1} , the condition 2) is equivalent to the condition " $[W_1, W_2] = 0$ ".

The restriction F_i of F to $W_i \times W_i$ is a V-hermitian form on W_i (i=1,2). Denote by D_i the Siegel domain of the second kind associated with V and F_i and denote by $\mathfrak{g}(D_i) = \sum_{k=-2}^2 \mathfrak{g}_i^{k}$ the graded Lie algebra of $\operatorname{Aut}(D_i)$. Then we can identify \mathfrak{g}_i^{-2} with $R(=\mathfrak{g}^{-2})$ and \mathfrak{g}_i^{-2} with the complex subspace W_i of $W(=\mathfrak{g}^{-1})$. Denote by $\rho_i^{(-1)}$ the projection of \mathfrak{g}^{-1} onto \mathfrak{g}_i^{-1} with respect to the sum: $\mathfrak{g}^{-1} = \mathfrak{g}_1^{-1} + \mathfrak{g}_2^{-1}$. Let $\hat{\mathfrak{g}} = \sum_{k=-2}^{\infty} \hat{\mathfrak{g}}^{k}$ (resp. $\hat{\mathfrak{g}}_i = \sum_{k=-2}^{\infty} \hat{\mathfrak{g}}_i^{k}$) be the algebraic prolongation of $(\mathfrak{g}^{-2} + \mathfrak{g}^{-1}, \mathfrak{g}^0)$ (resp. of $(\mathfrak{g}^{-2} + \mathfrak{g}_i^{-1}, \mathfrak{g}_i^0)$). Then we have

Lemma 7.1. There exists a unique system of linear mappings $\rho_i^{(\lambda)}$ of $\hat{\mathfrak{g}}^{\lambda}$ to $\hat{\mathfrak{g}}_i^{\lambda}$ ($\lambda \geq 0$) such that

$$(\sharp) \quad \begin{cases} [\rho_i^{(\lambda)}(A), X] = \rho_i^{(\lambda-2)}([A, X]) & (X \in \mathfrak{g}^{-2}) \\ [\rho_i^{(\lambda)}(A), Y] = \rho_i^{(\lambda-1)}([A, Y]) & (Y \in \mathfrak{g}_i^{-1}), \end{cases}$$

⁶⁾ The idea of considering this case is originally due to T. Tsuji (cf. [10]).

⁷⁾ cf. [10].

where $A \in \widehat{\mathfrak{g}}^{\lambda}$ and $\rho_i^{(-2)}$ denotes the identity.

Proof. From (#), the uniqueness is obvious. Let $A \in \mathfrak{g}^0(=\widehat{\mathfrak{g}}^0)$. We can define by (#) the element $\rho_i^{(0)}(A)$ of $\mathfrak{gl}(\mathfrak{g}^{-2}+\mathfrak{g}_i^{-1})$, i.e., $\rho_i^{(0)}(A)X=[A,X]$ for $X\in\mathfrak{g}^{-2}$ and $\rho_i^{(0)}(A)Y=\rho_i^{(-1)}([A,Y])$. Clearly $\rho_i^{(0)}(E)$ and $\rho_i^{(0)}(I)$ are elements of \mathfrak{g}_i^0 obtained from (2.2) and (2.2)' for the domain D_i . Since I is in the center of \mathfrak{g}^0 and \mathfrak{g}_i^{-1} is a complex subspace, we get for any $Y\in\mathfrak{g}_i^{-1}$

$$ho_i^{(0)}(A) \circ
ho_i^{(0)}(I) \ Y =
ho_i^{(-1)}([A, [I, Y]]) =
ho_i^{(-1)}([I, [A, Y]]) =
ho_i^{(0)}(I) \circ
ho_i^{(0)}(A) \ Y.$$

Therefore $\rho_i^{(0)}(A)$ is a complex linear endomorphism of \mathfrak{g}_i^{-1} . And for any $X, Y \in \mathfrak{g}_i^{-1}$, from (2,3) we get (cf. (2,4))

$$ho_i^{(0)}(A)F(X, Y) = [A, F(X, Y)] = F([A, X], Y) + F(X, [A, Y])$$

$$= F(\rho_i^{(-1)}([A, X]), Y) + F(X, \rho_i^{(-1)}([A, Y])),$$

because $F(\mathfrak{g}_1^{-1},\mathfrak{g}_2^{-1})=0$. Therefore we have

$$\rho_i^{(0)}(A)F(X,Y) = F_i(\rho_i^{(0)}(A)X,Y) + F_i(X,\rho_i^{(0)}(A)Y).$$

Since $\exp t \rho_i^{(0)}(A) V = \exp t A V = V$ for any $t \in \mathbb{R}$, we can conclude by (2.3) that $\rho_i^{(0)}(A)$ belongs to \mathfrak{g}_i^0 .

We now assume that there exist mappings $\rho_i^{(\nu)}(0 \leq \nu < \lambda)$ satisfying (#). Define the element $\rho_i^{(\lambda)}(A)$ of $\operatorname{Hom}(\mathfrak{g}^{-2}, \widehat{\mathfrak{g}}_i^{\lambda-2}) + \operatorname{Hom}(\mathfrak{g}_i^{-1}, \widehat{\mathfrak{g}}_i^{\lambda-1})$ for $A \in \widehat{\mathfrak{g}}^{\lambda}$ by

$$\rho_i^{(\lambda)}(A) X = \rho_i^{(\lambda-2)}([A, X]) \quad X \in \mathfrak{g}^{-2},
\rho_i^{(\lambda)}(A) Y = \rho_i^{(\lambda-1)}([A, Y]) \quad Y \in \mathfrak{g}_i^{-1}.$$

In order to prove that $\rho_i^{(\lambda)}(A)$ belongs to $\widehat{\mathfrak{g}}_i^{\lambda}$, we have only to check the following equalities:⁸⁾

(i)
$$[\rho_i^{(\lambda)}(A)X, X'] + [X, \rho_i^{(\lambda)}(A)X'] = 0 \ (X, X' \in \mathfrak{g}^{-2})$$

(ii)
$$[\rho_i^{(\lambda)}(A) X, Y] + [X, \rho_i^{(\lambda)}(A) Y] = 0 \ (X \in \mathfrak{g}^{-2}, Y \in \mathfrak{g}_i^{-1})$$

(iii)
$$\rho_i^{(\lambda)}(A) ([Y, Y']) = [\rho_i^{(\lambda)}(A) Y, Y'] + [Y, \rho_i^{(\lambda)}(A) Y']$$

 $(Y, Y' \in \mathfrak{q}_i^{-1}).$

It follows

⁸⁾ cf. [9].

$$\begin{aligned} & \left[\rho_{i}^{(\lambda)}(A) \, X, \, X' \right] + \left[X, \, \rho_{i}^{(\lambda)}(A) \, X' \right] \\ & = \left[\rho_{i}^{(\lambda-2)}(\left[A, \, X \right]), \, X' \right] + \left[X, \, \rho_{i}^{(\lambda-2)}(\left[A, \, X' \right]) \right] \\ & = \rho_{i}^{(\lambda-4)}(\left[\left[A, \, X \right], \, X' \right] + \left[X, \, \left[A, \, X' \right] \right]), \end{aligned}$$

where we put $\rho_i^{(\lambda-4)}=0$ if $\lambda-4<-2$. Then the equality [[A,X],X']+[X,[A,X']]=[A,[X,X']]=0 proves (i). The equalities (ii) and (iii) are verified similary. q.e.d.

Let $\rho_i^{\scriptscriptstyle (1)}$ and $\rho_i^{\scriptscriptstyle (2)}$ be as in Lemma 7.1. Then

Lemma 7.2.

- (1) Ker $\rho_1^{(1)} \cap \text{Ker } \rho_2^{(1)} = 0$.
- (2) $\rho_i^{(2)}$ is injective on \mathfrak{g}^2 (i=1,2).

Proof. (1) Let $A \in \operatorname{Ker} \ \rho_1^{(1)} \cap \operatorname{Ker} \ \rho_2^{(1)}$. Then we have $[\mathfrak{g}^{-2}, [\mathfrak{g}^{-1}, A]] = 0$ and hence $[\mathfrak{g}^{-1}, [\mathfrak{g}^{-2}, A]] = 0$. Therefore $[\mathfrak{g}^{-2}, A] = 0$. As a result A = 0 ([3]).

(2) Let $A \in \mathfrak{g}^2$ such that $\rho_i^{(2)}(A) = 0$. Then $[\mathfrak{g}^{-2}, [\mathfrak{g}^{-2}, A]] = 0$. Therefore we know A = 0 by Vey's result ([11]). q.e.d.

Now we can prove the following proposition which is convenient \bullet to calculate dim \mathfrak{g}^1 and dim \mathfrak{g}^2 .

Proposition 7.3. Assume that $\mathfrak{g}_1^1 = 0$. Then

- (1) Under the identification of W with \mathfrak{g}^{-1} , W_1 is contained in \mathfrak{r}^{-1} .
- (2) The mapping $\rho_2^{(1)}$ (resp. $\rho_2^{(2)}$) is an injective linear mapping of \mathfrak{g}^1 (resp. of \mathfrak{g}^2) to \mathfrak{g}_2^1 (resp. to \mathfrak{g}_2^2).
- (3) \mathfrak{r}_2^{-1} is contained is \mathfrak{r}^{-1} , where $\mathfrak{r}_2^{-1} = \mathfrak{r}_2 \cap \mathfrak{g}_2^{-1}$ and \mathfrak{r}_2 is the radical of $\mathfrak{g}(D_2)$.

Proof. Since $\mathfrak{g}_1^{1}=0$, $\rho_1^{(1)}(\mathfrak{g}^1)=0$. Therefore $\rho_1^{(0)}([W_1,\mathfrak{g}^1])=0$ and hence $[\mathfrak{g}^{-2},[W_1,\mathfrak{g}^1]]=0$. Now Assertion (1) follows immediately from Corollary 2.4.

In order to prove (2), from Theorem 4.1. and Lemma 7.2. we have only to show that $\rho_2^{(2)}(\mathfrak{g}^2) \subset \mathfrak{g}_2^2$. Let $A \in \mathfrak{g}^2$ and $Z \in \mathfrak{g}^{-2}$. Then $[[A, Z], W_1] \subset [[\mathfrak{g}^2, \mathfrak{g}^{-2}], \mathfrak{r}^{-1}] = 0$. Therefore

$$\operatorname{Im} \, Tr \, ad([A,Z])|_{\mathfrak{g}^{-1}} = \operatorname{Im} \, Tr \, ad \, \rho_2^{(0)}([A,Z])|_{\mathfrak{g}_2^{-1}}$$

= Im
$$Tr \ ad([\rho_2^{(2)}(A), Z])|_{\mathfrak{g}_2^{-1}}$$
.

By using Theorem 4.1, we have $\rho_2^{(2)}(A) \in \mathfrak{g}_2^2$.

Finally since $[r_2^{-1}, g_2^{2}] = 0$, we have $[r_2^{-1}, \rho_2^{(2)}(g^2)] = 0$ and hence $\rho_2^{(1)}([r_2^{-1}, g^2]) = 0$. From (2), we get $[r_2^{-1}, g^2] = 0$. Now Assertion (3) follows from Corollary 2.5.

Next we put $\mathfrak{h}^{-2} = [\mathfrak{g}_1^{-1}, \mathfrak{g}_1^{-1}]$. By regarding \mathfrak{h}^{-2} as a subspace of $\mathfrak{g}(D_2)$ we set

$$t^{\lambda} = \{X \in \mathfrak{g}_{2}^{\lambda}; [X, \mathfrak{h}^{-2}] = 0\}, \lambda = 0, 1, 2.$$

And put

$$t = g^{-2} + g_2^{-1} + t^0 + t^1 + t^2$$
.

It is easy to see that t is a subalgebra of $\mathfrak{g}(D_2)$.

Proposition 7.4. The Lie algebra t can be imbedded as a graded subalgebra of g(D).

Proof. The Lie algebra $\mathfrak{g}^{-2}+\mathfrak{g}_2^{-1}$ is clearly a graded subalgebra of $\mathfrak{g}(D)$. For any $A\in\mathfrak{t}^0$, define an element $\iota^0(A)$ of $\mathfrak{gl}(\mathfrak{g}^{-2}+\mathfrak{g}^{-1})$ by $\iota^0(A)X=[A,X]$ for $X\in\mathfrak{g}^{-2}+\mathfrak{g}_2^{-1}$ and $\iota^0(A)\mathfrak{g}_1^{-1}=0$. Clearly $\iota^0(A)$ is complex linear on \mathfrak{g}^{-1} and by using the fact $F(\mathfrak{g}_1^{-1},\mathfrak{g}_2^{-1})=0$, we can see that (2,3) is holds for $\iota^0(A)$. Therefore $\iota^0(A)\in\mathfrak{g}^0$. And the correspondence $\iota^0\colon \mathfrak{t}^0\to\mathfrak{g}^0$ is an injective homomorphism of Lie algebras as is easily observed. Let $A\in\mathfrak{t}^1$. Define an element $\iota^1(A)$ of $Hom(\mathfrak{g}^{-2},\mathfrak{g}^{-1})+Hom(\mathfrak{g}^{-1},\mathfrak{g}^0)$ by $\iota^1(A)X=[A,X]$ $(\in\mathfrak{g}_2^{-1})$ for $X\in\mathfrak{g}^{-2}$, $\iota^1(A)Y=\iota^0([A,Y])$ for $Y\in\mathfrak{g}_2^{-1}$ and $\iota^1(A)\mathfrak{g}_1^{-1}=0$. We can see that $\iota^1(A)$ belongs to the first prolongation of $(\mathfrak{g}^{-2}+\mathfrak{g}^{-1},\mathfrak{g}^0)$ and hence $\iota^1(A)$ belongs to \mathfrak{g}^1 . Clearly the correspondence ι^1 is injective. Finally for any $A\in\mathfrak{t}^2$, we set $\iota^2(A)X=\iota^0([A,X])$ for $X\in\mathfrak{g}^{-2}$, $\iota^2(A)Y=\iota^1([A,Y])$ for $Y\in\mathfrak{g}_2^{-1}$ and $\iota^2(A)\mathfrak{g}_1^{-1}=0$. Then we can see that $\iota^2(A)$ belongs to \mathfrak{g}^2 . And for any $X\in\mathfrak{g}^{-2}$,

Im
$$Tr \ ad(\iota^2(A) \ X)|_{g_{\cdot^1}} = \text{Im} \ Tr \ ad([A, X])|_{g_{\cdot^2}} = 0.$$

Therefore $\iota^2(A) \in \mathfrak{g}^2$ by Theorem 4.1. The injectivity of ι^2 is clear. Thus we have constructed the imbedding ι of ι into $\mathfrak{g}(D)$. It is not difficult to see that ι is a homomorphism of graded Lie algebras.

q.e.d.

Note that $\rho_2^{(\lambda)} \circ \iota(X) = X$ for $X \in \mathfrak{t}^{\lambda}$.

7.2. In this paragraph, we determine the associated symmetric domain for every homogeneous Siegel domain with $H^+(m, \mathbf{R})$ $(m \ge 2)$ as a convex cone constructed in [6].

Let r(t) be a non-decreasing positive integer valued function on an interval [1, s] ($s \in \mathbb{N}$) such that $r(s) \leq m$. And let W be a complex vector space defined by

$$W = \{(u_{kt}) \in M(m, s, C); u_{kt} = 0 \text{ for } k > r(t)\}.$$

Define an $H^+(m, \mathbf{R})$ -hermitian form F on W by

$$F(u,v) = \frac{1}{2}(uv^* + \overline{v}^t u),$$

(u = the transpose of the matrix u).

The Siegel domain D obtained from $H^+(m, \mathbf{R})$ and F is homogeneous and non-symmetric (Pyatetski-Shapiro [6]).

Lemma 7.5. If r(t) is constant. Then $g^1 = 0$.

Proof. Put $n=r(t) \leq m$. Denote by u_k the k-th row vector of the matrix $u(1 \leq k \leq m)$. Then $u_k=0$ for k>n. Let $A_k(1 \leq k \leq n)$ be the $m \times m$ matrix such that the (k, k)-component of A_k is 1 and others are zero. Clearly the endomorphism g_k of $H(m, \mathbf{R}) \times W$ defined by the following equalities is belongs to \mathfrak{g}^0 (cf. (2.3)):

$$g_k(X) = A_k X + X A_k$$
 for $X \in H(m, \mathbf{R})$
 $g_k(u) = A_k u$ for $u \in W$.

Note that $[g_k, u_i] = \delta_{ik}u_i$. Let $B_{ik}(1 \le i, k \le n)$ be the $m \times m$ matrix such that the (i, k), (k, i) and (h, h)-components are 1 $(h \ne i, k)$ and others are zero. Then the following linear transformation f_{ik} of of $H(m, \mathbf{R}) \times W$ belongs to GL(D) (cf. (2.1)):

$$f_{ik}(X) = B_{ik}XB_{ik}$$
 for $X \in H(m, \mathbf{R})$
 $f_{ik}(u) = B_{ik}u$ for $u \in W$.

Clearly $Adf_{ik}(u_k) = u_i$, $Adf_{ik}(u_i) = u_k$ and $Adf_{ik}(u_h) = u_h$ for $h \neq i, k$. Recall that the domain D is non-symmetric and irreducible. Therefore there exists an element $u(\neq 0)$ of \mathfrak{r}^{-1} by Proposition 2.2. Since $ad\ g_k(\mathfrak{r}^{-1})\subset\mathfrak{r}^{-1}$ and $Ad\ f_{ik}(\mathfrak{r}^{-1})=\mathfrak{r}^{-1}$, we may assume that $u_k=0$ for $k\neq 1$. Then for any $v\in W$ such that $v_k=0$ for $k\neq 1$, we have [[I,v],v]=4F(v,v)=c4F(u,u)=c[[I,u],u] $(c\in \mathbf{R})$. As a result we get $[[I,v],v]\in\mathfrak{r}^{-2}$ and hence $v\in\mathfrak{r}^{-1}$. Now by considering the transformation $Ad\ f_{ik}$, we have $\mathfrak{q}^{-1}=\mathfrak{r}^{-1}$.

We turn to general cases. We set $W_1 = \{u \in W; u_{kt} = 0 \text{ for } t < s\}$ and $W_2 = \{u \in W; u_{ks} = 0\}$. Clearly $W = W_1 + W_2$ (direct sum) and $F(W_1, W_2) = 0$. Let D_1 be the domain as in 7.1. Then D_1 is the domain corresponding to $H^+(m, \mathbf{R})$ and the function r(t) such that s = 1. Therefore by Lemma 7.5 we have $g_1^{-1} = 0$. Hence by Proposition 7.3, W_1 is contained in r^{-1} . Since $[W, W] = [W_1, W_1] \subset r^{-2}$, we have $W = g^{-1} = r^{-1}$. And hence $g^1 = 0$. Put n = r(s). Then

$$\begin{bmatrix} \mathfrak{r}^{-1}, \mathfrak{r}^{-1} \end{bmatrix} = \left\{ \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix} \in H(m, \mathbf{R}) ; x \in H(n, \mathbf{R}) \right\}.$$

Therefore by Lemma 6.1, we have dim $\mathfrak{g}^2 \leq \dim H(m-n, \mathbf{R})$, because $[\mathfrak{r}^{-1}, \mathfrak{r}^{-1}]$ is contained in \mathfrak{r}_0^{-2} .

Next we change the decomposition of W by putting $W_1 = W$ and $W_2 = 0$. Then the domain D_2 constructed in 7.1 is of the first kind associated with the cone $H^+(m, \mathbf{R})$. And the Lie algebra $\mathfrak{g}(D_2)$ is given as follows (cf. § 6).

$$g(D_2) \cong \left\{ \begin{pmatrix} A & B \\ C & -{}^{\iota}A \end{pmatrix} \in g(2m, \mathbf{R}); A \in g(m, \mathbf{R}), B, C \in H(m, \mathbf{R}) \right\}.$$

We put

$$\mathfrak{S} = \left\{ \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & a & 0 & b \\ 0 & 0 & 0 & 0 \\ 0 & c & 0 & -{}^{t}a \end{pmatrix} \in \mathfrak{gl}(2m, \mathbf{R}); \begin{array}{l} a \in \mathfrak{gl}(m-n, \mathbf{R}) \\ b, c \in H(m-n, \mathbf{R}) \end{array} \right\}.$$

Then \mathfrak{g} is a semi-simple graded subalgebra of $\mathfrak{g}(D_2)$ and $[\mathfrak{h}^{-2}, \mathfrak{g}] = 0$, where \mathfrak{h}^{-2} is a subspace of \mathfrak{g}^{-2} given by $\mathfrak{h}^{-2} = [\mathfrak{r}^{-1}, \mathfrak{r}^{-1}]$. Therefore \mathfrak{g} can be imbedded as a graded subalgebra of $\mathfrak{g}(D)$ by Proposition 7.4. As a result dim $\mathfrak{g}^2 \geq \dim H(m-n, \mathbf{R})$ and hence the equality holds. Now it is clear that the semi-simple graded subalgebra \mathfrak{g} of

⁹⁾ If we write $v = v_{\tau} + v_{s}$ ($v_{\tau} \in \mathfrak{r}^{-1}$, $v_{s} \in \mathfrak{s}^{-1}$), then [[I, v_{s}], v_{s}] $\in \mathfrak{r}^{-2} \cap \mathfrak{s}^{-2} = 0$ and hence $v_{s} = 0$.

 $\mathfrak{g}(D)$ has the properties 1) and 2) in Theorem 2.1 and that the corresponding symmetric domain is of the first kind associated with the cone $H^+(m-n,\mathbf{R})$. Thus we have proved the following

Theorem 7.6.¹⁰⁾ Let D be the Siegel domain corresponding to the cone $H^+(m, \mathbf{R})$ $(m \ge 2)$ and the function r(t) on the interval [1, s]. Then $\mathfrak{g}^1 = 0$, $\mathfrak{g}^2 \cong H(m-n, \mathbf{R})$ and the associated symmetric domain is of the first kind corresponding to the cone $H^+(m-n, \mathbf{R})$, where n = r(s).

7.3. Next we investigate domains for the cone $H^+(m, \mathbb{C})$ ($m \ge 2$). Let $r_1(t)$ (resp. $r_2(t)$) be a function on the interval $[1, s_1]$ (resp. $[1, s_2]$) as before. And let $W^{(1)}$ (resp. $W^{(2)}$) be the vector space corresponding to the function $r_1(t)$ (resp. $r_2(t)$), constructed in 7.2. We set $W = W^{(1)} + W^{(2)}$. Let $R = H(m, \mathbb{C})$ and $V = H^+(m, \mathbb{C})$. Define a V-hermitian form F on W by

$$F(u,v) = \frac{1}{2} (u^{(1)}v^{(1)*} + \overline{v}^{(2)t}u^{(2)}),$$

where $u=u^{(1)}+u^{(2)}$ and $v=v^{(1)}+v^{(2)}$. Let D be the Siegel domain associated with V and F. We may assume that $r_1(s_1) \ge r_2(s_2)$. And $W^{(2)}$ may be 0. The domain D is symmetric if and only if $W^{(2)}=0$ and $r_1(1)=m$ (Pyatetski-Shapiro [6]). In what follows we put $r_1(0)=0$ for convenience.

Lemma 7.7. In the following cases we have $g^1 = 0$.

- (1) $r_1(s_1) = r_2(s_2)$.
- (2) $r_1(s_1) < m$.

Proof. In the case (2), $\mathfrak{g}^1=0$ follows immediately from Proposition 6.4 because $\mathfrak{g}^{-2}\neq [\mathfrak{g}^{-1},\mathfrak{g}^{-1}]$. But here we give a simpler proof. We first consider the case where $s_1=s_2=1$ and $r_1(1)=r_2(1)$ or the case where $W^{(2)}=0$, $s_1=1$ and $r_1(1)< m$. In each case there exist $g_k(1\leq k\leq r_1(1))$ of \mathfrak{g}^0 and $f_{ik}(1\leq i,k\leq r_1(1))$ of GL(D) such that

$$g_k(X) = A_k X + X A_k$$
 for $X \in H(m, C)$

¹⁰⁾ Tanaka [9] and Murakami [2] calculated \mathfrak{g}^1 and \mathfrak{g}^2 in the case s=1. Sudo [7] calculated \mathfrak{g}^1 in the case s=1 and r(1)=m. And Tsuji [10] obtained the same results for \mathfrak{g}^1 and \mathfrak{g}^2 of this theorem.

$$g_k(u) = A_k u^{(1)} + A_k u^{(2)}$$
 for $u = u^{(1)} + u^{(2)} \in W$
 $f_{ik}(X) = B_{ik} X B_{ik}$ for $X \in H(m, C)$
 $f_{ik}(u) = B_{ik} u^{(1)} + B_{ik} u^{(2)}$ for $u = u^{(1)} + u^{(2)} \in W$,

where A_k and B_{ik} are $m \times m$ matrices as in Proof of Lemma 7.5. Thus by using the fact that D is non-symmetric, we can see that $\mathfrak{g}^1 = 0$ analogously.

Now in the case (1), we set $W_1 = \{u \in W; u_{kt}^{(1)} = 0 \text{ for } t < s_1 \text{ and } u_{kt}^{(2)} = 0 \text{ for } t < s_2\}$, and $W_2 = \{u \in W; u_{kt}^{(1)} = 0 \text{ and } u_{ks_2}^{(2)} = 0\}$. In the case (2), we put $W_1 = \{u \in W; u_{kt}^{(1)} = 0 \text{ for } t < s_1 \text{ and } u^{(2)} = 0\}$ and $W_2 = \{u \in W; u_{ks_1}^{(1)} = 0\}$. Then in both cases (1) and (2), $W = W_1 + W_2$ (direct sum) and $F(W_1, W_2) = 0$. And the domain D_1 constructed in 7.1 corresponding to this decomposition is just the domain considered above. Therefore $\mathfrak{g}_1^{-1} = 0$ and hence by Proposition 7.3, we get $W_1 \subset \mathfrak{r}^{-1}$. Since $[W, W] = [W_1, W_1]$, we have $W = \mathfrak{g}^{-1} = \mathfrak{r}^{-1}$ and hence $\mathfrak{g}_1^{-1} = 0$.

We shall prove the following

Theorem 7.8.¹¹⁾ Let D be the Siegel domain corresponding to the cone $H^+(m, \mathbb{C})$ and functions $r_1(t)$ and $r_2(t)$ on the intervals $[1, s_1]$ and $[1, s_2]$ respectively. Assume that $r_1(s_1) \leq r_2(s_2)$.

- (1) If $r_1(s_2) = m$. Then $\mathfrak{g}^1 = 0$, $\mathfrak{g}^2 = 0$ and the associated symmetric domain S is trivial, i.e., S = (0).
- (2) If $r_1(s_1) < m$. Then $\mathfrak{g}^1 = 0$, $\mathfrak{g}^2 \cong H(m r_1(s_1), \mathbb{C})$ and the associated symmetric domain S is of the first kind corresponding to the cone $H^+(m r_1(s_1), \mathbb{C})$.
- (3) If $r_1(s_1) = m$ and $r_2(s_2) < m$. Let s_1' be the integer $(0 \le s_1' < s_1)$ such that $r_1(s_1') < r_1(s_1' + 1) = m$. And put $n = \text{Max}(r_1(s_1'), r_2(s_2))$. Then $\mathfrak{g}^1 \cong M(m-n, s_1-s_1', \mathbb{C})$, $\mathfrak{g}^2 \cong H(m-n, \mathbb{C})$ and the associated symmetric domain S is the domain corresponding to the cone $H^+(m-n, \mathbb{C})$ and the function $r_1(t)$ on the interval $[1, s_1-s_1']$ such that $s_1(1) = m-n$.

Proof. (1) In this case, $r_1(s_1) = r_2(s_2) = m$. Hence by Lemma

¹¹⁾ Sudo [7] calculated \mathfrak{g}^1 in the case $s_1=1$, $s_2=1$ and $r_1(1)=r_2(1)=1$. Tsuji [10] calculated \mathfrak{g}^1 and \mathfrak{g}^2 of this theorem by different methods.

- 7.7, we get $g^1 = 0$. We then have $g^2 = 0$ by using the fact that $g^{-2} = [g^{-1}, g^{-1}]$ and by Corollary 1.4. Therefore S is trivial.
- (2) Since $g^{-2} \neq [g^{-1}, g^{-1}]$, we have $g^1 = 0$ by Lemma 7.7 or by Proposition 6.4. Other assertions can be proved by almost similar way as in the proof of Theorem 7.6.
- (3) We set $W_1 = \{u \in W; u_{kt}^{(1)} = 0 \text{ for } t > s_1'\}$ and $W_2 = \{u \in W; u_{kt}^{(1)} = 0 \text{ for } t \leq s_1' \text{ and } u^{(2)} = 0\}$. Then $W = W_1 + W_2$ (direct sum) and $F(W_1, W_2) = 0$. Since $g_1^{-1} = 0$ by Lemma 7.7 or by Proposition 6.4, we get $W_1 \subset \mathfrak{r}^{-1}$ by Proposition 7.3. Let W' be the subspace of W defined by

$$W' = \{ u \in W ; u_{kt}^{(1)} = 0 \text{ for } k > n \}.$$

Note that $W' \supset W_1 \supset W^{(2)}$. Since $[W', W'] = [W_1, W_1]$, we have $W' \subset \mathfrak{r}^{-1}$. As a result dim $\mathfrak{g}^1 \leq \dim M(m-n, s_1-s_1', \mathbb{C})$, because dim $\mathfrak{g}^1 = \dim \mathfrak{g}^{-1} - \dim \mathfrak{r}^{-1}$. Let D_2 be the Siegel domain as in 7.1. The domain D_2 is symmetric and the semi-simple Lie algebra $\mathfrak{g}(D_2)$ (= $\sum_{k=-2}^2 \mathfrak{g}_2^{\lambda}$) is expressed as follows. We set

$$\widetilde{\mathfrak{g}} = \left\{ \begin{pmatrix} \frac{A}{\sqrt{-1}} V^* & C & -\sqrt{-1} U^* \\ Y & V & -A^* \end{pmatrix}; \begin{array}{l} X, Y \in H(m, C), A \in \mathfrak{gl}(m, C) \\ C \in \mathfrak{gl}(s_1 - s_1', C), C + C^* = 0, \\ U, V \in M(m, s_1 - s_1', C) \end{array} \right\}.$$

Then $\tilde{\mathfrak{g}}$ is a subalgebra of $\mathfrak{gl}(2m+s_1-s_1',C)$ and its center $\tilde{\mathfrak{g}}$ is one dimensional generated by $\sqrt{-1}\,e_{2m+s_1-s_1'}$. It is well known that the Lie elgebra $\mathfrak{g}(D_2)$ is isomorphic to $\tilde{\mathfrak{g}}/\tilde{\mathfrak{g}}$ and that

$$g_{2}^{-2} \cong \left\{ \begin{pmatrix} 0 & 0 & X \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \in \widetilde{\mathfrak{g}}; \ X \in H(m, \mathbb{C}) \right\},$$

$$g_{2}^{-1} \cong \left\{ \begin{pmatrix} 0 & U & 0 \\ 0 & 0 - \sqrt{-1} U^{*} \\ 0 & 0 & 0 \end{pmatrix} \in \widetilde{\mathfrak{g}}; \ U \in M(m, s_{1} - s_{1}', \mathbb{C}) \right\},$$

$$g_{2}^{0} \cong \left\{ \begin{pmatrix} A & 0 & 0 \\ 0 & C & 0 \\ 0 & 0 & -A^{*} \end{pmatrix} \in \widetilde{\mathfrak{g}}; \ \frac{A \in \mathfrak{gl}(m, \mathbb{C}),}{C \in \mathfrak{gl}(s_{1} - s_{1}', \mathbb{C}), \ C + C^{*} = 0} \right\}$$

mod 3,

$$g_2^1 \cong \left\{ \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{-1}V^* & 0 & 0 \\ 0 & V & 0 \end{pmatrix} \in \widetilde{\mathfrak{g}}; \ V \in M(m, s_1 - s_1', C) \right\},$$

$$g_2^2 \cong \left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ Y & 0 & 0 \end{pmatrix} \in \widetilde{\mathfrak{g}}; \ Y \in H(m, C) \right\}.$$

Note that if we put $\mathfrak{g} = [\widetilde{\mathfrak{g}}, \widetilde{\mathfrak{g}}]$ then $\widetilde{\mathfrak{g}} = \mathfrak{g} + \widetilde{\mathfrak{z}}$ and that $\mathfrak{g} \cong \mathfrak{g}(D_2)$. Now we set

$$\widetilde{\mathfrak{g}} = \left\{ \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & a & u & 0 & x \\ 0 & \sqrt{-1}v^* & C & 0 & -\sqrt{-1}u^* \\ 0 & 0 & 0 & 0 & 0 \\ 0 & y & v & 0 & -a^* \end{pmatrix} \right. \begin{cases} x, y \in H(m-n, C) \\ a \in \mathfrak{gl}(m-n, C), \\ C \in \mathfrak{gl}(s_1 - s_1', C), C + C^* = 0, \\ u, v \in M(m-n, s_1 - s_1', C) \end{cases}.$$

Clearly \mathfrak{F} is a subalgebra of \mathfrak{F} . And $\mathfrak{F} = \mathfrak{F} + \mathfrak{c}$ where $\mathfrak{F} = [\mathfrak{F}, \mathfrak{F}]$ and \mathfrak{C} denotes the center of \mathfrak{F} . Then the semi-simple Lie algebra \mathfrak{F} has the graded structure $(\mathfrak{F} = \sum_{k=-2}^2 \mathfrak{F}^k)$ and can be imbedded as a graded subalgebra of $\mathfrak{F}(D_2)$ in obvious manner. Then we have $[\mathfrak{F}^{-2}, \mathfrak{F}] = 0$, where \mathfrak{F}^{-2} denotes the subspace of $\mathfrak{F}^{-2}(=\mathfrak{F}^{-2})$ given by $\mathfrak{F}^{-2} = [W_1, W_1]$. Therefore by Proposition 7.4, \mathfrak{F} can be imbedded as a graded subalgebra of $\mathfrak{F}(D)$. Consequently, $\dim \mathfrak{F}^1 \geq \dim M(m-n, s_1-s_1', C)$ and hence the equality holds. We assert that \mathfrak{F} has the properties 1) and 2) in Theorem 2.1. Since the domain D is non-degenerate, we get $\mathfrak{F}^2 = [\mathfrak{F}^1, \mathfrak{F}^1]$ by Corollary 1.4. Clearly $\mathfrak{F}^2 = [\mathfrak{F}^1, \mathfrak{F}^1]$. Thus we have $\mathfrak{F}^2 = \mathfrak{F}^2$, proving 1). The property 3) is obvions. Therefore $\mathfrak{F}^2 \cong H(m-n, C)$ and the associated symmetric domain S is given by

$$S = \{(z, u) \in M(m-n, m-n, C) \times M(m-n, s_1 - s_1', C);$$

$$\sqrt{-1}(z^* - z) - uu^* \in H(m-n, C)\}. \text{ q.e.d.}$$

7.4. In this paragraph R denotes the vector space H(m, K) $(m \ge 2)$ and V denotes the cone $H^+(m, K)$. Let r(t) be a function, as in 7.2, on the interval [1, s] such that $1 \le r(t) \le 2m$. And let W be the corresponding vector space, i.e., $W = \{(u_{kt}) \in M(2m, s, C); u_{kt} = 0 \text{ for } k > r(t)\}$. Define a V-hermitian form F on W by

$$F(u,v) = \frac{1}{2}(uv^* + J\bar{v}^t u^t J).$$

The Siegel domain D associated with V and F is symmetric if and only if s=1 and r(1)=2m (Pyatetski-Shapiro [6]).

Lemma 7.9. The following cases, $\mathfrak{g}^1 = 0$.

- (1) $r(s) \leq 2m 2$.
- (2) $r(s-1) = 2m \ (s \ge 2)$.

Proof. In the case (1), $\mathfrak{g}^{-2} \neq [\mathfrak{g}^{-1}, \mathfrak{g}^{-1}]$. Therefore we have $\mathfrak{g}^1 = 0$ by Proposition 6.4. In the case (2), it is sufficient to prove our assertion with the assumption that s = 2 (cf. Proof. of Lemma 7.7). Let A_k ($1 \leq k \leq m$) be the $2m \times 2m$ matrix such that the (2k - 1, 2k - 1) and (2k, 2k)-components are 1 and others are zero. Then the following endomorphism g_k of $R \times W$ belongs to \mathfrak{g}^0 :

$$g_k(X) = A_k X + X A_k$$
 for $X \in H(m, \mathbf{K})$
 $g_k(u) = A_k u$ for $u \in W$.

Let $B_{ik}(1 \le i, k \le m)$ be the $2m \times 2m$ matrix such that the (2i-1, 2k-1), (2i, 2k), (2k-1, 2i-1), (2k, 2i) and (h, h)-components are 1 $(h \ne 2i-1, 2i, 2k-1, 2k)$ and others are zero. Then the following transformation f_{ik} of $R \times W$ belongs to GL(D):

$$f_{ik}(X) = B_{ik}XB_{ik}$$
 for $X \in H(m, \mathbf{K})$
 $f_{ik}(u) = B_{ik}u$ for $u \in W$.

For every $u \in W$, denote by $u_i (i = 1, \dots, 2m)$ the *i*-th row vector. Then we have

$$g_k(u_h) = u_h$$
 for $h = 2k - 1, 2k$,
 $g_k(u_h) = 0$ for $h \neq 2k - 1, 2k$,
 $f_{ik}(u_{2i}) = u_{2k}, f_{ik}(u_{2k}) = 2i$,
 $f_{ik}(u_{2i-1}) = u_{2k-1}, f_{ik}(u_{2k-1}) = u_{2i-1}$,
 $f_{ik}(u_h) = u_h$ for $h \neq 2i - 1, 2i, 2k - 1, 2k$.

Since D is non-symmetric, there exists $u(\neq 0) \in \mathfrak{r}^{-1}$. Changing by $f_{tk}g_k(u)$ if necessary, we may assume that $u_h=0$ for h>2. Then for any $v \in W$ such that $v_h=0$ for h>2, we have [[I,v],v]=c[[I,u],u] $(c \in \mathbb{R})$. Therefore $v \in \mathfrak{r}^{-1}$. By considering the transformation f_{ik} , we have $W=\mathfrak{r}^{-1}$.

Next we shall prove

Lemma 7.10. If r(1) = r(s) = 2m - 1. Then

(1) $\mathfrak{g}^1 \cong M(1, s, C)$ and $\mathfrak{g}^2 \cong R^1$.

(2)
$$[\mathfrak{r}^{-1}, \mathfrak{r}^{-1}] = \left\{ \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix} \in H(m, \mathbf{K}); \ x \in H(m-1, \mathbf{K}) \right\}.$$

(3) $S = \{(z, w) \in C^1 \times M(1, s, C); \text{ Im } z - \frac{1}{2}uu^* > 0\}.$

Proof. Let $u, v \in \mathfrak{g}^{-1}$. Then the bracket rule is given by

$$[u,v] = \sqrt{-1}(vu^* + J\overline{u}^t v^t J - uv^* - J\overline{v}^t u^t J).$$

We set

$$\mathbf{t}^{0} = \left\{ (A, C) \in \mathfrak{gl}(m, \mathbf{K}) \times \mathfrak{gl}(s, \mathbf{C}); A = \begin{pmatrix} 0 & * & * \\ 0 & \alpha & 0 \\ 0 & 0 & \overline{\alpha} \end{pmatrix}, \begin{array}{c} \alpha \in \mathbf{C}^{1} \\ C + C^{*} = 0 \end{array} \right\}.$$

For any $(A,C) \in \mathfrak{t}^0$, define an element $\psi^0(A,C)$ of $\mathfrak{gl}(R \times W)$ by

(7.2)
$$\begin{cases} \phi^{0}(A,C) X = AX + XA^{*}, & X \in H(m, \mathbf{K}) \\ \phi^{0}(A,C) u = Au + uC, & u \in W. \end{cases}$$

By direct calculations, we can see that $\psi^0(A,C)$ belongs to \mathfrak{g}^0 . Next we put

$$\mathfrak{t}^1 = \{X \in M(2m, s, C); X_{kt} = 0 \text{ for all } k \neq 2m-1\}$$

$$(\cong M(1, s, C)).$$

Let $X \in \mathfrak{t}^1$, $Y \in W$. By direct calculations, we easily see that the pair (A,C) belongs to \mathfrak{t}^0 , where $A = \sqrt{-1}(YX^* + J\overline{Y}^tXJ)$, $C = \sqrt{-1}(X^*Y + Y^*X)$. And for any $Z \in H(m,K)$, ZX belongs to W. Therefore we can define an element $\psi^1(X)$ of $\operatorname{Hom}(\mathfrak{g}^{-2},\mathfrak{g}^{-1}) + \operatorname{Hom}(\mathfrak{g}^{-1},\mathfrak{g}^0)$ by

(7.3)
$$\begin{cases} \psi^{1}(X)Z = ZX & \text{for } Z \in \mathfrak{g}^{-2}, \\ \psi^{1}(X)Y = \psi^{0}(A, C) & \text{for } Y \in \mathfrak{g}^{-1}, \end{cases}$$

where $A = \sqrt{-1}(YX^* + J\overline{Y}^tXJ)$, $C = \sqrt{-1}(Y^*X + X^*Y)$. Clearly ϕ^1 is injective. We shall show that $\phi^1(X)$ belongs to \mathfrak{g}^1 . By Theorem 4.1, it is sufficient to check the following equalities:

$$(\mathrm{a}) \quad \phi^{\scriptscriptstyle 1}(X) \left(\left[u,v \right] \right) = \left[\phi^{\scriptscriptstyle 1}(X) \, u,v \right] + \left[u,\phi^{\scriptscriptstyle 1}(X) \, v \right] \ \, (u,v \in \mathfrak{g}^{\scriptscriptstyle -1}) \, ,$$

(b)
$$[\psi^{1}(X)Z, u] + [Z, \psi^{1}(X)u] = 0 \quad (u \in \mathfrak{g}^{-1}, Z \in \mathfrak{g}^{-2}).$$

From (7.1), (7.2) and (7.3), we have

$$\psi^{1}(X)([u,v]) = [u,v]X = \sqrt{-1}(vu^{*}-uv^{*})X,$$

because ${}^{t}v^{t}JX = {}^{t}u^{t}JX = 0$ as is easily observed. And

$$\begin{split} \left[\phi^{1}(X) u, v \right] + \left[u, \phi^{1}(X) v \right] \\ &= \sqrt{-1} \left(vu^{*}X - uv^{*}X \right) + \sqrt{-1} \left(J\overline{u}^{t}XJv - J\overline{v}^{t}XJu \right) \\ &= \sqrt{-1} \left(vu^{*}X - uv^{*}X \right). \end{split}$$

where we use the facts that ${}^{\iota}XJv = {}^{\iota}({}^{\iota}v{}^{\iota}JX) = 0$ and ${}^{\iota}XJu = {}^{\iota}({}^{\iota}u{}^{\iota}JX) = 0$. Thus we get (a). And

$$[\phi^{1}(X)Z, u] = \sqrt{-1}(u(ZX)^{*} + J\overline{Z}\overline{X}^{t}u^{t}J - ZXu^{*} + J\overline{u}^{t}(ZX)^{t}J)$$

$$= \sqrt{-1}(uX^{*}Z + ZJ\overline{X}^{t}u^{t}J - ZXu^{*} - J\overline{u}^{t}X^{t}JZ),$$

because $J\bar{Z} = ZJ$ and $Z^* = Z$. On the other hand

$$[Z, \psi^{1}(X)u] = -\sqrt{-1}(uX^{*} + J\overline{u}^{t}XJ)Z + \sqrt{-1}Z(Xu^{*} + J\overline{X}^{t}uJ)$$
$$= -\sqrt{-1}(uX^{*}Z - ZJ\overline{X}^{t}uJ - ZXu^{*} + J\overline{u}^{t}XJZ).$$

Therefore we have (b) because ${}^{t}J = -J$. Consequently we have $\dim \mathfrak{g}^{1} \ge \dim M(1, s, C)$.

We put

$$W' = \{u \in \mathfrak{g}^{-1}; u_{kt} = 0 \text{ for } k > 2m - 2\}$$

 $W'' = \{u \in \mathfrak{q}^{-1}; u_{kt} = 0 \text{ for } k \leq 2m - 2\}.$

Then $\mathfrak{g}^{-1}=W'+W''$ (direct sum). We assert that $\mathfrak{r}^{-1}=W'$ or $\mathfrak{r}^{-1}=W''$. In fact, there exist $g_k(1\leq k\leq m)$ of \mathfrak{g}^0 and $f_{ik}(1\leq i,k\leq m-1)$ of GL(D) as in Proof of Lemma 7.8. Let $u\in W'(u\neq 0)$. Then W' is generated by the elements Adf_{ik} $adg_ku(1\leq i,k\leq m-1)$. Therefore if there exists $u(\neq 0)\in W'\cap \mathfrak{r}^{-1}$, then $W'\subset \mathfrak{r}^{-1}$. Furthermore if $u(\neq 0)\in W''\cap \mathfrak{r}^{-1}$, then $W''\subset \mathfrak{r}^{-1}$ because the space [W'',W''] is generated by the element [[I,u],u] in \mathfrak{r}^{-2} . On the other hand, there exists $u(\neq 0)$ in \mathfrak{r}^{-1} , since D is non-symmetric. If $g_m(u)=0$, then $u\in W'$ and hence $W'\subset \mathfrak{r}^{-1}$. And if $g_m(u)\neq 0$, then $g_m(u)\in \mathfrak{r}^{-1}\cap W''$ and hence $W''\subset \mathfrak{r}^{-1}$. Therefore the fact that $\mathfrak{g}^1\neq 0$ implies

our assertion. We now suppose that $\mathfrak{r}^{-1}=W''$. Then [[W'',W''], $\psi^1(\mathfrak{t}^1)]\subset [[\mathfrak{r}^{-1},\mathfrak{r}^{-1}],$ $\mathfrak{g}^1]=0$. Clearly from (7.3), we have [[W'',W''], $\psi^1(\mathfrak{t}^1)]\neq 0$. This is a contradiction. Thus we can conclude that $\mathfrak{r}^{-1}=W'$. Hence $\dim\mathfrak{g}^1=\dim\mathfrak{g}^{-1}-\dim\mathfrak{r}^{-1}=\dim W''$ and $\dim\mathfrak{g}^2=1$ by Lemma 6.2 and from the fact that $\mathfrak{r}_0^{-2}=[\mathfrak{r}^{-1},\mathfrak{r}^{-1}]$. It is not difficult to see that the graded subalgebra $[W'',W'']+W''+[W'',\mathfrak{g}^1]+\mathfrak{g}^1+\mathfrak{g}^2$ has the properties 1) and 2) in Theorem 2.1.

Lemma 7.11. If s=2, r(1)=2m-1 and r(2)=2m. Then $g^1=0$ and $g^2=0$.

Proof. Suppose that $\mathfrak{g}^1\neq 0$. We set $W_1=\{\begin{pmatrix} u & 0 \\ 0 & 0 \end{pmatrix}\in M(2m,2,\boldsymbol{C}); u\in M(2m-1,1,\boldsymbol{C})\}$ and $W_2=\{(0\ u)\in M(2m,2,\boldsymbol{C}); u\in M(2m,1,\boldsymbol{C})\}$. Then $W=W_1+W_2$ (direct sum) and $F(W_1,W_2)=0$. Then the domain D_1 is one considered in Lemma 7.10. Put $R_0=\{\begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix}\in H(m,\boldsymbol{K}); x\in H(m-1,\boldsymbol{K})\}$. Then from (2) of Lemma 7.10, the subspace R_0 of \mathfrak{g}^{-2} is invariant by $ad\ \rho_1^{(0)}(\mathfrak{g}^0)$. Therefore any element of $\alpha(\mathfrak{g}^0)$ is of the form:

(7.4)
$$\qquad \qquad \cdot \quad \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix} \quad \begin{array}{c} 2m-2 \\ 2 \end{array}$$

where α is the mapping of \mathfrak{g}^0 to $\mathfrak{gl}(m, K)$ as in § 6. We put

$$W' = \left\{ \begin{pmatrix} u \\ 0 \end{pmatrix} \in M(2m, 2, C); \ u \in M(2m - 2, 2, C) \right\}$$

$$W'' = \left\{ \begin{pmatrix} 0 & 0 \\ u_1 & u_2 \\ 0 & u_3 \end{pmatrix} \in M(2m, 2, C); \ u_1, u_2, u_3 \in C \right\}.$$

Then W = W' + W'' (direct sum) and by the arguments as in Proof of Lemma 7.10, we have $\mathfrak{r}^{-1} = W'$ or $\mathfrak{r}^{-1} = W''$. Suppose that $\mathfrak{r}^{-1} = W''$. Then we have (cf. Proof of Proposition 6.4)

$$\alpha(\mathfrak{r}_{\mathfrak{s}}^{0}) = \left\{ \begin{pmatrix} 0 & 0 \\ a & 0 \end{pmatrix} \in \mathfrak{gl}(m, \mathbf{K}); \ a \in M(2, 2m - 2, \mathbf{C}) \right\}.$$

This contradicts (7.4). Therefore $r^{-1} = W'$. And hence

$$\lceil \mathfrak{r}^{-1}, \mathfrak{r}^{-1} \rceil = R_0$$

$$g^2 = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & A \end{pmatrix} \in H(m, \mathbf{K}); A = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}, a \in \mathbf{R} \right\}$$

(cf. Proof of Proposition 6.4).

Thus by using (6.1), we can write $\alpha(E_s) = \begin{pmatrix} 0 & B \\ 0 & C \end{pmatrix}$. Let $X \in \mathfrak{g}^2$ $(\subset H(m, \mathbf{K}))$. Then $[E_s, X] = -(\alpha(E_s)^*X + X\alpha(E_s)) = 2X$. Hence we have $C = -e_2 + \begin{pmatrix} \sqrt{-1}a & b \\ -\overline{b} & -\sqrt{-1}a \end{pmatrix}$ $(a = \mathbf{R}, b \in C)$. We put $P = \begin{pmatrix} e_{2m-2} & -BC^{-1} \\ 0 & e_2 \end{pmatrix}$. Then $P\alpha(E_s)P^{-1} = \begin{pmatrix} 0 & 0 \\ 0 & C \end{pmatrix}$. It is easy to see that the matrix P belongs to $GL(m, \mathbf{K})$. Hence we can define the element \tilde{P} of GL(D) by

$$\widetilde{P}(X) = PXP^*$$
 for $X \in H(m, \mathbf{K})$
 $\widetilde{P}(u) = Pu$ for $u \in W$.

Since $\alpha(Ad\ \widetilde{P}E_s) = \begin{pmatrix} 0 & 0 \\ 0 & C \end{pmatrix}$, we may assume that $\alpha(E_s) = \begin{pmatrix} 0 & 0 \\ 0 & C \end{pmatrix}$. Then we get a = b = 0 as in Proof of Lemma 6.2. As a result $\alpha(E_s) = \begin{pmatrix} 0 & 0 \\ 0 & -e_2 \end{pmatrix}$ and hence

$$\mathfrak{z}^{-2} = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & X \end{pmatrix} \in H(m, \mathbf{K}); \ X = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}, \ x \in \mathbf{R} \right\}.$$

Let $u \in W''(\subset \mathfrak{g}^{-1})$. Then $[[I, u], u] \in \mathfrak{g}^{-2}$. Hence we have $u \in \mathfrak{g}^{-1}$. Thus we get $\mathfrak{g}^{-1} = W''$, because $W' \subset \mathfrak{r}^{-1}$. Let X_1 (resp. X_2) be the element of \mathfrak{g}^{-1} such that $u_1 = 1$, $u_2 = u_3 = 0$ (resp. $u_2 = 1$, $u_1 = u_3 = 0$). By using the fact that the associated symmetric domain is given by $\{(z, u_1, u_2, u_3) \in C^4; \text{ Im } z - \sum_{i=1}^3 |u_i|^2 > 0\}$, we can easily observe that there exist A_1, \dots, A_n of \mathfrak{g}^0 such that $Ad(\exp A_1 \circ \dots \circ \exp A_n) X_1 = X_2$. We set $\mathfrak{q}_i = \{X \in \mathfrak{r}^{-1}; F(X, X_i) = 0\}$ (i = 1, 2). We then have $Adf\mathfrak{q}_1 = \mathfrak{q}_2$, where $f = \exp A_1 \circ \dots \circ \exp A_n$. Clearly

(7.5)
$$\begin{cases} \mathfrak{q}_1 = \left\{ \begin{pmatrix} 0 & u \\ 0 & 0 \end{pmatrix} \in M(2m, 2, C); \ u \in M(2m - 2, 1, C) \right\} \\ \mathfrak{q}_2 = \left\{ \begin{pmatrix} u & 0 \\ 0 & 0 \end{pmatrix} \in M(2m, 2, C); \ u \in M(2m - 2, 1, C) \right\}. \end{cases}$$

Next we set $\mathfrak{p}_i = \{X \in \mathfrak{g}^{-1}; F(X, \mathfrak{q}_i) = 0\}$ (i = 1, 2). Then from (7.5) we have $\dim_C \mathfrak{p}_1 = 2m - 1$ and $\dim_C \mathfrak{p}_2 = 2m$. On the other hand $\mathfrak{p}_2 = 2m$ and hence $\dim_C \mathfrak{p}_1 = \dim_C \mathfrak{p}_2$. This contradiction arises from

the first assumption that $g^1 \neq 0$. Therefore $g^1 = 0$. Since D is non-degenerate we have $g^2 = 0$ by Corollary 1.4. q.e.d.

We are now in a position to prove the following

Theorem 7.12.¹²⁾ Let D be the Siegel domain of the second kind corresponding to the cone $H^+(m, \mathbf{K})$ $(m \ge 2)$ and the function r(t) on the interval [1, s]. And let S be the associated symmetric domain.

- (1) If r(s) < 2m-1 and n = [(r(s)+1)/2]. Then $\mathfrak{g}^1 = 0$, $\mathfrak{g}^2 \cong H(m-n, \mathbf{K})$ and S is of the first kind corresponding to the cone $H^+(m-n, \mathbf{K})$.
- (2) If r(s) = 2m 1. Let s' be the integer (s' < s) such that r(s') < 2m 1 and r(s' + 1) = 2m 1. (In the case r(1) = 2m 1, we put s' = 0.) Then $\mathfrak{g}^1 \cong M(1, s s', \mathbb{C})$, $\mathfrak{g}^2 \cong \mathbb{R}^1$ and $S = \{(z, w) \in \mathbb{C}^1 \times M(1, s s', \mathbb{C}); \text{ Im } z ww^* > 0\}$.
 - (3) If $r(s-1) = 2m(s \ge 2)$. Then $\mathfrak{g}^1 = 0$, $\mathfrak{g}^2 = 0$ and S = (0).
- (4) If r(s) = 2m and r(s-1) < 2m. (In the case s = 1, we put r(0) = 0.) Let n = [(r(s-1)+1)/2]. Then $g^1 \cong M(2m-2n, 1, C)$, $g^2 \cong H(m-n, K)$ and S is the domain corresponding to the cone $H^+(m-n, K)$ and the function r(t) such that s = 1, r(1) = 2(m-n).

Proof. (1) In this case, $g^1=0$ by Proposition 6.4. Other assertions can be proved similarly as Theorem 7.6.

(2) We set $W_1 = \{u \in W; u_{kt} = 0 \text{ for } t > s'\}$ and $W_2 = \{u \in W; u_{kt} = 0 \text{ for } t \le s'\}$. Then $W = W_1 + W_2$ (direct sum) and $F(W_1, W_2) = 0$. The domain D_1 (resp. D_2) is one considered in Lemma 7.9 (resp. in Lemma 7.10). Let $\mathfrak{F} = \sum_{k=-2}^2 \mathfrak{F}^k$ be the semi-simple graded subalgebra of $\mathfrak{g}(D_2)$ as in Theorem 2.1. By Proposition 7.3, Lemma 7.9 and Lemma 7.10, we have dim $\mathfrak{g}^1 = \dim \mathfrak{g}^{-1} - \dim \mathfrak{r}^{-1} \le \dim \mathfrak{F}^{-1}$. On the other hand by Proposition 7.4 and Lemma 7.10, the Lie algebra \mathfrak{F} is imbedded as a garded subalgebra of $\mathfrak{g}(D)$. Therefore we have $\mathfrak{g}^1 = \mathfrak{F}^1$. Since D is non-degenerate, we know that $\mathfrak{g}^2 = [\mathfrak{g}^1, \mathfrak{g}^1]$ from Corollary 1.4. As a result $\mathfrak{g}^2 = \mathfrak{F}^2$, because $\mathfrak{F}^2 = [\mathfrak{F}^1, \mathfrak{F}^1]$. Now it is clear that the subalgebra \mathfrak{F} of $\mathfrak{g}(D)$ has properties 1) and 2) in Theorem 2.1.

¹²⁾ Tsuji [10] calculated **g**¹ and **g**² in special cases of this theorem.

- (3) We set $W_1 = \{u \in W; u_{kt} = 0 \text{ for } t \geq s-1\}$ and $W_2 = \{u \in W; u_{kt} = 0 \text{ for } k < s-1\}$. Then $W = W_1 + W_2$ (direct sum) and $F(W_1, W_2) = 0$. Then the domain D_2 is one considered in Lemma 7.9. Therefore $W_2 \subset \mathfrak{r}^{-1}$ by Proposition 7.3. Since $[W, W] = [W_2, W_2] = \mathfrak{g}^{-2}$, we have $W = \mathfrak{r}^{-1}$ and $\mathfrak{g}^{-2} = \mathfrak{r}^{-2}$. Hence $\mathfrak{g}^1 = 0$ and $\mathfrak{g}^2 = 0$.
- (4) If n=m, then r(s-1)=2m-1. We set $W_1=\{u\in W;\ u_{kt}=0 \text{ for } t\geq s-1\}$ and $W_2=\{u\in W;\ u_{kt}=0 \text{ for } t< s-1\}$. Then the domain D_2 is one considered in Lemma 7.11. Therefore we have $\mathfrak{q}^1=0$ and $\mathfrak{q}^2=0$ by the same reason as in (3).

We now consider the case where n < m, i.e., r(s-1) < 2m-1. We set $W_1 = \{u \in W; u_{ks} = 0\}$ and $W_2 = \{u \in W; u_{kt} = 0 \text{ for } t < s\}$. Then $W = W_1 + W_2$ (direct sum) and $F(W_1, W_2) = 0$. We have $W_1 \subset \mathfrak{r}^{-1}$, because the domain D_1 is degenerate. Put $W' = \{u \in W; u_{kt} = 0 \text{ for } k > 2n\}$ and $W'' = \{u \in W; u_{kt} = 0 \text{ for } k \leq 2n\}$. Since $[W', W'] = [W_1, W_1]$, we have $W' \subset \mathfrak{r}^{-1}$. Therefore dim $\mathfrak{g}^1 \leq \dim W''$. On the other hand, the domain D_2 is symmetric. By using the well known expressions of $\mathfrak{g}(D_2)$, as in Proof of (3) of Theorem 7.8, we can show that there exists a semi-simple graded subalgebra $\mathfrak{g} = \sum_{k=-2}^2 \mathfrak{g}^{k}$ of $\mathfrak{g}(D_2)$ such that $\mathfrak{g}^{-1} \cong W''$, $[\mathfrak{g}^{-1}, \mathfrak{g}^{-1}] = \mathfrak{g}^{-2}$, $[\mathfrak{g}, [W_1, W_1]] = 0$ and the adjoint representation of \mathfrak{g}^0 on $\mathfrak{g}^{-2} + \mathfrak{g}^{-1}$ is faithful. Now our assertions can be verified similarly as (3) of Theorem 7.8. q.e.d.

Remark 4. Let D be a Siegel domain of the second kind and let $\mathfrak{g}(D) = \sum_{\lambda=-2}^2 \mathfrak{g}^{\lambda}$ be the graded Lie algebra of $\operatorname{Aut}(D)$. Take a point $v \in V$. Then the domain D is homogeneous if and only if $\mathfrak{g}^{-2} = [\mathfrak{g}^0, v]$. Therefore the homogeneity of D implies that \mathfrak{g}^0 is fairly large. By Theorem 4.1, \mathfrak{g}^1 is the first prolongation of $(\mathfrak{g}^{-2} + \mathfrak{g}^{-1}, \mathfrak{g}^0)$. Thus the following question arises: Is there an irreducible inhomogeneous Siegel domain with $\mathfrak{g}^1 \neq 0$? As an answer, we give the following example.

Let $R = H(m, \mathbb{C})$ $(m \ge 3)$, $V = H^+(m, \mathbb{C})$. And let $W = \mathbb{C}^1 \times \mathbb{C}^1 \times H(m, s, \mathbb{C})$ $(s \ge 1)$. Define a V-hermitian form F on W by

$$F(u, w) = \begin{pmatrix} u_1 \overline{w}_1 & 0 & 0 \\ 0 & u_2 \overline{w}_2 & 0 \\ 0 & 0 & 0 \end{pmatrix} + u_3 w_3^*,$$

where $u = (u_1, u_2, u_3)$, $w = (w_1, w_2, w_3)$.

It is not difficult to see that the domain D associated with V and F is irreducible and inhomogeneous. By the same methods as in Proof of Theorem 7.8, we get $\mathfrak{g}^1 \cong M(m-2, s, C)$ and $\mathfrak{g}^2 \cong H(m-2, C)$.

KYOTO UNIVERSITY

References

- [1] W. Kaup, Y. Matsushima and T. Ochiai, On the automorphisms and equivalences of generalized Siegel domains, Amer. J. Math., 92 (1970) 475-498.
- [2] S. Murakami, On automorphisms of Siegel domains, Lecture Notes in Math., 286, Springer, 1972.
- [3] K. Nakajima, Some studies on Siegel domains, J. Math. Soc. Japan, 27 (1975) 54-75.
- [4] K. Nakajima, On Tanaka's imbeddings of Siegel domains, J. Math. Kyoto Univ., 14 (1974) 533-548.
- [5] K. Nakajima, Symmetric spaces associated with Siegel domains, Proc. Japan Acad., 50 (1974) 188-191.
- [6] I. I. Pyatetski-Shapiro, Geometry of classical domains and theory of automorphic functions, Fizmatgiz, Moscow, 1961. French translation, Paris, 1966.
- [7] M. Sudo, On infinitesimal automorphisms of Siegel domains over classical cones, (to appear).
- [8] N. Tanaka, On the equivalence problems associated with a certain class of homogeneous spaces, J. Math. Soc. Japan, 17 (1965) 103-139.
- [9] N. Tanaka, On infinitesimal automorphisms of Siegel domains, J. Math. Soc. Japan, 22 (1970) 180-212.
- [10] T. Tsuji, Siegel domains over self-dual cones and their automorphisms, Nagoya Math. J., 55 (1974) 33-80.
- [11] J. Vey, Sur la division des domains de Siegel, Ann. Sci. École Norm. Sup., 4 Série, 3 (1971) 479-506.
- [12] È. B. Vinberg, The Morozov-Borel theorem for real Lie groups, Soviet Math. Dokl. 2 (1961) 1416-1419.