On the group $\operatorname{Ext}_{ABP}^{1,*}(BP^*(S^0), BP^*(S^0))$ and the Hurewicz Image of BP/S^0

By

Kaoru MORISUGI

(Communicated by Prof. Toda, Sept. 15, 1974)

§ 0. Introduction

In [11] Novikov showed that the Adams spectral sequence of MU-theory (complex cobordism theory) is an important method for studying the stable homotopy groups of spheres, and he also showed that for studying the p-primary component of the stable homotopy groups of spheres it is convenient to use BP-theory, which is the direct summand of $MUZ_{(p)}$ -theory, where $MUZ_{(p)}$ is the spectrum localized at a prime p of MU-spectrum.

However in general, it is difficult to calculate the E_2 terms of the Adams spectral sequence of MU- or BP-theory.

In [7] Buhstaber announced that there exists a tri-graded spectral sequence $\{E_r^{*,*,*}, d_r\}$ such that $E_1^{0,*,*} = Ext_{AMD}^{*,*}(MU^*(S^0), MU^*(S^0))$, and $E_{\infty}^{*,*,*} = E_{\infty}^{0,0,0} = Z$. Using this spectral sequence he gave an interpretation of $Ext_{AMD}^{1,*}(MU^*(S^0), MU^*(S^0))$ in terms of the integral homology group of MU and its Hurewicz image.

We shall show that there is a BP- analogy of Buhstaber's interpretation of $Ext^1_{ANV}(MU^*(S^0), MU^*(S^0))$. However our method is quite different from his.

Let X be a CW spectrum with basepoint and $BP^*(X)$ the reduced BP-cohomology of X. Let $A=BP^*(S^0)$, the reduced BP-cohomology of the sphere spectrum S^0 , and A^{BP} be the algebra of primary operations of BP-cohomology theory. Let $Z_{(p)}$ be the integers localized at p. Our main results are as follows;

Theorem 2-7. There exists a tri-graded multiplicative spectral sequence $\{E_r^{*,*,*}, d_r\}$ $(1 \le r \le \infty)$ such that

- i) $E_1^{u,s,t} = H_u(BP; Z) \bigotimes_{Z(p)} Ext_{ABP}^{s,t}(\Lambda, \Lambda)$,
- ii) $d_r: E_r^{u,s,t} \to E_r^{u-r,s+1,t+r}$ is an anti-derivation,

$$iii)$$
 $E_{\infty}^{u,s,t} = \begin{cases} \pi_u(BP) & (if \ s=t=0) \end{cases}$, $(otherwise)$,

- iv) the edge homomorphism $E_{\infty}^{u,0,0} \to E_1^{u,0,0}$ coincides with the Hurewicz homomorphism $h_u \colon \pi_u(BP) \to H_u(BP; \mathbb{Z})$,
 - v) A^{BP} acts canonically on $\{E_r, d_r\}$.

Corollary 3-3.

$$Ext_{ABP}^{1,t}(\Lambda, \Lambda) \cong N_t/Imh_t$$
, for $t>0$.

where h_t : $\pi_t(BP) \to H_t(BP; Z)$ is the Hurewicz homomorphism of BP and N_t is a certain subgroup of $H_t(BP; Z)$, which is algebraically determined by the actions of A^{BP} on $H_t(BP; Z)$.

We also obtained the geometrical interpretation of N_t .

Theorem 4-1. Let p be an odd prime. Then

$$N_t \simeq Im h_t'$$
, for $t > 0$,

where $h_t' : \pi_t(BP/S^0) \to H_t(BP/S^0; Z) = H_t(BP; Z)$ is the Hurewicz homomorphism of BP/S^0 .

Consider the cofiber sequence; $S^0 \xrightarrow{i} BP \xrightarrow{\pi} BP/S^0$, where i is the canonical inclusion map and π is the canonical projection map. Associated with this there exists a short exact sequence for *>1;

$$0 \longrightarrow \pi_*(BP) \xrightarrow{\Phi} \pi_*(BP/S^0) \xrightarrow{\hat{\partial}} \pi_{*-1}(S^0) \longrightarrow 0,$$

where $\Phi = \pi_*$. Let $\{v_i\}$ be a system of generators of $\pi_*(BP)$ with dim $v_i = 2(p^i - 1)$. Then we get the following;

Corollary 4-4. Let p be an odd prime. Let $v \in \pi_{nq}(BP)$, where

n>0 and q=2(p-1). Then $\Phi(v)$ is divisible by p in $\pi_{nq}(BP/S^0)$ if and only if v belongs to the subgroup, $p\pi_{nq}(BP)+Z_{(p)}(v_1^n)$. Moreover v_1^n is divisible by $p^{v_p(n)+1}$ and it is best possible, where $v_p(n)$ is the power of p in the expansion of n, i.e., $n=p^{v_p(n)}$ s and g.c.d. (p,s)=1.

The above result is originally obtained by L. Smith [14], in which he used K-theoretic characteristic numbers.

Remark. We can also calculate the spectral sequence of Theorem 2-7 up to dim 45 for p=3. Then the first obstruction for further calculations lies in dim 48, where I can not determine if $\alpha\varphi=0$ or not. For p>3, calculations could be done beyond this range by using informations on the behaviors of Massey product. These results will be published elsewhere.

This paper is organized as follows. In § 1 we list up the properties of the Brown-Peterson spectrum BP. In § 2 the spectral sequence which relates $Ext_{ABF}^{**}(BP^*(X), BP^*(S^0))$ to the integral homology of X will be constructed. In § 3 we shall obtain some corollaries and some differential formulas of the spectral sequence. In § 4 the Hurewicz image of BP/S^0 will be determined. In § 5 we shall prove the multiplicativity of the spectral sequence.

I would like to thank Professor H. Toda for many useful suggestions. I am also grateful to Professor M. Mimura for his continuous encouragement.

§ 1. Brown-Peterson spectrum.

Let p be a fixed prime and L the original Brown-Peterson spectrum at p, defined by Browm-Peterson [6]. Let \mathcal{R} be the set of sequences of integers (e_1, e_2, \cdots) such that $e_i \geq 0$ and $e_i = 0$ for almost all i. If $E = (e_1, e_2, \cdots)$, let $|E| = 2 \sum e_i(p^i - 1)$. If $F = (f_1, f_2, \cdots)$, let $E + F = (e_1 + f_1, e_2 + f_2, \cdots)$. Let $A_i = (0, \cdots, 0, 1, 0, \cdots)$, where 1 takes i-th place. We denote the sum of n-copies of E by nE. Let BP be the Brown-Peterson spectrum localized at p of E. Brown-Peterson spectrum localized at E of E has many nice properties as follows.

Theorem 1. (D. Quillen) [13][1]. BP is the CW ring spectrum, which has the following properties;

- i) $H_*(BP; Z) = Z_{(p)}[m_1, m_2, \cdots] degree m_i = 2(p^i 1),$
- ii) $\pi_*(BP) = Z_{(p)}[v_1, v_2, \cdots] degree v_i = 2(p^i 1),$

where $Z_{(p)}$ denotes the localization at p of integers Z.

iii) the Hurewicz homomorphism $h: \pi_*(BP) \to H_*(BP; Z)$ is monomorphic and we can choose the generators $\{v_i\}$ so that they satisfy the following inductive formula [4],

$$h(v_n) = pm_n - \sum_{1 \le i \le n-1} m_{n-i} (h(v_i))^{p^{n-i}},$$

- iv) the Steenrod algebra $A^{BP} = BP^*(BP)$ is a Hopf algebra over $\pi_*(BP)$. A^{BP} is isomorphic to $\pi_*(BP) \widehat{\otimes}_{Z_{(p)}} R$, where R is a free module over $Z_{(p)}$ with generators $\{\gamma_E\}$, $E \in \mathcal{R}$ and degree $\gamma_E = |E|$, and $\widehat{\otimes}_{Z_{(p)}}$ means the completed tensor product over $Z_{(p)}$. $\{\gamma_E\}$ are characterized by the following properties:
 - a) (Cartan formula) For $x, y \in H_*(BP; Z)$,

$$\gamma_E(xy) = \sum_{F+G=F} \gamma_F(x) \gamma_G(y)$$

where $F, G \in \mathcal{R}$,

b)
$$\gamma_E(m_n) = \begin{cases} m_{n-i} & \text{if } E = p^{n-i} \Delta_i, \\ O & \text{otherwise,} \end{cases}$$

c) (R. Zahler) [15] If |E| = |F|, $E, F \in \mathcal{R}$, then

$$\gamma_E(m^F) = \begin{cases} 1 & (E=F), \\ 0 & (E \neq F). \end{cases}$$

where m^F means $m_1^{f_1}m_2^{f_2}\cdots$.

§ 2. The spectral sequence.

Let X be a CW spectrum. In this section we shall establish a spectral sequence relating the integral homology of X with Ext_{AbF}^{*} ($BP^*(X), \Lambda$) under certain conditions of X.

To get the spectral sequence, we need some fundamental facts.

Let $X^{(r)}$ be the r-skeleton of X and $X^{(\infty)} = X$. Consider a chain complex $\{C_n, d_n\}$, where $C_n = H_n(X^{(n)}/X^{(n-1)}; Z)$ and d_n is the boundary homomorphism for a triple $(X^{(n)}, X^{(n-1)}, X^{(n-2)})$. As is well known, the homology group of $\{C_n, d_n\}$ is the ordinary homology group of $X, H_*(X; Z)$. The following Lemma is easily proved.

Lemma 2-1. If X is a (-1)-connected CW-spectrum such that $H_*(X; Z)$ is locally finitely generated and free, then there exist a (-1)-connected CW-spectrum K and a map $g: K \rightarrow X$ which satisfy the following conditions;

i) $g: K \rightarrow X$ is homotopy equivalent,

$$ii) \quad H_n(K^{(n)}/K^{(n-1)};Z) \stackrel{\pi_*}{\stackrel{\sim}{=}} H_n(K^{(n)};Z) \stackrel{i_*}{\stackrel{\sim}{=}} H_n(K;Z),$$

where $K^{(n)}$ is the n-skeleton of K and i and π are the canonical maps.

Lemma 2-2. Let K be the spectrum in Lemma 2-1. Then for any integers l, m, n such that $0 \le l \le m \le n \le \infty$, there exists a short exact sequence;

$$0 \to BP^*(K^{(n)}/K^{(n)}) \to BP^*(K^{(n)}/K^{(l)}) \to BP^*(K^{(n)}/K^{(l)}) \to 0.$$

Proof. By Lemma 2-1 it is clear that $H_*(K^{(n)}/K^{(m)}; Z)$, $H_*(K^{(n)}/K^{(l)}; Z)$ and $H_*(K^{(m)}/K^{(l)}; Z)$ are free and locally finitely generated. So each Atiyah-Hirzebruch spectral sequence of $K^{(n)}/K^{(m)}$, $K^{(n)}/K^{(l)}$ and $K^{(m)}/K^{(l)}$ collaspes. Therefore it is enough to show the existence of a short exact sequence;

$$0 \! \to \! H^*(K^{\scriptscriptstyle(n)}/K^{\scriptscriptstyle(n)};Z) \! \to \! H^*(K^{\scriptscriptstyle(n)}/K^{\scriptscriptstyle(l)};Z) \! \to \! H^*(K^{\scriptscriptstyle(n)}/K^{\scriptscriptstyle(l)};Z) \! \to \! 0.$$

However this is clear from the universal coefficient formula and the freeness of the above spectra, and from Lemma 2-1. q.e.d.

Thus Lemma 2-1 allows us to identify X with K which has the nice skeletal filtration. From now on we always identify X with K, so $X^{(r)}$ means $K^{(r)}$ under this identification.

Theorem 2-3. Let X be a (-1)-connected CW spectrum with

basepoint, such that $H_*(X; Z)$ is free and locally finitely generated. Then there exists a tri-graded spectral sequence $\{E_r(X), d_r(X)\}$ converging to $Ext_{Ab}^{**}(BP^*(X), \Lambda)$ such that

- i) $E_1^{u,s,t} \cong H_u(X;Z) \otimes_Z Ext_{ABP}^{s,t}(\Lambda,\Lambda)$.
- ii) $d_r: E_r^{u,s,t} \rightarrow E_r^{u-r,s+1,t+r}$
- iii) $E_{\infty}^{u,s,t} \cong \mathcal{G}(Ext_{ABP}^{s,t+u}(BP^*(X),\Lambda)) = D^{u,s,t}/D^{u-1,s,t+1}$, where $D^{u,s,t}$ = $Im(i^*)\#: Ext_{ABP}^{s,t+u}(BP^*(X^{(u)}),\Lambda) \to Ext_{ABP}^{s,t+u}(BP^*(X),\Lambda)$, and $i: X^{(u)} \to X$ is the cannical inclusion, $i^*: BP^*(X) \to BP^*(X^{(u)})$ is the induced homomorphism of i and $(i^*)\#: Ext_{ABP}^{s,t+u}(BP^*(X^{(u)}),\Lambda) \to Ext_{ABP}^{s,t+u}(BP^*(X),\Lambda)$ is the induced homomorphism of i^* by the functor $Ext_{ABP}^{s,t+u}(\Lambda)$,
- iv) the above spectral sequence is natural with respect to maps of X, i.e., for another spectrum X' satisfying the same conditions, and a map $f: X \rightarrow X'$, the induced homomorphism $f_{r^*}: E_r(X) \rightarrow E_r(X')$ are compatible with d_r , moreover f_{1^*} comes from the homolohy induced homomorphism of f as

$$f_* \otimes 1: H_*(X; Z) \otimes_{\mathbb{Z}} Ext_{ABP}^{*,*}(\Lambda, \Lambda) \rightarrow H_*(X'; Z) \otimes_{\mathbb{Z}} Ext_{ABP}^{*,*}(\Lambda, \Lambda).$$

Remark 1. From the (-1)-connectedness of X it is clear that $E_r^{u,s,t}(X) = 0$ if u < 0.

Remark 2. The theorem in the above cannot be applied for X = BP, since BP is a spectrum localized at p. However, for X_p which is the spectrum localized at p of X, defining the filtration $\{X_p^u\}$ so that $X_p^u = (X^{(u)})_p$, we obtain the same spectral sequence $\{E_r(X_p), d_r(X_p)\}$.

Theorem 2-4. Under the same conditions of X, let X_p be the spectrum localized at p of X, then there exists a spectral sequence $\{E_r(X_p), d_r(X_p)\}$ converging to $Ext_{AB}^{**}(BP^*(X_p), \Lambda)$ such that

- i) $E_1^{u,s,t}(X_p) \cong H_u(X_p; Z) \bigotimes_{Z(p)} Ext_{ABP}^{s,t}(\Lambda, \Lambda),$
- ii) $d_r(X_p): E_r^{u,s,t}(X_p) \rightarrow E_r^{u-r,s+1,t+r}(X_p),$
- iii) $E_{\infty}^{*,*,*}$ gives the quotient in the filtration of $Ext_{Ab}^{*,*}$ $(BP^*(X_p), \Lambda)$,

On the group
$$Ext_{ABP}^{1,*}(BP^*(S^0), BP^*(S^0))$$
 653

iv) the spectral sequence $\{E_r(X_p), d_r(X_p)\}$ is natural with respect to maps of X_p .

Remark 3. Let $f: X \to Y_p$ be a map, where X and Y satisfy the assumption of Theorem 2-3. Then even in this case the naturality holds, i.e., there are homomorphisms $f_r: E_r(X) \to E_r(Y_p)$, which are compatible with d_r .

Proof of Theorems 2-3 and 2-4. We use the method of [10]. Recall that the functor $Ext_{ABP}^{**}(\ ,A)$ is a half exact functor on the category of A^{BP} -modules and A^{BP} -homomorphisms. So if there is a short exact sequence of A^{BP} -modules; $0{\rightarrow}M{\rightarrow}N{\rightarrow}L{\rightarrow}0$, then there is a long exact sequence;

$$\cdots \to Ext_{ABP}^{s-1,t}(M,\Lambda) \xrightarrow{A} Ext_{ABP}^{s,t}(L,\Lambda) \to Ext_{ABP}^{s,t}(N,\Lambda) \to Ext_{ABP}^{s,t}(M,\Lambda) \to \cdots,$$

where Δ is the connecting homomorphism induced by the above short exact sequence.

Therefore we can define $\{E_r^{u,s,t}=Z_r^{u,s,t}/B_r^{u,s,t}, d_r\}$ by virtue of Lemma 2-2 as follows:

$$\begin{split} Z_{r}^{u,s,t} &= \operatorname{Im} \left\{ Ext_{ABP}^{s,t+u} (BP^* (X^{(u)}/X^{(u-r)}), \Lambda) \right. \\ &\qquad \qquad - \underbrace{j} Ext_{ABP}^{s,t+u} (BP^* (X^{(u)}/X^{(u-1)}), \Lambda) \right\}, \\ B_{r}^{u,s,t} &= \operatorname{Im} \left\{ Ext_{ABP}^{s-1,t+u} (BP^* (X^{(u+r-1)}/X^{(u)}), \Lambda) \right. \\ &\qquad \qquad - \underbrace{\lambda} Ext_{ABP}^{s,t+u} (BP^* (X^{(u)}/X^{(u-1)}), \Lambda) \right\}. \end{split}$$

We define $E_r^{u,s,t} = Z_r^{u,s,t}/B_r^{u,s,t}$. Then the differential $d_r : E_r^{u,s,t} \to E_r^{u-r,s+1,t+r}$ is induced by the composition $\Delta' \circ j^{-1}$, where

$$\Delta' : Ext_{ABP}^{s,t+u}(BP^*(X^{(u)}/X^{(u-r)}), \Lambda) \to Ext_{ABP}^{s+1,t+u}(BP^*(X^{(u-r)}/X^{(u-r-1)}), \Lambda)$$

is the connecting homomorphism induced by the short exact sequence;

$$0 \to BP^*(X^{(u)}/X^{(u-r)}) \to BP^*(X^{(u)}/X^{(u-r-1)}) \to BP^*(X^{(u-r)}/X^{(u-r-1)}) \to 0.$$

Also we define $E_{\infty}^{u,s,t} = Z_{\infty}^{u,s,t}/B_{\infty}^{u,s,t}$, where

$$Z_{\scriptscriptstyle\infty}^{\,\scriptscriptstyle u,\,s,\,t} = \operatorname{Im}\left\{ Ext_{\scriptscriptstyle ABP}^{\,s,\,t+\,u}(BP^{\,*}(X^{\scriptscriptstyle(u)})\,,\,\varLambda) \longrightarrow Ext_{\scriptscriptstyle ABP}^{\,s,\,t+\,u}(BP^{\,*}(X^{\scriptscriptstyle(u)}/X^{\scriptscriptstyle(u-1)})\,,\,\varLambda) \right\},$$

$$B^{u,s,t} = \operatorname{Im} \left\{ Ext_{ABF}^{s-1,t+u}(BP^*(X/X^{(u)}), \Lambda) \xrightarrow{\Delta} Ext_{ABF}^{s,t+u}(BP^*(X^{(u)}/X^{(u-1)}), \Lambda) \right\}.$$

Then we can easily prove that d_r is well-defined, $H(E_r^{u,s,t}) = E_{r+1}^{u,s,t}$ and $E_{\infty}^{u,s,t} \cong D^{u,s,t}/D^{u-1,s,t+1}$.

In order to show the convergence, we need

Lemma 2-5 (Novikov Th. 3-1 [11]). Let Y be a (k-1)-connected spectrum and $H_*(Y; Z)$ be free and locally finitely generated over Z or $Z_{(p)}$. Then

$$Ext_{ABP}^{s,t}(BP^*(Y), \Lambda) = 0$$
 for $t-2(p-1)s < k$.

Using this Lemma we can easily prove that $E_r^{u,s,t} \cong E_{\infty}^{u,s,t}$ for r sufficiently large. So the spectral sequence $\{E_r(X), d_r(X)\}$ converges to $Ext_{AbF}^{AbF}(BP^*(X), \Lambda)$.

Now we prove i). By definition $E_1^{u,s,t} = Ext_{ABP}^{s,t+u}(BP^*(X^{(u)}/X^{(u-1)})$, A). From the construction of the Atiyah-Hirzebruch spectral sequence [5], $BP^*(X^{(u)}/X^{(u-1)})$ is isomorphic to the cochain complex $C^u(X;BP^{*-u}(S^0))$. From Lemma 2-1, $C^u(X;BP^{*-u}(S^0))$ is isomorphic to $H^u(X;BP^{*-u}(S^0))$ which is the E_2 -terms of the Atiyah-Hirzebruch spectral sequence. By the universal coefficient theorem and by the assumption that $H_*(X;Z)$ is free and locally finitely generated, $H^u(X;BP^{*-u}(S^0))$ is isomorphic to $Hom_Z(H_u(X;Z),BP^{*-u}(S^0))$ as A^{BP} -module.

Notice that the all above isomorphisms are functorial.

Lemma 2-6. If
$$M$$
 is Z -free and of finite type, then
$$Ext_R^{s,\iota}(Hom_Z(M,\Lambda),\Lambda) \cong M \bigotimes_z Ext_R^{s,\iota}(\Lambda,\Lambda),$$

where Λ is an R-module and R is a graded commutative ring. Further this isomorphism is functorial, that is, for a morphism $f: M \to N$, the next diagram commutes;

$$Ext_{R}^{s,\iota}(Hom_{Z}(M,\Lambda),\Lambda) \cong M \otimes_{Z} Ext_{R}^{s,\iota}(\Lambda,\Lambda)$$

$$\downarrow (f^{*}) \# \qquad \qquad \downarrow f \otimes 1$$

$$Ext_{R}^{s,\iota}(Hom_{Z}(N,\Lambda),\Lambda) \cong N \otimes_{Z} Ext_{R}(\Lambda,\Lambda),$$

where N is Z-free and of finite type.

Proof. Let $\{C_s, d_s\}$ be an R-free resolution of Λ , then $\{Hom_Z(M,$

 C_s), d_{s*} is an R-free resolution of $Hom_Z(M, \Lambda)$, because M is Z-free and of finite type. We define homomorphisms φ_s : $M \otimes_Z Hom_R(C_s, \Lambda) \to Hom_R(Hom_Z(M, C_s), \Lambda)$ by $\varphi_s(a \otimes f)(g) = f(g(a))$, where $a \in M$, $f \in Hom_R(C_s, \Lambda)$ and $g \in Hom_Z(M, C_s)$. Then it is obvious that φ_s is an R-isomorphism, and that the following diagram commutes;

$$Hom_R(Hom_Z(M, C_s), \Lambda) \stackrel{\varphi_s}{\longleftarrow} M \bigotimes_Z Hom_R(C_s, \Lambda)$$

$$\downarrow (d_{s^*})^\# \qquad \qquad \downarrow 1 \bigotimes_Z \#$$

$$Hom_R(Hom_Z(M, C_{s+1}), \Lambda) \stackrel{\varphi_{s+1}}{\longleftarrow} M \bigotimes_Z \#om_R(C_{s+1}, \Lambda).$$

So taking the homology, we obtain Lemma 2-5. The functoriality is clear from the construction of $\{\varphi_s\}$.

Using Lemma 2-6, we get a functorial isomorphism;

$$Ext_{ABP}^{s,t+u}(BP^*(X^{(u)}/X^{(u-1)}),\Lambda) \cong Ext_{ABP}^{s,t+u}(Hom_Z(H_u(X;Z),BP^{*-u}(S^0)),\Lambda)$$

$$\cong H_u(X;Z) \otimes_Z Ext_{ABP}^{s,t+u}(BP^{*-u}(S^0),\Lambda) \cong H_u(X;Z) \otimes_Z Ext_{ABP}^{s,t}(\Lambda,\Lambda).$$

So i) was proved. iv) follows from the facts that the skeleton filtration $\{X^{(r)}\}$ has the functorial properties and that the above construction of the spectral sequence is functorial. Thus we complete a proof of Theorem 2-3.

Theorem 2-4 immediately follows by the following facts;

- 1) The chain complex $\{H_u(X_p^u/X_p^{u-1}; Z), \partial_u\}$ gives the homology group $H_*(X_p; Z)$ of X_p .
- 2) The filtration $\{X_p^r\}$ satisfies Lemma 2-2, i.e., there is a short exact sequence; $0 \rightarrow BP^*(X_p^n/X_p^m) \rightarrow BP^*(X_p^n/X_p^l) \rightarrow BP^*(X_p^m/X_p^l) \rightarrow 0$.
- 3) Let $f: X_p \to X_p'$, then there exists a map $g: X_p \to X_p'$ such that g is homotopic to f and $g(X_p^r) \subset X_p'^r$.

Applying Theorem 2-4 for X=BP, we obtain the following;

Theorem 2-7. There exists a tri-graded spectral sequence $\{E_r^{*,*,*}, d_r\}$ such that

- i) $E_1^{u,s,t} = H_u(BP; Z) \bigotimes_{Z(p)} Ext_{ABP}^{s,t}(\Lambda, \Lambda),$
- ii) $d_r: E_r^{u,s,t} \rightarrow E_r^{u-r,s+1,t+r}$

iii)
$$E_{\infty}^{u,s,t} = \begin{cases} \pi_u(BP) & \text{if } s=t=0, \\ 0 & \text{otherwise,} \end{cases}$$

- iv) the edge homomorphism $E^{u,0,0} = \pi_u(BP) \to E_1^{u,0,0} = H_u(BP; Z)$ coincides with the Hurewicz homomorphism $h: \pi_u(BP) \to H_u(BP; Z)$,
- v) there exist pairings \prod_r : $E_r^{u,s,t} \otimes E_r^{u',s',t'} \to E_r^{u+u',s+s',t+t'}$ such that \prod_{r+1} is induced by \prod_r , moreover \prod_1 and \prod_{∞} are the standard product induced from the ring spectrum structure of BP. d_r is an anti-derivation with respect to this product \prod_r , that is, for $a \in E_r^{u,s,t}$, $b \in E_r^{u',s',t'}$,

$$d_r(ab) = d_r(a)b + (-1)^{u+t-s}a \cdot d_r(b),$$

vi) A^{BP} acts naturally on this spectral sequence, i.e., for any $\gamma \in A^{BP}$, there are homomorphisms $\gamma_{r*} \colon E_r^{u,s,t} \to E_r^{u-\dim_r,s,t}$, which are compatible with d_r . Moreover γ_{1*} is derived from the homology induced homomorphism $\gamma_* \otimes 1 \colon H_*(BP;Z) \otimes_{Z_{(p)}} Ext_{ABP}^{*}(\Lambda,\Lambda) \to H_*(BP;Z) \otimes_{Z_{(p)}} Ext_{ABP}^{*}(\Lambda,\Lambda)$.

Proof. i), ii) and vi) are already proved in Theorem 2-4. The proof of v) is very long, so we postpone it in the section 5. Proof of iii). By Theorem 2-4, $E_{\infty}^{u,s,t}$ is a quotient in the filtration of $Ext_{ABP}^{*,t+u}(BP^*(BP), \Lambda)$. Since $BP^*(BP)$ is exactly A^{BP} , it is clear that $E_{\infty}^{u,s,t}=0$ unless s=0. Meanwhile, by definition $E_{\infty}^{u,0,t}$ is a quotient of a certain subgroup of $E_1^{u,0,t} = H_u(BP; Z) \bigotimes_{Z_{(p)}} Ext_{ABP}^{0,t}(\Lambda, \Lambda)$. It is well known that $Ext_{ABP}^{0,t}(\Lambda, \Lambda) = 0$ unless t = 0. So $E_{\infty}^{u,s,t} = 0$ unless s=t=0. In the case s=t=0, we assert that $E_{\infty}^{u,0,0}=D^{u,0,0}=$ $\pi_u(BP)$. The first equality follows from the facts that $E_{\infty}^{u,0,0} = D^{u,0,0}$ $D^{u-1,0,1}, D^{-1,0,u+1}=0$ and $E_{\infty}^{r,0,u-r}=0$ $(u \neq r)$. From the properties of the filtration of BP and from Lemma 2-5 we see that the homomorphism: $Ext_{ABP}^{0,u}(BP^*(BP^u), \Lambda) \rightarrow Ext_{ABP}^{0,u}(BP^*(BP), \Lambda)$ is an isomorphism, where BP^u is the spectrum localized at p of $L^{(u)}$, the u-skeleton of the original Brown-Peterson spectrum L. Then clearly the second equality holds. q.e.d. Proof of iv). Let $\alpha \in \pi_u(BP)$ and $f: S^u \to BP$ be a representative of α . Then by naturality of the spectral sequence there exists a commutative diagram;

On the group
$$Ext_{ABP}^{1,*}(BP^*(S^0), BP^*(S^0))$$
 657

It is clear that $D^{u,0,0}(S^u) = Ext_{ABP}^{u,u}(BP^*(S^u), \Lambda) = \pi_u(s^u)$ and $D^{u,0,0}(S^u) \cong E_{\infty}^{u,0,0}(S^u) \cong E_1^{u,0,0}(S^u)$. Then the commutativity of the diagram implies iv).

§ 3. Corollaries and some differential formulas.

In this section we shall obtain some results and some differential formulas of the spectral sequence in Theorem 2-7.

Lemma 3-1. In the spectral sequence $\{E_r^{*,*,*}(BP), d_r^{*,*,*}\}$, for $1 \le r \le t$ there exists a canonical monomorphism: $E_r^{u,1,t} \subseteq E_1^{u,1,t}$. Especially $E_r^{0,1,t} = E_1^{0,1,t}$ if $1 \le r \le t$.

 $\begin{array}{lll} Proof. & \text{By definition, } E_r^{u,1,t} = \ker d_{r-1}^{u,1,t} / \text{Im } d_{r-1}^{u+r-1,0,t-r+1}, \text{ where } d_{r-1}^{u,1,t} \colon E_{r-1}^{u,1,t} \to E_{r-1}^{u-r+1,2,t+r-1} & \text{and } d_{r-1}^{u+r-1,0,t-r+1} \colon E_{r-1}^{u+r-1,0,t-r+1} \to E_{r-1}^{u,1,t} & \text{are differentials.} & \text{Recall that } E_{r-1}^{u+r-1,0,t-r+1} & \text{is a quotient in the filtration of } E_1^{u+r-1,0,t-r+1} = H_{u+r-1}(BP;Z) \bigotimes_{Z_{(p)}} Ext_{AB}^{0,t-r+1}(A,A). & \text{Since } Ext_{AB}^{0,*}(A,A) = 0 & \text{unless } *=0, & \text{for } 1 \leq r \leq t, & E_r^{u,1,t} = \ker d_{r-1}^{u,1,t} \subset E_1^{u,1,t}. & \text{By induction we easily obtain that } E_r^{u,1,t} \subset E_1^{u,1,t}. & \text{Especially, if } u=0 & \text{then from } \text{Remark 1 in § 2 we see that } \ker d_{r-1}^{0,1,t} = E_{r-1}^{0,1,t}. & \text{Therefore we obtain } \text{that } E_r^{0,1,t} = E_1^{0,1,t}. & \text{q.e.d.} \end{array}$

Lemma 3-2. Let $z \in E_r^{n,0,0}$. Then $d_r(z) = 0$ in $E_r^{n-r,1,r}$ if and only if $d_r(\gamma_E(z)) = 0$ in $E_r^{0,1,r}$ for any $E \in \mathcal{R}$ with |E| = n - r.

Proof. If $d_r(z)=0$ in $E_r^{n-r,1,r}$, then by naturality of the spectral sequence we get that $d_r(\gamma_E(z))=\gamma_E d_r(z)=0$ in $E_r^{0,1,r}$ for any $E\in \mathcal{R}$. Conversely if $d_r(\gamma_E(z))=0$ in $E_r^{0,1,r}$ for any $E\in \mathcal{R}$ with |E|=n-r, by Lemma 3-1 we can set

$$d_r(z) = \sum_{|E|=n-r} m^E \bigotimes \lambda_E,$$

where $m^{\mathcal{E}} \otimes \lambda_{\mathcal{E}} \in E_1^{n-r,1,r} = H_{n-r}(BP; Z) \otimes_{Z_{(p)}} Ext_{A^{BP}}^{1,r}(\Lambda, \Lambda)$. Applying $\gamma_F \in A^{BP}$ with |F| = n - r, and using Theorem 1-iv)-c), we obtain

$$\lambda_F = \gamma_F \left(\sum_{|E| = n-r} m^E \bigotimes \lambda_E \right) = \gamma_F d_r(z) = d_r(\gamma_F(z)) = 0.$$

Therefore $d_r(z) = 0$.

q.e.d.

Let $N_k = \{x \in H_k(BP; Z) | \gamma_E(x) \in \text{Im } h \text{ for any } E \in \mathcal{R} \text{ such that } |E| \neq 0\}$, where $h \colon \pi_*(BP) \to H_*(BP; Z)$ is the Hurewicz homomorphism of BP. Then, we obtain the following result which is a BP-analogy of Buhstaber's result [7].

Corollary 3-3. $Ext_{ABP}^{1,t}(\Lambda, \Lambda) \cong N_t/\text{Im } h_t$.

Proof. By Lemma 3-1 we know that $Ext_{ABP}^{1,t}(\Lambda, \Lambda) = E_1^{0,1,t} = E_t^{0,1,t}$. Consider the sequence: $E_t^{t,0,0} \rightarrow E_t^{0,1,t} \rightarrow E_t^{-t,2,2t}$, where $H(E_t^{0,1,t}) = E_{t+1}^{0,1,t}$. Since $E_{t+1}^{0,1,t} = E_{\infty}^{0,1,t} = 0$, and since $E_t^{-t,2,2t} = 0$, we obtain $E_t^{0,1,t} = E_t^{t,0,0}/\ker d_t^{t,0,0}$. But $\ker d_t^{t,0,0}$ is clearly $E_{\infty}^{t,0,0} = \operatorname{Im} h_t$. On the other hand, by Lemma 3-2 and by induction, it is easily proved that $x \in H_t(BP; Z)$ belongs to $E_t^{t,0,0}$ if and only if $x \in N_t$. Therefore we obtain

$$Ext_{ABP}^{1,t}(\Lambda,\Lambda) \cong E_t^{0,1,t} \cong E_t^{t,0,0}/\ker d_t^{t,0,0} \cong N_t/\operatorname{Im} h_t.$$
 q.e.d.

Proposition 3-4. Let $x \in E_r^{u,0,0}$. Then,

$$d_r(x) = \sum_{\substack{|E| = u - r \\ E \in \mathcal{A}}} m^E \otimes d_r(\gamma_E(x)),$$

where $d_r(\gamma_E(x)) \in E_r^{0,1,r} = Ext_{ABP}^{1,r}(\Lambda, \Lambda)$.

Proof. This is trivial from Lemma 3-2. q.e.d.

Theorem 3-5. Let p be an odd prime. Then,

$$N_k/\mathrm{Im}\ h_k \cong egin{cases} Z_{p^{
u}_p(t)+1} \ with \ a \ generator \ p^{t-
u}_p(t)-1} m_1^t, \ if \ k=tq, \ 0 \ otherwise, \end{cases}$$

where q = 2(p-1) and $v_p(t)$ is an integer defined by the requirement that $t = p^{v_p(t)}$ s and g.c.d. (p, s) = 1.

Theorem 3-5 is a *BP*-analogy of Panov's result [12]. (See also [9]). In order to show Theorem 3-5, first we define an order on exponent sequences \mathcal{R} as follows. For $E = (e_1, e_2, \cdots)$ and $F = (f_1, f_2, \cdots)$,

define E < F if |E| < |F| or if |E| = |F| and there is an i such that $e_i < f_i$ and $e_j = f_j$ for any j > i. It is clear that < is a linear ordering. Let $x \in \pi_*(BP)$. We define that type (x) = E, if $\gamma_E(x) \not\equiv 0 \pmod{p\pi_*(BP)}$ and $\gamma_E(x) \equiv 0 \pmod{p\pi_*(BP)}$ for any F > E.

Lemma 3-6. Let $x, y \in \pi_*(BP)$. If type(x) = E and type(y) = F, then, type(xy) = E + F.

Proof. It is clear that if $E_1 < E$ and $E_1 < F$, then $E_1 + F_1 < E + F$. So by the Cartan formula we have

$$\gamma_G(xy) = \sum_{E_1 + F_1 = G} \gamma_{E_1}(x) \gamma_{E_1}(y) \equiv \sum_{E_1 + F_2 = G}^{F_1 \leq F} \gamma_{E_1}(x) \gamma_{E_1}(y) \pmod{p\pi_*(BP)}.$$

It is clear that if G>E+F, then $\gamma_G(xy)\equiv 0\pmod{p\pi_*(BP)}$ and that $\gamma_{E+F}(xy)\equiv \gamma_E(x)\gamma_F(y)\equiv 0\pmod{p\pi_*(BP)}$. So we obtain that type (xy)=E+F.

Lemma 3-7. Let $\{v_i\}$ be the ring generators of $\pi_*(BP)$. Then,

$$type(v_n) = egin{cases} arDelta_0 & if & n=1, \ arphiarDelta_{n-1} & if & n \geq 2, \end{cases}$$

where Δ_0 is the zero sequence $(0, 0, 0, \cdots)$.

Proof. Recall the formula (Theorem 1);

$$h(v_n) = pm_n - \sum_{i=1}^{n-1} m_{n-i} (h(v_i))^{p^{n-i}}.$$

It is clear that $\operatorname{type}(v_1) = \Delta_0$. From Theorem 1 we have that $\gamma_p \Delta_{n-1}(v_n) = pm_1 = v_1 \equiv 0 \pmod{p\pi_*(BP)}$. On the other hand, $p\Delta_{n-1}$ is the largest sequence in dimension $2(p^n - p)$, so, if $E > p\Delta_{n-1}$ then $|E| \geq 2(p^n - p) + 2(p-1) = \dim v_n$. Therefore by iv)-c) in Theorem 1, it is easily proved that if $E > p\Delta_{n-1}$, then $\gamma_E(v_n) \equiv 0 \pmod{p\pi_*(BP)}$. q.e.d.

Proposition 3-8. If $type(x) = \Delta_0$, then $x \equiv \lambda v_1^t \pmod{p\pi_*(BP)}$, where $x \in \pi_{tq}(BP)$ and $\lambda \in Z_{(p)}$.

Proof. Let $x = \sum_{i=1}^k \lambda_i w_i$, where $\lambda_i \in Z_{(p)}$ and w_i are the monomials

of v_i which form an additive basis of $\pi_{\iota q}(BP)$ over $Z_{(p)}$. Then by Lemma 3-6 and 3-7, we can order $\{w_i\}$ by its type. Assume that $\operatorname{type}(w_i) < \operatorname{type}(w_{i+1})$. Then, clearly $w_1 = v_1^t$. Let $\operatorname{type}(w_i) = E_i$, then $\lambda_j \gamma_{E_k}(w_k) \equiv \gamma_{E_k}(x) \equiv 0 \pmod{p\pi_*(BP)}$. Since $\gamma_{E_k}(w_k) \equiv 0 \pmod{p\pi_*(BP)}$, we get that $\lambda_k \equiv 0 \pmod{pZ_{(p)}}$. By induction we see that $\lambda_i \equiv 0 \pmod{pZ_{(p)}}$ if $i \geq 2$. Therefore $x \equiv \lambda v_1^t \pmod{p\pi_*(BP)}$. q.e.d.

Proof of Theorem 3-5. It is clear that the group $N_{tq}/\text{Im }h_{tq}$ is a finite abelian group. Let $z \in N_{tq}$ such that $pz \in \text{Im }h_{tq}$, then Proposition 3-8 implies $pz \equiv \lambda v_1^t \pmod{p\pi_*(BP)}$, which implies that the group $N_{tq}/\text{Im }h_{tq}$ consists of only one generator. So, in order to show Theorem 3-5 it is sufficient to show that $p^{t-v_p(t)-1}m_1^t \in N_{tq}$ and $P^{t-v_p(t)-2}m_1^t \notin N_{tq}$. By iv)-a) and b) in Theorem 1, if $E \neq i \Delta_1$ then $\gamma_E(m_1^t) = 0$ and $\gamma_t \Delta_1(m_1^t) = {t \choose i} m_1^{t-i}$ so $\gamma_t \Delta_1(p^k m_1^t) = {t \choose i} p^k m_1^{t-i}$. But $\max_{1 \leq i < t} \{t-i-\nu_p(t)-1\}$ and hence $p^k m_1^t \in N_{tq}$ if and only if $k \geq t-\nu_p(t)-1$. This completes the proof of Theorem 3-5. q.e.d.

From Corollary 3-3 and Theorem 3-5 we see that $d_{tq}(p^{t-\nu_p(t)-1}m_1^t)$ is well defined and it is a generator of $Ext_{AB}^{l_1tq}(\Lambda, \Lambda)$. Let $\alpha_t^{(\nu_p(t))} = d_{tq}(p^{t-\nu_p(t)-1}m_1^t)$. Then we obtain an explicit differential formula on $E_r^{u,0,0}$. In order to describe this formula we define a ring homomorphism $\rho: H_*(BP; Z) \to Z_{(p)}$ by

$$\rho(m_n) = p^{(p^n-1/p-1)-n}.$$

Lemma 3-9. If $x \in N_{tq}$, then

$$x \equiv \rho(x) m_1^t \pmod{\operatorname{Im} h_{tq}}.$$

Proof. By Theorem 3-5, $x = \lambda p^{t-v_p(t)-1}m_1^t + v$, where $\lambda \in Z_{(p)}$ and $v \in \text{Im } h_{tq}$. Recall the formula iii) of Theorem 1. We assert that $\rho(v_1) = p$, and $\rho(v_i) = 0$ if $i \ge 2$. It is clear that $\rho(v_1) = \rho(pm_1) = p$. By induction, using the formula iii) in Theorem 1, we get

$$\rho(v_n) = p\rho(m_n) - \sum_{i=1}^{n-1} \rho(m_{n-i}) (\rho(v_i))^{p^{n-i}} = p\rho(m_n) - \rho(m_{n-1}) \rho(v_i)^{p^{n-i}}$$

On the group
$$Ext_{ABP}^{1,*}(BP^*(S^0), BP^*(S^0))$$
 661
= $P^{(p^n-1/p-1)-n+1} - p^{p^{n-1}}p^{(p^{n-1}-1/p-1)-n+1} = 0$

So $\rho(x) = \lambda p^{t-\nu_p(t)-1} + \rho(v)$. Therefore $\rho(x) \equiv \lambda p^{t-\nu_p(t)-1} \pmod{p^t Z_{(p)}}$. This implies that $x \equiv \rho(x) m_1^t \pmod{\operatorname{Im} h_{tq}}$. q.e.d.

As an immediate corollary we obtain the explicit differential formula on $E_r^{u,0,0}$.

Proposition 3-10. If $x \in E_r^{u,0,0}$, then

$$d_r(x) = \sum_{\substack{|E|=u-r\\E \in \Re}} \frac{\rho(\gamma_E(x))}{p^{r-\nu_p(r)-1}} m^E \otimes \alpha_r^{(v_p(r))}.$$

Using the above Proposition, we obtain

Proposition 3-11.

 $E_r^{u,0,0} = \{x \in H_u(BP; Z) \mid \text{ for any } E \in \mathcal{R} \text{ such that } |E| > u - r,$ $\gamma_E(x) \in \text{Im } h\}.$

§ 4. Hurewicz homomorphism of BP/S^0

In this section we shall determine the Hurewicz image of BP/S^0 . Let $h': \pi_*(BP/S^0) \to H_*(BP/S^0; Z)$ be the Hurewicz homomorphism of BP/S^0 . It is clear that if n>0, $H_n(BP/S^0; Z) \cong H_n(BP; Z)$. Therefore we identify $H_n(BP/S^0; Z)$ with $H_n(BP; Z)$ if n>0. Then,

Theorem 4-1. If p is an odd prime, and n>0,

Im
$$h_n' \cong N_n \subset H_n(BP; Z)$$
.

Proof. By the cellular approximation theorem and the choice of filtration $\{BP^r\}$, we see that there is a commutative diagram;

$$\pi_{n}(BP/S^{0}) \xrightarrow{h'} H_{n}(BP/S^{0}; Z)$$

$$\uparrow \cong \qquad \uparrow \cong$$

$$\pi_{n}(BP^{n}/S^{0}) \xrightarrow{\longrightarrow} H_{n}(BP^{n}/S^{0}; Z)$$

$$\downarrow \qquad \qquad \downarrow \cong$$

$$\pi_{n}(BP^{n}/BP^{0}) \xrightarrow{\longrightarrow} H_{n}(BP^{n}/BP^{0}; Z)$$

$$\downarrow j_{*} \qquad \qquad \downarrow \cong$$

$$\pi_{n}(BP^{n}/BP^{n-1}) \xrightarrow{\cong} H_{n}(BP^{n}/BP^{n-1}; Z) \cong H_{n}(BP; Z),$$

where $j \colon BP^n/BP^0 \to BP^n/BP^{n-1}$ is the canonical map. So, in order to determine the image of h', it is sufficient to determine the image of $j_* \colon \pi_n(BP^n/BP^0) \to \pi_n(BP^n/BP^{n-1})$. There are two Adams-Novikov spectral sequences, $\{E_r^{*,*}(BP^n/BP^0)\}$ and $\{E_r^{*,*}(BP^n/BP^{n-1})\}$, which converge to $\pi_*(BP^n/BP^0)$ and $\pi_*(BP^n/BP^{n-1})$, respectively. By naturality of the Adams-Novikov spectral sequence, there exist homomorphisms $j_*^r \colon E_r^{*,*}(BP^n/BP^0) \to E_r^{*,*}(BP^n/BP^{n-1})$ for $2 \le r \le \infty$ and $j_*(F_t^i(BP^n/BP^0)) \subset F_t^i(BP^n/BP^{n-1})$, where $F_t^i(X)$ means the i-th filtration of $\pi_t(X)$. It is obvious that $F_n^i(BP^n/BP^{n-1}) = 0$ for $i \ne 0$ and $E_2^{0,n}(BP^n/BP^{n-1}) = E_\infty^{0,n}(BP^{n-1}) = F_n^0(BP^n/BP^{n-1}) = \pi_n(BP^n/BP^{n-1})$. So we obtain that $\text{Im } j_* = \text{Im } j_*^\infty$. We assert that $\text{Im } j_*^\infty = \text{Im } j_*^2$. In order to prove this assertion, we need the following lemma.

Lemma 4-2. The following diagram commutes;

$$0 \longrightarrow \pi_{n}(BP^{n}) \longrightarrow \pi_{n}(BP^{n}/BP^{0})$$

$$\downarrow d_{Bp} \qquad \qquad \qquad \qquad \downarrow d_{Bp}$$

$$0 \longrightarrow Hom_{ABP}^{n}(BP^{*}(BP^{n}), \Lambda) \longrightarrow Hom_{ABP}^{n}(BP^{*}(BP^{n}/BP^{0}), \Lambda)$$

$$\stackrel{\partial}{\longrightarrow} \pi_{n-1}(BP^{0}) \longrightarrow 0$$

$$\downarrow e_{Bp}$$

$$\stackrel{\Delta}{\longrightarrow} Ext_{ABP}^{1,n}(\Lambda, \Lambda) \longrightarrow 0,$$

where d_{BP} is the Adams d-invariant, e_{BP} is the Adams e-invariant in BP-theory [3], and the lower sequence is the short exact sequence induced by the short exact sequence;

$$0 \to BP^*(BP^n/BP^0) \to BP^*(BP^n) \to BP^*(BP^0) = \Lambda \to 0.$$

Proof. The diagram (I) is clearly commutative. Commutativity of the diagram (II) is shown as follows. Let $\alpha \in \pi_n(BP^n/BP^0)$, $f: S^n \to BP^n/BP^0$ be a representative of α , $g: S^{n-1} \to BP^0$ be a representative of $\partial \alpha$, and C_f be the mapping cone of f, then it is easily proved that there exists a map $h: C_g \to BP^n$ such that the following diagram commutes:

$$S^{n-1} \xrightarrow{g} BP^{0} \longrightarrow C_{g} \longrightarrow S^{n} \longrightarrow \Sigma BP^{0}$$

$$\downarrow \exists h \qquad \downarrow f \qquad \parallel$$

$$BP^{0} \longrightarrow BP^{n} \longrightarrow BP^{n}/BP^{0} \longrightarrow \Sigma BP^{0}.$$

663

Applying the functor $BP^*(\)$ to the above diagram, we obtain the following commutative diagram:

$$0 \longrightarrow BP^*(S^n) \longrightarrow BP^*(C_g) \longrightarrow BP^*(BP^0) \longrightarrow 0$$

$$\uparrow f^* \qquad \uparrow h^* \qquad \qquad \parallel$$

$$0 \longrightarrow BP^*(BP^n/BP^0) \longrightarrow BP^*(BP^n) \longrightarrow BP^*(BP^0) \longrightarrow 0.$$

Applying the functor $Ext_{ABP}^{*,n}(\ , \Lambda)$, we obtain the following commutative diagram;

$$\cdots \to Hom_{ABP}^{n}(BP^{*}(S^{n}), \Lambda) \xrightarrow{\Delta'} Ext_{ABP}^{1,n}(BP^{*}(BP^{0}), \Lambda) \to \cdots$$

$$\downarrow (f^{*})\#$$

$$\cdots \to Hom_{ABP}^{n}(BP^{*}(BP^{n}/BP^{0}), \Lambda) \xrightarrow{\Delta} Ext_{ABP}^{1,n}(BP^{*}(BP^{0}), \Lambda) \to \cdots$$

From the definition of d_{BP} and e_{BP} it is clear that $(f^*)\#(1) = d_{BP}(\alpha)$, and $\Delta'(1) = e_{BP}(g) = e_{BP}(\partial \alpha)$, where $1 \in Hom^n_{A^{BP}}(BP^*(S^n), \Lambda) = Hom^n_{A^{BP}}(\Lambda, \Lambda)$. Therefore we obtain that $\Delta d_{BP}(\alpha) = e_{BP}(\partial \alpha)$. q.e.d.

Lemma 4-3. Let p be an odd prime. Then, d_{BP} ; $\pi_n(BP^n/BP^0) \to Hom_{ABP}^n(BP^n/BP^0)$, Λ) is an epimorphism.

Proof. It is a famous theorem of Novikov [11] that $e_{BP}: \pi_{n-1}(BP^0)$ = ${}_{p}\pi_{n-1}(S^0) \to Ext^{1,n}_{ABP}(BP^*(BP^0), \Lambda) = Ext^{1,n}_{ABP}(\Lambda, \Lambda)$ is an epimorphism if p is odd. So, in order to prove Lemma 4-3 it is sufficient to show that $d_{BP}: \pi_n(BP^n) \to Hom^n_{ABP}(BP^*(BP^n), \Lambda)$ is epic. But this is clear from the next commutative diagram:

$$\pi_{n}(BP^{n}) \longrightarrow Hom_{ABP}^{n}(BP^{*}(BP^{n}), \Lambda)$$

$$i_{*} \downarrow \cong \qquad \cong \downarrow (i^{*}) \#$$

$$\pi_{n}(BP) \stackrel{\cong}{\longrightarrow} Hom_{ABP}^{n}(BP^{*}(BP), \Lambda).$$

In fact, $(i^*)^{\#}$: $Hom_{ABP}^n(BP^*(BP^n), \Lambda) \to Hom_{ABP}^n(BP^*(BP), \Lambda)$ is an isomorphism. (Cf. Lemma 2-5).

Lemma 4-3 implies that in the Adams-Novikov spectral sequence of BP^n/BP^0 , $F_n^0(BP^n/BP^0)/F_n^1(BP^n/BP^0) = E_{\infty}^{0,n}(BP^n/BP^0) \cong Hom_{ABP}^{n_{BBP}}(BP^*(BP^n/BP^0), \Lambda)$. So it is clear that $\operatorname{Im} j_*^2 = \operatorname{Im} j_*^{\infty}$. Meanwhile by the definition of our spectral sequence in Theorem 2-7, the image of j_*^2 : $Hom_{ABP}^{0,n}(BP^*(BP^n/BP^0), \Lambda) \to Hom_{ABP}^{0,n}(BP^*(BP^n/BP^{n-1}), \Lambda) =$

 $H_n(BP; Z) \otimes Ext_{ABP}^{0,0}(\Lambda, \Lambda)$ is exactly N_n . This completes a proof of Theorem 4-1.

As a corollary of Theorem 4-1 we obtain the following result. $i \quad \pi$ Consider the cofiber sequence; $S^0 \rightarrow BP \rightarrow BP/S^0$, where i is an inclusion map, and π is a projection map. Associated with this, there is a short exact sequence for *>1;

$$0 \rightarrow \pi_{\star}(BP) \rightarrow \pi_{\star}(BP/S^{0}) \rightarrow \pi_{\star-1}(S^{0}) \rightarrow 0$$

where Φ is π_* .

Corollary 4-4. Let p be an odd prime. Let $v \in \pi_{nq}(BP)$, where n>0 and q=2(p-1). Then $\Phi(v)$ is divisible by p in $\pi_{nq}(BP/S^0)$ if and only if v belongs to the subgroup $p\pi_{nq}(BP) + Z_{(p)}(v_1^n)$. Moreover v_1^n is divisible by $p^{v_p(n)+1}$, and it is best possible.

Proof. Consider the commutative diagram;

$$0 \longrightarrow \pi_{nq}(BP) \xrightarrow{\Phi} \pi_{nq}(BP/S^{0}) \xrightarrow{\partial} \pi_{nq-1}(S^{0}) \longrightarrow 0$$

$$\downarrow h \qquad \qquad \downarrow h' \qquad \qquad \downarrow e_{BP}$$

$$0 \longrightarrow \pi_{nq}(BP) \xrightarrow{h} N_{nq} \xrightarrow{\varphi} Ext_{ABP}^{i,nq}(\Lambda, \Lambda) \longrightarrow 0,$$

where both horizontal sequences are short exact sequences, and φ is an epimorphism of Corollary 3-3. If $\Phi(v) = pw$ for some $w \in \pi_{nq}$ (BP/S^0) , from the above diagram we see that $h(v) \in pN_{nq}$. Using Proposition 3-8, we obtain

$$h(v) \equiv \lambda v_1^n \pmod{p\pi_{nq}(BP)}$$
, where $\lambda \in Z_{(p)}$.

Therefore v belongs to $p\pi_{nq}(BP) + Z_{(p)}(v_1^n)$. On the other hand according to Adams [3] and Novikov [11], there exists an element $\alpha \in \pi_{nq-1}(S^0)$ such that $e_{BP}(\alpha) = \alpha_n^{(v_p(n))}$ and $p^{v_p(n)+1}\alpha = 0$. Let $x \in \pi_{nq}(BP/S^0)$ such that $\partial(x) = \alpha$, then from the commutativity and from the definition that $\varphi(p^{n-v_p(n)-1}m_1^n) = \alpha_n^{(v_p(n))}$, we see that there exists an element $z \in \pi_{nq}(BP)$ such that $h'(x) = p^{n-v_p(n)-1}m_1^n + h(z)$. Let $y = x - \emptyset(z)$, then $h'(y) = p^{n-v_p(n)-1}m_1^n$ and $\partial y = \alpha$. Consider the element $\emptyset(v_1^n) - p^{v_p(n)+1}y \in \pi_{nq}(BP/S^0)$. We assert that $\emptyset(v_1^n) = p^{v_p(n)+1}y$. Since $\partial(\emptyset(v_1^n)) = p^{v_p(n)+1}y$.

On the group
$$Ext_{ABP}^{l,*}(BP^*(S^0), BP^*(S^0))$$
 665

 $-p^{\nu_p(n)+1}y) = -p^{\nu_p(n)+1}\partial y = -p^{\nu_p(n)+1}\alpha = 0$, it is clear that there is an element $z' \in \pi_{nq}(BP)$ such that $\theta(z') = \theta(v_1^n) - p^{\nu_p(n)+1}y$. Applying h' to this equation we get

$$h(z') = h'(\Phi(z')) = h'(\Phi(v_1^n) - p^{v_p(n)+1}y) = h(v_1^n) - p^n m_1^n = 0.$$

But h is a monomorphism, so we obtain z'=0. By the same argument it is easily proved that $\Phi(v_1^n)$ is not divisible by $p^{\nu_p(n)+2}$ in $\pi_{nq}(BP/S^0)$.

§ 5. The multiplicativity of the spectral sequence.

In this section we shall prove the multiplicativity of the spectral sequence $\{E_r^{*,*,*}(BP), d_r^{*,*,*}(BP)\}$. Moreover we shall prove the following theorem.

Theorem 5-1. Let K be a (-1)-connected CW ring spectrum such that $H_*(K; Z)$ is free and locally finitely generated over Z or $Z_{(p)}$. We consider the spectral sequence $\{E_r^{*,*,*}(K), d_r^{*,*,*}(K)\}$. Then there exist pairings $\prod_r : E_r^{u,s,t} \otimes E_r^{u',s',t'} \to E_r^{u+u',s+s',t+t'}$, such that

i) $\prod_r maps$

$$Z_r^{u,s,\iota} \otimes Z_r^{u',s',\iota'} \to Z_r^{u+u',s+s',\iota+\iota'},$$

$$B_r^{u,s,\iota} \otimes Z_r^{u',s',\iota'} \to B_r^{u+u',s+s',\iota+\iota'},$$

$$Z_r^{u,s,\iota} \otimes B_r^{u',s',\iota'} \to B_r^{u+u',s+s',\iota+\iota'},$$

- ii) d_r is an anti-derivation with respect to \prod_r , i.e., for $a \in E_r^{u,s,t}$, $b \in E_r^{u',s',t'}$, $d_r(ab) = d_r(a) \cdot b + (-1)^{u-s+t} a \cdot d_r(b)$,
 - iii) \prod_{r+1} is induced by \prod_r
- iv) \prod_1 is the canonical product induced by the ring structure of $H_*(K;Z)$ and $\operatorname{Ext}_{Ab}^*(\Lambda,\Lambda)$. Here \otimes means the tensor product over Z or $Z_{(p)}$.

In order to prove Theorem 5-1 first we summarize the results from [8].

5-1. Let Λ be a commutative ring with unit, and A be a graded

augumented projective Hopf algebra over Λ . Let M and N be graded A-modules. If $Tor_{\Lambda}^{n}(M, N) = 0$ for any n > 0, then there exists a pairing

$$U \colon \operatorname{Ext}_{A}^{s,\iota}(M,\Lambda) \bigotimes \operatorname{Ext}_{A}^{s',\iota'}(N,\Lambda) \to \operatorname{Ext}_{A}^{s+s',\iota+\iota'}(M \bigotimes N,\Lambda) \,.$$

This pairing is defined as follows: Let $\mathscr X$ be an A-projective resolution of M and $\mathscr X'$ an A-projective resolution of N. Under the above conditions, the complex $\mathscr X \otimes \mathscr X'$ is an $A \otimes A$ -projective resolution of A

 $M \otimes N$. Therefore we obtain a homomorphism:

$$Hom_{A}(\mathcal{X}, \Lambda) \otimes Hom_{A}(\mathcal{X}', \Lambda) \rightarrow Hom_{A\otimes A}(\mathcal{X}\otimes \mathcal{X}', \Lambda\otimes \Lambda).$$

Passing to homology, we obtain an external pairing:

$$Ext_{A}(M,\Lambda) \otimes Ext_{A}(N,\Lambda) \to Ext_{A \otimes A}(M \otimes N,\Lambda \otimes \Lambda).$$

The diagonal map $D: A \rightarrow A \otimes A$ induces the homomorphism:

$$Ext_{A\otimes A}(M\otimes N, A\otimes A) \to Ext_A(M\otimes N, A).$$

Composing this with the external pairing, we obtain the required pairing U:

$$U \colon Ext_A(M, \Lambda) \otimes Ext_A(N, \Lambda) \to Ext_A(M \otimes N, \Lambda).$$

5-2. Under the same conditions as 5-1, the pairing U is natural, that is, for A-homomorphisms $f: M \rightarrow M'$ and $g: N \rightarrow N'$ the following diagram commutes under the conditions $Tor_{\Lambda}^{n}(M, N) = Tor_{\Lambda}^{n}(M', N') = 0$;

$$Ext_{A}^{s,\iota}(M,\Lambda) \otimes Ext_{A}^{s',\iota'}(N,\Lambda) \xrightarrow{U} Ext_{A}^{s+s',\iota+\iota'}(M \otimes N,\Lambda)$$

$$\uparrow f \# \otimes g \# \qquad \uparrow (f \otimes g) \# \qquad \Lambda$$

$$Ext_{A}^{s,\iota}(M',\Lambda) \otimes Ext_{A}^{s',\iota'}(N',\Lambda) \xrightarrow{U} Ext_{A}^{s+s',\iota+\iota'}(M' \otimes N',\Lambda).$$

5-3. Let $0 \rightarrow M \rightarrow M'' \rightarrow M' \rightarrow 0$ be a short exact sequence of A-modules. If N is a Λ -flat A-module, then the following diagram commutes:

$$Ext_{A}^{s,t}(M,\Lambda) \otimes Ext_{A}^{s',t'}(N,\Lambda) \xrightarrow{U} Ext_{A}^{s+s',t+t'}(M \otimes N,\Lambda)$$

$$\downarrow A \otimes id \qquad \downarrow A' \qquad \qquad \downarrow A' \qquad \Lambda$$

$$Ext_{A}^{s+1,t}(M',\Lambda) \otimes Ext_{A}^{s',t'}(N,\Lambda) \xrightarrow{U} Ext_{A}^{s+s'+1,t+t'}(M' \otimes N,\Lambda),$$

where Δ is the connecting homomorphism induced by the short exact sequence; $0 \rightarrow M \rightarrow M'' \rightarrow M' \rightarrow 0$, and Δ' is the one induced by the short exact sequence; $0 \rightarrow M \bigotimes N \rightarrow M'' \bigotimes N \rightarrow M' \bigotimes N \rightarrow 0$.

5-4. Under the same conditions of 5-3, the following diagram commutes up to sign $(-1)^{t-s}$;

$$Ext_{A}^{s,t}(N,\Lambda) \otimes Ext_{A}^{s',t'}(M,\Lambda) \xrightarrow{U} Ext_{A}^{s+s',t+t'}(N \otimes M,\Lambda)$$

$$\downarrow id \otimes \Lambda \qquad \qquad \downarrow \Lambda'' \qquad \Lambda$$

$$Ext_{A}^{s,t}(N,\Lambda) \otimes Ext_{A}^{s'+1,t'}(M',\Lambda) \xrightarrow{U} Ext_{A}^{s+s'+1,t+t'}(N \otimes M',\Lambda),$$

where \varDelta'' is the connecting homomorphism induced by the short exact sequence; $0 \rightarrow N \bigotimes M \rightarrow N \bigotimes M'' \rightarrow N \bigotimes M' \rightarrow 0$.

Secondly we summarize the results of the reduced multiplicative cohomology theory $h^*(\)$. Our reference is [2].

5-5. Let (X, A) and (Y, B) be a pair of CW-spectra with basepoint. We denote the smash product of X and Y by $X \wedge Y$. The following diagram commutes;

In the above diagram, all straight sequences are exact. The above diagram displays $h^*(A \land Y \cup X \land B/A \land B)$ as the direct sum $h^*(A \land Y \land A \land B) \oplus h^*(X \land B/A \land B)$. It is easily proved that if the sequences; $h^*(X \land Y/A \land Y \cup X \land B) \rightarrow h^*(X \land Y/X \land B) \rightarrow h^*(A \land Y \cup X \land B/X \land B)$ and $h^*(X \land Y/A \land Y \cup X \land B) \rightarrow h^*(X \land Y/A \land Y) \rightarrow h^*(A \land Y \cup X \land B/A \land Y)$ are short exact sequences, then so are the other exact sequences in the above diagram.

Thirdly we shall apply the results 5-1 \sim 5 to the case $h^*()=BP^*()$, $A=A^{BP}$, and $A=\pi_*(BP)$. From Theorem 1 in § 1, A^{BP} is clearly Λ -projective.

Now we shall construct a pairing $\prod_r: E_r^{u,s,\iota} \otimes E_r^{u',s',\iota'} \to E_r^{u+u',s+s',\iota+\iota'}$. First we construct a pairing in the E_1 -terms. We consider the skeletal filtration $\{K^r\}$ as Lemma 2-1 or Remark 2 in § 2. Then it is obvious that

- i) $BP^*(K^u/K^v)$ is Λ -free for any $u \ge v$,
- ii) the Künneth formula holds for $u \ge v, u' \ge v'$:

$$\kappa \colon BP^*(K^u/K^v) \otimes BP^*(K^{u'}/K^{v'})$$

$$\to BP^*(K^u \wedge K^{u'}/K^u \wedge K^{v'} \cup K^v \wedge K^{u'}),$$

where \(\) is the smash product.

By i) and ii) we can define $\prod_{i=1}^{n}$ as the composition $(\mu^*)^{\#} \circ (\kappa^{-1})^{\#} \circ U$:

$$Ext_{ABP}^{s,t+u}(BP^*(K^u/K^{u-1}), \Lambda) \otimes Ext_{ABP}^{s',t'+u'}(BP^*(K^{u'}/K^{u'-1}), \Lambda) \xrightarrow{U}$$

$$Ext_{ABP}^{s+s',t+t'+u+u'}(BP^*(K^u/K^{u-1}) \otimes BP^*(K^{u'}/K^{u'-1}), \Lambda) \xrightarrow{(\kappa^{-1})\#}$$

$$Ext_{ABP}^{s+s',t+t'+u+u'}(BP^*(K^u \wedge K^{u'}/K^{u-1} \wedge K^{u'} \cup K^u \wedge K^{u'-1}), \Lambda) \xrightarrow{(\mu^*)\#} Ext_{ABP}^{s+s',t+t'+u+u'}(BP^*(K^{u+u'}/K^{u+u'-1}), \Lambda),$$

where $\mu: K^u \wedge K^{u'}/K^{u-1} \wedge K^{u'} \cup K^u \wedge K^{u'-1} \rightarrow K^{u+u'}/K^{u+u'-1}$ is the structure map of the ring spectrum K.

Now Theorem 5-1 follows from the standard arguments. So we omit the proof.

DEPARTMENT OF MATHEMATICS
COLLEGE OF EDUCATION, WAKAYAMA UNIVERSITY.

References

- [1] J. F. Adams, Quillen's work on formal groups and complex cobordism, Univ. of Chicago Lecture notes (1970).
- [2] J. F. Adams, Stable homotopy and generalized homology, Univ. of Chicago Lecture notes (1971).
- [3] J. F. Adams, On the groups J(X)-IV, Topology Vol. 5 (1966).
- [4] S. Araki, Lectures on typical formal groups in complex cobordism and K-theory, Univ. of Kyoto Lecture notes (1973).
- [5] M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Pro. Symp. Pure Math. Vol. III (1961).
- [6] E. H. Brown and F. P. Peterson, A spectrum whose Z_p -cohomology is the algebra of reduced p-th power, Topology 5 (1966).
- [7] V. M. Buhstaber, The Chern-Dold character in cobordism I, Math. USSR, Sbonrik, Vol. 12 (1970) NO. 4.
- [8] H. Cartan and S. Eilenberg, Homological Algebra, Princeton, N. J. (1956).
- [9] Y. Hirashima, On the BP*-Hopf invariant, (to appear in Osaka J. of Math.)
- [10] R. E. Mosher and M. C. Tangora, Cohomology operations and applications in homotopy theory, Harper and Row (1968).
- [11] S. P. Novikov, The methods of algebraic topology from the viewpoint of cobordism theory, Math. USSR, Izvetiia 1 (1967).
- [12] N. V. Panov, Universal coefficient formulas for stable K-theory, Mat. Zametki 11 (1972).
- [13] D. Quillen, On the formal group laws of unoriented and comple cobordism theory, Bull. Amer. Math. Soc. 75 (1969).
- [14] L. Smith, On realizing complex bordism modules I, Amer. J. Math. 92 (1970).
- [15] R. Zahler, The Adams Novikov spectral sequence for the spheres, Annals of Math. 96 (1972).