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§ 0. Introduction

In [11] Novikov showed that the Adams spectral sequence of
MU-theory (complex cobordism theory) is an important method for
studying the stable homotopy groups of spheres, and he also showed
that for studying the p-primary component of the stable homotopy
groups of spheres it is convenient to use BP-theory, which is the direct
summand of MUZ,,-theory, where MUZ,, is the spectrum localized
at a prime p of MU-spectrum.

However in general, it is difficult to calculate the E, terms of
the Adams spectral sequence of MU- or BP-theory.

In [7] Buhstaber announced that there exists a tri-graded spectral
sequence {E *** 4} such that E***=Ext}i (MU* (S"), MU*(S")),
and E#*%*=F_ %"'=Z. Using this spectral sequence he gave an in-
terpretation of Extidy, (MU*(S"), MU*(S®) in terms of the integral
homology group of MU and its Hurewicz image.

We shall show that there is a BP- analogy of Buhstaber’s inter-
pretation of Extidy (MU*(S°), MU*(S")). However our method is
quite different from his.

Let X be a CW spectrum with basepoint and BP* (X) the reduced
BP-cohomology of X. Let A=BP*(S°), the reduced BP- cohomology
of the sphere spectrum S°, and A®” be the algebra of primary opera-
tions of BP- cohomology theory. Let Z, be the integers localized
at p. Our main results are as follows;
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Theorem 2-7. There exists a tri-graded multiplicative spectral
sequence {E5%* 4} (1<r=<o0) such that

i) E""'=H,(BP;Z)Qz,Extiir(4, 4),
i) dy: EJo5 S E TSN g5 an anti-derivation,

m.(BP) (Gf s=t=0),

iii) Emn,t,t — ]
0 (otherwise),

iv) the edge homomorphism E “"'—E™"° coincides with the
Hurewicz homomorphism h,: m,(BP)—>H,(BP;Z),

v) AE" acts canonically on {E, d.}.

Corollary 3-3.
Exthtr (A, A) =N,/Imh,, for t>O0.

where h,: w,(BP)—>H,(BP; Z) is the Hurewicz homomorphism of
BP and N, is a certain subgroup of H,(BP;Z), which is algebraically
determined by the actions of A®T on H,(BP;Z).

We also obtained the geometrical interpretation of N,.

Theorem 4-1. Let p be an odd prime. Then
N,=Imh,/, for ¢>0,

where h': n,(BP/S") —>H,(BP/S"; Z)=H,(BP; Z) is the Hurewicz
homomorphism of BP/S".

) i1 .
Consider the cofiber sequence; S'——>BP——BP/S’, where 7 is
the canonical inclusion map and 7 is the canonical projection map. As-

sociated with this there exists a short exact sequence for *>1;

0 0
0——74 (BP) —>74(BP/S") —>mx-1(S*) —0,

where ®=m,. Let {v;} be a system of generators of 7, (BP) with
dim v;=2(p*—1). Then we get the following;

Corollary 4-4. Let p be an odd prime. Let vem,.,,(BP), where
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n>0 and q=2(p—1). Then O(v) is divisible by p in mw,,(BP/S°)
if and only if v belongs to the subgroup, prn,(BP) + Zyy (v,*). More-
over v," is divisible by p'*™*' and it is best possible, where y,(n) is
the power of p in the expansion of n, i.e., n=p*"™ s and g.cd.
(p,5)=1.

The above result is originally obtained by L.. Smith [14], in which
he used K-theoretic characteristic numbers.

Remark. We can also calculate the spectral sequence of Theorem
2-7 up to dim 45 for p=3. Then the first obstruction for further
calculations lies in dim 48, where I can not determine if ap=0 or
not. For p>>3, calculations could be done beyond this range by using
informations on the behaviors of Massey product. These results will
be published elsewhere.

This paper is organized as follows. In §1 we list up the prop-
erties of the Brown-Peterson spectrum BP. In §2 the spectral se-
quence which relates Extf;¥ (BP*(X), BP*(S")) to the integral ho-
mology of X will be constructed. In § 3 we shall obtain some corol-
laries and some differential formulas of the spectral sequence. In §4
the Hurewicz image of BP/S° will be determined. In §5 we shall
prove the multiplicativity of the spectral sequence.

I would like to thank Professor H. Toda for many useful sug-
gestions. I am also grateful to Professor M. Mimura for his continuous
encouragement.

§ 1. Brown-Peterson spectrum.

Let p be a fixed prime and L the original Brown-Peterson spectrum
at p, defined by Browm-Peterson [6]. Let R be the set of sequences
of integers (e, e, ---) such that ¢,0 and e;=0 for almost all z. If
E= (e, ), let |E|=23 ¢;(p'=1). If F=(f,, fs ), let E+F
=(e,+f1, e+ S -+). Let 4,=(0,---,0,1,0, ---), where 1 takes z-th place.
We denote the sum of n-copies of E by nE. Let BP be the Brown-
Peterson-spectrum localized at p of L. BP has many nice properties
as follows.
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Theorem 1. (D. Quillen) [18][1]. BPisthe CW ring spectrum,
which has the following properties;

1) Hy(BP;Z)=2Zy[m, m,, -] degrec mi;=2(p'—1),
ii) 7o (BP)=Zp[vi, vs, -] degreec vi=2(p'—1),
where Z,, denotes the localization at p of integers Z.

7i1) the Hurcwicz homomorphism h: m,(BP)—>H,(BP; Z) is
monomorphic and we can choose the generators {v;} so that they

satisfy the following inductive formula [4],

h(va) =pma— 3 ma_i(h(v:))™",
3 1

SsSisn—

iv) the Steenrod algebra A®"=BP*(BP) is a Hopf algebra
over my (BP). AP" is isomorphic to m, (BP)@Z(P,R, where R is a
free module over Z, with generators {rg}, E€R and degrec g
=|E|, and ®Z< » Means the completed tensor product over Zyy. {1z}
are characterized by the following properties:

@) (Cartan formula) For x,ye H,(BP;Z),

Te(xy) = F+GZ: . 7r()7a(¥)

where F,GeR,
Mu_q if EZP"_iAi,

0 otherwise,

b) 1e(ma) = {

¢) (R. Zahler) [15] If |E|=|F|, E, FeR, then

1 (E=F),

Tn(f'1”)={0 (E+F),

where m”™ means mimy’ -,

§ 2. The spectral sequence.

Let X be a CW spectrum. In this section we shall establish a
spectral sequence relating the integral homology of X with Extfs¥
(BP*(X), A) under certain conditions of X.

To get the spectral sequence, we need some fundamental facts.
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Let X™ be the r-skeleton of X and X=X, Consider a chain com-
plex {C,,d,}, where C,=H,(X™/X""Y.Z) and d, is the boundary
homomorphism for a triple (X™, X®-D X®-9)  Ag is well known,
the homology group of {C,, d,} is the ordinary homology group of
X,H,(X;Z). The following Lemma is easily proved.

Lemma 2-1. If X isa (— 1)-connected CW-spectrum such that
H,(X;Z) is locally finitely gencrated and free, then there ecxist a
(= 1)-connected CW-spectrum K and a map ¢: K—X which satisfy
the following conditions;

) ¢: K—>X is homotopy cquivalent,
Ts Ly
i) H,(K®™/K": 7)< H, (K™ Z) —>H,(K; Z),
where K™ is the n-skelcton of K and i and © are the canonical maps.

Lemma 2-2. Let K be the spectrum in Lemma 2-1. Then
Sor any integers I, m, n such that O0<[<m<n<oo, therc cxists a

short exact scquence:;

0—>BP* (K™ /K™Y —BP* (K™ /K®) »BP* (K™ /K®) 0.

Proof. By Lemma 2-1 it is clear that H,(K™/K™,; Z), H,
(K™ /K", Z) and H (K™ /K®;Z) are free and locally finitely gen-
erated. So each Atiyah-Hirzebruch spectral sequence of K™ /K™,
K®/K® and K™/K® collaspes. Therefore it is enough to show the

existence of a short exact sequence;
0—-H*(K™M/K™, Z)>H*(K™/K"; Z) >H*(K™/K®; Z)—0.
However this is clear from the universal coefficient formula and the

freeness of the above spectra, and from Lemma 2-1. g.e.d.

Thus Lemma 2-1 allows us to identify X with K which has the
nice skeletal filtration. From now on we always identify X with K,

so XM means K under this identification.

Theorem 2-3. Let X be a (— 1)-connected CW spectrum with
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basepoint, such that H,(X;Z) is free and locally finitely gencrated.
Then there exists a tri-graded spectral sequence {E(X), d,(X)} converg-
ing to Extli¥ (BP*(X), A) such that

) EM'=H,(X;Z2)QExtiir(4, A).
ii) dr: Eru,s,t__)Eru—r,s+1,t+r’

iii) E%'=G (Extiyii“(BP*(X), A)=D"%!/D* %%+ where D%%*
=Im@*)#: Extii#*(BP*(X®™), A) »Ext$ii*(BP*(X), A), and i: X®
— X is the cannical inclusion, i*: BP*(X) ->BP*(X®™) is the induced
homomorphism of i and ((*)#: Extist(BP*(X®™), A)—Exti*(BP*(X),
A) is the induced homomorphism of i* by the functor Extizk( , A),

iv) the above spectral sequence is natural with respect to maps
of X, i.c., for another spectrum X' satisfying the same conditions,
and a map f: X—>X', the induced homomorphism fr: E,(X) -E.(X")
are compatible with d,, morcover f;. comes from the homolohy in-
duced homomorphism of f as

F@1: Hy (X5 2) QExtist (4, A) >H, (X5 2) QExtsE (4, 4).

Remark 1. From the (—1)-connectedness of X it is clear that
E» (X)) =0 if u<0.

Remark 2. The theorem in the above cannot be applied for X
=BP, since BP is a spectrum localized at p. However, for X, which
is the spectrum localized at p of X, defining the filtration {X,*} so
that X,*= (X™),, we obtain the same spectral sequence {E.(X,),
d,(Xp)}.

Theorem 2-4. Under the same conditions of X, let X, be the
spectrum localized at p of X, then there cxists a spectral sequence
{E.(X,),d,(X,)} converging to Exti;¥ (BP*(X,), A) such that

) EM(X,)=H,(X,;Z) RumExtiier (4, A),
i1) dr(Xp): Eru's’t(Xp) g AR (X5,

iti) E.®%* gives the quotient in the filtration of Extii¥
(BP*(X,), 4),
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iv) the spectral sequence {E,(X,),d,(X,)} is natural with re-

spect to maps of X,.

Remark 8. Let f: X—Y, be a map, where X and Y satisfy the
assumption of Theorem 2-3. Then even in this case the naturality
holds, i.e., there are homomorphisms f,: E,.(X)—E,(Y,), which are
compatible with d,.

Proof of Theorems 2-8 and 2-4. We use the method of [10].
Recall that the functor Extfs¥( ,A) is a half exact functor on the
category of A®"-modules and A®“-homomorphisms. So if there is a
short exact sequence of A®"-modules; 0—>M—->N-—L—0, then there is
a long exact sequence;

4
o Extizst (M, A) >Extiis (L, A) > Extiir (N, A) > Extiie (M, A) —---,

where 4 is the connecting homomorphism induced by the above short

exact sequence.
Therefore we can define {E*>'=Z"%'/B*" d,} by virtue of

Lemma 2-2 as follows;

Zpw =Im {Extiis* (BP* (X® /X)), A)

L Exsiit(BP* (X®/X®-D), A)},
Bru,s,::Irn {E;thﬁa}ﬁ“ru(BP* (X(u+r—1)/X(u)) , A)
4
—> Extii*(BP* (X®/X®D) A)}.
We define E»%'=Z*%'/B*%', Then the differential 4,: E*"'—

E} =744 4g induced by the composition 4”0j~!, where

4 Extgbs* (BP* (X®™ /X" "), A) »Extifstt*(BP* (X®"/X®- ") A)
is the connecting homomorphism induced by the short exact sequence;
0—->BP*(X®™/X®) »BP*(X®™/X®-"-D) 5 BP* (X®-"/X®-7-1) (),
Also we define E »"'=Z"*"'/B*»"*, where

Zm0t=Im {Extiss® (BP* (X®), 4) —> Extii* (BP* (X® /XY, A)},

4
B =Im {Extipk +(BP*(X/X®™), A)—— ExtitE (BP*(X® /XY, A)}.
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Then we can easily prove that d, is well-defined, H([I*>*") =E%5*
and E u,s,t:Du,s,t/Du—l,:,t+l

In order to show the convergence, we need

Lemma 2-5 (Novikov Th. 8-1 [11]). Let Y be a (k—1)-
connected spectrum and H,(Y;Z) be free and locally finitely gen-
crated over Z or Zyy. Then

Extise(BP*(Y), 4) =0 for t—2(p—1)s<k.

Using this Lemma we can easily prove that E*"'=E_*** for r
sufficiently large. So the spectral sequence {£,(X), d.(X)} converges
to Extfi¥ (BP*(X), 4).

Now we prove i). By definition E»*'= Ex33* (BP* (X®/X®-D),
A). From the construction of the Atiyah-Hirzebruch spectral sequence
[6], BP*(X®™/X®-D) is isomorphic to the cochain complex C*(X;
BP**(S8"%). From Lemma 2-1, C*(X; BP**(S")) is isomorphic to
H*(X; BP*™(S%) which is the E,terms of the Atiyah-Hirzebruch
spectral sequence. By the universal coefficient theorem and by the
assumption that H,(X;Z) is free and locally finitely generated, H*
(X; BP**(S") is isomorphic to Hom,(H,(X; Z), BP**(S%) as
APP.module.

Notice that the all above isomorphisms are functorial.
Lemma 2-6. If M is Z-frec and of finite type, then

Extgh (Homyz(M, A), A) =M Lxtp" (4, A),

where A is an R-module and R is a graded commutative ring. Fur-
ther this isomorphism is functorial, that is, for a morphism f: M
—N, the next diagram commutes;
Extg (Homyz(M, A), A) =M Lxt" (4, A)
[cro# | o1
Extg® (Homz(N, A), A) =NQRzExt, (4, A),

where N is Z-free and of finite type.

Proof. Let {C;, d;} be an R-free resolution of A, then {Hom (M,
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C,),d«} is an R-free resolution of Hom,(M, A), because M is Z-free
and of finite type. We define homomorphisms ¢,: M@ Homg(C;, A)
—Homgz(Homz(M, Cy), A) by ¢.(a®S) (@) =f(9(a)), where acM,
feHomg(Cs, A) and g€ Homz(M,C,). Then it is obvious that ¢, is

an R-isomorphism, and that the following diagram commutes;

Homy(Homy(M, C,), ) <2 M® Homy(Cy, A)
| @ # |1®a.*
Homp(Homz(M, Cs,,), A) &i}-M@zHomR (Cspr, ).
So taking the homology, we obtain Lemma 2-5. The functoriality
is clear from the construction of {gp,}. g.e.d.

Using Lemma 2-6, we get a functorial isomorphism;
Extii#*(BP* (X®/X® ) Ay=Extiit“(Hom,(HX; Z), BP*7*(S")), 4)
=H,(X:2)QExtiiz*(BP* (S, A) =H,(X; Z) QLxtiir (4, A).

So i) was proved. iv) follows from the facts that the skeleton filtra-
tion {X} has the functorial properties and that the above construc-
tion of the spectral sequence is functorial. Thus we complete a proof
of Theorem 2-3.

Theorem 2-4 immediately follows by the following facts;
1) The chain complex {H,(X,*/X,*':Z), 0.} gives the homology
group H,(X,:Z) of X,.
2) The filtration {X,”} satishies Lemma 2-2, i.e., there is a short ex-
act sequence; 0—»>BP*(X,"/X,™) -»BP* (X,"/X,") >BP* (X,"/X,") —0.
3) Let f: X,—>X,’, then there exists a map ¢: X,—X,” such that
g is homotopic to f and ¢(X,")CX,”". q.e.d.

Applying Theorem 2-4 for X=BP, we obtain the following;

Theorem 2-7. There cxists a tri-graded spectral sequence
{E*%* d.} such that

i) E‘u,s,L:Hu (BP, Z)@Z(P)Extfiép(/i, A),

i) dy BB,
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7. (BP f s=t=0,
ZZZ) Emu,s,c — { ( ) lf .
0 otherwise,
iv) the edge homomorphism E**%'=g,(BP)—>E"»"'=H,(BP;Z)
coincides with the Hurewicz homomorphism h: n,(BP)—>H,(BP;Z),

v) there exist pairings [[,: E~"'QEX Y S E L guch
that 1,4, is induced by 11, moreover ||, and |l. are the standard
product induced from the ring spectrum structure of BP. d. is an
anti-derivation with respect to this product ||,, that is, for ac E**",
be Ex,

d.(ab) =d,(a)b+ (—=1)***"a-d,(b),

vi) APF acts naturally on this spectral sequence, i.c., for any
y € APF) there are homomorphisms 7,y: EM%'—E 40t wwhich are
compatible with d,. Moreover y.y is derived from the homology in-
duced homomorphism 1,Q1: Hy (BP; Z)Q z.,,Extfs¥(A, A)—»H,(BP; Z)
Rz Extist (4, 4).

Proof. 1), ii) and vi) are already proved in Theorem 2-4. The
proof of v) is very long, so we postpone it in the section 5. Proof
of iii). By Theorem 2-4, E_“*' is a quotient in the filtration of
Ext§i#*(BP*(BP), A). Since BP*(BP) is exactly A®%, it is clear
that E ,»%*=0 unless s=0. Meanwhile, by definition E,*"* is a quo-
tient of a certain subgroup of E*"'=H,(BP; Z)Q,,Extii:(4, 4).
It is well known that Extys(4, 4) =0 unless t=0. So E,“"'=0
unless s=¢=0. In the case s=¢=0, we assert that E_*%'=D*%"=
. (BP). The first equality follows from the facts that £ ,*%'=D%%°/
D#-vu1 D=Lt =0 and E,)"%*"=0 («2x7r). From the properties of
the filtration of BP and from Lemma 2-5 we see that the homomor-
phism: Exty3(BP*(BP"), A) - Exti% (BP*(BP), A) is an isomor-
phism, where BP* is the spectrum localized at p of L™, the u-skeleton
of the original Brown-Peterson spectrum L. Then clearly the second
equality holds. q.e.d. Proof of iv). Let aen,(BP) and f: S*->BP
be a representative of @. Then by naturality of the spectral sequence
there exists a commutative diagram;
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Du,o,O(Su) Emu,o,u(Su) Elu,o,O(Su) :Hu (Su: Z)
| £ | £ [ £ |
D“%(BP)——E_*»""(BP) —E"""(BP)=H,(BP:.Z).
It is clear that D“%°(S*) = Extys»(BP*(S*), 4) =, (s*) and D*»%°(S*)
=E " (S =E™"""(S*). Then the commutativity of the diagram

implies iv). q.e.d.

§ 3. Corollaries and some differential formulas.

In this section we shall obtain some results and some differential

formulas of the spectral sequence in Theorem 2-7.

Lemma 3-1. In the spectral sequence {E***(BP), d,***},
for 1<r<t there exists a canonical monomorphism: E“"*CE™",
ESPBCi(llly Eroyllt:Elo’l’t lf ZSrSt.

Proof. By definition, E,»" =ker d*4*/Im d¥*/~""*"*' where d}*:
Evlt s Eroplbhier=1l gnd gutr-hhi-ril, puir-loi-rel_ pult are differen-
tials. Recall that E**7~"%*-"#' is a quotient in the fltration of
Eptrbotr = I ((BP Z) Rz, Extiss™ (4, A). Since Extjit (4, A)
=0 unless *=0, for 1<r<<¢, E;*V'=kerd“}'*CE"". By induction
we easily obtain that E*"'CE®*"‘. Especially, if #=0 then from
Remark 1 in § 2 we see that kerdplf=EX4. Therefore we obtain
that E,""'=E %", q.e.d.

Lemma 3-2. Let z€E™"". Then d.(z) =0 in E775 if and
only if d,(yz(2)) =0 in E>"" for any E€ R with |E|=n—r.

Proof. 1f d.(2) =0 in E,* """ then by naturality of the spectral
sequence we get that d,(yz(2)) =7zd,(2) =0 in E*"" for any Ec R.
Conversely if d,(yg(2)) =0 in E>"" for any E€ R with |E|=n—r,

by Lemma 3-1 we can set

di(=z)= 3 m"Ql,

|=n—

where m*@iz€E"" """ =H,_,(BP;Z)Qz,,Extiz-(4, 4). Applying
yre A®PP with |F|=n—r, and using Theorem 1-iv)-c), we obtain
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e=rr( 35 '@l =1rdr(2) =dr(1£(2)) =0.

|=n-

Therefore d.(z) =0. q.e.d.

Let Ny={xe€H,(BP; Z)|rg(x) €lm h for any E€ R such that
|E|2:0}, where h: myo(BP)—>H,(BP;Z) is the Hurewicz homomor-
phism of BP. Then, we obtain the following result which is a BP-
analogy of Buhstaber’s result [7].

Corollary 3-3. Extisr(A4, A)=N,/Im h,.

Proof. By Lemma 3-1 we know that Extiir(A4, A) =E""'=E>"",
Consider the sequence: E%°'—E""'—E,~»%* where H(E,"") =E!'}‘.
Since EY4'=E ""*=0, and since E,”***=0, we obtain E>"'=E*>""/
ker 4,%%°. But ker d,*"° is clearly E.***=1Im A,. On the other hand,
by Lemma 3-2 and by induction, it is easily proved that xe H,(BP;
Z) belongs to E»%° if and only if x& N,. Therefore we obtain

Extiir(4, A) =E "' =E"" /ker d,*"°=N,/Im h,. q.e.d.

Proposition 3-4. Let x€E™". Then,

dr(x) = I Z . 771E®d,-(‘)’)_:;(x)),

E|=u-
EcR

where d.(15(x)) € E"Y" =Extize (4, A).
Proof. This is trivial from Lemma 3-2. q.e.d.

Theorem 3-5. Let p be an odd prime. Then,

Zprywyn With a generator PO -Ipt i f k=tq,

N,/Im h,= .
0 otherwise,

where q=2(p—1) and y,(t) is an integer defined by the require-

ment that t=p"*® s and gcd. (p,s)=1.

Theorem 3-5 is a BP-analogy of Panov’s result [12]. (See also
[9]). In order to show Theorem 3-5, first we define an order on
exponent sequences R as follows. For E=(e,, ¢, ---) and F=(fy, f2, -+),
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define E<F if |E|<|F] or if |E|=|F| and there is an { such that
e;<Jy and ¢;=f; for any j>i. It is clear that < is a linear order-
ing. Let xen,(BP). We define that type () =E, if y5(x) 0 (mod
pry (BP)) and yz(x)=0 (mod pr,(BP)) for any F>E.

Lemma 3-6. Let x,yen,(BP). If type(x) =E and type(y)
=F, then, type(xy) =E+F,

Proof. 1t is clear that if E.<<E and E,<F, then E,+F,<E+F.
So by the Cartan formula we have

F.SF

o) = Y @0 =_ 5 15@715) (mod pr.(BP)).

It is clear that if G>E+F, then y4(xy)=0 (mod pr, (BP)) and that
Tesr(xy)=71(x) 7r(y) £0 (mod pr, (BP)). So we obtain that type (zy)

=E+F. q.e.d.
Lemma 3-7. Let {v;} be the ring generators of wy(BP). Then,

Ao Zf n=1,

¢ ) =
A

where 4, is the zero sequence (0,0,0, ---).
Proof. Recall the formula (Theorem 1);

n-—1
h(v,) = pm, — iZ=:1 Ma_; (B (0:)) P,

It is clear that type (v;) = 4,. From Theorem 1 we have that 7,4,_,(v,)
=pm;=v,;%£0 (mod pry, (BP)). On the other hand, p4,_, is the largest
sequence in dimension 2(p"—p), so, if E>pd,_, then |E[=2(p"—p)
+2(p—1)=dimwv,. Therefore by iv)-c) in Theorem 1, it is easily
proved that if E>pd, ,, then yz(v,)=0 (mod pr,(BP)). q.ed.

Proposition 3-8. If type(x) = 4., then x=}v,' (mod pr, (BP)),
where x€m, (BP) and r1€Zy.

Proof. Let x=> ¥ ,;w; where ,;€Z, and w; are the monomials
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of v; which form an additive basis of 7,,(BP) over Zg. Then by
Lemma 3-6 and 3-7, we can order {w;} by its type. Assume that
type (w;) <type (w;,,). Then, clearly w,=v,". Let type (w;) =E;, then
A7, (wi) =75, (x) =0 (mod pr, (BP)). Since yg, (w:) £=0 (mod pry
(BP)), we get that 1,=0 (mod pZ,). By induction we see that A;
=0 (mod pZy) if i=2. Therefore x=21v,' (mod pry(BP)). q.e.d.

Proof of Theorem 8-5. It is clear that the group N,,/Im A, is
a finite abelian group. Let z& N, such that pz=Im A, then Proposi-
tion 3-8 implies pz=2v,' (mod. pry(BP)), which implies that the
group N,,/Im h,, consists of only one generator. So, in order to show
Theorem 3-5 it is sufficient to show that p="»®~1nu e N, and
PO hpteE N, By iv)-a) and b) in Theorem 1, if E2zi4, then

re(m') =0 and 7:4,(m") = < i ) m " so 14, (pPm ) = < i > prm ' But

max,SK,{t—i-vp((;))} —1—p,(t) —1, and hence pmieN, if and

only if 22¢—y,(¢) —1. This completes the proof of Theorem 3-5.
q.e.d.

From Corollary 3-3 and Theorem 3-5 we see that d,, (p*~*®~'m,")
is well defined and it is a generator of Extyit (4, A). Let q,*® =
dig (P72 'm"). Then we obtain an explicit differential formula on
E*»%° In order to describe this formula we define a ring homomor-

phism p: H,(BP;Z)—Z, by

0 (my) = pton-r-n-r,

Lemma 3-9. If xeN,, then

x=p(x)m;" (modIm h,,).

Proof. By Theorem 3-5, x=1p"""*®"'m,'+ v, where 1€Z,, and
velm h,. Recall the formula iii) of Theorem 1. We assert that
o(v) =p, and p(v;) =0 if =2, It is clear that p(v) =p(pm,) =p.
By induction, using the formula iii) in Theorem 1, we get

0 (v,) = pp(m,) — g o(may) (o)) P =pp(ma) —p(m,_y) p(v)?""
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:P(pﬂ—l/p—l)~n+l _ppn-lp(pﬂ’l—l/p—l)—rwl: 0

So p(x) =2p*® '+ p(v). Therefore p(x)=21p'"*®"" (mod p'Z).
This implies that x=p(z)m," (mod Im A,,). g.e.d.

As an immediate corollary we obtain the explicit differential for-
mula on E*%°.

Proposition 3-10. If xeE™"° then

do(x) = 3 0(rs(x)) MmER a7,

|Eizu-r T—v,(r)—l
Eck p

Using the above Proposition, we obtain

Proposition 3-11.

E»"'={xeH,(BP; Z)| for any E€R such that |E|>u-—r,
re(x) €Im h}.

§ 4. Hurewicz homomorphism of BP/S’

In this section we shall determine the Hurewicz image of BP/S".
Let 2": 7, (BP/S" -H,(BP/S°.Z) be the Hurewicz homomorphism
of BP/S°. 1t is clear that if 2>0, H,(BP/S°;Z)=H,(BP;Z). There-
fore we identify H,(BP/S";Z) with H,(BP;Z) if n>>0. Then,

Theorem 4-1. If p is an odd prime, and n>0,
Im A,’=N,CH,(BP;2).

Proof. By the cellular approximation theorem and the choice of
filtration {BP"}, we see that there is a commutative diagram;
’

. (BP/S") LHn (BP/S°:Z)

—~ —~

. (BP"/S") —>H,(BP"/S*: Z)

7. (BP"/BP°) — H,(BP"*/BP"; Z)
Jx =

7.(BP"/BP™"Y —>H,(BP"/BP"';Z)=H,(BP;Z),
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where j: BP"/BP°—-BP"/BP""! is the canonical map. So, in order
to determine the image of 7/, it is sufficient to determine the image
of jy: . (BP"/BP®) -»7,(BP"/BP"""). There are two Adams-Novikov
spectral sequences, {E,**(BP"/BP")} and {E,**(BP"/BP"-")}, which
converge to 7y (BP"/BP°) and m,(BP"/BP"™"), respectively. By nat-
urality of the Adams-Novikov spectral sequence, there exist homomor-
phisms j,": E.**(BP"/BP°) -E**(BP"/BP"") for 2<r<<oco and
Jjx FH(BP"/BP"))CF,/(BP"/BP""), where F/(X) means the i-th
filtration of 7,(X). It is obvious that F, (BP"/BP"')=0 for iZ=0
and E,*"(BP"/BP"")=E,""(BP"")=F,(BP"/BP" ") =rx,(BP"/BP"").
So we obtain that Im j,=Im j,*. We assert that Im j,*=Im % In
order to prove this assertion, we need the following lemma.

Lemma 4-2. The following diagram commutes;
0 — n,(BP" — 7. (BP"/BP")

ldB,, I ldB,,
O—Hompsr(BP* (BP"), A) »>Hom%s»(BP*(BP"/BP"), A)

9
—— T (BPY) —0
II

(:7

4
—> Extize (4, ) — 0,

where dgp is the Adams d-invariant, egp is the Adams e-invariant
in BP-theory (3], and the lower scquence is the short exact sequence
induced by the short exact sequence;

0—>BP*(BP"/BP") ->BP*(BP") —BP* (BP") = A—0.

Proof. The diagram (I) is clearly commutative. Commutativity
of the diagram (II) is shown as follows. Let ae=n,(BP"/BP"%), f:
S™—>BP"/BP° be a representative of «, ¢: S""'>BP"’ be a represent-
ative of dar, and C, be the mapping cone of f, then it is easily proved
that there exists a map ~2: C,—>BP" such that the following diagram

commutes;

s-Y.gp . c,— s° —3BP

Lo

BP'—>BP"—>BP"/BP'—> ¥BP".
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Applying the functor BP*( ) to the above diagram, we obtain the

following commutative diagram:
0 — BP*(S") —— BP*(C,) —>BP*(BP")—0
|7 [ H
0—> BP*(BP"/BP")—> BP* (BP") — BP*(BP") —0.

Applying the functor Ext}s3( , A), we obtain the following commu-

tative diagram;

4

4
> Homyse (BP*(S™), A) — Extiie(BP*(BP"), A)—---
[ y |
--»— Homjsr (BP* (BP"/BP"), A) >Extys»(BP* (BP"), A) —---.

From the definition of dzp and egp it is clear that (f*)# (1) =dzr (@),
and 4’ (1) =ezp(9) =ezp (0t), where 1 € Homjzr (BP* (S™), A)= Hom}s»
(4, A). Therefore we obtain that ddzp (@) =epp (). g.e.d.

Lemma 4-3. Let p be an odd prime. Then, dgp: n,(BP"/BP")
— Hom4se (BP*(BP"/BP°), A) is an epimorphism.

Proof. 1t is a famous theorem of Novikov [11] that ezp: 7,_,(BP°)
=,y (S®) > Extiyi» (BP* (BP"), A) = Exti#»(A, A) is an epimorphism
if p is odd. So, in order to prove Lemma 4-3 it is sufficient to show
that dgp: 7w, (BP") > Homj4sr (BP*(BP™), A) is epic. But this is clear

from the next commutative diagram:

T (BP™) —> Hom%sr (BP* (BP™), A)

i*l; B ;l G#

7.(BP) —Hom%s»(BP*(BP), 4).
In fact, *)#: Homysr(BP*(BP"), A) »>Hom}sr (BP* (BP), A) is an
isomorphism. (Cf. Lemma 2-5). g.e.d.

Lemma 4-3 implies that in the Adams-Novikov spectral sequence
of BP*/BP’, F,(BP"/BP") /F,"(BP"/BP") =E_"“(BP"/BP"Y=Homjsr
(BP*(BP"/BP%, 4). So it is clear that Im j,’=Imj,*. Meanwhile
by the definition of our spectral sequence in Theorem 2-7, the image
of jt: Hom%se(BP* (BP"/BP"), A) - Hom%s»(BP*(BP"/BP""), A) =
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H,(BP; Z)QExtisr (A4, A) is exactly N,. This completes a proof of
Theorem 4-1.

As a corollary of Theorem 4-1 we obtain the following result.

)
Consider the cofiber sequence; S’"—>BP—BP/S", where 7 is an inclusion
map, and 7 is a projection map. Associated with this, there is a short

exact sequence for *>1;
074 (BP) >y (BP/S") =1y, (S") =0,

where @ is 7,.

Corollary 4-4. Let p be an odd prime. Let vEm,(BP), where
n>0 and q=2(p—1). Then O(v) is divisible by p in w.,(BP/S")
if and only if v belongs to the subgroup pm,,(BP) +Zyy(v*). More-
over v is divisible by p*'*" %' and it is best possible.

Proof. Consider the commutative diagram;

0——)71',,‘,1 (BP) i)n',,q (BP/S° —a>7tnq_1(S°) —>0
; ] lh/ le’”’
Oy (BP) —— Ny —2>Ext58(A, 4) —0,
where both horizontal sequences are short exact sequences, and ¢ is
an epimorphism of Corollary 3-3. If 0@ (v) =pw for some wem,,
(BP/S?), from the above diagram we see that i(v) €pN,,. Using
Proposition 3-8, we obtain

h(v)=2v," (mod pm.,(BP)), where 1€Z,.

Therefore v belongs to pm,,(BP) +Z (v,"). On the other hand ac-
cording to Adams [3] and Novikov [11], there exists an element «
€ Mne—1(S®) such that ezp() = @, **? and p*»™@*'a=0. Let x € x,,(BP/S")
such that 8 (x) =a, then from the commutativity and from the defini-
tion that @(p" " »™~'m,") =@,**™, we see that there exists an element
2E€Mn, (BP) such that A’ (x) =p"*"~'m,"+h(z). Let y=x—0(2),
then A’ (y) =p"*»™ ;" and dy=c. Consider the element @ (v,*) —
pr ™y en,, (BP/S®. We assert that @ (v,") =p*»™*'y. Since 0 (0 (v,")
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—prrtlyy = — preOtlgy =  prrM¥y =0 it is clear that there is an
element 2’ €7, (BP) such that @ (") =0 (v,*) —p**»™*y. Applying 1’
to this equation we get

h(z') =h"(0(z")) =h" (O (") —p*™*y) =h(v,") —p"m,"=0.

But /4 is a monomorphism, so we obtain 2’=0. By the same argu-
ment it is easily proved that O(v,*) is not divisible by p*»™* in
Taq (BP/S"). q.e.d.

§ 5. The multiplicativity of the spectral sequence.

In this section we shall prove the multiplicativity of the spectral
sequence {E,***(BP),d***(BP)}. Moreover we shall prove the

following theorem.

Theorem 5-1. Let K be a (— 1)-connected CW ring spectrum
such that Hy(K;Z) is free and locally finitely generated over Z or
Zpy. We consider the spectral sequence {E,***(K), d***(K)}.
Then there exist pairings ||,: E"'QE Y > E 5+ cuch that

7)1l maps
Zru,s,t®Zru',s’,t’__)Zru+u’,:+s’,t,+t"
Bru,s,L®Zru',s’,L’_>Bru+u',s+:',H—t"
Zru,s,L®Bru’,s',t’__)Bru+u’,=+s',t+z"

ii) d, is an anti-derivation with respect to ||, i.c., for ac E**",

beEM*Y, d.(ab) =d,(a) -b+ (—=1)***a.d,(b),
2i2)  |lre1 is induced by 11,

iv) |l is the canonical product induced by the ring structure
of Hy(K:Z) and Ext}¥ (A, A). Here (X means the tensor product

over Z or Zy.

In order to prove Theorem 5-1 first we summarize the results
from [8].

5-1. Let A4 be a commutative ring with unit, and A be a graded
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augumented projective Hopf algebra over 4. Let M and N be graded
A-modules. If Tor,"(M,N)=0 for any »>0, then there exists a
pairing

U: Ext (M, A)QExt, " (N, 4) —Ext "+ (M®N, A).
A

This pairing is defined as follows: Let X be an A-projective resolu-

tion of M and X’ an A-projective resolution of N. Under the above

conditions, the complex XXX’ is an A®A-projective resolution of
4 A

M@N. Therefore we obtain a homomorphism:
A

Homy (X, A Q@Hom, (X', A) > Honyga (XQRQX’, AR A).
4 A A

Passing to homology, we obtain an external pairing:

Ext,(M, A) QExty(N, A) >Ext,g0(MQN, AQA).
’ 4 A 4

The diagonal map D: A—>AXA induces the homomorphism:
A

Extiga(M@N, AQA) —Ext,(MQN, A).
Y Y

Composing this with the external pairing, we obtain the required pair-
ing U:

U: Exty,(M, A)QExt,(N, A) >Ext,(MKN, A).
A

5-2. Under the same conditions as 5-1, the pairing U is natural,
that is, for A-homomorphisms f: M—M’ and g: N->N’ the following
diagram commutes under the conditions Tor," (M, N) =Tor,"(M’, N’)
=0;

U
Ext,5* (M, A) QExt, " (N, A) —>Ext " (M@N, A)

| r#@o# b Jueor
Ext (M, HRExt" (N, A) —>Ext "+ (M'QN’, 4).
4
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5-3. Let 0»M—-M”"—-M’—0 be a short exact sequence of A-
modules. If N is a A-flat A-module, then the following diagram com-
mutes;

U
Ext," (M, D@Lt (N, 4) —> Ext "+ (M@N, 4)
ld@id " lA’ 4
Extd ™ (M, A) QExt (N, A) ——Ext % (M'QN, 4),
Y

where 4 is the connecting homomorphism induced by the short exact
sequence; 0->M—->M”"—->M’—0, and 4’ is the one induced by the short
exact sequence; 0>MRN->M"QN—->M KQN—O.

A A A

5-4. Under the same conditions of 5-3, the following diagram
commutes up to sign (—1)*"%;

U
Ext o (N, A) QExts " (M, A) ——> Exts ™+ (NQM, A)
lid@d o ld” 4
Ext (N, A)@Ext, v (M, A) —>Ext 400 (NQM, A),
1

where 4”7 is the connecting homomorphism induced by the short exact
sequence; 0—>NRM—->NKRQM” —->NRRM’ —0.
A A A
Secondly we summarize the results of the reduced multiplicative
cohomology theory A*( ). Our reference is [2].

5-5. Let (X, A) and (Y, B) be a pair of CW-spectra with base-
point. We denote the smash product of X and Y by XAY. The
following diagram commutes;

M (XANY/ANYUXAB)

/

M (XANY/XAB) | hI*(XANY/ANY)

SN TN

M (ANYUXAB/XN\B) h*(XAY/ANAB) h*(ANYUXAB/ANY)

SN =

hW*(ANY/ANB) h*(XA\B/ANB)

~N S

h*(AAYUXAB/ANAB)
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In the above diagram, all straight sequences are exact. The above
diagram displays A* (AAYUXAB/AAB) as the direct sum 2*(AAY/
ANB)@Pr*(XAB/ANAB). Itis easily proved that if the sequences;
MEXNY/ANYUXAB)-SRHXAY/XAB)-I*AAYUXAB/XAB)
and W*(XAY/AANYUXAB)->W(XANY/ANY) >I*(AANYUXAB/
ANY) are short exact sequences, then so are the other exact se-

quences in the above diagram.

Thirdly we shall apply the results 5-1~5 to the case A2*( )=
BP*( ), A=A"®", and A=n,(BP). From Theorem 1 in §1, A®P is
clearly A-projective.

Now we shall construct a pairing [],: E,* %' QE,*"*"Y — E¥F4/ 5480417
First we construct a pairing in the E,-terms. We consider the skeletal
filtration {K’} as Lemma 2-1 or Remark 2 in § 2. Then it is obvious
that

i) BP*(K*/K") is A-free for any u=v,

ii) the Kiinneth formula holds for u=v,u’'Z=v":

k: BP*(K*/K")QBP*(K*/K")
—BP*(K*ANK"/K*NK"UK"ANK"),
where /\ is the smash product.
By i) and ii) we can define ||, as the composition (x*)#o (™ D)#oU':

U
Ext3* (BP*(K*/K*™), ) QExtss5+* (BP* (K* /K¥'™), 4) —>
et ruiw . R Gl
Extf{-;;.t-u +utu (BP* (Ku/Ku_l)®BP* (Ku /Ku _1), A)
A

*)#
Bt n (BP* (K* AK* /K* NK* UR*AK* ), ) 22

ExtxA;;f,t+e’+u+u’(BP* (Ku+u'/Ku+u'—1)’A)’
where y: K*AK*/K* 'AKYJK*AKY ' K** /K***~1is the struc-
ture map of the ring spectrum K.

Now Theorem 5-1 follows from the standard arguments. So we

omit the proof.
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