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0. Introduction.

In this paper, we shall generalize the results obtained in [13].
Let S be a scheme and let G be a surjective smooth affine group
scheme over S with connected fibres and let X be a normal noetherian
S-scheme on which G acts regularly. We shall prove following three
results;

a) For any line bundle L on X, there is a positive integer m
such that L™ (= L®") is G-linearizable (cf. Theorem 1.6). Moreover,
if S is noetherian and if X is normal and quasi-projective over S,
then there is a coherent Os-Module E (cf. Theorem 2.5) such that

(1) There is an immersion ¢: X—>P(E),

(2) There is a representation p: G—Autg(P(E)) and

(3) The following diagram is commutative.

a

GxX X
S
P X '
C . P&

Auts(P(E)) x P(E)
S

where ¢: GXxX—>X is the regular action of G on X and ¢’ :
S

Autg(P(E)) x P(E) >P(E) is the canonical action of Auts(P(E)) on
P(E). Therefore, the regular action G on X is linear.

b) If S is normal, noetherian and if X is an S-scheme satisfying
the property (N) (cf. Definition 3.5) on which G acts regularly,
then X is covered by G-stable open subschemes (U;) i<, which are
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quasi-projective over S (cf. Theorem 3.8). Therefore, combining
these results, every regular action of G on X is obtained by patching
the quasi-projective S-scheme (X1) 1<i<n on which G acts linearly (cf.
Theorem 4.9). Moreover, if G is of locally multiplicative type, then
X is covered by G-stable open subschemes (U;) <<, which are affine
over S (cf. Corollary 3.11).

¢) If S is normal, noetherian and if X is an S-scheme satisfy-
ing the property (N) on which G acts regulary, then there exists
an equivariant completion X (cf. Theorem 4. 13), i.e., X is an S-sheme
on which G acts regularly such that

(1) X is proper over S,

(2) X contains X as a G-stable open dense subscheme and

(3) The action of G on X is the extension of the action of G
on X,

In the proof of this main theorem, the author owes the most
part to the results and arguments of P. Deligne [2].

Notation and convention. let S be scheme and let G be an
S-group scheme. We denote the multiplication of G by sz and the
unit section of G over S by e. Let X be an S-scheme. The regular

action of G on X is denoted by 6:GXX—X and p,:GXX—X is
S S

the second projection. Moreover, for every point s of S, X, is the
fibre of X over s.

The author wishes to express his sincere thanks Professor M.
Nagata for his many valuable discussions and encouragement and to
Professor P. Deligne for his kind letters.

1. Preliminary results.

In this section, we shall prepare several results. Most of them
are generalized ones of the results used in [13].

Lemma 1.1. Let S be a normal noetherian scheme and let G
be a surjective smooth affine group over S with connected fibres.
Then Picg/s(S) =Pic(G)/Pic(S) is a torsion group.
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Proof. It is well-known that if S=Spec (£) (& being a field),
the Pic (G) is a torsion group. Hence, by virtue of [3] Err. IV.
21.4.13, Lemma 1.1 is easily proved. q.e.d.

Using Lemma 1.1, we shall prove the following.

Lemma 1.2. Let G be a surjective smooth affine group scheme
over S (S being a scheme) with connecred fibres and let X be a
normal noetherian S-scheme on which G acts regularly and let L
be an invertible sheaf on X. Then there is a positive integer m
such that ¢* (L™) Sp* (L™).

Proof. GxX is a surjective smooth affine group scheme over

S
X. By virtue of Lemma 1.1, there is a positive integer m such that
0* (L™ @p* (L™) 'Sp,* (M) where M is an invertible sheaf on X,
Let ¢: S—G be the unit section of G. Restricting these invertible

sheaves on the closed subscheme ¢x X of Gx X, we get that M is
S S
isomorphic to Oy. Hence o*(L™) Sp,* (L™). q.e.d.

For a while, we assume that S,G,X and L are under the situa-
tion of Lemma 1.2 and let ¢:6*(L™)Sp,*(L™) be an isomorphism
whose existence has been shown in Lemma 1.2, Let us modify the
¢ so nicely that it provides a G-linearlization of L. In order to do

this, let us consider the following diagram;

1X 0
GxGxX GxX
(1) S S S
MX1y o
0
Gx X X
S
2) GxGxX Pas GxX
S S S

where p.; is the projection to the second and the third factors. From
these we have the following diagram which is not necessarily com-
mutative. Our present aim is to find ¢ which makes the diagram

commutative,
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. Aex0)* ()
[oo(Igx0)]* (L") ———— [0 (1gx0)]* (L™)
[oopun]* (L™)
lzpz"é (#)
[P2°P23] * (Lm)

[oo(ux1n]* (L") —————1» [P (ux1)]*L").
Hence, the obstruction (uX1y)*(¢)o[pk(d)e (laxa)*(¢)]™" for the
commutativity of the above diagram is in Isom ([ g0 (X 1x)]*(L™)

=H'(GxGxX,O¥.x). Before computing the obstruction, let us
S S S 8
recall some lemmas due to M. Raynaud ([9] Cor. VII. 1,2 and Prop.

VIIL 1.3).

Lemma 1.3. Let S be a reduced scheme and let G be a flat,
locally finite presentation group scheme over S with smooth, con-
nected maximal fibres and let f be an element of H*(G,Og*) which
takes 1 on the unit section of G. Then f is a character of G.

Lemma 1.4. Let S be a normal noetherian scheme and let G
be a flat, finite presentation S-group scheme such that G, -is smooth
at every point s(s€S) of codimension 1. Then we have that

(*) Homq, (G, Gm) g H Homar (G’I) Gm,v)
7

where y ranges all the maximal points of S and the map (x) is the

restriction map.
In addition to the above, we need

Lemma 1.5. Let G be a geometrically integral k-group scheme
(k being a field) and let K be a regular extension field of k. Then,
if f is a character defined over K, f is defined over k.

Proof. If k is algebraically closed, then lemma 1.5 is obvious.

Since k(G) and K(G) are linearly disjoint over k(G), k(G) NK(G)
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=%(G) where k is an algebraic closure of k. g.e.d.

Now we shall come back to the situation before Lemma 1. 3.

Let f be the element of H'(GXGXX, Og.s.x) represented by
S S 58

(UX1p)*(p) [PE() o (1gX0)*(¢)] " and let e: S—>G be the unit section
of G. If we put f'=f|lexGx X, then f’ can be regarded as an ele-
S S

ment of H* (G X X, O%.x) and A, =f/p%X(f’) is a character of GXG X X

S S
by virtue of Lemma 1.3. Since GX X is a smooth X-scheme with
S .
connected fibres, every maximal point 2 of GX X lies over a maximal

S

point & of X and k(z) is a regular extension field of 2(x). Hence,

by virtue of Lemma 1.4 and Lemma 1.5, 4,(9,, 92, ) =2,(¢,, ¢, x) for

every (¢, s, r) €GXGx X. By the same arguement p¥(F’) =p%(1y)
S .

S :
p:*(0) where 1, is a character of GXX and ¢ is an element of
S
H°(X,0x*) and p;: GXGXx X—X is the projection with respect to
S S

the third factar. Therefore, f=21,0%(1.)ps*(0) and we have that
(X LX) =2, pEA)ps* (@) [ % (8) (16X 0) *(¢)].  On the other hand,
(X 1)*(£2* (0) 9)=05* (0) (U X 1)* (8) , 25 (£2* (0) ¢) = p:* (0) % (¢) and
(ex 0)* (p* (0) ¢) = p%(0*(0)) (e X 0)* (¢) . Moreover, p3(0*(0)) = p% (§)
p:s* (0) where & is a character of GX X by virtue of Lemma 1.3 and

Lemma 1.4. Hence, if we replace ¢ by p,*(0)¢, then we 'have an
isomorphism ¢: 0% (L™) S p,* (L™) such that (uX1y)*(¢) =2,2:(42)

[p%(@)o(Qegxa)*(¢)] with some character 1, (or ;) of G>§G§X

(or Gx X resp.). Restricting these isomorphisms on the closed sub-

schemes ¢XGX X (or GXexX) of GXGXX and using the fact
S S S S : S S
that 2,(9,, 9:, ) =2,(9,, ¢, x) for every (g,,¢,,x) eGXGXX, we can
S S

easily see that 1,=1 (resp. A,=1). Hence we have the desired equaliy
(X 10)*(p) =% (@) (Lex 0)* ().

Thus, we have the following which plays an important roll in
section 2,
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Theorem 1.6. Let S be a scheme and let G be a surjective
smooth affine group scheme over S with connected fibres and let X
be a normal noetherian S-scheme on which G acts regularly. Then
for any invertible sheaf L on X, there are a positive integer m and
an isomorphism ¢: 0¥ (L™) Sp,* (L™) such that (uX1x)* (@) =pu(d)-
(1gx0)*(9).

2. Quasi-projective case.

In this section, we shall generalize Theorem 1 in [13] which
was a key to prove the existence of equivariant completion.

At first, we shall prepare lemmas on dual actions (cf. [6]). Let
S be a scheme and let G be an affine group scheme over S, ie
G =Spec(B) where B is an Os-Algebra. Then we have OsAlgebra
homomorphisms;

fA:B—>BxB and é:B—0g
Os

which correspond to the multiplication of G and the unit section of
G, respectively.

Definition 2.1. (1) Let M be an Ogs-Module. If there is an
Os-homomorphism of @g-Modules; 6: M—BXM such that

Os
(a) the following diagram is commutative

3/' Os\&

B®B®M

N g
BRM

Os

and
Ry . o . .
(b) M—->B®M —— M is the identity morphism, then ¢ is called
S
a dual action of G on M.
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(2) Let ¢ be a dual action of G on M and let N be an Os-
submodule of M. Then N is called invariant under the dual action
6, if 6(N)CIm[BN—->BRXM].

Os s
The following is a generalization of a very important lemma due

to Cartier ([6]), and though the proof is mostly the same as his, we

shall give it here for completeness.

Lemma 2.2. Let S=Spec(A) be an affine noetherian scheme and
let M be an A-module and let G=Spec (B) be an affine group
scheme over S whose coordinate ring B is a projective A-module.
IfF 3:M—>B§M is a dual action of G on M, and if N is a finitely

generated A-submodule of M, then there exists a finitely generated
invariant submodule E(N) of M such that .

(1) E(EMNN))=E(N) and E(N) is the smallest invariant sub-
module of M which contains N.

(2) Let S’=Spec(A’) be a noetherian S-scheme and let B’
=BRA’, M'=MRA’, N =In[NRQA’>MRA’] and let 6': M —

A A A A
B'E?/M’ be the induced dual action of G’=Spec(B’) on M’. Then
E(N’)=Im[E(N)§A’-—>M’]. In particular, if A’ is A-flat, then

E(NRA") =E(N)RA’.
A A

Proof. Let B*=Hom,(B, A) be the dual module of B. We
shall define an A-endmorphism 7, of M for any element b* of B* as

follows;

Toe: MDn—y(n) =Z b*(b)neM

where G (n) =Y_; 5;Qn..

Then y,407s,s =7, for all b* b,eB* (B* is canonically con-
sidered to be an A-algebra and b,*-b,* is the product of 5,* and 5,*). We
shall put E(N) =2 en 75+ (IN). Let us show that E(N) is the de-
sired invariant submodule of M.

(i) It is easily seen that NCE(N) by Definition 2.1 (b).

(ii) Let {n} be a generator of N let &(n;) = ; b;;Qn;; where
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byyeB and n;;eM. Then 714 (n) =30, 6% (b)) n;; for any b* e B*,
hence E(N) is a submodule of Y, ,7;,;A. Since A is noetherian,
E(N) is a finitely generated A-submodule of M,

(iii)  Since 7Tpripge="T75,+°Ts, Fr(EN))SE(N) for any b* e B*,
Let m be an element of E(N) and let 6(m) =Y b,&m;. We shall
shall show that we can take the m;'s in E(N). Since B is A-flat,
it is enough to prove the following; Let N’ be any A-module and

let 3 6:Qn; be an element of BRN’ such that > b*(6,)Xn;=0 for
A

any b*e B*. Then M 6,X1,=0. Since B is A-projective, BPC = A%’
for some A-module C. Let {¢,} be the free basis of A®' and assume
that 0,=>, aiey(an€A) for every i. Then Y 0,Qm:=> @ X
apn; and Y ann;=0 for every 1 by our assumption, hence M b; R,
=0,

The above (i)-(iii) show that our E(N) has the properties (1),
(2). The property (1) is obvious. Let {#;} be a generator of N
and let 6(n) =Y, b:;;Qn;,. Furthermore, let {e,} be a basis of
BPC=A%. Then E(N) is generated by {3 ai;n:;} where b;;=
S aine,. Thus we can see easily the property (2). q.e.d.

Corollary 2.3. Let S be a noetherian scheme and let G = Spec(B)
be a smooth affine group scheme over S with connected fibres and

let G: M—>BXM be a dual action of G on M where M is an Os-
Os
Module. Then for any coherent Og-submodule N of M, there is a

coherent invariant Og-submodule E(N) of M which contains N.

Proof. Let = (S,).cs be an affine open covering of S. Then
for any «, H'(GXS,, Os,s,) is an H*(S,, Os)-projective module by
S S

virtue of [10] Prop. 3.3.1. Hence we can construct a coherent in-
variant Og-submodule E(N) of M which contains N by virtue of
Lemma 2. 2. q.e.d.

Corollary 2.4. Let S be a noetherian scheme and let G =Spec(B)
be a smooth affine group scheme over S with connected fibres and
let H be a closed subgroup scheme of G which is smooth over S
and has connected fibres. Then there cxist a coherent Og-Module
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M one which there is a dual action of G and a quotient Og-Module
N of M such that H(T) (H(T) being the set of T-valued points
of H) is equal to {gG(T)|Spec (S* (Ny) is invariant under g}
(S* (Ny) being the symmetric Or-Algebra of Nip) for any S-cheme
T. Moreover, if S is a noctherian regular scheme of dimension 1,
then M and N are locally free sheaves.

Proof. Let I be the defining ideal of H and let 7: G—S be the
structure morphism of G. Let P be a coherent Os-submodule of B
such that the ideal generated by P in B is I. Then M=E(P) and
N=M/MNn,(I) are desired ones. In order to prove the first part
of Corollary 2.4, we may assume that 7" and S are affine. Now we
shall put Spec= (A), T =Spec(A’), G=Spec(B) and let §: M—-BRM
be the dual action of G on M. Since B/I is a projective A-module
TUINM)YCBRIMNIKRB+BRI) =IRQM+BRINM). Thus Spec
(S*(N)) is invariant for any element g of H(S). Moreover Spec
(S*(N”")) where N’ =N®A’ is invariant for any element ¢’ of H(T).
Let B'=BRA’, M'=M®A’ and let ¢’: M'->B’QM’ be the dual
action of G’=Spec(B’) on M’ and let ¢:B’—»A’ be an A’-homo-
morphism such that ¢’ (Im[INM)RA’—->M’]) CIm[m@M’ —B QM’]
+B Q@ Im[INM)RA"->M’] where m=Keré&. In order to prove
our assertion, it is enough to show that m DI’ =Im[IQA’—B’] which

is the defining ideal of HX7T in GXT. Now let us pick a system
S S

of generators {f, -, fa} of P. Then {fi\®1,- -, f,Q1} generates the
ideal I’, hence we have only to prove that f;®1 is in m (=1,2, -,
n). From the above assumption on m, we have that ¢’ (f£;®1)
=2"12;Qy;+2 b:Qc. where the x; (resp.y,, by or c¢;) are in m
(resp. M’, B’ or [UNM)RA">M’]). Let é’: B’—>A’ be the unit
section of B’ and let ¢:M’—B’ be the canonical homomorphism.
Then f:®1= (1Q¢")  (1Q¢) 0" (Fi®1) =321 &"(p(¥,) x;) + 2 &' (plci))b.
Since ¢’'|I’=0, f,Q®1=3]¢(p(y,)x;, hence f,®lem. In order to
prove the second part of Corollary 2.4, we may assume that S= Spec
(A) and that A is a discrete valuation ring. Since B is a torsion
free A-module, M is a free A-module. If ameINM where ac
A— {0} and meM—~ (INM), then acI because I is a prime ideal of
A. This is a contradiction because B/I is A-projective. Therefore
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N is free. q.e.d.
Now we shall generalize Theorem 1 in [13].

Theorem 2.5. Let S be a noetherian scheme and let G be a
surjective smooth affine group scheme over S with connected fibres
and let X be a normal noetherian S-cheme which is quasi-projective
over S and on which G acts regularly. Then there is a coherent
sheaf E on S such that

(1) There is an immersion ¢: X—>P(E),

(2) There is a representation p: G—>Autg(P(E)) and

(3) The following diagram is commutative.

0

GxX
S

X

oXg ¢

o-/

Auts(P(E)) §P (E) P(E)

where 0'is the canonical action of Auts(P(E)) on P(E).

Proof. Since X is quasi-projective over S, there exist a coherent
sheaf M on S and an immersion {; X—>P(M). Let L=0pu,(1)|X
where Opan (1) is the tautological invertible sheaf on P(M). Then,
by virtue of Theorem 1.6, we may assume that

(i) there is an isomorphism ¢: ¢* (L) —p,* (L) and

(i)  (ux1)*(@) =p5(B)>(1ex0)*(¢).

Let f: X—S be the structure morphism and let G=Spec(B). From
(i), we have homomorphisms;

1) Y2
S« (L) —>fypu0™ (L)J‘M’)f*Pz*Pz* €L —*B%() fe ).

S
(The last isomorphism is obtained from the Kiinneth formula.)
We define ¢ to be the composition of above morphisms. Then it is
easily seen that & is a dual action of G on f,(L) by virtue of (ii).
Let a: M—f,f*(M)—>f,(L) be the canonical map and let N be the
image of M in f,(L). N is a coherent Og-submodule of f,(L). If
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we put E to be the coherent invariant submodule E(N) that is ob-
tained in Corollary 2.3, then E is the desired coherent sheaf. In fact,
since X—P (M) is an immersion, the canonical surjective map f*(E)—L
gives an immersion ¢: X—>P(E). On the other hand, the dual action
0 of G on E gives a linear regular action ¢’ of G on P(E), i.e.,
6':G§P(E) —P(E) such that

1 ’
GxGxPE) —2 _ GxP(E)
S S S
" 2 X 1pm a’
6/
G x P(E) ~ P(E)
S

is commutative and

.. e X 1pp 0’ . . . .
(it") P(E)——>GXP(E)—>P(E) is the identity morphism.
S

Furthermore, it is easily seen that

1)
GxX X
S
(iii”) Igxe @
G xP(E) P(E)
S
is commutative. q.e.d.

Corollary 2.6. Under the situation of Theorem 2.5, X has
an equivariant completion.

Proof. Let X be the smallest closed subscheme of P(E) such
that X dominates X (cf. [3] Prop. 9.5.10). Then X is an equiva-
riant completion of X. q.e.d.

3. G-stable quasi-projective open coverings.

In this section, we shall prove that every point of X is contained
in a G-stable open subscheme which is quasi-projective over S. This
is a generalization of LLemma 8 in [13].
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Let X be a noetherian scheme and let Z'(X) be the group of
cycles of pure codimension 1 of X. Here we shall consider only
those elements with integral components of Z'(X), ie., D=3 n,D;
where the D, are integral closed subschemes of X of codimension 1
and we shall call such elements Weil divisors of X.

At first, we shall recall a relation between effective Cartier
divisors and effective Weil divisors on normal noetherian schemes.
Let D=Y7_,n,D; be an effective Weil divisor on a normal noetherian
scheme X and let U= {U,} (A,=I"(U,, Oy,)) be an affine open cover-
ing of X. We shall put P,; to be prime ideal of /1, associated with
the divisor D;NU, in A, for all i and a. If D;,NU,=¢, then P,;=A,.
We shall here define an ideal I,(D) to be N, P{Y where PSP is
the symbolic 7;-th power of P, ;. It is easily seen that the associated
ideal sheaves I, (D) on the U, can be patched to each other, hence
we can construct an ideal sheaf (D) on X such that I1(D)|U,=1,(D)
for all . We shall here call (D) the ideal sheaf of D. Then D
is a Cartier divisor if and only if T(D) is an invertible sheaf (cf.
E.G.A. Vol. 1V, Prop. 21.7.2, Cor. 21.7.3).

Next we shall recall a property on symbolic powers. Let A be
a local ring and let A be the (strict) henselization of A. We shall
refer to [11] on the (strict) henselisation of .A. Then, there is a
filtered inductive system of {A;} where the A; are local étale A-
algebras and A is the inductive limit of {A;}. A is noetherian (resp.
reduced or normal) if and only if A is noetherian (resp. reduced or
normal). A is faithfully flat over A. Now let A =lim A; where the
A;=(B;) ., the B;are étale A-algebras and the #; ar-e—l;aximal ideals
of B; lying over the maximal ideal n of A. Assume that B is a

reduced A-algebra. Then §=B®/I is reduced. In fact, since B; is
A

étale over A, BRA,; is reduced, hence B is reduced. Therefore, if
A

we assume that A is a noetherian ring and that B is a normal finitely
generated A-algebra, then for any prime ideal of » in B of codimen-
sion 1 (i.e., dim B,=1), pl? has no embedded prime ideals and P™B =
5NN p,™ for every positive integer m where the p; ((=1,2, .-+, 7)
are the prime ideals in B of codimension 1. Note here that B is also

normal noetherian.
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Let % be a field and let B be an integral, finitely generated &-
algebra and let 2 be a finite purely inseparable extension field of %.
Then Spec (B, £’) is irreducible. Therefore, if p is a prime ideal in B
of codimension 1, then p®), %’ is a primary ideal in BQ#’. Further-
more, if Spec (B) is geometrically normal, then p™®%k’=p"™ for
every positive integer m where ¢ is a power of characteristic of %
and p’ is a prime ideal in BX#k’ of codimension 1. Therefore, we
have the following.

Lemma 3.1. (1) Let A be a noctherian local ring, B be a
normal finitely generated A-algebra and let p be a prime ideal in
B of codimension 1. Then p(BR4 A) (A being the (strict) henseliza-
tion of A) has no embedded prime ideals and p™ (B®A§) =p,™
N--Np.™ for every positive m where the p; (=1, .- r) are prime
ideals in B of codimension 1.

(2) Let k be a field, B be a finitely generated k-algebra such
that Spec(B) is geometrically normal and let p be a prime ideal in
B of codimension 1. Then, for any finite purely inseparable ex-
tension field k' of k, pQQk is a primary ideal in BRk and p™ Rk
=™ for every positive integer n where ¢ is a power of charac-
teristic of k and p’ is a prime ideal in BRE of codimension 1.

We shall add two elementary lemmas on Weil divisors.

Lemma 3.2. Let S be a noctherian scheme and let X be an
S-cheme such that

a) X is of finite type and flat over S and

b) X, is integral for all points t(t€S) of codimension 1.
Furthermore let D be a Weil divisor on X such that DN X,=¢ for
all maximal points t of S. Then there is a Weil divisor E on S
such that D is the inverse image of E.

Proof. We may assume that D has only one integral component.
Let x be the maximal point of D and let v be the image of x. Then,
since X is flat over S and x & X, for every maximal point ¢ of S, y

is the point of codimension 1. Let E={y} in S. Then the inverse
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image of E is a Weil divisor of X by our hypotheses a) and b). It

is easily seen that D=inverse image of E. q.e.d.

Let Spec (A) be a normal noetherian scheme. For a regular
meromorphic function f on Spec(A), let cyc(f) =D —E be the Weil
divisor associated with the Cartier divisor (f) with the positive (or,
negative) part D (or E resp.) (cf. [3] Chap. IV). Take a non-zero
divisor ¢ of A such that Spec (A/tA) is nomal. Let D=3 mD,
(resp. E=)Y n,E;) and let p; (resp. q;) be the defining ideal of D,
(resp. E;). Assume that every p,=p,+tA/tA (resp.g;=q;+tA/tA)
is a semi-prime ideal in A/tA of codimension 1 for every 7 (resp.j).
In this case, we shall say that D; (resp. E;) meets with Spec(A4/tA)
at closed integral subschemes in Spec(A) transversally. For every
i (resp.j), we shall put p;=p,N--Np* (resp.g,=g,'N---Ngy)
where the p.* (resp.g,?) are the associated prime ideals of P, (resp.
G, and define D=Y"; , m;D/* (resp. E=Y",¢) where the D;* (resp. E,)
are the closed integral subschemes of Spec (A/tA) defined by p.*
(resp. g;5) (k=1,--- kiie=1,---,¢;). Then we have the following

lemma.

Lemma 3.3. Under the above situation, D and E are linearly

equivalent to each other.

Proof. In order to prove Lemma 3.3, we may assume that
Spec(A) is integral because Spec(A) is normal. Let {r.} be the set
of associated prime ideals of £A. Then every 7, is of codimension 1
in A. Moreover, r,5p; and r,5q; for all i, j and k by our assump-
tion. Hence we can write f=a/b where a€ A, b€ A and ad&r,,
be&r, for all k. Let f=a/b where a (resp.b) is the image of a
(resp.b) in A/tA. Then f is a regular meromorphic function on
Spec (A/tA) and cyc (f)=D—E because A, is regular for every
prime ideal p (D¢A) in A of codimension 2. q.e.d.

Under the above preparations, we shall prove the following
Lemma 3.6 which is analogous to Lemma 1.2 in section 1.

Before proving Lemma 3.6, let us introduce the following notion
(cf. [9] Lemma IV. 2.4.).
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Definition 3.4. Let S be a noethrian scheme. We say that an
S-scheme X has the property (N) if the following conditions are
satisfied ;

(1) X is flat and of finite type over .S,

(2) X, is geometrically normal for all maximal points ¢ of S
and

(3) X, is geometrically integral for all points ¢ (¢€.S) of

codimension 1.

Remark 3.5. M. Raynaud proved the following (cf. [9] Lemma
(v. 2.4.)). Let S be a normal noetherian scheme and let X be an
S-scheme such that

a) X is flat and of finite type over .S,

b) X, is geometrically normal for all maximal points ¢ of S and

¢) X, is geometrically reduced for all points ¢ (¢€S) of codi-
mension 1.

Then X is also normal.

Now we shall prove LLemma 3.6.

Lemma 3.6. Let S be a noctherian scheme, G be a surjective
smooth affine group scheme over S with connected fibers and let X
be a normal S-scheme which has the property (N) and on which G
acts regularly. Assume that D is a Weil divisor of X such that
Supp D contains no maximal points of fibers of X. Then there are a posi-

tive integer m and a regular meromorphic function f on GX X and a
S
Cartier divisor E on S such that

0* (D) —p* (D) + p*1* (E) =cyc (f)

where w: X—S is a structure morphism. Therefore, if Pic(S) is a

torsion group, then we have that
¥ (mD) — p,* (inD) =cyc(f)

for a positive integer m and a regular meromorphic function f.

Proof. Of course, we may assume that D is an integral closed
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subscheme and that 7: X—S is surjective, S and X are integral be-
cause X is normal. At first we assume that S=Spec(k) where % is
a field (p=-characteristic of k). Let k£’ be a finite algebraic extension
field of £ such that G is rational over %” and let k,” be the separable
closure of kin #’. Then I(D)®k,=I1(D’) where I(D) (resp. I(D"))
is the ideal sheaf of D (resp.D’) and D’ is a Weil divisor on X®*k,’
which is written in the form D’=D,/+---+D,” with some integral
closed subschemes D,” of codimension 1 in X®k%,~ (cf. Lemma 3.1).
Moreover, 1(D)®%& =I1(D”) where D” is a Weil divisor on X®#k’
(cf. Lemma 3.1). Since G is rational over %/, we may assume that
a*(D”) —p* (D”) = (f") for some f’€k’(GxX) by virtue of Lemma
5 [13] and lemma 1.1. Let I'=Aut, (k") and let [ be the order of
I'. Then ¢*(D”) —p,*(D”) = (f’%) for all al" because I(D”)=
I(D)®*F’. Therefore, there is a positive integer z such that g* (p"(D”)
=2 (p"ID") = ((I1af'*)*"). Since ([l.f")""€k(GxX), ¢*(mD)
—p*(mD) = (f) for a positive integer m and a non-zero meromorphic
function fek(GxX). Next we consider the general case. Let 7
be the maximal point of S. By the above result, there are a positive
integer m and a non-zero meromorphic function f,€k(y) (G,xX,)
such that ¢,*(mD,) —p¥,(mnD,) = (f,). By virtue of lemma 3.3, we
have that ¢* (mD) — p,*(mD)— p,*n* (E) = (f) where E is a Weil divisor

on S and f=f, is non-zero meromorphic function on GxX. Let

S
e¢: S—G be the unit section of G. Since GX X is smooth over X,
S
NXz=ex X is a regular immersion in G X X. Therefore, for any point

S S
x of X, there is an affine open subscheme U=Spec(C) (3x) in GXxX
S

such that there is an étale morphism ¢:'U—+X[t,, o ta], UNX=p!
(X =the closed subscheme in X[¢,-:,¢,] defined by the ideal (¢, ---,
t,)) (cf. [4] Expose II. Theorem 4.10.). Hence, if we denote the
element (€C) corresponding to each ¢, (=1, .-- 2#) through ¢ by ¢
also, then {¢,---,¢,} is a C-prime sequence in the sense of Serre.
For each i, Spec(C/¢,, -+, ¢)) is smooth over X and Spec(C/ (¢, -, %))
meets with p,”'(D) at closed integral subschemes transversally in
Spec (C/t,, -+, ¢,_;)) where D is any closed integral subscheme in X

of codimension 1. Since X is normal and Spec (C/ (¢, ++-, ¢;—;)) is smooth

]
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over X, n*(E) is a Cartier divisor on X by virtue of Lemma 3. 3.
Moreover, since 7: X—S is a faithfully flat morphism, E is a Cartier
divisor on S. The second part of Lemma 3.6 is obvious. q.e.d.

Corollary 3.7. Under the situation of Lemma 3.6 if gG(S)
and if Pic(S) is a torsion group, then there are a positive integer mn

and a regular meromorphic function f on X such that

g.(mD)y —mD=cyc(f)
Proof. The proof is similar to that of Lemma 3.6.
Now we are in position to generalizz LLemma 8 in [13].

Theorem 3.8. Let S be a normal noetherian scheme and let
G be a surjective smooth afline group scheme over S with connected
fibres and let X be an S-scheme which satisfies the property (N)
and on which G acts regularly. For any dense open subscheme U
of X which is affine over S, we shall put W=p,(c7'(U)) and let
{D,, -, D,} be the set of irreducible components (with reduced
structures) of X—U. Then, for D=3 nD, with positive integers
1y, there is a positive integer m such that mD|W is a Cartier divisor
on W and Ow(mD\W) is S-wwery ample. In particular W is a G-
stable quasi-projective open subscheme of X over S.

Proof. In order to prove Theorem 3.8, we may assume that X
and S are integral and that X=W. At first, we assume .S=Spec (k)
where % is a field. Let 2’ be the separable closure of £ Then, since
the set of k’-rational points of G is dense in G®Fk’, there are finitely
many k’-rational points {g,, -+, 9.} of GRL (g,=the unit of GRFL’)
such that X®#k& = U7-0¢: (URL’). By virtue of lemma 3.2, there is
a Weil divisor D’ on X®#%’ such that T(mD)®%E =I(mD’) for every
positive integer m. On the other hand, there is a positive integer m
such that ¢* (mD’) = p,* (mD") + (f) where f is a regular meromorphic
function on (GX X)X 4%’ by virtue of Lemma 3.6, Therefore, mD’,
m(g,D’), -, m(g,D’) have following properties;

(1) m(g.D’) is linearly equivalent to mD’ and X®*k" —m (g,D’)
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is affine for every 7 (z=0,1,---,r) and
(@) XQk =Ui0 (XQK —m(9:D"))

Hence, mD’ is a very ample divisor and is a Cartier divisor for a
sufficiently large m. Thanks to the descent theory, mD is a very ample
Cartier divisor on X. We consider next the general case. By virtue
of [3] IV. 8.5.5and IV. 8.10.5.2, we may assume that S=Spec(A)
where A is a local normal noetherian ring. We shall prove Theorem
3.8 by an induction on dimension of A. When dim A=0, we have
already proved it. Let s be the closed point of S and let S,=S— {s}.
By the induction hypothesis, we may assume that Theorem 3.8 is
true over S,. Let A be the strict henselization of A and let §=Spec
(ﬁ), S,=8—5 where § is the closed point of S. Since 5 is the
unique closed point of § lying over s, the dimension of S, is less
than that of S. By virtue of Lemma 3.1, I(mD)®Qs=I(mD) where

D is a Weil divisor on X=XxJS for every positive integer m. On
S

the other hand, by the induction assumption, there is a positive integer
m, such that 7;1,D|ﬂ“’(§0) is a Cartier divisor and is S;very ample
where #:X—S is the structure morphism. Since A is the strict
henselization of A and G=G x S is smooth over S, there are finitely

S
many A-rational points ¢go=e, §,, -+, ¥, of G such that if we put V=
Ui 9:0 (U=UxS), then V;=2X;. Furthermore, since Supp D con-
' S

tains no maximal points of fibres of X and since Pic(S) =0, there is
a positive integer m, such that §(mzﬁ) is linearly equivalent to m,D
for all 3G (S) by virtue of Corollary 3.7. Hence, if we restrict
myD on V, then maﬁﬁvf is a Cartier divisor and is very ample for a
sufficiently large m, by virtue of Corollary 3.7. Thus mD is a
Cartier divisor on X and is S-very ample for m =m,m,. By faithfully
flat descent theory, mD is a Cartier divisor and is S-very ample.

q.e.d.

By Theorem 2.5 and Theorem 3.8, we have the following
theorem.

Theorem 3.9. Let S be a normal noetherian scheme and let

G be a surjective smooth affine group scheme over S and let X be
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an S-cheme having the property (N). Then every regular action
of G on X is obtained by patching the linear actions of G on X;
which are noetherian, normal and quasi-projective over S.

By Theorem 2.5 and Theorem 3.8, we have the following Co-
rollary 3.10 on connected smooth affine k-group schemes. Let G be
a connected smooth affine k-group scheme (& being a field) and let
X be a geometrically normal and geometrically integral k-algebraic
scheme on which G acts regularly. If L is the k-rational functions
field of X, then G acts rationally on L. In fact, if we put f/=T5(f)
for any feL where ¢ is the generic point of G and T,.: X3x—
g're X, then §,: Le f—&,(f) =f'€Q (k(G) ®x L) =the quotient field
of R(G)Q: L is a k-homomorphism such that &, (f) =¢&,&,(f)) for
any ¢,,0.€G and &,(f) =f (e being the unit element of G). Further-
more, by virtue of Theorem 2.5 and Theorem 3.8, we have a rational
l-cocycle 0= {3,} e H'(G(k),k(L)) (k being the algebraic closure of
k) and finitely many elements f,, -+, f, of L such that L=k (f,, ---, f0)
and (Fgfi"ezifil} for any g€G (k) and i (1<i<#). Conversely, if
G acts rationally on a regular extension field L over k2 and if there
are a rational l-cocycle 6={6Q}EH‘(G(};),E(L)) and finitely many
elements f}, -+, f, of L satisfying the above conditions, then it is easily
seen that there is a geometrically normal and geometrically integral
k-algebraic scheme X on which G acts regularly such that L=4%(X)
and the action of G on X induces the rational action of G on L.

Therefore, we have the following corollary.

Corollary 3.10. Let G be a connected smooth affine algebraic
k-group scheme (k being a field) and let L be a regular extension
field of k on which G acts rationally. Then the following two con-
ditions are equivalent

(1) There are a rational 1-cocycle 0= {0,y € H'(G k), k(L))
(k being the algebraic closure of k) and finitely many elements
fi, oy fu of L such that L=k(fy, -, f.) and 6qfi"€\__-‘,if,-/; Sfor any
geG k) and i (1<i<n)

(2) There is a geometrically normal and geometrically integral
k-algebraic scheme X on which G acts regularly such that L=%k(X)
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and the action of G on X induces the rational action of G on L.

We shall now generalize Corollary 2 in [13] which has many

applications (cf. [7]).

Corollary 3.11. Let S be a normal noetherial scheme and let
G be a smooth locally diagonalisable group scheme over S wtih con-
nected fibres (¢f. [56] Exposé VIII) and let X be an S-cheme which
satisfies the property (N) and on which G acts regularly. Then X
is covered by G-stable open subschemes which are affine over S.

Proof. By virtue of Theorem 3.8, we may assume that X is
quasi-projective over S. Furthermore, we may assume that S=Spec
(A) is affine and G=Spec(A[M]) where M is a finitely generated
free abelian group. By virtue of Theorem 2.5, there exist a finitely
generated A-module F and a dual action ¢ of G such X is embedded
into P(F) equivariantly. Let x be a closed point of X. Then we
show that there is a G-stable affine open subscheme U of X which
contains x. Let P be the homogeneous defining ideal of $,(67'(2)) eq
in S*(F) (S*(F) being the symmetric algebra of F) and let X be
the smallest closed subscheme in P(F) which contains X, If X=X,
then Corollary 3.11 is obvious. In fact, if F= (—BIF,,, be the decom-

position of F associated with the action of G on F, then some f,(eF,)
is not contained in P. Therefore, Spec (S*(F),)) is the desired open
subscheme. Hence, we assume that X=X and that I is the homo-
geneous defining ideal of (X —X),q in S*(F). Since PZI, there is
an element f (€I) which is not contained in P. Let V=E(A-f)
(cf. Lemma 2. 2), i.e., V is the smallest invariant submodule of S*(F)
under the dual action & which contains f. Since V&P, there is an
element f, (€V,) which is not contained in P. It is clear that
Spec (S*(F) ) is the desired G-stable affine open subscheme. gq.e.d.

Remark 3.12. If G is multiplicative type over S (cf. [6] Ex-
posé IX), then Corollary 3.11 is not necessarily true. We can con-

struct a counter-example easily.
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4. Main theorem.

In this section, we shall prove our main theorem, i.e., the ex-
istence of equivariant completion which is a genéralization of Theorem
3 in [13]. In [2], P. Deligne proved M. Nagata’s result [8] on the
existence of completion, without using valuation rings. It is not too
difficult to see that his elegant proof is effective in our case, however,
we shall give a proof, along his line, of our main theorem for com-
pleteness. Roughly speaking, our problem is to show that crucial
algebraic schemes appearing in the process of Deligne’s proof are G-
stable. At first, we shall prepare several lemmas on blowings-up.

Let A be a commutative noetherian ring and let a be an ideal of A
and let X=Spec(A), Y=V (a) (Y being the closed subscheme of X
defined by a). Then the blowing-up X of X with center a is covered
by open subschemes {D(x) =Spec(A[a/x])}sca. lLet Z=V(b) be a
closed subscheme of X and let Z” be the pure transform of Z in X.
Then Z’ND(x) is the closed subscheme of D(x) defined by bA[1/x]
NA[a/x] for every x=a. Hence, if x=aNb, then Z'ND(zx) =¢.
Therefore we have the following.

Lemma 4.1, Let X=3Spec(A) and let a and b be ideals of A
and let X be the blowing-up of X with the center a-+b. Then the
pure transform of V(a) is contained in | .cp D(x).

Lemma 4.2. Let the following be a commutative diagram of

noetherian schemes;

U— v —L - x

where

(1) p is of finite type,

(2) i and j are open immersions and

(8) k is an immersion and Y is closed in p~' (V). '
Let a be an ideal of X such that V(@) =F=V-U (V—-U being
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the closure of V—U in X), F,=V(a®) and let b be an ideal of X
such that G=V(b) is contained in F—V set-theoretically and that
pY(G) contains p~'(Fy) N Y scheme-theoretically (Y being the closure
of Y in Z with reduced structure). Then, after the base change
g: X—>X (g being a morphism defined by the blowing-up of X with
the center a+0b), the new closure Y of Y is disjoint with the new
closure V—U of V—-U.

Z g F=ZxX
X
¥4 p’
g —~
X X

Proof. It is enough to prove p’(Y)NV—-U=¢ in X. Thus we
may assume X =Spec(A). Let b be an element of b. Then 6=0 on
YNp~'(F,), hence b= ai;a;a; on Y locally where the a;,a,€q, and
the «.; are local regular functions. Since a,/b is a regular function
on D) in X, 1=3" ay,(a;/b)a; on Y locally. Therefore, p’ (¢ \(F))
N’ " (D)) NY=¢. Since Useb D(d) contains the new closure
V—U of V—U in X by virtue of Lemma 4.1, ¢=¢ ' (F) Ny (Y) D
(V=U)Np (). q.e.d.

Lemma 4.3. Let the following be a commutative diagram of

noetherian schemes;

X X
/ ‘i) ‘q
UC X X

where

1) U is dense, open in X and X/,

(2) p and q are of finite type and

@) X'=g¢(X).
Let F be a closed subscheme of X and let E be a closed subscheme
of X’ which contains p~'(F). Then there is an ideal a of X such
that

1) V(@CF-F and
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(2) after the basc change r; Xf!—>X_ defined by the blowing-up
of X with the center a and after replacing X' by the closure U of
in Xx X', we have q~'(F)CE.
X

Proof. Letg*(F)=EUq '(F)=EUq*(F—F). Then, applying

Lemma 4.2 to the following commutative diagram of schemes;

X’ —q*(F) X’'—E

1 |

X-F X-(F-F) X,

we find an ideal a of X such Supp aCF—F and that after the base
change 3_(/'—0_( defined by the blowing-up X with the center a, the
new closure F of F is disjoint with the image of the closure of
X' —g¢*(F) in X’—E. In particular, replacing X’ by U, this new
closure F is disjoint with the image of X’ —E. q.e.d.

Lemma 4.4. Let S be a noetherian scheme and let the follow-
ing be a commutative diagram of separated, finite type S-chemes;

Xi __’Xi

(%) (/ (1<i<n)

vC__. X

where
(1) U is dense, open in X and X, (1<Vi<n) and
(2) X, is proper over S,
and let X*=the closure of {(u,---,u)|lucU} in )_{,E'-‘g)_(n. More-

over assume that F, is closed in X; (1<Vi<n) and N, p.'(F) =¢
where p: X*—>X, is the i-th projection. Then, after replacing X,
by a blowing-up of X; with a suitable center contained in F,—F,
for each i (1<i<n), we can obtain the same diagram as (¥) satisfy-
ing the conditions (1) and (2) such that the intersection of the inverse
images of F, by p, is empty.

Proof. Let a; be the ideal of X* such that V(a,) =p,”'(F;) (with
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reduced structure) for each { (1<</<<x) and let X** be the blowing-
up of X* with the center a=aqa,+:--a, and let qi:X**ﬁX*gXi for

each 7 (1<{<<u#). Then Ni.,q;'(F;) =¢ by virtue of Lemma 4.1.
Applying Lemma 4.3 to the following diagram;

g (X)) X
/ L l v
U C X, X,

and F,C X, Ei=¢;lT(77:), we find an ideal q;” of X; such that

(1) V(a)CF,—F; and

(2) after the base change /;: %,—-»)—(,- defined by the blowing-up
of X; with the center a;/ and after replacing X** by the closure U

of U in X**x X, we have ¢;"'(F;) CE;. In the new situation, we
3%

X;
have that N}, ¢, " (F) SN, Ei=¢ on U (U being the closure of U
in X**). Since U—X* is surjective, N, ¢, "(F) =¢. q.e.d.

Remark 4.5. The above lemmas are the same ones due to P.
Deligne [2] and if a group scheme G acts on the algebraic schemes
which appear in the above lemmas, 4.3 and 4.4 then we can find a G-stable
ideal satisfying the same property in Lemma 4.3 and the equivariant
blowing-up of the X;’s having the same property in the Lemma 4. 4.

Let us recall the notion of (proper) quasi-dominations of rational
maps.

Definition 4.6. Let X and Y be S-schemes. A quasi-domination
f: X->Y is a couple (U, f) formed by a dense open subscheme U of
X and an S-morphism f: U-Y such that the I';= {(x, f(2))|xe U}
is closed in XX Y. In this case, we also say that X is duasiA-domi-

S
nant over Y or that f: U—Y is a quasi-domination of X over Y. In
particular, if f: U—>Y is proper, then we say that f: X—Y is a proper
quasi-domination.

Next Theorem 4.7 is one of key facts to prove the existence of

equivariant completion.
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Theorem 4.7. Let S be a noetherian scheme and let G be an
affine group scheme over S and let X, Y be finite type S-schemes on
which G acts regularly. Furthermore, assume that X is integral,
and Y is covered by G-stable open subschemes (Y))ici<n such that
cvery Y; is equivariantly embedded into P(E,) where E; is a coherent
Os-Module on which there is a dual action of G. Let U, V(UCV
CX) be G-stable open subschemes of X. If a G-morphism f: U—Y
is a quasi-domination of V over Y, then therc is a G-stable ideal a
of X such that Supp aC X —V and that f*: X*LY is quasi-dominant
where X* is the blowing-up of X with the center a.

Proof. The proof of Theorem 4.7 consists of several steps.

a) Let G act on XxY diagonally. Replacing Y by XXxY.
S S
We may assume that there is a G-morphism p: Y—X such that f is

a section of p on U and f(U) is a G-stable closed subscheme of
p7' (V). Moreover, we may assume that ¥ has a G-stable open cover-
ing Y= (Y})<i<. such that every Y, is equivariantly embedded in P(E;)
where E; is a coherent Oy-Module on which there is a dual action
of G.

b) Reduction to the quasi-projective case. Let U;=f"'(Y)),
pi=p|Y;>X and fi=f|U;—-Y, for every i (1<i<n). If U;=¢ for
some 7, we may omit such U; to prove Theorem 4.7. If Theorem
4.7 is true for every f;: U;—Y,;, then there is a G-stable ideal a; of
X such that Supp ;& X —V and XiﬁXﬁ)Y, is quasi-dominant where
X; is the blowing-up X with the center a;, Then, let a=a;--a.
be the product of all the ideals a; and let X be the blowing-up of
X with the center a. Since there is a G-morphism X—X, for every
1, X—>X£Y, is quasi-dominant for every i. Therefore, there is a G-
stable open subscheme Uy (U/2U,) of X such that the graph Iy,

={(z,fi(x))|x€ U’} is closed in Xx Y, for every i. Hence X—X
X
£>Y is quasi-dominant because X is integral.

c) Reduction to the case U=V. Consider the following com-

mutative diagram of schemes.
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fU) (V) Y
l p
U \% X

Let C be the defining ideal of (V—U),q (V—U being the closure
of V=U in X) in X and let I be the defining ideal of (F(U))rea
(f(U) being the closure of f(U) in Y) in Y. Then, if we put D
to be the kernel of the morphism:

Ox—p«(Oy) = py (Op/Im[p* (C*) -Oy] +1)

D is G-stable, Supp(D)T X — V and D satisfies the condition of Lemma 4.2.
Lemma 4. 2 shows that we may assume U=V after blowing up X with the
center . Moreover, after blowing up X with the center X—U, we
may assume that X — U is a Cartier divisor of X.

d) Quasi-projective case. By step (b), we may assume that
there is a coherent @y -module E with a dual action of G and that Y
is embedded equivariantly into P(E). For every point x of X, we
shall define an ideal a, of O,y in the following way. Let E.,=H"'
(Spec(O,,x), E), U,=UNSpec(O.x), Y.=p'(Spec(O,x)) (p be-
ing the structure morphism: Y—X), f,=f|U,—Y, and let f- (U
(with reduced structure) be the closure of f,(U,) in P(E,).

P(E,) P(E)
J J
Y, Y
fz” p- f H p.
Spec (O, x)

j{

U

Then, by the above assumption, f,(U,) =Proj(S*((F,)) for a coherent

O, y-module F, on which there is a dual action of G X Spec(O,s) (s
S

U.

being the image of .r in S). Let {«,, -, #,} be a minimal generator
of F,. Then u,/u;, -, u,/u; can be regarded as rational functions on
Spec(Q,,y) through f, for every 7/ (1=X¢<<n). Here we shall define
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the ideal a, of O,, x to be the ideal generated by the set A,={h-u,/u;, -,
heufulheQ,x, hou;/u;,c0, y for some i (1<i<<n) and every j
(1<j<n)}. Then aqa, is independent of the choice of a minimal
generator of F,. In fact, let {«,---,%,”} be an another minimal
generator of F,. Then there is a non-singular (7 X#n)-matrix (a;;)
(a;;€0,,x) such that u,” =", a;u; for every i. Assume that h-u,;/u;
is an element of A, For every a, B (1<a<<n,1<Bf<n), we have
Gl aza(h-u/u))ug’ fu,’ =" ajg(h-u;/u) €0, y. Hence, if we put
he=23"a;(h-u,/u;), then h,€ A,” where A,” is the set defined by
{a,”, -+, u,”} similarly. Thus a, is independent of the choice of a
minimal generator of F, because (@;;) is a non-singular matrix. We
shall put a= (a,),ey. This is a desired G-stable ideal of X. In fact,
it is easily seen that a is G-stable by the same method in Lemma 18
in [13] and that Supp aCX-U, X’—»X—'CY is quasi-dominant where
X is the blowing-up X with the a. q.e.d.

Now we shall prove an equivariant Chow’s lemma. This is a
generalization of Theorem 2 in [13]. Before proving it, we note
here the following.

Remark 4.8. If X has the property (IN) over a noetherian
normal scheme S, then Theorem 2.5 and Theorem 3.8 shows that
X is covered by G-stable open subschemes (X;)<;<. such that every
X; is equivariantly embedded into P(E;) where E; is a coherent Os-
Module on which there is a dual action of G. On the other hand, if
X has such an open covering and if X is a blowing-up X with a G-
stable ideal of X, then X has also such an open covering. Moreover,
if X and Y has such an open covering and if Z is the scheme ob-
tained by patching X and Y along a G-stable open subscheme in X
and Y, then Z has also such an open covering. From now on, we
shall call such an open covering, a G-stable, quasi-projective open
covering, for the simplicity.

Theorem 4.9. (Equivariant Chow’s lemma) Let S be a normal
noctherian scheme and let G be a surjective smooth affine group

scheme over S with connected fibres and let X be an S-scheme having
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the property (N) on which G acts regularly. Assume that U is a
G-stable dense open subscheme of X which is quasi-projective over

S. Then we have a diagram of S-schemes;

where

(1) q:X'>X is a blowing-up X with a center a such that a
is a G-stable ideal of X, Supp aCX—U and

(2) X is an S-projective scheme on which G acts regularly and

contains X' as a G-stable dense open subscheme.

Proof. We may assume that X and S are integral because X
and S are normal. Since U is quasi-projective, there is a projective
integral S-scheme U* on which G acts regularly by virtue of Corollary
2.6 and U* contains U as a G-stable open subscheme. Applying
theorem 4.7 to U* and X, we may assume that U* is quasi-dominant
over X. Thus, there is a G-stable open subscheme V of U* and a
G-morphism ¢: V"> X such that there is the following diagram

U v U*
H ¢: morphism
U X S
and the graph I',={(x,¢(x)|xeV} is closed in U*xX. Since

S
U*-S is projective, ¢ is proper. Hence U*—>X is a proper quasi-
domination.
We can apply the next lemma to this situation.

Lemma 4.10. Let S be a noetherian scheme and let U, V, X
and Y be finite type S-schemes such that there is the following

diagram

U |4 Y

T

U X
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where U is a dense open subscheme in V, X and Y and ¢: V—>Xis

a quasi-domination of Y over X. Moreover assume that a is an

ideal of X such that Supp aCX—U, X->X-V is a quasi-domina-

tion where X is the blowing-up of X with the center o and that

U: WV is a quansi-domination of X over V. Then we have that
(1) W=Proj (S ¢* ()" and

(2) the graph T'y of W is closed in Y x X.
S

Proof. Let \7=Proj(2,.2(,47*(a)"). Then V=VxZX. Let a:
v X
V> X be the second projection and let B: WV be the morphism

induced by ¥.

We prove that qof=1y and poa=17. Then we can prove W =Proj
s (@*(@)™). First of all, we prove that ¥: W—V is proper. Let
I', be the graph of ¢ and let 7: XX be the structure morphism.
Then V= (1v>§ﬂ)_!(r¢) and fhe projection map V—V is proper.

Hence I'y)—V is also proper because I'y is closed in V=VxX. There-
X
fore, ¥: W—V is proper. On the other hand, g= (¥, injection),

B: W—V is proper. Since U is contained in W and V as dense open
subschemes, B(W) =Iy=V, ie., acf=1y and foa=1y. Since I', is
closed in Y>éX by our assumption, (1,x7)'(I",) = V=TI is closed
in YxX. ) q.e.d.

S

Let us come back to the proof of Theorem 4.9; By virtue of
Theorem 4.7 (cf. step (d) Theorem 4.7 and Remark 4.8), there is
a G-stable ideal a of X such that Supp aCX—U and X—>X-V is
quasi-dominant where X is the blowing-up of X with the center a.
Applying Lemma 4,10 to this situation, we see that W=Proj (3 .z
¢*(a)") where ¥: W—V is a quasi-domination of X over V. How-
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ever, ¢ is a proper morphism, hence W=X. Now let b be the ex-
tension of ¢*(a) to U* and let X be the blowing-up U* with the
center b. The X’=X and X are desired ones. q.e.d.

We shall prepare one more lemma to prove the existence of

equivariant completion.

Lemma 4.11. Let S be a noctherian scheme and let G be an
affine group scheme over S and let X, and X, be integral, finite type
S-schemes on which G acts regularly. Moreover assume that each
X, (i=1,2) has G-stable, quasi-projective open coverings and that
U is a G-stable open subscheme in both X, and X,. Then there
exists a finite type S-scheme X on which G acts regularly such that

(1) U is a G-stable open subscheme in X and

(2) there are G-rational maps p;: X—>X; (1=1,2) which are

proper quasi-dominations.

Proof. By virtue of Theorem 4.7, we may assume that X, is
quasi-dominant over X,. Therefore we have the following diagram of

schemes;

V X
" l
U\ ¢

X

(¢: V—>X, is a morphism and ¢ is a quasi-domination of X, over
X,). By virtue of Theorem 4.7 again, there is a G-stable ideal a
of X, such that Supp aCX,—U and X,—»X,—V is quasi-dominant.
Lemma 4.10 shows that W=Proj (D .2 ¢*(a)™) and I', is closed in
ngX, where ¥: W—V is a quasi-domination of X, over V. Let b

be the extension of ¢*(a) to X, and let X,” be the blowing-up of X,
with the center b and let ¢: X,”"—> X, be the structure morphism. Then
W is isomorphic to ¢7'(V). We shall denote the isomorphism by a.

The graph I', of « is closed in X;x X,’. In fact, since ¥=goa and
S
Iy is closed in Xpx X, I1x¢q)*(I'y) =T, is closed in X,xX,”. Let
S S

.
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X be the S-scheme obtained by patching X,” and X, along W and
q:: X—X; be the G-rational map (z=1,2). Then X and p; (i=1,2)

are desired ones. q.e.d.

Remark 4.12. The above proof shows that we can take such
p: U—»X, (UCX, p: U;—» X, being a proper morphism) to be a
morphism obtained by a blowing-up with a G-stable ideal q; of X,
with Supp a;C X;—U. This remark is used in the proof of Theorem
4,13,

Now we are in position to prove the existence of equivariant

completions.

Theorem 4.13. Let S be a noetherian normal scheme and let
G be a surjective smooth affine group scheme over S with connected
fibres and let X be an S-scheme having the property (N) on which
G acts regularly. Then there exists a finite type S-scheme X on
which G acts regularly such that

(1) X is proper over S,

(2) X contains X as a G-stable open subscheme and

(3) The action of G on X is the extension of the action G
on X.

Proof. We may assume that X and S are integral. By virtue
of Theorem 2.5 and and Theorem 3.8, X has a G-stable, quasi-pro-
jective open covering (U,).<i<.. For every U; (1<<i{<<a), construct
the following diagram of integral schemes on which G acts regularly
by using Theorem 4.9;

Xi Xt

P

v, . X

where

(1) qi: X;—X is a G-projective, surjective and birational mor-
phisms,

(2) U; is G-stable open in both X; and X and
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(3) X, is proper over S and X; is G-stable open in X,.
Let F;=X—-U,; and F,/=¢;,7'(F;) for every :(1=i<<n) and let X*=
the closure of {(u,---,u)|ucU} in X;x--xX, where U=N", U;
S S

and let p;: X*—X, be the 7-th projection for every ; (1<</<<n). Then
Ni. 27 (F) =¢. Moreover, by virtue of Lemma 4. 4, we may assume
that Ni, p " (F/)=¢ where F, is the closure of F/ in X,. Let

={(u, ) |uce U} S XX (X —F/) for i (1<<i<#). Then I'; is closed
in X>§ (X;—F/) because ¢;: X;—X is proper. Now let M, be the

S-scheme obtained by patching X and X;—F, along U, for every i
(1<i<#). Applying Lemma 4.11 to X and each M, we can con-
struct a finite type S-scheme X on which G acts regularly such that

(1) X is a G-stable open subscheme of X,

2 X quasi-dominates A, properly (z=1,2,-.-,n) and

(3) The action of G on X is an extension of the action on X.
Then X is the desired one. Indeed, X is proper over S. Let ¢ be

the composite morphlsm of X*—p, W(F/ )——»X —F, and Xi_Fi

open imm.

— M, for every i (1<{<<n1). Then ¢;|U=¢;|U for every i and
j. Moreover, let p;: V.—>M; be the proper quasi-domination of X over
M, for every i (1<;<#n). Then V=Proj(} 'nsoa™) for some G-
stable ideal q; of Af, with Supp a;CAM;,—X as we pointed out in

Remark 4.12. Now assume that a,” is the extended sheaf of ¢;*(a;)
to X* (1=1,2,---,2) and that X**=Proj (¥ 'nso (0" - 0,”)™). Then
there is a G-morphism ¥;: X** —¢t, ' (F/) -V, <X (=1,2, .-+, 1) (¢ be-
ing the composite morphism of X**—X* and p;: X*—X,) and &,|U
=¥,|U for every i and j (U being the closure of U in X**) because
X** is separeted over S, ¥;|U=¥,|U for every i and j and {X**
— 4,7 (FY)} 1<i<n is an open covering of X**. Therefore, there is a
G-morphism ¥: U—X such that ¥|U—¢,"'(F,/) =¥; ¢=1,2,---,n) and
¥ is surjective because U is open dense in both U and X. Since U
is proper over S, so is X. q.e.d.
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