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Field generators in two variables
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A field generator in two variables is a polynomial f(z, y) such
that f together with some rational function ¢ (x,y) generates the field
k(x,y) (k a field of constants). It was conjectured by Abhyankar
and proved by Jan (for k£ of characteristic 0) that f has at most two
points at infinity, that is, the degree form of f has at most two ir-
reducible factors. The aim here is to give more precise results. First
(see 3.7), unless {f=0} is isomorphic to a line, there are exactly
two infinitely near points of f on L, the line at infinity. (So if f
has two ordinary points at infinity, no branch is tangent to L. Oth-
erwise, branches are at most simply tangent.) More generally (see
3.6), there is a quite sharp bound on the number of infinitely near
points of f on L in terms of the genus of £(x,y) over 2(f). Sec-
ondly (see 4.5), after a suitable automorphism ¢ of k[x, y], f is
linear or has two (ordinary) points at infinity., (¢ is essentially unique
in the latter case (see 4.7).) ¢ is shown to be tame, and a proof
of the result of Jung [1] and Van der Kulk [5] on the structure of
automorphisms of k[x, y] appears as a byproduct.

I would like to express my thanks here to S. S. Abhyankar and
participants in his seminar at Purdue, where I was first introduced
to these problems and learned how much there is still to be learned
about polynomials in two variables.

1. Let % be a field, [z, v] the polynomial ring in two variables"
over kand fek[x,y], fe£k. Then k(x,y) is of transcendence degree
1 over k(f) and hence the function field of a complete regular curve
over £(f), which we denote by C,. Let ¢ be transcendental over %k and
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X, Y variables over k£(¢). Then
L1 GOIXYIAXY)-t)3k(f) [z, y]

under the map sending ¢ to f, X to x and Y to y. We are thus led
to investigate the pencil of Curves {V(f—2) |l €k}, of which V(f—1%)
is the generic member (see 2.8). (We use V(f) to denote the
curve, or effective divisor, defined by f.)

In order to enable us to use geometric arguments, we imbed the
the affine plane A4,® in the projective plane P,’ in the usual way,
choosing projective coordinates (X, Xj, X;) on P,? such that x=X,/X,
and y= X,/X,. Then the linc at infinity of 4, is L=V (X,) =P2— 4,".
Letd=deg f and F (X, Xj, Xp)= X' f( X,/ X,, X5/ X,). Then V(F—21X9)
is the closure in P, of V(f—2) and the points of V(F - 21X -V (f-2),
in one-one correspondence with the irreducible factors of the degree
form of f, are the points at infinity of f. We define

1.2 A(S) ={V(F + X | (a0, an) € Pi'}.

By 1.1, C, is the normalization of V(F—tX"). Also, £(f) [z, v]
is a regular ring (it is a localization of k[x,y]). Hence V(f—1¢)
is an affine open subset of C,. The points of C,— V(f—¢) we will
call the points at infinity of C,.

1.3 Definition: f is a field generator if there exists g€k (x, y)
such that k(f, g) =k(x,y) or, equivalently, if C, is a rational curve

over k(f).

Remark: It does not seem to be known whether, given that f is
a field generator, ¢ can be chosen in k[x, ¥], or, equivalently, whether
C, has a point at infinity rational over k(f).

2. Most of the contents of this section are quite well known, and
its main purpose is to establish a coherent notation. We assume that
k is algebraically closed.

Let S be a complete non-singular surface, py&S (all points are

assumed to be closed unless otherwise designated) and (see [3, II,

§4,2]).
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w: 8-S

the local quadratic transformation (l.g.t.) or blowing up with centre
po. We denote by E=7n""(p,) the exceptional fibre of 7. Let C be
a curve on S. We put "

1t (po, C) =multiplicity of p, on C.

Let 7/ (C) be the proper transform and n*(C)=n’(C)+ u(p, C)E
the total transform of C on S’. Let (—, —) denote the intersection
product on both S and S’.

Then (see [3, IV, §3,2])

2.1 (i) =* preserve linear equivalence and the intersection
product.
(i) E=P,' and (E,E)=—1.
(iii) If C is a curve on S,

(@ (C), E) =pu(p, C).
(iv) If C, D are curves on S,
(C,D) =@ (), n" (D)) + 1(py, C) (0, D).

Let C be an irreducible curve on S. Then the arithmetic genus
of C is given by (see [2,1IV, §2,8]) p,(C)=1+%(C,C+K), where
K is a canonical divisor on S. Now K’=g*(K)+E is a canonical

divior on S’ and hence
2.2 po(C)=pa (@ (C)) + 3% 1(py, C) (u(p0, C) —1).

We note that in case £ is not algebraically closed, 2. 1 and 2. 2 remain
valid if p, is rational over k.

2.3 Definition: (i) An infinitely near (i.n.) point of S is a
sequence

q= (Pu, Picry =75 Do)
such that p,eS,=S and for 0<;<i, p,en,7'(p;-1) =E;CS;, where

5 S;—>8,0
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is the l.q.t. with centre p,_,. We will also say that ¢ is infinitely
near to p,. An i.n. point ¢= (p,) will be called an ordinary point
of S.

(if) Let D be a curve on S. Then

/‘l(Q’ D) :,u(Pi, D(t))y

where D® is the proper transform of D on S;, We say ¢ is on D
if u(q, D)>0, i.e. p,=D®. (Note that then all i.n. points q;= (p,,
o, o), 0<j<i, are on D.)

Remark: Let 7,:S,-S;_,,j=1,---,/ be a sequence of l.q.t. and
p<S,.. Then P determines uniquely an i.n, point g= (py, ---, po) (with
i</ in general). If there is no danger of confusion, we will call p

an in, point of S,.

Let A be a linear system of curves on S and peS. We put

#(p, 4) =min{u(p, D)|De 4}.

(Then p(p, A) is the multiplicity at p of a gemneral member of A, i.e.
u(p, 4y =p(p, D) for D ranging over a dense open subset of A.)
Let 7 be the l.q.t. with centre p. Then

n* (A) = {n* (D) |D e 4}.

the total transform of A, is a linear system with u(p, A)E as fixed
component, We define the proper transform of A by

n’ (4) = {z* (D) —u(p, HE|D e 4}.

7’ (A) is a linear system not having E as fixed component. We note

that as a consequence of 2.1 (iv)

2.4 (A, A) =@ ), 7" 4))+p(p, )°
(where (4, 4) = (D, D’) for any D, D’ A).

2.5 Definition: Let ¢= (p;, -+, po) be an in. point of S.
@) plg, A =pn(p;, A9), where A is the proper transform of
A4 on Si’
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(ii) q is a base point of A if u(q, A)>0. B=DB(A4) is the set
of base points of A. (Note that B is finite if A has no fixed com-
ponent.)

(iii) Let sy1: Si41—>S; be the l.q.t. with centre p; and E;,,=m;}.(p)).
Suppose ¢ is a base point. Then ¢ is non-terminal if a general mem-
ber of A®*Y meets E;,,; only in base points of A. Otherwise, g is

terminal.

2.6 Remark: Suppose 4 is one-dimensional and let g=a,f,
+ai fi, (G, an) €P,' be a local equation of A® at p,. Let F,, F, be
the leading forms of fi,f; and G the leading form of ¢ for general
(e, t1). Then there are the following possibilities:

(i) degFy,#degF,, say deg F;<deg F,. Then G =q,F,.

(i) degFy,=degF, and F,=pF,, k. Then G= (a,+ By F..

(iii) degFy=degF, and H=GCD (F,, F,) #+F,. Then F,=HF,,
F,=HF, with GCD(F, F))=1 and deg F,=deg F,>>0. Now G=
H(aFo+ aF). A ,

The points of A“*Y on E;,, are given by the different irreducible
factors of G. In cases (i) and (ii) these are independent of (a, a)
and lead to base points of A*Y on E;.;. In case (iii), factors of
o+ a,F, depend on (a,, ;) and do not lead to base points. So ¢
is terminal in that case.

2.7 Definition: Assume A has no fixed component. Let p.S.
Then

m(p) =m(p, A) =3 u(g, 1),
the sum extended over all base points of 4 in. to p. If T'CS, then

m(T)=m(T,4) =) m(p,A).
PET

A pencil 4 on S, which we assume to be without fixed compo-
nent, defines a rational map A: S—»P,.

2.8 Definition: The generic member A, of A is the fibre of
2 over the generic point 3 of P,'.



560 , Peter Russell

4, is a curve on SQk (7)), where £(y) is the residue field of 7.
Since £(y) is purely transcendental over %, an ordinary base point
of A on S defines, by extension of scalars, a unique point on 4,. We
then have the following easy version (which has the advantage of
being true if char 2>0) of Bertini’s theorem.

2.9 Lemma: The generic member of a pencil without fixed
component is regular outside the base points of the pencil.

Proof: We can cover S by affine open sets U with coordinate
rings A such that there exist f,, i€ A with

AMU=A{V(a fo+ a1 f1) | (ct, @) eP,'}

and (fo,f1)A a zero-dimensional ideal. Then there is a £ (y) such
that k(y) =k () and fy+¢f; is an equation for A4, in ARk(z). Now
generalizing 1.1

(AQk[t]/fo+tf1) . =Ay,

and hence (AQk () /fo+tf1),, =T 'A,;, where TCA, is the multi-
plicative set of all non zero polynomials over £ in f,/fi.. Let ICA
&k (¢) be the maximal ideal of a point p on 4, (i.e. fi+tficl). If
fi1, then p is a regular point of A4, by the above since T7'A, is
a regular ring. If, on the other hand, fi€1, then f,I and it follows
that I is the extension to AXk%(¢) of a maximal ideal I’C A such
that f,,fiel’. Hence p is a base point of A,

Remark: The strong version of Bertini’s theorem asserts regu-
larity of A, over the algebraic closure of £(y). This, of course, may
fail if char £>0.

Let » be an ordinary base point of A. It is easily seen (for in-
stance by the discussion in 2,6) that u(p, 4) =ux(p, 4,), and it fol-
lows that the proper transform of A, under the l.q.t. with center p
is the generic member of the proper transform of A. 2.9 therefore
extends to i.n, points, that is, all i.n. singular points of A, are base

points of A. In particular, they are rational over £ (y).
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Since 4 has no fixed component, we can find a sequence of l.q.t.

T =1
S*:S[_—)Sl_l—‘)"-—)sl——-—)So:S .
with centres at base points of A4 and such that A* the proper trans-
form of A on S*, is free of base points. Then (4%, 4*) =0 since two

distinct members of A* do not meet. By repeated application of 2.4
2' 10 (A) A) = Eﬂ (qa A) 2, qEB-

Now A4,* is regular and obtained from 4, by l.q.t. with centres rational
over (7). Hence A,* is the normalization of 4, and p,(4,*) =g,
the genus of £(4,) over k£ (y), where £(4,) is the function field of
A,. By repeated application of 2.2 we obtain

2'11 pa(Aﬂ)=g+%Z/l(QyA) (ﬂ(qu)—l)a qEB-

3. We assume that % is algebraically closed in this section.
Otherwise we return to the notation of section 1, ‘

Let fek[z,v],d=degf >0 and A=A(f) (see 1.2). Then 4°*
=(4,4) and p,(4,) =3(d—1)(d—2). By 2.10 and 2.11 we have

3.1 d*=3 u(q, A3 ge B, ‘

3.2 @d-1)(@—2)=29+3u(qg, 1) (u(g, ) —-1), g€ B.
Hence |

3.3 Su(q, A) =3d+2(g—1), qeB.

Here ¢ is the genus of C,, or of k(x,y), over k(f).

Pencils of type A(f) have the d-fold line at infinity as a mem-
ber. In fact, 4,=V(X,*) =dL, where A, is the member of 4 given
by ae=0,a,=1 (c0=(0,1) €P,'). We wish to exploit this special
property. Let

SI'L)S[—I_)’ . _')Sl_f._)SOZPltz

be a composite of l.q.t. Let p;=S; be the centre of 7;,, and E,,,
=n711(p;), j=0, ..., =1, Put E,=L. If D is a curve on some .S,
denote by DY its proper transform on S,, j=i. AY will be the prop-
er transform of A4 on S, and 4,9 the member of AY given by oo
P,' (to be distinguished from (A4,)?).
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3.4 Definition: Let D be an irreducible curve on S,. ¢(D)
is the multiplicity of D as a component of 4., i.e. 4,%=¢(D)D+C,
where C does not have D as a component.

We note the following facts concerning &(D).

3.5.1 D=n’(D) for some DCS, ,, then &(D)=¢(D).
3.5.2 c(E)=d.

3.5.3 &(D)=0 and if ¢(D) >0, then D=E;® for some i</

-1
3.5.4 ¢(E)= jZ=0 e(ED U (pror, B¢ — p(proy, 447).

In fact, by 3.5.1 and by 3.5, 3,

1208 (ED (prosy E470) = p(proy, 4.477) =multiplicity of E, in
X (4,07,

Remark: x(p,_,, E;47")=0 or 1, and 1 for at most two j.

3.5.5 If p,_, is a terminal base point of A (see 2.5), then
e (E,) =0.
In fact, E, is not a fixed component of A®, but A% meets E, in

infinitely many points. Hence E, is not a component of any member
of AY,

3.5.6 If p,, is a base point of A and ¢(E,) >0, then all points
of (a general member of) A® on E, are base points of 4, and there
is at least one such.

In fact, since p,_, is a base point, all members of A® meet E,.
But E, is a component of 4., and hence if 4,9=De& A, D meets
E, only in base points of A.

3.5.7 Let p,E, be a base point of 4. Then (&) <m(p)
(see 2.7).

In fact, we can find an in. point (pi4r, -+, ) of S, such that
pier is a terminal base point of 4. If E,,,,, is the exceptional fibre
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abOVe pl+]’ thel‘l ]),.”EEH_j,j:O, e, 7, and

e (Et+r+1) Z [ (El) — Eo'u (pH_h A(l+.i))

be repeated application of 3.5.4. Now ¢&¢(E,;r;;) =0 by 3.5.5 and
hence ¢ (E,) <37 ott(prss, AP) S (p)).

3.5.8 Let s be the number of i.n. base points of 4 on E,. Then
se(E)<m(E,) (see 2.7).

In fact, suppose ¢= (pi4r, ***, £1) is a base point of 4 on E,. Then
0= (?), 1= (P41, 1), "'+, Quer=¢q are base points of 4 on E,. We
have #(piyys, E4*P) =1 and p(piyy, Eiyy) =1 for j=0,---,7. Repeated
application of 3.5.4 gives

¢ (Eirn) Z (r+ D e (E) = 1 #(bue sy 447,

If e(Eri1) =0, let m=0. Otherwise there is a base point p,,,,, of
A on E, ., by 3.5.6, and we let m=m (pyry1) =€ (Erre1) (by 3.5.7).
Hence (r+1)e(E) <D 7ot (Prsy, AM?) + m<m(p,). We may assume
that 7+ 1 is the exact number of base points of 4 on E, i.n. to p, (p,
determines a unique maximal sequence of them). Summing over all

ordinary base points of A® on E, we obtain the desired result.

3.6 Theorem: Let fek[x,y], d=deg f>0, g the genus of
k(z,y) over k(f) and s the number of points of f on the line at
infinity of A}, including all infinitely near points. Then

(s—3)d<2(g-1).

Proof: The i.n. points of f on L, that is the i.n. points common
to V(F) and L, are base points of A=A(f) since V(¥) and L are
components of different members of A. Also, 4 has no base points
on A% and hence m (L) =3 u(q,4),qeB. By 3.5.2,3.5,8 and 3.3
we have sd<<3d+2(g—1).

3.7 Corollary: Let fekl[z, y] be a field generator. Then
there are at most two infinitely near points of f on the line at in-
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Sfinity of A\:. In particular, the degree form of f has at most two
distinct irreducible factors.

Proof: k(x,y) is purely transcendental over £(f), so ¢g=0 and
(s—3)d<0. Hence s<2,

3.8 Proposition: Let k be any field and f a field generator
over k. Then the points at infinity of f are rational over k, that
is, the degree form of f splits into linear factors over k.

Proof: The points at infinity of f are base points of A(f). We
will consider them as points of A,=V(F—thd) and show that they
are rational over k(¢). Now over k(¢),k an algebraic closure of k&,
there are at most two, and hence over k(t) there are at most two
with the sum of their separable degrees <2,

Note that V(f—2)CC, contains a point ¢ rational over k(¢)
since C, is a rational curve. Also R=£k(¢)[X, Y]/f—¢t has unique
factorization by 1.1 and there exists 2&€ R such that (k) =q+ > i_17.4;,
where §,, -+, G, are the points at infinity of C, and (k) is the divisor
of ~ on C,. Hence GCD(deg g, -+, deg g,) =1, and it follows that
GCD(deg qy, -+, deg g,) =1 if ¢y, -+, ¢, aré the points at infinity of f.
We conclude that there is at least one g¢; rational over 2(¢) and, pos-
sibly, one more, g, say, purely inseparable over k(z). Let in that
case £ be the residue field of ¢, and [k: k(¢)] =p"=b, where p=char
k. We note that A4, is not tangént to L at g, over k(¢) since f already
has two ordinary points at infinity.

Let A be the local ring of 7, on P}, and M the maximal ideal
of A. Now there exist parameters u, v for A such that v is a local
equation for L and #=x"—a, where ack—k? and x mod M generates
k over k(t). Now A=AQuwk is the local ring of ¢, on P/} and
there exist parameters %, v for A such that z°=«®1 and 7=vX]1.
Let g A be a local equation for 4, at g;. Then monomials appear-
ing in the power series expansion of §=¢g®1 are of the form z"'%’,
where u'v’ appears in the power series. expansion of g. Since, as
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stated above, ¥ and § are not tangent, a term %’ appears in the lead-
ing form of §. But bi+ j=be implies i+ j>e if b>1, and the lead-
ing form of g is «°. Hence g—u*e M. It follows that if g, is a
point of C; above g, then u=x"—a has value =2 at g,. By [4, prop.
on p. 405 and thm. 2] the genus of C, drops if the base field is ex-
tended to £, and this is impossible if f is a field generator.

4. An automorphism ¢: 4,°’— A4’ given by ¢*: k[x,y]—>k[z, v]
is elementary if either ¢*(z)=x and ¢*(y)=y+9(x), gk[x], or
both ¢*(x) and ¢*(x) are linear. ¢ is tame if it can be written as
a composite of elementary automorphisms.

An automorphism ¢ of A4,” determines a rational map

(Zo:szZS_)g-:PkZ

such that $|A4,*=¢. Now either @ is a morphism (in case ¢ is
linear), or @, has a unique fundamental point p,. In fact, p, is the
unique point of S corresponding to Eo, the line at infinity of S, which
is the only irreducible curve on S not corresponding to a curve on
S. Clearly p,eE,, the line at infinity of S. Let

Ty S|_>S0=S
be the l.q.t. with centre p, and
@1: S[_)S

the rational map such that @ =@.om;. Again, @ is a morphism or has
a unique fundamental point p,m,'(p,) =E,. Continuing we obtain

uniquely a sequence of l.q.t.

4.1 858 o o8—s S,
and rational maps
#5:8;—-8, j=0,--,1

such that @, is a morphism and for j=0,---,[—1

D) Frr1=0som41,
(ii)  py, the centre of 7, is a fundamental point of &,,
(i) p,€kE;, where E;=n,7(p;-1) (for j=1).
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Remark: P, -, p,_, are the i.n. base points of the linear system
0= {V (ap* () + anp* (v) + ) }.

The following now is easily verified by direct calculation (com-
puting the base points of successive proper transforms of @, for in-
stance). As before, if D is a curve on S;, DY’ will be its proper
transform on S,, j=>i.

4.2 Suppose ¢*(x) =z and ¢*(y) =y+ax®+ - +a.x", n=>2,
a;€k, a,#0. Then the sequence 4.2 is determined as follows

(i) [=2n-1,

(i) peE, peEYNE,

(iii) for 2<;<n—1,p,eE,PNE,,

(iv) for n<j<2n-2, p,&EP for any i<},

(v) p,. is in one-one correspondence with a,, @,#0, and for
n+1<;<2n—2, once p,, -, py_1 and a,, -+, au_;41 are fixed, p; is
in one-one correspondence with a,,_;.

The figure below gives a schematic description of the configura-
tion of E,, ---, E,,_; (or rather, their proper transforms) on S,,_;. The
number given in parenthese behind each E; is (E,"Y, E,6"™D),

E(—1) Ey(—2) E,oi(—2) En(—=2) Enpi(—2) Epus(—2) Epi(—1)

I (—n)

Now @._1 maps E,,_; isomorphically onto Eo, and &,,_; is a com-

posite
@n-: =710 0fn1

of l.g.t. which, looked at from the top, consist in shrinking succes-
sively the proper transforms of Ey, E,, ---, E,,_,, E;. (This can again
be verified by direct calculation. It helps to note that (&) ~'= ¢,
where ¢*(x) =x and ¢*(y) =y —a,x*— - —a,x", so that (@) ' has a
sequence of i.n. fundamental points of the same type as @.) Hence
if E, is the exceptional fibre of 7%,
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4.3 (1) Eo(ﬁn—l)zE"n_b Ey_, =E"0(2n-1)’
(ii) E,e-b=F,er-n
i) By =F,0, j=2, .. 2n—2.

Conditions (i) to (iv) of 4.2 allow, in view of (v), the recon-
struction of ¢ up to automorphisms of S and S induced by linear
automorphisms of A4,°. Hence

4.4 Lemma: Supposc 4.1 is a sequence of l.q.t. such that
conditions (i) to (iv) of 4.2 are satisfied. Let g=mpo---oms,_1. Then
there exists an elementary automorphism ¢: A.*— A and a morphism
Z: Sen1—> P such that

Szn—l
/ K

Pk”:S §=Pk2

commutes and T =705, 1 is a composite of l.q.t. such that 4.3
is satisfied.

4.5 Theorem: Let fek(x, y] be a field generator. Then
there cxists a tame automorphism ¢: A— A’ such that either *(f)
is of degree 1 or the degrece form of ¢*(f) has two distinct ir-
reducible factors. Equivalently, V(¢*(f))=¢ ' (V(f)) is cither a
line or has two (ordinary) points at infinity.

Proof: We assume first that £ is algebraically closed. Our aim
is to show that A(f) =4 has a sequence of in. base points as de-
scribed in 4.2 (i) to (iv). We keep the notation used there and
put p;=p(pi, A9).

Suppose A has only one ordinary base point on E,, p, say. Since
d=deg f= (E,, A) ((Ey, A) = (E,, D) for any De A) and since a general
member of A is irreducible (k(f) is algebraically closed in k(x,y))
either d=1 or A is tangent to E, at p, i.e. there is a second i.n.
base point (py, p) on E,. By 3.7 there are at most two, and hence
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(assuming d>1)
H d= e+ I

by 2.1 (iv). Arguing as in the proof of 3.6, we have m (&,) =3d—2.
Hence m (E,) <m(E,) —py—py=2d—2. Now ¢(E,) =d— #tp and ¢ (E,)
=¢e(Ey) +¢(E) —m=d by 3.5.4. If s is the number of in. base
points of A4 on E, we therefore have s<<1 by 3.5.8. On the other
hand, s=>1 by 3.5.6. Suppose now there is a unique i.n. base point
p; of 4 on E; and p,eE\, j=2,.--,r. Then y,=(E, A7) by 2.1
(iv) and (E, AD) =p_, by 2.1 (i), Also m(E,) <m(E,) <2d—2.
Hence u.=, and e¢(E,) =d by induction on 7, and we see as before
that there is a unique base point p,,, of 4 on E,,,.

Let then 7n be the first integer such that p,, the unique base point
of A on E,, is not on E;"™., We note that

2) n=>2,
3 Hy=Ih, J=2,, n,
©) ¢(E,) =d,

(B)  fo= (E;, AM) = (n— 1)y, +y, where y=>0 is the contribution to
(E,, AM) arising from base points on E; other than p,. In particular,
w= (0= .

We now show by induction on » that for r<{n—2

(i) there is a unique base point p,,,., of 4 on E, ..y, and payre
¢ E,D for j<n+r,

(1) e(Enprir) = to— 1/, >0

(1) Mpgrsr = .

In fact, this is true for »=—1. So let —1<r<<#—2 and assume it
is true for r’<r. Then p,.,€E,"*" for j=n+r only and ¢(E.4ry1)
=¢e(Epsr) — Unyr=Mo— 7y, and by (5), py—72,>0. This proves (ii)
for ». Now

n+r

iZ‘ ti+m(Enyr) <3d—2
=0

and 0 ui=p+ (n+7)uy by (3) and (ili). Hence if s is the num-
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ber of i.n., base points of 4 on E,,,,,,
tot (7)) py+ st — 17 11y) <3d - 2,

or, using (1), (s—2)po+ (n+r—sr—3) ;< —2. So if s>2, we have,
using: (5), s(n—r—1) —n+r—-1<—(2/4,)<0. Since the left hand
side is an integer, s(n—r—1)<n—r and s<(n—r)/(n—r—1)<2
(since n—r—12>2). Hence s=>2 leads to a contradiction and s<<1.
On the other hand, s=1 in view of (ii). We have =

Unyrer = (En+r+b A(n+r+1) =HUnsr

repeating an earlier argument. Also, p,,, & E,;"*" for j<n+r implies
Pasrn1tEE;"7 for j<<n+r, and by uniqueness of p,,, as base point
of A on E .\, pryei @ ESEY. This proves (i) and (iii). We note
that A®*~» has base points only on E,**~» and E,,_,, and no other
E, =Y Hence

(6) (E ;=D A=D) =0, ;=0,2,3, -, 212,
In view of (5)

<) (B0, A1) =yt

and, using (3) and (iii)

(8) (A(zn-x)’ A(zn-l)) —=dr— ';j'ﬂiz___de_ (/loz-i- (2n—2) /112)_
=0

We have arrived at a sequence of l.q.t. as required to apply 4. 4.
Let ¢ be as in 4.4 and put ¢=¢~'. Then o(V(£))=V(*(f)), and

if A=4*(f)) (considered as pencil on S), then A®*~D=jer-b,
Put d=deg ¢*(f). Then

&) d*= (A, 1) = (45D, 4SD) 4 y?

in view of (6), (7) and 4.3 (the salient point there is that E, is the
last curve to be shrunk under #). Finally, combining (8) and (9),
we conclude that d°<d? and the degree of f has been reduced by
an elementary automorphism. We can continue until either degf=1
or f has two (ordinary) points at infinity.

If £ is not algebraically closed, we repeat the preceding argument
over an. algebraic closure k# of k. The ordinary base points of A on
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E, are rational over 2 by 3.8. If there is only one, p,; we have in-
ductively p,=E, NE,, p,=E®NE,, -+, po_1=E" PN E,_, rational over
k. Also, since over k there is a unique base point Prpron E . r=0,
oo, n—2, p,,r is purely inseparable over 4. Then the argument given
at the end of the proof of 3.8 shows that p,,, is rational over &%.
Hence ¢ has coefficients in k.

4.6 Corollary (Jung, Van der Kulk): Every automorphism
¢ of A} is tame.

Proof: ¢*(x) is a field generator and V(p*(x))=V(x) =4,
has only one (ordinary) point at infinity. By the theorem, we can
find a tame automorphism ¢ such that deg ¢* (p* (x)) =1. So we may
assume, appfying a linear automorphism, that ¢*(p*(x)) =z. Then

p=g¢o¢ is elementary and g=po¢~" is tame.

4.7 Corollary: Let f be a field generator and suppose V(f)
#A,:. Then the automorphism ¢ of 4.5 is unique up to linear
automorphism and characterized by the fact that deg*(f) is min-

imal.

Proof: 1If ¢ is as constructed in 4.5, then V(¢*(f)) has two
ordinary points at infinity, g, and g, say, and deg ¢* (f) <degf. Let
¢ be a non-linear automorphism of 4,°. Then an initial segment p,,
-+, pan_s of the sequence of i.n. fundamental points of &, will satisfy
4.2 (i) to (iv) for some n (since ¢*(x), ¢*(y) are field generators,
for instance). A=A(@*(f)) is not tangent to E, at g, and g, by
3.7, and hence A®D meets E,*" " and possibly E,**~", but no other
E,®>  But $,-, is a morphism on E,**~" and E,**~" and contracts
E, -1 and E,**~Y to the same point on S, and this is the only ordi-
nary point at infinity of o(V(¢*(f)).

4.8 Corollary: Let f be a field generator and ¢ as in 4.5.
Then an irreducible factor of ¢*(f) has two ordinary points at in-

finity or is an irreducible polynomial in a linear form in x and wy.
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Proof: We may assume that ¢*(f) is not linear. Then ¢*(f)
has two ordinary points at infinity, » and ¢ say, which are rational
over k£ by 3.8. Also, an irreducible factor ¢ of ¢* (f) is not tangent
to E, by 3.7, and if g does not pass through ¢, the multiplicity of
p on ¢ is equal to deg ¢g. In that case g splits in E[x, y] into linear
irreducible factors passing through p. Hence gek[u«], where « is
the linear form in k[x, y] vanishing at p.

4.9 Remarks: (i) An irreducible factor of a field generator
is not, in general, a field generator.

(ii) Let g=k[x,y] such that k[x,y]/g is a polynomial ring in
one variable over k. If char 2=0, Abhyankar and Moh [6] have
shown that ¢ is a ring generator, that is, ther exists h€k[x, y] such
that 2[x, y] =%k[g, 1]. It follows from 4.8 that the same is true with-
out restriction on the characteristic if it is assumed that ¢ is an ir-
reducible factor of a field generator. This, of course, is a much
weaker result than that of Abhyankar and Moh, but nevertheless has
useful applications over fields of positive characteristic, where the
stronger theorem fails.
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