Liouville's theorem on a transcendental equation $\log y=y / x$

By
Michihiko Matsuda
(Communicated by Prof. Nagata, Nov. 12, 1975)

Abstract

The purpose of this note is to give an algebraic proof to Liouville's theorem that any solution of a transcendental equation $\log y=y / x$ is not an elementary transcendental function of $x([5, \mathrm{pp}$. 526-531]).

§ 0. Introduction. Let K be an algebraically closed field of characteristic 0 . We shall suppose that H is a differential field whose field of constants is K. Consider a differential equation

$$
\begin{equation*}
y^{\prime}=A \tag{1}
\end{equation*}
$$

and a homogeneous differential equation

$$
\begin{equation*}
y^{\prime}=B y, \tag{2}
\end{equation*}
$$

where $A, B \in H$. Suppose that F is a differential extension of H whose field of constants is K. Then, Kolchin [2, pp. 801-803] proved the following two theorems (Cf. Ostrowski [6], Kolchin [3, p. 1156], Risch [7, p. 172]):

1. Suppose that an element η of F satisfies (1). Then, η is algebraic over H if and only if $\eta \in H$.
2. Suppose that an element ζ of F satisfies (2). Then, ζ is algebraic over H if and only if there exists such a positive integer k that $\zeta^{k} \in H$.

Take a transcendental element θ over H. Let us define $\theta^{\prime}=A$.

Then, $H(\theta)$ is a differential extension of H. Suppose that any element of H does not satisfy (1). Then, the field of constants in $H(\theta)$ is K.

Take a transcendental element ρ over H. Let us define $\rho^{\prime}=B \rho$. Then, $H(\rho)$ is a differential extension of H. Suppose that for each positive integer k any element of H different from 0 does not satisfy $y^{\prime}=k B y$. Then, the field of constants in $H(\rho)$ is $K(\mathrm{Cf}$. Remark 1).

Any algebraic extension of H is a differential extension of H. Its field of constants is K, because K is algebraically closed.

Suppose that M_{1} is a differential field whose field of constants is K, and that M_{2} is a differential extension of M_{1}. Then, M_{2} will be called a primitive extension of M_{1} if the following two conditions are satisfied:
(i) The field of constants in M_{2} is K.
(ii) There exists a finite system of elements μ_{1}, \ldots, μ_{r} of M_{2} which satisfies the following two conditions:
(ii) $)_{1}$ For each $i(1 \leqq i \leqq r), \mu_{i}$ is a solution of either $y^{\prime}=A_{i}$ or $y^{\prime}=C_{i}^{\prime} y$, where $A_{i}, C_{i} \in M_{1}$.
(ii) M_{2} is an algebraic extension of $M_{1}\left(\mu_{1}, \ldots, \mu_{r}\right)$ of finite degree.

We shall suppose that M is a differential field whose field of constants is K. A finite chain of extending differential fields $L_{0} \subset L_{1} \subset \cdots \subset L_{n}$ will be called a Liouville chain over M if the following two condition sare satisfied:
(i) For each $i(1 \leqq i \leqq n), L_{i}$ is a primitive extension of L_{i-1}.
(ii) L_{0} is an algebraic extension of M of finite degree.

A differential extension L of M is called a Liouville extension of M if there exists in L a Liouville chain over M which ends with L.

Take a transcendental element x over K. Let us define $x^{\prime}=1$ and $a^{\prime}=0$ for any element a of K. Then, $K(x)$ is a differential field whose field of constants is K. Kolchin [2, p. 771] proved that every differential field of characteristic 0 has a universal extension. We shall take and fix a universal extension Ω of $K(x)$. An element z of Ω is called an elementary transcendental function of x over K if there exists a Liouville extension of $K(x)$ in Ω which contains z.

Let u, v be elements of Ω. Suppose that $v^{\prime} \neq 0$. Then we write $u=l(v)$ if $u^{\prime} v=v^{\prime}$.

Liouville [4, pp. 91-94] proved the following theorem:
Let p_{1}, \ldots, p_{n} be algebraic functions of x over K different from 0 , and $\alpha_{1}, \ldots, \alpha_{n}, \beta$ be elements of K. Suppose that $\sum \alpha_{i} p_{i}^{\prime} / p_{i}=\beta$. Then, $\beta=0$.

As a corollary to this theorem we see that $l(p)$ is transcendental over $K(x)$ for any algebraic function p of x over K different from a constant (Cf. Rosenlicht [8, p. 22]).

Theorem. Any solution of a transcendental equation $l(y)=y / x$ is not an elementary transcendental function of x over K.

This theorem can be stated in the following form:

Any nontrivial solution of a differential equation $x(y-x) y^{\prime}=y^{2}$ is not an elementary transcendental function of x over K.

Remark 1. Kolchin [1] proved that there exists a Picard-Vessiot extension for any linear homogeneous ordinary differential equation over a differential field of characteristic 0 with an algebraically closed field of constants.

Remark 2. Liouville ([4], [5]) treated $\int u d x$ only in the case where $u=v^{\prime} / v$ and $\int u d x=\log v$. It seems that to him $\log v$ is a transcendental function of v defined by $\log v=-\sum(1-v)^{n} / n(1 \leqq n<\infty)$ rather than a solution of a differential equation $v y^{\prime}=v^{\prime}$ in a fixed differentiation signed by the prime. He claimed that $\log v$ satisfies a differential equation $v \dot{y}=\dot{v}$ in any differentiation signed by the dot. Liouville's proof of Theorem [5, pp. 526-531] is not an algebraic one.

Remark 3. Liouville [5, pp. 536-539] stated the following theorem: Suppose that f is an algebraic function of x, y, and that $f_{x} \neq 0$ and $f_{y} \neq 0$. Then, any solution of a transcendental equation $\log y=f(x, y)$ is not an elementary transcendental function of x unless it is a con-
stant.

The author wishes to express his sincere gratitude to Professor K. Okugawa for his kind advices.
§ 1. Integral and exponential extensions. In this section we shall prepare several lemmas. We shall suppose that N is a Liouville extension of H, where H is a differential field whose field of constants is K.

Definition 1. N will be called an integral extension of H if there exists an element 0 of N which satisfies the following two conditions:
(i) 0 is transcendental over H, and $N=H(\theta)$.
(ii) 0 is a solution of $y^{\prime}=A$, where $A \in H$.

Definition 2. N will be called an exponential extension of H if there exists an element ρ of N which satisfies the following two conditions:
(i) ρ is transcendental over H, and $N=H(\rho)$.
(ii) ρ is a solution of $y^{\prime}=B y$, where $B \in H$.

Through this section $H(\theta)$ and $H(\rho)$ will denote an integral and an exponential extension of H respectively.

If an elment Q of $H[0]$ divides Q^{\prime}, then $Q \in H$. Let R be an element of $H[\theta]$, and u be an elment of $H(\theta)$ different from 0 . Suppose that $u^{\prime}=R u$. Then, $R \in H$ and $u \in H$.

Suppose that an element S of $H[\rho]$ divides S^{\prime}. Then, $S=b \rho^{m}$, where $b \in H$ and m is a nonnegative integer. Let T be an element of $H[\rho]$, and v be an element of $H(\rho)$ different from 0 . Suppose that $v^{\prime}=T v$. Then, $T \in H$ and $v=c \rho^{\prime}$, where t is an integer and $c \in H$.

Lemma 1. Suppose that an element u of $H(\rho)$ satisfies $u^{\prime}=a$, where $a \in H$. Then, $u \in H$.

Proof. Suppose that $u=Q / P$, where $P, Q \in H[\rho]$ and $(P, Q)=1$. The leading coefficient of P is assumed to be one. Then, $P Q^{\prime}-P^{\prime} Q=a P^{2}$.

Hence, $P \mid P^{\prime}$ and $P=\rho^{s}$, where s is a nonnegative integer. We have $Q^{\prime}-s B Q=a \rho^{s}$. Suppose that

$$
Q=\sum_{i=0}^{n} b_{n-i} \rho^{i} \quad\left(b_{0} \neq 0, b_{i} \in H, 0 \leqq i \leqq n\right) .
$$

Then, $\quad b_{k}^{\prime}+(n-k-s) B b_{k}=0$ for any $k(0 \leqq k \leqq n)$ different from $n-s$. Hence, $b_{k}=0$ for such k. Since $b_{0} \neq 0$, we have $n=s$. Suppose that $s>0$. Then, $b_{n}=0$. This is a contradiction to the assumption that $(P, Q)=1$. Hence, $n=s=0$.

Lemma 2. Suppose that two elements u, v of $H(\theta)$ satisfy $u^{\prime}=u v^{\prime}$, and that $u \neq 0$. Then, $u \in H$.

Proof. Suppose that $u=Q / P, v=S / R$ where $P, Q, R, S \in H[\theta]$ and that $(P, Q)=(S, R)=1$. The leading coefficient of R is assumed to be one. Then, $R^{2}\left(P Q^{\prime}-P^{\prime} Q\right)=P Q\left(R S^{\prime}-R^{\prime} S\right)$. Suppose that X is an irreducible factor of R and that $R=X^{\prime} T$, where $(X, T)=1, t>0$. The leading coefficient of X is assumed to be one. Then, $X^{t+1} T^{2} \cdot\left(P Q^{\prime}-\right.$ $\left.P^{\prime} Q\right)=P Q\left\{X T S^{\prime}-S\left(t X^{\prime} T+X T^{\prime}\right)\right\}$. Hence, $X \mid P$ or $X \mid Q$ or $X \mid X^{\prime}$. Suppose that $X \mid P$ and that $P=X^{s} P_{0}$, where $\left(X, P_{0}\right)=1, s>0$. Then,

$$
X^{\prime} T^{2}\left\{X P_{0} Q^{\prime}-Q\left(s X^{\prime} P_{0}+X P_{0}^{\prime}\right)\right\}=P_{0} Q\left\{X T S^{\prime}-S\left(t X^{\prime} T+X T^{\prime}\right)\right\}
$$

Hence, $X \mid X^{\prime}$, because $(X, Q)=(X, S)=1$. Suppose that $X \mid Q$. Then we also have $X \mid X^{\prime}$. Hence, in any case $X \mid X^{\prime}$, and $X=1$. This is a contradiction. Hence, $R=1$. We have $u \in H$, because $u^{\prime}=S^{\prime} u$.

Lemma 3. Suppose that two elements u, v of $H(\rho)$ satisfy $u^{\prime}=u v^{\prime}$, and that $u \neq 0$. Then, $v \in H$.

Proof. Let us replace θ by ρ in the previous proof. Then, the proof goes to a conclusion that $X \mid X^{\prime}$. In this case we have $X=\rho$. Hence, $R=\rho^{m}$, and $\rho^{m}\left(P Q^{\prime}-P^{\prime} Q\right)=P Q\left(S^{\prime}-m B S\right)$. Suppose that $m>0$. Then, $\rho \mid P$ or $\rho \mid Q$ or $\rho \mid\left(S^{\prime}-m B S\right)$. Suppose that $\rho \mid\left(S^{\prime}-m B S\right)$, and that

$$
S=\sum_{i=0}^{n} b_{n-i} \rho^{i} \quad\left(b_{0} \neq 0, b_{i} \in H, 0 \leqq i \leqq n\right)
$$

Then, $b_{n}^{\prime}-m B b_{n}=0$. Hence, $b_{n}=0$. This is a contradiction to the assumption that $(R, S)=1$. Hence, ρ does not divide $S^{\prime}-m B S$. Suppose that $\rho \mid P$, and that $P=\rho^{r} P_{0}$, where $\left(\rho, P_{0}\right)=1$ and $r>0$. Then, $\rho^{m}\left\{P_{0} Q^{\prime}-Q\left(P_{0}^{\prime}+r B P_{0}\right)\right\}=P_{0} Q\left(S^{\prime}-m B S\right)$, and $\rho \mid Q$. This contradicts to the assumption that $(P, Q)=1$. Suppose that $\rho \mid Q$. Then we also meet a contradiction. Hence, $m=0$ and $R=1$. We have $v \in H[\rho]$, and $v^{\prime} \in H[\rho]$. Hence, $v^{\prime} \in H$, because $u^{\prime}=u v^{\prime}$. We have $v \in H$ by Lemma 1 .
§ 2. Proof of Theorem. By the definition of $l(y), y$ is a solution of $l(y)=y / x$ if and only if it is a nontrivial solution of

$$
\begin{equation*}
x(y-x) y^{\prime}=y^{2} . \tag{3}
\end{equation*}
$$

Suppose that this equation has a nontrivial solution in a Liouville extension N of $K(x)$, where N is a subfield of Ω. Then such a solution is transcendental over $K(x)$, since $l(p)$ is transcendental over $K(x)$ for any algebraic function p of x over K different from a constant. Let M be the algebraic closure of N in Ω. Then, the field of constants in M is K. To each element u of M we can correspond a nonnegative integer $n(u)$ which satisfies the following two conditions:
(i) In M there exists such a Liouville chain $L_{0} \subset L_{1} \subset \cdots \subset L_{n(u)}$ over $K(x)$ that $L_{n(u)} \ni u$.
(ii) Suppose that $H_{0} \subset H_{1} \subset \cdots \subset H_{m}$ is a Liouville chain over $K(x)$ in M, and that $H_{m} \ni u$. Then, $m \geqq n(u)$.

For each nonnegative integer n, let $M(n)$ denote a subset $\{u \in M$; $n(u)=n\}$ of M. Suppose that $n>0$. Then, to each element u of $M(n)$ we can correspond a positive integer $r_{n}(u)$ which satisfies the following two conditions:
(iii) In M there exists such a Liouville chain $L_{0} \subset L_{1} \subset \cdots \subset L_{n}$ that $L_{n} \ni u$ and the transcendental degree of L_{n} over L_{n-1} is $r_{n}(u)$.
(iv) Suppose that $H_{0} \subset H_{1} \subset \cdots \subset H_{n}$ is a Liouville chain over $K(x)$ in M, and that $H_{n} \ni u$. Then, the transcendental degree of H_{n} over H_{n-1} is not less than $r_{n}(u)$.

Suppose that $r_{n}(u)=r$. Then, there exist r elements μ_{1}, \ldots, μ_{r} of L_{n} which satisfy the following three conditions:
(v) u is algebraic over $L_{n-1}\left(\mu_{1}, \ldots, \mu_{r}\right)$.
(vi) For each $i(1 \leqq i \leqq r), \mu_{i}$ satisfies either $\mu_{i}^{\prime}=A_{i}$ or $\mu_{i}^{\prime}=C_{i}^{\prime} \mu_{i}$, where $A_{i}, C_{i} \in L_{n-1}$.
(vii) μ_{1}, \ldots, μ_{r} are algebraically independent over L_{n-1}.

Let Γ be a subset of M consisting of all nontrivial solutions of (3) in M. Then, Γ is not empty by our assumption. There exists an element y of Γ which satisfies the following two conditions:
(viii) $n(y)=\min \{n(u) ; u \in \Gamma\}$.
(ix) $\quad r_{n}(y)=\min \left\{r_{n}(u) ; u \in \Gamma \cap M(n)\right\}$, where $n=n(y)$.
We shall take such an element y of Γ. Suppose that $r_{n}(y)=r$. Then, there exist r elements μ_{1}, \ldots, μ_{r} of M which satisfy the three conditions (v)-(vii) if we replace u by y. Let L denote $L_{n-1}\left(\mu_{1}, \ldots\right.$, μ_{r-1}) and μ denote μ_{r}. Then, $L(\mu)$ is either an integral extension of L or an exponential extension of L. Over $L(\mu), y$ satisfies an irreducible algebraic equation $f(y)=0$. We shall suppose that

$$
f=\sum_{i=0}^{m} \alpha_{m-i} y^{i} \quad\left(\alpha_{0}=1, \alpha_{i} \in L(\mu), 1 \leqq i \leqq m\right)
$$

We have $m \neq 1$. In fact suppose that $m=1$. Then, $y \in L(\mu)$. It satisfies $y^{\prime}=(y / x)^{\prime} y$. If $L(\mu)$ is an integral extension of L, then $y \in L$ by Lemma 2. If $L(\mu)$ is an exponential extension of L, then $y / x \in L$ by Lemma 3. In any case we meet a contradiction. Differentiating $f=0$, we have $f_{x}+y^{\prime} f_{y}=0$, where

$$
f_{x}=\sum_{i=0}^{m} \alpha_{m-i}^{\prime} y^{i}, \quad f_{y}=\sum_{i=0}^{m} i \alpha_{m-i} y^{i-1} .
$$

By (3) we have an identity $x(y-x) f_{x}+y^{2} f_{y}=\left\{m y+\left(x \alpha_{1}^{\prime}-\alpha_{1}\right)\right\} f$ in y, since f is irreducible. Hence,

$$
\begin{gather*}
\left(\alpha_{k} / x^{k}\right)^{\prime}=\alpha_{k-1}^{\prime} / x^{k-1}+\left(\alpha_{1} / x\right)^{\prime}\left(\alpha_{k-1} / x^{k-1}\right), \quad 2 \leqq k \leqq m, \tag{4}\\
\alpha_{m}^{\prime}+\left(\alpha_{1} / x\right)^{\prime} \alpha_{m}=0 .
\end{gather*}
$$

Let β_{k} denote α_{k} / x^{k} for each $k(1 \leqq k \leqq m)$. Then,

$$
\begin{equation*}
\beta_{k}^{\prime}=\beta_{k-1}^{\prime}+\left(\frac{k-1}{x}+\beta_{1}^{\prime}\right) \beta_{k-1}, \quad 2 \leqq k \leqq m \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
0=\beta_{m}^{\prime}+\left(\frac{m}{x}+\beta_{1}^{\prime}\right) \beta_{m} \tag{7}
\end{equation*}
$$

Suppose that $L(\mu)$ is an exponential extension of L. Then, by Lemma 3 , we have $\alpha_{1} \in L$ because of (5). Hence, by Lemma 1, we obtain $\alpha_{k} \in L, 2 \leqq k \leqq m$, inductively from (4). This is a contradiction to the assumption on y. Hence, $L(\mu)$ is an integral extension of L and μ^{\prime} $=A$, where $A \in L$. By Lemma 2, we have $\alpha_{m} \in L$ and $\beta_{1}^{\prime} \in L$ from (5). By (3), $L(y)$ is a differential field. By the assumption on y, it is transcendental over L. Hence, μ is algebraic over $L(y)$. We have $\mu \in L(y)$, because $\mu^{\prime}=A$. Let us express μ in the form Q / P, where $P, Q \in L[y]$ and $(P, Q)=1$. The leading coefficient of P is assumed to be one. Differentiating $\mu=Q / P$, we have $A x(y-x) P^{2}=P Q^{*}-P^{*} Q$, where $P^{*}=$ $x(y-x) P_{x}+y^{2} P_{y}$ and the notation Q^{*} has the same meaning as P^{*}. Hence, $P \mid P^{*}$. Let us express P in the form

$$
\sum_{i=0}^{s} a_{s-i} y^{i} \quad\left(a_{0}=1, a_{i} \in L, 1 \leqq i \leqq s\right) .
$$

Then, $P^{*}=\left\{s y+\left(x a_{1}^{\prime}-a_{1}\right)\right\} P$. Suppose that S is an irreducible factor of P, and that $P=S^{h} R$, where $(S, R)=1$ and $h>0$. The leading coefficient of S is assumed to be one. Then,

$$
\begin{equation*}
x(y-x)\left(h S_{x} R+S R_{x}\right)+y^{2}\left(h S_{y} R+S R_{y}\right)=\left\{s y+\left(x a_{1}^{\prime}-a_{1}\right)\right\} S R . \tag{8}
\end{equation*}
$$

An irreducible algebraic equation $\mathrm{S}(y)=0$ has a solution z in M, since M is algebraically closed. Suppose that $z \neq 0$. Then, $z \in \Gamma$ by (8). We have either $n(z)<n(y)$ or $r_{n}(z)<r_{n}(y)$. This is a contradiction. Hence, $\mathrm{S}=y$, and $P=y^{s}$. We obtain $Q-\mu y^{s}=0$. This algebraic equation in y over $L(\mu)$ is irreducible because $(Q, y)=1$. Suppose that $s>\operatorname{deg} Q$. Then, $s>0$, and the constant term c in Q is not 0 . We have $f=y^{s}-\mu^{-1} Q$, and $\alpha_{m}=c / \mu$. Since $\alpha_{m} \in L$, this is a contradiction. Suppose that $s=\operatorname{deg} Q$. Then, $s>0$ because $\mu \notin L$. We have $f=(b-\mu)^{-1}$ $\cdot\left(Q-\mu y^{s}\right)$, where b is the leading coefficient of Q. Hence, $\alpha_{m}=c /(b-\mu)$. This is also a contradiction. Hence, $s<\operatorname{deg} Q$. We have $f=b^{-1}(Q$ $-\mu y^{s}$), and $s>0$ because $\alpha_{m} \in L$. Hence, $\beta_{k} \in L$ for any $k(1 \leqq k \leqq m)$ different from $m-s$. We shall express β_{m-s} in the form $c_{0} \mu+c_{1}$,
where $c_{0}=-b^{-1} x^{s-m}$ and $c_{1} \in L$. First suppose that $s<m-1$. Set $k=m-s \quad$ in (6). Then, $\beta_{m-s}^{\prime}=\beta_{m-s-1}^{\prime}+\left\{\beta_{1}^{\prime}+(m-s-1) / x\right\} \beta_{m-s-1}$. The right hand member is an element of L. Hence, $\beta_{m-s}^{\prime} \in L$. Set k $=m-s-1$ in (6). Then, $\beta_{m-s+1}^{\prime}=\beta_{m-s}^{\prime}+\left\{\beta_{1}^{\prime}+(m-s) / x\right\} \beta_{m-s}$. Hence, $c_{0}\left\{\beta_{1}^{\prime}+(m-s) / x\right\}=0$. We have $\beta_{1}^{\prime}+(m-s) / x=0$ because $c_{0} \neq 0$. Secondly suppose that $s=m-1$. Set $k=2$ in (6). Then, $\beta_{2}^{\prime}=\beta_{1}^{\prime}+\left(\beta_{1}^{\prime}\right.$ $+1 / x) \beta_{1}$. Hence, $\left(\beta_{1}^{\prime}+1 / x\right) c_{0}=0$ because $\beta_{1}^{\prime} \in L$. In any case we have

$$
\begin{equation*}
\beta_{1}^{\prime}+\frac{j}{x}=0, \tag{9}
\end{equation*}
$$

where j is a positive integer less than m. Integrating this equation, we get $\beta_{1}=b_{1}-j l(x)$, where $b_{1} \in K$. By (6) and (9) we have

$$
\beta_{k}^{\prime}=\frac{1}{x}\left\{-j+\sum_{i=1}^{k-1}(i-j) \beta_{i}\right\}, \quad 2 \leqq k \leqq m .
$$

Integrating this equation inductively, we obtain

$$
\beta_{k}=\sum_{i=0}^{k} c_{k i}\{l(x)\}^{i}, \quad 2 \leqq k \leqq m,
$$

where $c_{k i} \in K, 0 \leqq i \leqq k$. On the other hand, we have $\beta_{m}^{\prime}+\beta_{m}(m-j) / x=0$ from (7) and (9). Integrating this equation, we obtain $\beta_{m}=b_{2} x^{j-m}$, where $b_{2} \in K$. Since f is irreducible, $\beta_{m} \neq 0$. Hence, we meet a contradiction, because $l(x)$ is not an algebraic function of x over K.

Department of Mathematics
 Osaka University

Bibliography

[1] E. R. Kolchin, Existence theorems connected with the Picard-Vessiot theory of homogeneous linear ordinary differential equations, Bull. Amer. Math. Soc., 54 (1948), 927-932.
[2] ——, Galois theory of differential fields, Amer. J. Math., 75 (1953), 753-824.
[3] , Algebraic groups and algebraic dependence, Amer. J. Math., 90 (1968), 1151-1164.
[4] J. Liouville, Mémoire sur la classification des transcendantes, et sur l'impossi-
bilité d’éxprimer les racines de certaines équations en fonction finie explicite des coefficients, J. Math. Pures Appl., 2 (1837), 56-104.
[5] -, Suite du mémoire sur la classification des transcendantes, et l'impossibilité d'éxprimer les racines de certaines équations en fonction finie explicite des coefficients, J. Math. Pures Appl., 3 (1838), 523-546.
[6] A. Ostrowski, Sur les relations algébriques entre les intégrales indéfinies, Acta Math., 78 (1946), 315-318.
[7] R. H. Risch, The problem of integration in finite terms, Trans. Amer. Math. Soc., 139 (1969), 167-189.
[8] M. Rosenlicht, On the explicit solvability of certain transcendental equations, Publ. Math. Inst. HES., no. 36 (1969), 15-22.

Added in proof. On Liouville's general theorem stated in Remark 3, cf. Rosenlicht [8].

