
J. Math. Kyoto Univ. (JMKYAZ)
19-2 (1979) 191-202

On additive fu n ction als admitting exceptional sets

By

Masatoshi FuxusHimA

(Communicated by Prof. S . Watanabe, Feb. 1, 1978)

§  1 .  Statement of Theorem

Let X  be a locally compact separable Hausdorff space and m be an everywhere
dense positive Radon measure o n  X .  We consider a  H u n t process M  =

{Q, X „ C, P x }  on X  which is m-symmetric in the sense of [1]: f p t f (x)g(x)m(dx)

= f  (x )p,g(x )rn(dx ), f , g E  ,g + ,  t > 0, where p e is the transition function of M  and

R + is the family of all non-negative Borel functions on X.
In this paper a set B c X  is said to be an exceptional set if B is almost polar in

the sense of [1] : P„(aBG 00)=0 where Pm ( ) f  P (x( • )m(dx) and 6.73 =- inf {t >0;

X t  E  B } . When the transition function of M  has a density with respect to the basic
measure m, then a set B  is exceptional if and only if B  is polar ([1; Theorem 4]).
A set B is called a proper exceptional set if B is Borel, m (B )= 0 and

P.(X t E B or X  B  for some t > 0)= 0, vx E X— B.

Evidently any proper exceptional set is exceptional. Conversely any exceptional set
is contained in  a  proper exceptional set ([1; Lemma 3]). A countable union of
(proper) exceptional sets is again (proper) exceptional. The notion of a proper
exceptional set B  is useful in that we get again an m-symmetric Hunt process on.
X— B if we restrict the process M  to X— B in an obvious manner. In the following,
"q.e." means "except for an exceptional set".

Let us call a non-negative Borel measure p  on X  smooth (with respect to M ) if
p satisfies the following conditions:
(p.1) p  charges no exceptional set
(p.2) there exists an increasing sequence {F„} of compact sets such that

(1.1) P,r(lim  x  ,„<C )= 0 q.e. x  E X

(1.2) p(F)< o0 n=1, 2, • • •

(1.3) p (X— C) Fi i )=  O.
Tx =1
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Denote by S  the family of all smooth measures.
S  is clearly larger than the class of all positive Radon measures charging no

exceptional set. A s  a n  example, consider the measure 14 ' dx  on the n-space R '
(n >2 ). This is an element of S  with respect to the Brownian motion for any a.
Notice that this is not even smooth in the sense of Mckean-Tanaka when tr< —2 ([3]).
Nevertheless we show in this paper that the class S characterizes the class of all finite
positive continuous additive functionals defined in a relaxed way.

Let us call an extended real valued function A t (w), t  0, w E  D . an additive
functional if  A t (w) is an additive functional in the ordinary sense but with respect to
the restricted process M1

1
_ B, B being some proper exceptional set. M ore specifically

our requirement for A t (co) is the following:
(A .1) A t (  • ) is A-measurable, A  being the smallest completed sub a-field

of making X „s <t , measurable.
(A.2) there exist a set A E y ...i t and an exceptional set Bc X  such that P x (A)

=1 , v x  e X —B, and moreover, for each (.0 E  A , A •((o) is right continuous and has
left limit on [0, co), A o(a)) = 0, IA t (a))1< co , v t<C(w ), A ,(0)) = A c w (a)), At C(w), and
A  8((o) = 4 8(w)+ 1 ,(0 v t, s 0. H ere 08 is the shift operator: X,(Osco)=
A  and B in the above are called a defining set and an exceptional se t of the additive
functional A , respectively.

Two additive functionals A ") and A(2 ) are said to be equivalent if for each t >0
Px (R ) = R ) ) = 1 q.e. x E  X .  We can then find a common defining set A  and a
common proper exceptional set B of A m and A m  such that R ) (0))=A 2 ) (w), vt >0 ,
Vw E  A .  By PCA F, we mean an additive functional which is non-negative and con-
tinuous on its defining set. T h e  class of all PCAF's is denoted by A .

We now state our theorem. We denote by E x  the integration with measure

P s  and put EX  • ) =  E x (  • )v(dx) for a measure u on X .  We further use the nota-

tions <v, h> = x h(x)v(dx), (fA ),=- f t
o f (X  4)dA  „ A E

Theorem. A ssume that the Dirichlet space on L A X ; m ) of  the process M  is
regular. Then the family of all equivalence classes of Ac÷ and the family S are in one-
to-one correspondence. The correspondence is characterized by the following relation:

1(1.4) hm — E h .,x ((f  • A ),)=<f  ta,h>
tio t

for any r-excessive function h (r 0 )  and any  f  E  a+.

See the next section for the definition of r-excessive functions. As an example
of this theorem, consider the above cited measure p(dx )=1x l" dx  on Rn p

then corresponds by (1.4) to the PCAF A t = f IX ,i ' ds of the Brownian paths. When
0

a< —2, this is not a PCAF in the ordinary sense because PX A ,=-- oo)=1, t >0 ([3]).
However this is always a PCAF in our sense because we can ignore the polar set {0}
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as an exceptional set of A .  The point is that, by admitting exceptional set in the
definition of additive functionals, we can attain a  larger and much simpler class of
smooth measures than H. P. McKean and Tanaka [3], A. D. Wentzell [6] D. Revuz
[4] to decide PCAF's. It should be also mentioned that M. L. Silverstein [5] already
considered PCAF's in our sense in connection with Radon measures charging no
exceptional set. But he described the relation in terms of the approximate Markov
process or excessive functions and did not consider thr general characterization (1.4)
(see Appendix).

In this paper we just follow the methods of McKean-Tanaka and Revuz to
establish the relation (1.4) first for a Radon measure p of finite energy integral and
then for a general smooth measure. It turns out that the potential theoretic lemmas
of § 2 relevant to the Dirichlet space F work quite effectively in carrying out the
programm in the present general context.

Lemma 9 in § 3 states that, when p is of finite energy integral, the relation (1.4)
can be replaced by the same formula for any non-negative bounded h E F  and for
f =  1. This suggest us a more general relation

1(1.5) l i m
tb t

between an additive functional A not necessarily positive nor of bounded variation
and an element T in the dual space of " "  not necessarily a  signed measure. Such
relation will be considered in a subsequent paper.

§ 2. Preparatory lemmas

We use those notions in [1] relevant to the Dirichlet form e on LA X; m) of the
symmetric process M .  We denote .2[6] by F and call e ) the Dirichlet space.
The space (F , e) is assumed to be regular in the sense that .F (-1C0(X ) is both uni-
formly dense in Co (X ) and 6'1-dense in

A positive Radon measure p on X is said to be of finite energy integral if

(2.1) v(x)p(dx) C / e ( v ,  u ), u E F n Co(X)

for some constant C= C(p). There exists then for each a > 0  a unique element
U p  E F  such that

(2.2) 6.'„(U44, v)=f x  Ei(x)p(dx) v v  E

where Ei is any quasi-continuous version of u (see for instance [2; Theorem 1.5]).
e r,.(U„p, U,,p) is denoted by é' ,(p) and called (ce-) energy integral of p. U p  is called
(a-) potential of p .  We denote by S, the family of all positive Radon measures of
finite energy integrals. We further put
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(2.3) S „= {p E s o ; t (X)=1,11u,p11-<—}
Lemma 1 .  The following conditions are equivalent for B c X:
(i) B is exceptional (with respect to M )
(ii) Cap(B)=0

p(B) = 0 v p E So

( i v )  p(B)=0 v p E S„.

P r o o f  The relation (i)#)(ii) is proven in  [1 ; Theorem 6]. The relation
(ii)#)(iii) can be seen for instance from [2; Theorem 1.5 and Theorem 1.7]. Assume
that a set B satisfies condition (iv). F o r  any non-vanishing p e S „ put r'
{x  E  X ; Ui p(x)_<n}. Choose compact sets K„ increasing to X and set pn (E)= p(E
P 7, n K O lg r  n K J.  Since U ,N <n ig r. n q.e . on r  the same inequality
holds q.e. on X ([5 ; Corollary 3.15]). Hence f i n  E S 0 0 and p(B)= lim p(1',2 n 10/1„(B)

=0 getting the condition (iii). q.e.d.

Condition (1.1) in the definition of the smooth measure can be restated in an
analytical term:

Lemma 2. L et {F,,} be an increasing sequence of closed sets. {F„} satisfies (1.1)
if and only if

(2.4) lim  Cap (K— Fn ) = 0 f or any compact set K.

P ro o f  Condition (2.4) is equivalent to

(2.5) Px lim Gr a ,„=  00  =1  q.e. for any relatively compact open set G

on account of [1; formula (9)]. (1.1) implies (2.5) because of the quasi-left continuity
of the Hunt process M .  To get (1.1) from (2.5), it suffices to choose a  sequence
{G,} of relatively compact open sets with ai cG,,, G ,  X , and observe the inequality

q.e.d.

Lemma 3 .  A  measure p  is sm ooth if  and  only  i f  there ex ists an  increasing
sequence {Fn } of closed sets such that (1.1) and (1.3) are satisfied and that 'F E  S,
f or each n, IF

7 ,  being the indicator of Fn .

P ro o f  "If" part is clear from Lemma 1 and we have only to replace {F„} by
{F„ fl G„} where {G„} is  a  sequence of relatively compact open sets such that
Gn c  G ,„ G7, j' X .  "Only if" part follows immediately from a  Silverstein's lemma
and Lemma 2 .  In fact it is implied in the proof of [5; Lemma 3.18] that, for any
bounded Borel measure p  charging no exceptional set, there exists an increasing
sequence {F„} of closed sets such that / F „ • p e S„ n=1, 2, • • • , lim p(X — F,,)= 0  and

00

lim  Cap(X— F„)= 0. q.e.d.
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We say that a function u on X is a-excessive if u(x).0 q.e. and e— tp,u(x) f u(x),
t 0, q.e. Then the restriction of u outside some proper exceptional set is Borel
measurable and finely continuous ([1; Lemma 3]). Such function is said to be finely
continuous q.e.

Lemma 4. (i ) A function u E is a quasi-continuous version of an a-potential
if and only if u is a-excessive.

(ii) Suppose both u and u are a-excessive, uz) m -a.e. and V E then u E
and g(u, u)_< &(v, v). In particular u is a quasi-continuous version of an a-potential.

For the proof of (i), see [2; Theorem 1.4] and [1; Theorem 6]. ( i i )  is due to
Silverstein [5; Lemma 3.3].

Lemma 5. For any u e v E S„ T< 00 and e> 0 , it holds that

1:),(sup I fAX,) I > e A/ei(u) ,Ve i o,
O t T e

where it' is any quasi-continuous version of u.

P ro o f . P u t  E = {x  e X ; I f4(x)I>6}, then P„( sup I ii(X,)1>e)= P„(a E  < T )<
O T

er E,,(e— E) since i is  fine continuous q.e. ([1; Theorem 6]). On the other hand, the
function p ( x )— _ E (e )  is  a  quasi-continuous version  of the (1 -) equilibrium
potential in view of Lemma 4 and [1; Lemma 2]. Hence

E(e — E)= fx  p (x )v (d x )=  1(p, (112))<  / é (y )  C a p (E )  I  1/ i (v) / ' 1(u, u). q.e.d.

Lemma 6. Let {un } be a sequence of quasi-continuous functions belonging to
Suppose {un } constitutes an &,-Cauchy sequence, then there exists a  subsequence {nk }
such that PAu„,(X) converges uniformly in t on each compact subinterval of [0, oo))= 1
q.e. x e X.

P ro o f . By virtue of Lemma 5, there exists a subsequence n1 < n 2 < • < n „<  •  •  •
independent of T >0 and v E  S o such that

1 3 ( sup lun k (X)— un„ i(Xt) I >  
1

2 '  
) 5 r eT 2- k A / S i ( v ) ,  T > 0 ,  2) E S.

05.t7'

This means P„(A)= 0 for A = { sup iu,,,(X,) — unk+ i(Xt)1> 1 i . o . } .  Since v is arbi-
OStST 2k

trary, we get P x (A )= 0  q.e. x E X in view of Lemma 1. q.e.d.

For a Borel set BC X, we put g -
x _B —{u E  g . ;  ti = 0  q.e. on B}. This is a closed

subspace of (g", 6%). Denote by .e 7,3, the orthogonal complement:

(2.6) F=g -x _ B ay ta1 2 .
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will stand for the projection operator on the space .X"'„B. The next lemma relates
this operator to the average by the hitting distribution:

(2.7) _HT u(x)= Ex (e — Bu(X )).

L e m m a 7 . L e t u  be a  quasi-continuous function belonging to the space
Then Hfu is a quasi-continuous version o f  P„r.

In particular, if u E  g -  is a-excessive, then H f u is an a-potential of a  measure of S,
supported by E.

The proof of this lemma was first given in [2; Lemma 3.4] b u t a  simpler proof
has been presented in [5; Theorem 7.3].

§ 3. P C A F  for a Radon measure of finite energy integral

Proposition 1. For it E S „ there ex ists A E A,± such  that the function of  x

E x (J'  e -
t )  is a quasi-continuous version of the potential E1111.

P ro o f . A version u of U,it can be choosen as follows: u is a non-negative finite
Borel function on X  and for some proper exceptional set B, nR„,,u(x) t u(x), co ,
VX E X — B, and u(x)=0, Vx E B, where {R,, a > 0 }  is the resolvent of M .  If we set

In(u(x)—  nR,,u(x)) x  E X— B
g„(x)=

0 x  e B

then g„• m .-11 vaguely, R i g n ( x )  u(x), x E X— B, and moreover R i g„ is e r convergent
to u.

We define an approximating 1-order PCAF ,21-„ by

e - gg„(X8 (w))ds.

Then for any v E Soo,

(3.1) E„((iTn (± 00)— )1-
1 (+ 00) 2) 41(p), e,(R ,g„—  R i g„ R i g„— R 1 g1)

where M„-=11 U22)1100. In fact by setting g„, 1 =g„— g i ,n > l ,  the left hand side of (3.1)
is equal to

2E„(f e - s g„,,(X s )ds e - ug,(X , i )du)

=2 E ,G
- e - 2 sg„, i (X ,)R i g„,,(X )ds)=20, R2(gn,zRign,z)>= 2 W2u, gn,tRign,i)0
g n R 1 g„, 1) 2M(g„, R,g„—  R 1 g1)=2M 1 (R 1 g„, R i g„— R i g).

Since E„(Â n (-1- 00)1., 1 0= ;1- „(t)±  e 'E x  g n (±  0°))= 74.( t)±  e'R ign(X t), we see
that
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(3.2) J (t )+  e 'R i gn (X,), co

is a martingale with respect to (.11„ ,), u E  Soo . By Doob's inequality

1 -
P„( sup 1/14- (t)— M i (t)i > s )  —

2
LAA n (± 00)— A1( + 00)) 2 )

o‘tgo

which, combined with (3.1), means that there exists a subsequence {n„} and

(3.3) PAM„,(t) converges uniformly on [0, oo))= 1, vv E  S„.

In view of (3.2), (3.3), Lemma 1 and Lemma 6, we can conclude that, by selecting a
new subsequence if necessary, P(A) =- 1, x E  X —  where

(3.4) A= {co E  D; 2-1- ( +  00, (0)<  00, ;1„,(t, w) converges uniformly in t on each finite

interval of [0, co)}

a n d  is some proper exceptional set containing B.
Let us put ;At, (0= lim co) for 0) E  A  and .g(t, w)=0 for co ■$ A. We

further put A(t,w)= e'cl71(s,w). A is then a PCAF with A a n d  being its defining

set and exceptional set respectively.
In order to complete the proof, it suffices to show EXJ(± co)) = u>, V1) E So„

on account of Lemma 1 and Lemma 4. Since M n (H - 00 )=J (+  co ) is  LAP
convergent, so is the martingale M n (t). Hence E„(A(t))+ Au> =lim E(II/ I„(t))

=lim co))=1im <2.), <v, u>. By letting t tend to infinity and noting
co

the bound <v, Au> = e p e i (v)V s i (u , 0, we get the desired equality.
q.e.d.

Lemma 8. Consider p  and A  of the preceding proposition. Then f o r any a> 0
-

and bounded non-negative function f, E x ( f f(X t)d A t) is a  quasi-continuous ver-

sion of  Uo (f • itt).

P ro o f .  It is sufficient to consider the case that a= 1 and f =1 0 , G  being an
open set with p(aG)=-- O. Put

95(x) = E ., ($ :  e 'I G (X t )dA,), 41(x)= Es ( f  e - tIx _,(X,)dA t ),

then both 0 and *  are 1-excessive and 0+ *= Ui rt. By Lemma 4, 0 and *  are quasi-
continuous versions of a-potentials of some measures A and v E  So respectively.

We know from Lemma 7 and the equalities = = G* that Supp [A]
c G and Supp [v]c X —  G . Since p= 2+v, we have 2= /, • du. q.e.d.

Proposition 2. For p  E  So , A c .L4k- of Proposition 1 is unique up to the equivalence.
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P ro o f .  Suppose that Ac>, A" ) e  A -,E. are associated with p e So in the manner of
Proposition 1. Then

E x ( f
- e - tdA l>)=E x ( f -  e - edAP) )=u(x ), x  e X— B,0

for some proper exceptional set B .  By the same computation as in the proof of
Proposition 1,

vi i ( x ) = E , q  e - tdA P f  e - tdA (
t f ) ) = E x ( f  e - "u(X t )d R ) ), x  E X— B, i =1, 2.

0 o

Put un = u A n .  By virtue of Lemme 8, we have

<v, vi i >=1im E „ (f  e - - "u„(X t ) d 4 ) )— lim U2 (u,,• p p =  <LI,v • u, p> < CO
n•-•«, 0

for any v e Soo. Hence

E ,( I r e - tdAP) — r e - tA?>12 )=<v, v11 - 2v12+ v2z> =0, E Sco,

from which follows A" ) --, A(2) . q.e.d.

-
In the following, we denote Ex ( f f (X t)dA t) b y  U lf (x ) for A e 2,1 - an d

0
f  E

Lemma 9 .  For p E So and A  E A , the next conditions are equivalent each other:
(i) (111 is a quasi-continuous version of Ui p.
(ii) (h, U1 f)=<f. p, a>0, f ,h  e +

(iii) En .„((fA ),)= <f  • p, p s h>ds, t >0, f, h e g+.
0

1(iv) lim — Eh .,((fA ),)= <f • p, h> f or any r-excessive function h  (2- o )  and
o t

f  e g+.

( y )  l
1

im —Eh .7),(A J= 0411> ,hE al+ (1. •tto  t
(vi) a ( h ,  U r f )  <f. lt,h>, a ' t  0 0 ,  f o r any r-excessive function h 0) and

f e ,q+
(vii) lim a(h, U;1)-= <p, h>, h E + f l

P ro o f .  (i) is equivalent to (ii) by Lemma 8. We can also see the equivalence
of (ii) and (iii) by the uniqueness of the Laplace transform. The implications

(iii) (v) and (ii) (vii) are clear. Suppose that (v) is satisfied and
put c ,(x )=E JA ,). Then,
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f
1<p, Psh>ds=lim —

1  

f cx)ds=lim  f  ( h ,  c „,—  c s )ds
O 7,10 u o .10 u o

1 ft+ .
=lim  — (h, c s )ds — li

o
m —1( h ,  c s )ds=(h, c t )u to  u  t u u 

for any r-excessive function h  in By taking the Laplace transform we get (ii)
for h of this type and f= 1, which is enough to obtain (i). In the same way we can
derive the implication (vii) (i). q.e.d.

Lemma 10. L et p E  So and A  e A c+  be related as in  Lemma 9. Then for any
closed set Fc X

,X—F
e - ( " r ) t f (X t )dA t )  t  f h(x)f(x)p(dx), a t 00 ,

O F(o)

where h is any r-excessive function (7-__()),f E  .1+ and F") is the fine interior of F: F")
= {x  E  X : Px (cri _F >0)=1}  ( Œ F ) .

P ro o f .  It suffices to give the proof when h  is bounded excessive and belongs
to LAX; m ) and f  E  d +  is bounded. By Lemma 8 , U l f  is  a  quasi-continuous
version of U ( f  p ) .  On account of Lemma 7,

aX—F
aE k .„,(f oe - "t f (X t )dt)

=a(h, Ul f — U lf )= ag  12 ,h , U lf — U lf )

=ag„(R„h—  Hf - FR „h, Ulf )=a6(R rf i, U ,,(f  p))=a f
x  

K h(x)f (x )p(dx)

which increases to f h(x)f(x)p(dx) as a  t  00. H ereF(0)

K h (x )=E x
( J  F  e - "h(X t )dt). q.e.d.

§ 4. Proof of Theorem

Theorem is divided into two propositions.

Proposition 3. Given A  E A ,  there exists a unique p e S such that (1.4) holds.

P r o o f  F o r a  given A  E A  with a  proper exceptional set N C X , we put

0(x )=E x ( f : e ' f (X  t )e -  A td t) , x  e X — N, where f  is  a Borel function in L 2(X; m)

such that f (x )> 0, vx e X .  Then 95(x) >0, vx E  X— N.
It can be seen that

(4.1) U10(x)= R,f(x)—  0(x), x  e X— N.
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In particular U10 is  a  1-excessive function dominated by R i f  e Hence Uly) is
by Lemma 4 a quasi-continuous function of " '  and so is 0 by (4.1) again. Accord-
ingly there exists a sequence {En } of increasing closed sets such that Cap(X — E n ) 0,

n—> co , N  c n (X— En ) and 01E , „ is continuous for each n.
nool

Let us put

(4.2) E n =lx  E  E  ; 0 ( x )  1 }  ,

and prove that {Fn } satisfies condition (1.1). To this end, set B i , ={ x  E  X — N ; 0(x)

1 a n d  =lim  a n . S in c e  0  is fine continuous on X  — N, we have for x  E  X —N,

E x ( f  e - t f (X  t )e -  A t  dt) = E x (e -  °.e. -  '0 (X  „.) )  1—  .  By letting n tend to infinity, we

can see P n (a<C)=0, x e X— N , in view of the strict positivity of f  Hence {Fn }
satisfies (1.1) because of the inclusion X— F„C(X  —  E n ) U B„ and [1; formula (9)].

Now put A n = I,„• A .  On account of the inequality U1.1 (E and
Lemma 4, there exists a unique p n  E  S , such that U1.1 is a quasi-continuous version
of the potential U,It i ,. But then

(4.3) p „=4 .•  p „ n<1

because U1.1= U,14,. is a version of U,/,• p i by Lemma 8. We can now define a

measure p  by /,.• p = I F „• p n ,  n = 1, 2, • • • , p(X  — U Fn ) =  0. p  is sm ooth in view

of Lemma 3.
It remains to show that A  and p  are related by (1.4). By Lemma 9, we see for

any f  E  a+ and 1-excessive function h,

<f  h > -= lim Jim a(h , U  r f )=1 im  lim  a(h , U  r ( I  • f )) .
n-00 er —co

By virtue of (1.1), we get <fit, h> =lim  Œ(h,f )  which is obviously equivalent to
et — • CO

(1.4). q.e.d.

Proposition 4. Given p e S , there exists A  E  A c+ uniquely  up to the equivalence
such that (1.4) holds.

P ro o f  Consider p E  S  with {Fn } satisfying the conditions of Lemma 3. From
Proposition 1, Proposition 2  and Lemma 9 , w e see that there exists A ' '> E  A c+
uniquely up to the equivalence such that fl (n) is related to IF. • p by (1.4). But then

(4.4) A(") A"), n<1

because /,„ • A" ) is related by (1.4) to IF.• IF y
•I F , , • •
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Choose a proper exceptional set N  and a defining set A  which are common to
all A

(n) such that, for any w e A , R"(0))=C4,• A ( " 1 ) ),(a)), v t > 0 , n = 1, 2, • • • , and

a(co) (=lim x  ,(a)))._>C(a)). Put for 0, E  A

{A t (w)-= A n ) (0)), a x - F ( 0 )) -t <ax-F„00 ), n = 1, 2, - • •

A t (w)-= A , ) _(a)), t  a ( w ) .

Obviously A  E A .  S in ce  A =A  for t <cr x _F „, we see from Lemma 10,

, r2f— Fn
aE n .,„(f + r' t

t )dA t ) 11(x)f(x)p(dx), a  t  co,
F

(°)

IT ) being the fine interior. Notice that the set U F —  U F? ) is exceptional because

of (1.1). By letting n tend to infinity, we get lim  a(h,UP• 7 f )=<f  • p, h> proving

that A  is related to p  by (1.4).
The uniqueness of A  is then clear because /F „ • A is related to • p in the manner

of the preceding section for each n. q.e.d.

Appendix

In § 3, we saw that the function (.1„p for p E  S , can be expressed as the potential
of the associated A  e A . It is convenient to give simple conditions for a more
general excessive function to be expressible this w a y . We state here a  criterion of
this type due to M. L. Silverstein.

Let {D,i } b e  a  sequence of relatively compact open sets such that
n-= 1, 2, • • • , and D„ t X, n—> 00 . We put - n -  x_v„, n=1, 2, • • • , and fix a > 0 .

Proposition 5. L et u be an a-excessive function on X  satisfy ing the following
conditions:

(i) lim  E m-a.e. X e X .
(ii) there exists, for each n, an a-excessive function y, E such that u. y„ q.e.

-
o n  D . T h e n  u  is  the a-potential of a unique A  E A , namely  u(x)__ Ex ( f  e - "dA  t )0

q.e.

By taking v„(x)— C • E x (e - "'D), x  E  X , n= 1, 2, • • • , we get

Corollary. I f  u  is a  bounded a-excessive function satisfy ing the condition
above, then u is the a-potential of  a unique A E  A ct

Let A E  A , and p E  S  be related to each other by our Theorem. By Lemma
3 , we can see that the formula of Lemma 9  ( i i )  still holds for A  and p. Hence
Proposition 5 follows from the next proposition.
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Proposition 6. L e t u  b e  the function o f  Proposition  5 . Then there ex ists a
unique p  e S such that

(h, u) = < f • p, R „h> , f  h  E a+.

p  is moreover a positive Radon measure charging no exceptional set.

This proposition is almost the same as Theorem 9.3 of M. L. Silverstein [5] and
can be proved using Lemma 7.
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