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Introduction. The Levi problem, or the inverse problem of Hartogs, for
domains over a complex manifold, is stated as follows: Let D be a pseudoconvex
unramified domain over a complex manifold X. Is D a Stein manifold? Oka [8]
solved affirmatively this problem in the original and fundamental case, i.e., for
domains over an affine space C". Since then this result has been generalized for
domains over various complex manifold X, for example over a Stein manifold by
Docquier-Grauert [1] and over a projective space by Fujita [2] and Takeuchi [9].
Hirschowitz [4], [5], [6] investigated the case where X is an infinitesimally homo-
geneous manifold and especially showed that the problem is affirmatively answered
if X is an irreducible compact rational homogeneous manifold, for example a Grass-
mann manifold, and if the projection of D to X is of finite fiber.

In this note we shall show that the problem is solved in the case where X is a
Grassmann manifold without the finiteness condition of the fibers, in a way different
from that of Hirschowitz, reducing it to the problem over an affine space. We
remark that the proof becomes simple if X is a projective space.

1. By an unramified domain over a complex manifold X we mean a connected
Hausdorff space E together with a locally homeomorphic map @ of E to X, which
we call the projection. We denote such an unramified domain by the triple &=
(E, &, X) and call simply a domain. For a domain &, a structure of complex mani-
fold is induced on E so that the projection @ is a holomorphic map. For the defi-
nition of the boundary points of a domain we refer to Grauert-Remmert [3] (Defi-
nition 4). The set of all boundary points of the domain is denoted by dE. We
can define a structure of Hausdorff space on E=E U JE and a continuous map &
of E to X such that @ | E=®. The domain & is called pseudoconvex at a boundary
point g, if there exists a neighborhood U of g such that U n E is a Stein manifold.
When & is pseudoconvex at every boundary point, & is called pseudoconvex.

2. The Stiefel manifold V,, is the set of all nxr matrices of rankr. We can
regard V,, as a Zariski open set in the affine space C**. The Grassmann manifold
G, is the quotient space V, ,/GL(r, C) of V,, by the operations of the general linear
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group GL(r, C) defined by
Vor X GL(r, C)3 (A, Z)—> AZ€eV,,.

The canonical projection n of V,, onto G, , defines a holomorphic principal bundle
with the structure group GL(r, C). We note that, for x in G,,, the closure 7~(x)
in C™ of the fiber 771(x) is a vector subspace of C"* of dimension r2.

3. Our purpose is to prove the following

Theorem. Let 2=(D, ?, G,,) be a pseudoconvex unramified domain over
a Grassmann manifold G,,. If there exists at least one boundary point, i.e.,
unless D is homeomorphic to G,, by the projection @, then D is a Stein manifold.

To prove the theorem, we construct the fiber product D of the bundle Vir—=Gyr
and the domain D—G, ,, namely,
D={(4, peV,,xDl n(A)=a(p)}.
We have the commutative diagram

D—% 4, D

3| e

nr R
C DVn,r 3 Gn,r .

The map # of D onto D defines a holomorphic principal bundle with the structure
group GL(r, C). The map & of D to V,, defines a domain (D, &, V,,) over V,,
and consequently a domain & =(D, &, C*) over C". Clearly the domain (D,
@, V,,) is pseudoconvex. Therefore & is pseudoconvex at each boundary point
which lies over V,,. We shall prove later that the domain & is pseudoconvex (at
every boundary point). Let us assume this for some time. Then, by Oka’s funda-
mental result, D is a Stein manifold. From this we infer that D is also a Stein
manifold, by virtue of the following theorem of Matsushima-Morimoto [7]
(Théoréme 5):

Let P—B a holomorphic principal bundle over a complex manifold B whose
structure group G is the complexification of a maximal compact subgroup of G.
If the total space P is a Stein manifold, then the base B is also a Stein manifold.

Indeed, in our problem, the structure group GL(r, C) of the principal bundle D—D
is the complexification of the unitary group U(r), which is a maximal compact sub-
group of GL(r, C). Thus the proof of the theorem will be completed, if we show
the pseudoconvexity of &F. The rest of this note is devoted to a proof of this fact.

4. Let us first recall some definitions of Grauert-Remmert [3]. Let &=(E, &, X)
be a domain. A boundary point ¢ is called removable (hebbar), if there exists a
neighborhood U of g such that (U, & | U, X)is a “‘schlicht” domain and that U n 8E
is contained in an analytic set of positive codimension in U (Definition 5). A subset
T of the boundary JE is called thin (diinn), if for each point q in T there exist a
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neighborhood U of g and a holomorphic function f on U n E which does not identi-
cally vanish, with the following property: for any point ¢" in U N T there exists a
sequence p,, v=1, 2,..., of points in UnE tending to ¢g’, such that limf(p,)=0

(Definition 6). One of the main results of [3] is the following (Satz 4): ’

Let &=(E, &, X) be a domain. If there exists a thin subset T of the boundary
OE such that no point in T is removable and that & is pseudoconvex at each point
in OE—T, then & is pseudoconvex.

Now let S be an analytic set of positive codimension in a complex manifold X
and let &=(E, ®, X) be again a domain. A boundary point g of & is called re-
movable along S, if there exists a neighborhood U of q such that (U, @|U, X)is a
“schlicht” domain and that U n dE is contained in ®~1(S). Let R denote the set
of all boundary points that are removable along S. Then, setting E¥=E U R and
P*=¢ | E*, we obtain a domain &*=(E*, ¢*, X), which we call the extension of
the domain & along S. We have 0E*=0E — R by means of the natural identification
of boundary points.

Lemma. Let S be an analytic set in X of positive codimension and let & =
(E, &, X) be a domain. Assume that & is pseudoconvex at every boundary point
lying over X —S.
(1) Ifthere exists no boundary point which is removable along S, then & is pseudo-
convex.
(2) Let &*=(E*, ®*, X) be the extension of & along S. Then &* is pseudoconvex.

Remark. The first assertion is considered to be a generalization of Satz 6
in [3].

Proof. The second assertion follows immediately from the first, which we
prove now. (cf. the proof of Satz 6.) Clearly T=®-1(S)n E is a thin subset. So,
in view of the above theorem of Grauert-Remmert, it suffices to show that & is
pseudoconvex at each removable point in T. Let g be such a point. Then there
exists a neighborhood U of g such that (U, @|U, X) is a ‘‘schicht” domain and
that U n OE is contained in an analytic set M in U. We set N=(U—®"1(S))n JE.
The domain & is pseudoconvex at every point in N, and N is contained in
(U—&1(S))n M. Therefore, by Hartogs’ continuity theorem, N is an analytic
set in U—®~1(S) of pure codimension 1, composed of some of the irreducible com-
ponents of (U—(f)‘l(S)) N M. The closure N of N in U is an analytic set in U.
We have N< U n 0E since OE is closed. We assert that N=U n 0E. In fact, other-
wise, (U N dE)— N would be non-empty and contained in #~1(S); hence the points
in (U n dE)— N would be removable along S, which would contradict the assumption.
Thus we see that N=U n 0E and that & is pseudoconvex at q. g.e.d.

5. Now let us show that the domain &F=(D, &, C") is pseudoconvex. We write
§S=C"—V,, By thelemma, it suffices to prove that there exists no boundary point
removable along S. To prove this, let us assume the contrary. Adding to D the
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non-empty set R of all boundary points removable along S, we get the extension
G*=(D*, ¢*, C) of & along S. The domain F* is pseudoconvex by the lemma.
Let g be a point in R. There exists a point x in G,,, such that the closure 7~I(x) in
C'r of the fiber n~'(x) contains the point #*(q). We set F¥=&* (7 (x)) and
F=¢"'(n"'(x))=F"'(n"(x))=7"'(¢"'(x)). Each connected component of F
corresponds to a point in D which lies over x, and is homeomorphic to n~!(x) by the
projection. Let F¥ be the connected component of F* which contains the point
g, and consider the domain # % =(F%, &*|F¥, n~!(x)). The domain Z¥ is pseudo-
convex, since F* is pseudoconvex. The restriction of F¥ over n~!(x) is a connected
component of F. Since F¥ contains the point ¢ lying over a point in 7~ 1(x) — n~!(x),
which is an irreducible analytic set in 7='(x), the component F#¥ is homeomorphic to
n~1(x) by the projection &*| F#, by Hartogs' continuity theorem. This implies that
there exists a point in R over every point in n~Y(x)—n~!(x), in particular over the
origin of C". Let g, be such a point. Then there exists a neighborhood U of
qo Which is homeomorphic to a neighborhood of the origin of C* by the projection.
Hence #(U n D) is homeomorphic to G,, by the projection @. Since D is con-
nected, we have #(U nD)=D. But this case was excluded by the assumption.
Thus we have proved the pseudoconvexity of the domain .
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