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Introduction. The L evi problem, or the  inverse  problem o f  Hartogs, for
domains over a complex manifold, is stated as fo llow s: Let D be a  pseudoconvex
unramified domain over a complex manifold X .  Is D a Stein m anifold? Oka [8]
solved affirmatively this problem in the original and fundamental case, i.e., for
domains over an  affine space C .  Since then this result has been generalized for
domains over various complex manifold X, for example over a Stein manifold by
Docquier-Grauert [1] and over a projective space by Fujita [2] and Takeuchi [9].
Hirschowitz [4], [5], [6] investigated the case where X  is an infinitesimally homo-
geneous manifold and especially showed that the problem is affirmatively answered
if X is an irreducible compact rational homogeneous manifold, for example a  Grass-
mann manifold, and if the projection of D to X is of finite fiber.

In this note we shall show that the problem is solved in the case where X  is a
Grassmann manifold without the finiteness condition of the fibers, in a way different
from that o f Hirschowitz, reducing it to the  problem over an affine space. W e
remark that the proof becomes simple if X  is a projective space.

1. By an  unramified domain over a  complex manifold X  we mean a  connected
Hausdorff space E together with a  locally homeomorphic map 49 of E to X, which
we call the projection. We denote such a n  unramified domain by the triple g =
(E, 0, X) and call simply a dom ain. For a domain 1, a structure of complex mani-
fold is induced on E so that the projection 0 is a holomorphic m ap . F o r the  defi-
nition of the boundary points of a domain we refer to Grauert-Remmert [3] (Defi-
nition 4). The set of all boundary points of the domain is denoted by E .  We
can define a structure of Hausdorff space o n  sE=E u DE an d  a  continuous map d■
of É to X such that c1 I E = 0 .  The domain I  is called pseudoconvex at a  boundary
point q, if there exists a neighborhood U of q such that U n E is a Stein manifold.
When I is pseudoconvex at every boundary point, I  is called pseudoconvex.
2. The Stiefel manifold V„,r i s  the  se t o f a ll n x r  matrices of rank r. We can
regard V . as a Zariski open set in the affine space C"r. The Grassmann manifold
G„,r is the quotient space V„0.IGL(r, C) of V„,, by the operations of the general linear
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group GL(r, C) defined by

x GL(r, C) n (A , Z) A Z  E

The canonical projection n of V . onto G„, defines a holomorphic principal bundle
with the structure group GL(r, C). W e  note that, for x in Gn r , the closure n - 1 (x)
in C"r of the fiber n - 1 -(x) is a vector subspace of Cn r  of dimension r 2 .
3. Our purpose is to prove the following

Theorem. L et g =(D , 0, G r) b e  a pseudoconvex  unram if ied domain over
a  Grossm ann manifold G n r . I f  there ex ists at least one boundary  point, i.e.,
unless D is homeomorphic to Gn ,r by  the projection 0, then D is a Stein manifold.

To prove the theorem, we construct the fiber product i3 of the bundle V„,,—>G„,r

and the domain D— >G namely,

= {(A, p) E X  DI n(A ).= 0 (P)}

We have the commutative diagram

D

CnrD V ,. 4  G n ,r .

The map 71 of 15 onto D defines a holomorphic principal bundle with the structure
group GL(r, C ) .  The m a p  of 13 to l'  a  domain (D, , V„,,.) over
and consequently a  domain ff =(.5, C u r )  over C "r. C learly the domain (D,
"çh", n , r )  is pseudoconvex. Therefore ff is pseudoconvex at each boundary point
which lies over Vn o.. We shall prove later that the domain ff is pseudoconvex (at
every boundary point). Let us assume this for some time. Then, by Oka's funda-
mental result, D is a  Stein manifold. From this we infer that D is also a Stein
manifold, b y  v irtue  o f  th e  following theorem of Matsushima-Morimoto [7]
(Théorème 5):

Let P--+B  a holom orphic principal bundle over a complex m anifold B  whose
structure group G is the com plexif ication of  a m axim al com pact subgroup of  G.
If  the total space P is a S tein m anifold, then the base B  is also a S tein m anifold.

Indeed, in our problem, the structure group GL(r, C) of the principal bundle .13—>D
is the complexification of the unitary group U(r), which is a maximal compact sub-
group of GL(r, C). Thus the proof of the theorem will be completed, if we show
the pseudoconvexity of T h e  rest of this note is devoted to a proof of this fact.

4. Let us first recall some definitions of Grauert-Remmert [3]. Let =(E, 0, X )
be a dom ain. A  boundary point g  is called removable (hebbar), if there exists a
neighborhood U of g such that (U, I  U ,  X ) is a "schlicht" domain and that U n aE
is contained in an analytic set of positive codimension in U (Definition 5). A subset
T  of the boundary aE is called thin (dtinn), if for each point g  in  T  there exist a
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neighborhood U of g and a holomorphic function f  on U n E which does not identi-
cally vanish, with the following property : for any point g ' in  U n T  there exists a
sequence 13,, v=1, 2 ,..., o f poin ts in  U n E  tending to g ',  such that limf(p)= 0

v-cc
(Definition 6). One of the main results of [3] is the following (Satz 4):

L et 4' =(E, 0, X ) be a dom ain . If  there exists a thin subset T  of the boundary
0E such that no point in T  is removable and that g is pseudoconvex  at each point
in 0E— T, then g is pseudoconvex.

Now let S be an analytic set of positive codimension in a complex manifold X
and let =(E , 0 , X ) be again a  dom ain . A  boundary point g  o f  g  is called re-
movable along S , if there exists a  neighborhood U of g such that (U, c1I U, X ) is a
"schlicht" domain and tha t U n aE is contained in - 1 (S). Let R  denote the set
of all boundary points that are removable along S . T h e n , setting E *  E  u  R  and

.q5 I E*, we obtain a  domain g*=(E*, 0*, X ), which we call the extension of
the domain g  along S .  We have 0E* =0E—  R by means of the natural identification
of boundary points.

Lem m a. L et S  be an  analy tic set in  X  of  positive codimension and  le t g
(E, 0, X ) be a dom ain. A ssum e that g is pseudoconvex  at every  boundary  point
lying over X  —S.
(1) If there exists no boundary point which is removable along S, then g is pseudo-
convex.
(2) L et g*=(E*, 0*, X ) be the extension of g along S. Then 6** is pseudoconvex.

Rem ark. The first assertion is considered to be a  generalization o f  Satz 6
in [3].

Pro o f . The second assertion follows immediately from th e  first, which we
prove now. (cf. the proof of Satz 6.) Clearly T= 0 - 1 (S) n 0E is a thin subset. So,
in  view of the above theorem of Grauert-Remmert, it suffices to show that 6' is
pseudoconvex at each removable point in T. Let g  be such a  p o in t .  Then there
exists a  neighborhood U  o f  g  such that (U, c1 I U, X ) is a  "schicht" domain and
that U n 0E is contained in an analytic set M in  U .  We set N =-(U — 0 - 1 (S)) n 0E.
The dom ain g  is  pseudoconvex at every p o in t in  N , a n d  N  is contained in
(U — 0- 1 (S)) n M .  Therefore, by Hartogs' continuity theorem, N  i s  a n  analytic
set in U— . - 1 (S) of pure codimension 1, composed of some of the irreducible com-
ponents of (U —0- 1 (S)) n M . T h e  closure N  of N  in  U  is  an  analytic set in  U.
We have N U  n DE since aE is closed. We assert that N =U n 0 E .  In fact, other-
wise, (U n 0E)— N would be non-empty and contained in  ' - 1 (S ); hence the points
in (U n 0E)— N would be removable along S, which would contradict the assumption.
Thus we see that N =U n 0E and that g  is pseudoconvex at g. q. e. d.

5 .  Now let us show that the domain ff =(, rfi , Cn r ) is pseudoconvex. We write
S = C"r — By the lemma, it suffices to prove that there exists no boundary point
removable along S .  To prove this, let us assume the contrary. A dding to 13 the
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non-empty set R  of all boundary points removable along S , we get the extension
ff"*=(B*, œd;*, C"r) of . along S .  The domain ff* is pseudoconvex by the lemma.
Let q be a point in R .  There exists a point x in G„,r such that the closure ir - qx) in
Cr of the fiber 7r - qx) contains the point 45*(q). W e set F* = -43*- '(7r- 1 (x )) and
F =ib - 1 (7T- 1 (x))= - 1 (7r- '(x ))= 1 (k '(x)). E a c h  c o n n e c te d  c o m p o n e n t o f  F
corresponds to a point in D which lies over x, and is homeomorphic to n - 1 (x) by the
projection. Let F t be the connected component of F* which contains the point
q, and consider the domain ,Ft = (Po', (T)* I Ft, n- q x ) ) .  The domain ,Ft, is pseudo-
convex, since ff* is pseudoconvex. The restriction of Ft over n - 1 (x) is a connected
component of F .  Since Ft contains the point q lying over a point in 7 - 1 (x)— m- qx),
which is an irreducible analytic set in n- '(x ), the component Ft is homeomorphic to
n- 1 (x) by the projection jj*1 , by Hartogs' continuity theorem. This implies that
there exists a point in R  over every point in rz- '(x)— n- 1 (x), in particular over the
origin of C H .  L e t  qo  be  such  a point. Then there exists a  neighborhood U  of
qc, which is homeomorphic to a neighborhood of the origin of C"r by the projection.
Hence NU n .13) is homeomorphic to G„, r  b y  the projection O. Since D  is con-
nected, we have NU n 13)=D. But th is case was excluded by the assumption.
Thus we have proved the pseudoconvexity of the domain
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