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Introduction

Riemann-Roch theorem, one of the most important theorems in the classical
theory of Riemann surfaces, was at first extended to open Riemann surfaces by
Y. Kusunoki [4], and afterwards generalized along his method by H. Mizumoto
[7], M. Yoshida [12] and M. Shiba [9]. Comparing these generalizations, how-
ever, they can be classified superficially into two types, namely the generalization
by Mizumoto and those of Yoshida and Shiba have somewhat different forms,
where Shiba’s result is clearly an extension of Yoshida's one. Whereas the rela-
tionship between the Mizumoto's result and Yoshida’'s one was not known, and
so we intend in this paper to discuss about this relationship.

In this paper, we recall in § 1 the notion of Yamaguchi’s regular operators
and some related results (Yamaguchi [11]), and next in §2 and § 3, we consider
the convergence of the sequence of the certain harmonic functions by using the
regular operator’s method (Cf. Theorem 1). Finally, in § 4, by applying the results
in §2 and § 3, we show that the Yoshida’s theorem can be regarded as an exten-
sion of the Mizumoto’s one (Cf. Theorem 2). As for the notations and the termi-
nologies concerning the differentials in this paper, we shall use those in Ahlfors
and Sario [1] without repetitions, though we restrict curselves to real differentials.

§1. Regular operator

Let R be an open Riemann surface, W an end towards the Alexandroff’s ideal
boundary 4 of R (namely, the complement of W is the closure of a regular region
of R) and {R,} a regular exhaustion of R. Denote W\UaW by W and set

HD(R)=a Banach space of harmonic Dirichlet functions on R with
respect to the norm [ull=|dull+|u(a,)|, where ue HD(R), ||dull
the Dirichlet norm on R of du and q, is a fixed point on R,
D,(R)=the set of all Dirichlet potentials on R,
X=a subspace of HD(R),
C°(@W)={f: f is a real analytic function on the relative boundary oW of W},
H(W)= {restriction to W of a harmonic function on an open set containing W}.
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Definition 1 (Yamaguchi [11]). We say a linear operator L=Ly : C°(0W)
—H(W) is regular (with respect to W), if it satisfies the following conditions :

(i) Lf=f on oW, )

(ii) |ldLfllw<oo, where |dLf|w denotes the Dirichlet integral over W,

(iii) <dLf, dLg}Wzg fdLg* for any f, geC®(0W), where <dLf, dLgdw

ow
means the mixed Dirichlet integral over W.

Hereafter, we shall use frequently the following results (Yamaguchi [11]).

Proposition 1. (i) If u=Lyu on W for uc HD(R), u must reduce to a con-
stant. In addition, if Lyl=1 on W, the constant must reduce to zero.

(ii) Denote by {L} the set of all regular operators with respect to W and
{X} the set of all subspaces of HD(R), then there exists an one to one correspond-
ence between {L} and {X} such that for any ue H(W), the following conditions
(1) and (2) are equivalent to each other:

(1) u=Lf on oW,

2) u=fon oW, u=v+g, on W for some veX and g,€D,(R) and the set

{h: he HD(R) and limg " hdu*=0} coincides with X for each {R,}}.

Hereafter, we denote by L¥ the regular operator associated with the space X.

Proposition 2. (1) (L¥)1=1 if X31, and (L)1+#1 if X>1.

(i) If X321, dLXf)*e{w|lpedX** +T,,N['} where w|w denotes the restric-
tion of @ to W and dX** the orthogonal complement of dX*={dvu*: ue X} in [}.

(iii) The closure of the linear space {u,:(LX)f=u;+g, on W where g,<
Dy(R) and u,e X} coincides with X.

Proposition 3. Suppose Ly=L is a regular operator associated with X and
s a harnonic function on W except for isolated singularities not accumulating to
aw.

(i) If L1=1 and Sawds*———O, there exists a harmonic function on R except
for the singularities of s such that (a) p—s=L(p—s) on W, (b) p is independent
of W, (c) p is unique save for an additive constant.

(i) If L1+1, for any s there exists uniquely a harmonic function p on R
except for the singularities of s satisfying the above conditions (a) and (b).

Proposition 4. (i) Let {X.} be a sequence of subspaces of HD(R) such that
[iclosure {;ﬁ X} =closure {('15) X}, which we denote by X. Then, for any f
and W, we have lim [[(L¥»)f—(L*)filw=0, where llvllw=Ildviiw+|v(a,).

(i) Let {2,} be a sequence of regions such that 2,C2n., and Q.anR.

Suppose that X, (resp. X) is a subspace of HD(Q,) (resp. HD(R)) which satisfies
the following conditions (a) and (b):
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(a) for each us X, there exists a sequence {u,} with u,€X, such that
llwn—ullo,=lldur—dula,+ [us(a)+ula)| —>0  as n—oo,
(b) if {un:u,=X,} is a sequence suct that sup l#nllo, <oo, the limit of each

locally uniformly convergent subsequence {un.,} belongs to X.
Then, for any f and W, we have |[(L*)f—(L¥m)fllw,—0 as n—co, where W,=
wWnN82,.

§2. Convergence theorems of X principal functions
In this paper, we denote by {£,} a sequence of regions on R such that
(1) 2,CQu41, J 2,=R and each component of R—£, is non compact,
n=1

(ii) 0%, consists of a finite number of Jordan curves for each n,
(ili) 0%, is homologous to 02, for m>n.

Definition 2. (Matsui [5]). Suppose, for each n, X.(2,) (resp. X.(R)) is a
subspace of HD(£,) (resp. HD(R)). We say that a sequence {X,(2,)%-,
(resp. {X,(R)}%.,) converges to a subspace X(R) of HD(R) if the following con-
ditions are fulfilled :

(i) for each ue X(R) there exists a sequence {u,} with wu,€ X,.(2,) (resp.
U, € X,(R)) such that flu,—ullo,—0 (resp. lluz—ull—0) as n—oco, where a, is a
fixed point on R,

(if) if {u,} with u,eX.(2,) (resp. u,€X,(R)) is a sequence such that
sup llualle, <oo (resp. sup lluall<o0), the limit of each locally uniformly convergent

subsequence {u,,} belongs to X(R).
In this case, we write simply X,(2,) 2 X(R) (resp. X,(R) > X(R)).

Let W be an end towards 4, P,, k=1, 2, ---, K a finite number of points on
R and V a regular region such that \UP,CVCR—W and R—W—V is connected,
and we set
X.=Xn(2,) (resp. X=X(R))=a subspace of HD(R2,) (resp. HD(R)),
L=the regular operator such that, for any feC*@V\JoW), Lf=(L*)f on W
and Lf=Dirichlet solution H% (which we denote by HVf) onV,
L,=the regular operator such that, for any feC*@V\JoW), Lf=(L*)f on W,
and L,f=H"f on V, where W,=WnN2,,
s=a function on WV such that s|»=0 and s|z€H(V—P)).
p (resp. pp)=the solution on R (resp. on £2,) of the equation p—s=L(p—s)
on WUV (resp. p—s=L,(p—s) on W,UV).
Hereafter, we call the above function p a X principal function on R with the
singularities s.

‘Lemma 2.1. Suppose X,(£2,) > X(R), then we have the following:
@ if Sayds*zo, X221 and X,31 for each n, there exists, under the suitable
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choice of additive constanis, a sequence {n,} of integers such that ny—oo and
pn,—Dp—0 as k—oo, locally uniformly on R,

(ii) if X»1 and X.d1 for each n, there exists, for any s, a sequence {n,}
of integers such that ny—oc and pn,—p—0 as k—oo, locally uniformly on R,

(i) if Savds*:()’ X>21 and X, 31 for each n, then there exists a sequence

{n,} of integers such that n,—oo and d(pn,— p)—0, locally uniformly on R.

Proof. At first we prove the case (i). We extend sto R—V—W so that we
obtain §€C*R—V—W). Because of Savds*zo and the fact R—V—W is con-

nected, by Lemma 2 in Yamaguchi [11] we can extend ds* to a closed differential
o so that cel''(R—V—W) and o=ds* on WUJI(V—UP,), hence o*+dscl'(R).
Therefore, 6*+d§ has a decomposition of the form

0'*+d§:(l)cn+dfzkn:Cl)h,n+df§n+dgon:wn+7n+dfg<n+dgon ,

=w.+df¥f=w,+dfft+dgo=w+r+dff+dg,,

where wcnerc(gn); whnerh(gn)v dfonerco(gn)y dgonereo(gn); wnEde Tne(an)lr
0. ET(R), wn€lW(R), dfo€I(R), dg,€l(R), wedX and t(dX)*. Here we
note that df,, and dg,. (resp. df, and dg,) are harmonic on W, (resp. W). Now
we set dp,=ds—du,—dgo, and dp=ds—du—dg, where du,=w, and du=w, then
from Theorem 3 in Yamaguchi [11] p, (resp. p) is the solution of the equation
p—s=L,(p—s) on W,JV (resp. p—s=L(p—s) on WIV). On the other hand,
we have from above decomposition forms

sup{lldp—dpalle,} <o and sup{lwsll+lzall+ld/onll +ldgonl} <oo.

Therefore, from the fact df,, and dg,, are harmonic on W, and Lemma 3.2 in
Matsui [5], there exists a sequence {n,} of integers such that n,—co, dp,,—dp’
as k—oo, locally uniformly on R and moreover, dp’'=du’+dF,=7.+dG¥, where
duedX, t,€(dX)*, dF, el and dG,€l,,NI"*. Therefore, from Propositions
1 and 2 we have dp—dp’=dhel(R) and h=Lh on W, and so we have h=
constant. Next, we prove the case (ii). At first, we notice that the linear space
X+ {constant} (resp. X+ {constant}) is a closed space in HD(£,) (resp. HD(R))
(Yamaguchi [11]) and L, (resp. L) induces the space X, (resp. X) on £, (resp.
R). Now we set

Lf=L(f—cptes Laf=Llf~csn)tesm,
X.=the space induced by the operator L, on 2,,
X=the space induced by the operator L on R,

=s—(SaV ds* / Sadel*)Ll, §n:s—<Sans* / SJWdL,,l*)L,,l,

p.=the solution of the equation: p——§,,=f,,(p—§n) on W,UV,
p=the solution of the equation: p—3=L(p—3) on WUV,

where feC(@WUaV),

(%33
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cf:<ga(WUV)de*/Sa<WUV)dLl*) and Cf"=<Sa<WuV)dLnf*/SacwumdL"l*>'

Then we have [,1=1, [1=1 and %,—§—0 uniformly on VUW and moreover,
from the Proposition 2, X 2=X,+ {constant} and X=X+ {constant}. Consequently,
there exists a sequence {n,}={k} of integers such that p,—p—0 as k—0, locally
uniformly on R. According to Theorem 3 in Yamaguchi [11], we have

p:5_{ga(WUV)dL(p_S)*/St'inLl*}, pk:ﬁk—{S&(WUV)de(ﬁk_gk)*/gadekl*}.

But from Lemma 1 in [11], we get “deﬁk”Wkés}alp 1d®llw, <o, where ¢, denotes
HY, hence we have sukplc,,,l<00. Consequently, there exists a sequence {k,}
={p} of integers such that p,—p—0 as g—oo. Since dp,—dp=dp,—dp, the
case (iii) is evident.

Lemma 2.2, Let {X,(R)} be a sequence of subspaces of HD(R) such thal
N\, closure {3 Xu(R)) =closure { 3} "\ Xu(R)}, which we denote by X(R). Then,

n=1

we have X, (R) > X(R).

Proof. Since kf_o\ X"(R)Ck-F\HX"(R)' there exists, for each u= X(R), a sequence
{u,} with unef\ X (R)C X, (R) such that ||lu—u,|l—0 as n—oo. Next, since

dX+= f”\ closure {é} dX 3} =closure { 2 ;5 dX}}, there exists, for each wedX*,

a sequence {w,} with wnekfo\ dX{CdX; such that ||w—w,||—0 as n—oo. There-
=n

fore, for each wedX and the limit u of a locally uniformly convergent subsequence
{un,} such that u,,e X, ,(R) and sup un, I <K, we have [<o, dud|=eK~+|{du, wdpl

é&iﬁl(dunk, w)DI+2Ke§llj£11|<dun,,, w,,>+3Ke=3Ke, where D denotes a regular
region such that |w|g-p<e. Hence duedX. If X>1, ue X, and if X=31, then
leEkE\"Xk for each n, and so we have |u(a)—v,(a)| K, |du—dv,]|—0 as n—oco,
where K, is a positive constant and {v,} a sequence with vnekg X, such that
ldu—dv,|—0 as n—oo (Cf. Lemma 3 in [11]). Consequently, we have [|lu — v [|—0

as n—oo, hence ueX.

Theorem 1. Let {X,(2,)}5-1 with X,(2,)CHD(RQ,) be a sequence of subspaces
such that X,(2,) > X(R), where X(R) is a subspace of HD(R).

(i) If X(R)>1, X.(2,)21 for each n and Savds*=0, there exists, under suita-

ble choice of additive constants, a sequence {n,}=/{k} of integers such that
lpe—pllo,—0 as k—oo.

(ii) If X(R)31, Xo(2.)B1 for each n, there exists, for any s, a sequence
{n*}={k} such that l|p—pullo,—0 as k—oco.
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(iii) If X(R)=21, X, (£2,)®1 for each n and gayds*zo, then there exists a
sequence {n,}={k} of integers such that ||d(p—pw)le,—0 as k—oco. Analogously,
suppose {Xn(R)} is a sequence of subspaces of HD(R) such that ,,é closure {kan (R}
=closure {ngl konX”(R)}’ which we denote by X(R). Then, we have the same con-

clustons as above (i), (ii) and (iii) except for setting R in place of 2,.

We denote simply lim SaR w by de for a differential w if it exists, where
n—o n

{R,} is a regular exhaustion.

Proof. Supoose {p,} is the sequence of X,(£2,) principal functions in Lemma
2.1 and 4, the ideal boundary of £,. From Proposition 1, we have

[, peapr={, Gutfidlipr={, fudLipt=0,

[,parr={, atrodip— | falp=0  as b—eo,

where u,€ X (2,), for€ED,(2,), ue X(R) and f,eD,(R). On the other hand, for
k<r we have from the Proposition 4

[, prapr=et(, puap*+|, palp*—{, paLp*

=& t(dpr, dLD—LopDayv+|  bdLp—L,p)%,

where e,—0 as r—oco. But from Lemma 1 in [11], we have sup |dp.lo,-v<oo,
hence lim SA pd p*=0=Ilim Sd pdp¥ (Cf. Proposition 4). Therefore, we get

llpx— pllo,—0 as k—oco. The last part in in this Lemma is evident (Cf. Lemma 2.2).

§3. Regular operators and subspaces

3.A. HF,(a, R) and I',(8, R). Let R¥ be the Kerékjart4-Stoilow’s compacti-
fication of R, 4,=R¥—R and P(4,)=a\JB a partition of 4, such that « is closed
and B=4,—a is relative open. We set

D(R)=the Banach space of Dirichlet functions with respect to [[|*|l,

F¥a, R)y={f: feC¥(R)ND(R) and the support of f is disjoint with a neigh-
bourhood of a},

HF,(a, R)={closure of F,(a, R) in D(R)} "HD(R),

IMeola, RY={df: feHF(a, R)}, HM(R)={u : ducsl,(R)},

I8, R)=the orthogonal complement of I'e(a, R)* in [,(R).

In case where a and B are both closed, we call G an end towards « if R¥—D
=G*UG*, G*Da and G*N\f=0, where D is a regular region and G*=G\v
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(closure of G in R¥Y)N\4,.

3.B. Regular operators on a finite surface. Let £ be a finite surface and
02=aJBVr, anB=pNr=rNna=0 where a, B and 7 consist of contours. We
set

HD(2)={usHD(R): u is harmonic on 382},

[(2)={wel(2): o is harmonic on 02},

HM(8, 2)={usHD(2): u is constant on each component of f}.

Lemma 3.1. (Matsui [6]). (i) HF.(a, 2)=closure of {HD(2)NHFa, 2)} in
D(Q),

(il) T BYIT, D=closure of {FuofYIT, DNTW(Q)} in ['W(2),

@ity Tno(BIT, DN hse(@)=closure of {Lno BIT, DN hsel DNTW(2)} in ().

Remark. It is evident that HM(B, 2)=HM(2)+HF,(«a, 2) for a finite sur-
face Q.

Lemma 3.2. HM(B, )NHF{a, 2)=closure {HM(B, 2)NHF«, DNHD2)}.

Proof. We have only to prove the relation: closure {HM(B, 2)NHFa, 2)N
HD(Q)} DHM(B, NHF{a, 2). For each ue HM(B, Q) NHF(a, 2), we set ¢(P)
=u(P) for Pef2 and ¢(P)=—u(j,P) for P€2,—2, where 2, is the double of
2 with respect to «, j, being the involutory mapping of 2,, then we have g<
HM(B\Yj.B, 2,), and so ffom Lemma 3.1, there exists a sequence {¢,} with
¢ HM(B\V B, 2.)NHD(2,) such that |l¢,—glla,—0 as n—oo. Therefore, by

setting o(p)=5 (gu(D)~aliak)} and f(D)=7 () ~gljap), we have fuloc
HF (@, ONHM(B, DAHD@D), flo=u and llfa—flla=0 as n—co. a.e.d.

Suppose W,, W and W, are ends towards @, 8 and 7, respectively, where
WamW’,s:WmWFWmW,:o.

Lemma 3.3. Let L be the regular operator associated with HM(B, )NHF(a, Q).
Then, L=H"* an W, L=(Q)L, on Wps and L=L, on W, where (Q)L, (resp.
Lo) denotes the Sario’s (Q)L, (resp. L) principal operator for Wy (vesp. W)
and H" *=the Dirichlet operator C*O@WNRQ)—H(W,) such that H¥*f=0 on a and
HYaf=f on oW,.N2Q.

Proof. At first, we denote by Y the space associated with L, then we can
prove easily YCHF(a, 2)NHM(B, £2) by Proposition 1, 2 and Lemma 3.1. Con-
versely, for each ue HF(a, Q)NHM(B, 2)NHD(2) and any feC®@W) we have

Srquf)*:o, \‘ﬁu(de)*=0 and Sau(de)*z() (Cf. Proposition 1), and so from
Lemma 3.2 we have HF,(a, Q) NHM(B, 2)CY. q.e.d.

3.C. Regular operators on a bordered surface. Let 2 be a bordered sur-



742 K. Matsui and K. Nishida

face whose border 0f2 consists of a finite number of contours. We set 02=
a\JB, anf=0 where a and B consists of contours, y=4¢—02, 4¢ being the ideal
boundary of £, and set

HM(B, 2)={ue HD(f): u=constant on each component of j}.

Remark. HM(B, 2)=HM(2)+HF,(p, 2).

Suppose {G,} is an exhaustion of 2 such that 0G,D0f2 for each n and further,
{G.} is a regular exhaustion of @ where G, (resp. Q) is the double of G, (resp.
Q) with respect to @. Then, from Lemma 3.3 and Proposition 4, we have

Lemma 3.4. HM(B, G.)NHF (o, Gn) > HM(B, 2)NHF(a, £).

Next, we consider the case d2=a’ and §'\Jy’'=4¢?—a’ where 7’ and j’ are
disjoint and both closed. Let {£2,} be an exhaustion of £ such that each com-
ponent of 082, is dividing for each n and 2—02,\U0Q2, is an end towards 5’ on
Q for each n. Denoting 022,—a’ by B, we set

HM(B’, 2)={u: there exists a sequence {u,} with u,€ HM(B,, £2,) such that

lle—uslle, —> 0  as n—oo}.

Lemma 3.5. (1) HM(B', 2)=closure{HM(Q)+HF(p’, )},
(i) HM(B., 2.)NHF(a/, 2,) > HM(B', QNHF(a’, ).

Proof. (1) Since HM(p’, 2)=1, we have only to prove dHM(S’, 2)=closure
{Cm()+Theof’, )} by Lemma 3 in Yamaguchi [11]. But, it is evident that
dHM(B’, )Dclosure {I ' n(2)+ ool f’, 2)}. By the definition of HM(S', 2), we
have dHM(B', Q) {Thor'Va’, DT nsel D} ** =closure (I m(@)+heol B/, D)}

(ii) By the analogous method as in Lemma 3.3, we can prove the fact that,
for each ve HM(B', Q)NHF(a', ), there exists a sequence {v,} with v,&
HM(Br, 2.)NHF(a’, 2,) such that [[v,—vlle,—0 as n—oco. Next, suppose {un,}
with u, € HM(B,, 2.)NHF,(a’, £,) be the sequence such that sgplllunlllgn<K.

Then, for each sequence {n,}={k} of integers such that u,—u as k—oo locally
uniformly on 2, we have u=0 on a’ since u,=0 on a’ for all n, and so ue
HF(a’, 2). For ¢>0 and weli(a’IB, N[(82), there exists a region D
such that dDDa’, |wle-p<e and £2—D\UdD is an end towards f’'JUy’. Con-
sequently, we have |<w, du*)|< Ke+ |<o, du*)DI=K5+L£mwl<w, dufdp| < 3Ke +

lkim|<w, du¥>p,!|=3Ke, hence we have ue HM(8’, Q).

3.D. Regular operators on an open Riemann surface (1). Let P(d,)=
a\JB\Ur be a regular partition of 4, and W,, W5 and W, ends towards a, 5 and
7, respectively. Suppose {£,} is an exhaustion of R such that, for each n, each
component of 82, is a dividing Jordan curve and R—@,Ud8Q, is an end towards
B. We set
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HM(B, R)={u: there exists a sequence {u,} with ue HM(©0$,, 2,) such
that [lu—ua.llz,—0 as n—oo}.

Lemma 3.6. HM(B, R)=closure{HM(R)+HF8, R)}.
Proof. Omitted.

Next, we consider an exhaustion {2%} of R such that R—Q3Ua, is, for each
7, an end towards «, where a,=08£%.

Lemma 3.7. X,=HM(8, Qi)NHFa,, 2%) > HM(8, R)NHF(a, R)=X.

Proof. For each ue X, we set f,=u on 2%—W, and f,=HY» on W,, where
W, is an end towards « and W,=W,N2%. Then, f, has a decomposition of the
form: fo=un+for, where u,€ HD(2%) and foneD,(2%). Obviously, u,X, (Cf.
Lemma. 3.1). Since |||f,,—ul||gﬁ—>0 as n—oco, we can get a sequence {u,} with
up=un+cn ¢, being a constant for each n, such that [lu—uallps—0 as n—oo.
Because [|dfonllgz—0 as n—oo, Jonlw,=HYry, +H¥r and sgzplldH?,’,"llw,,<OC, we

Cn

have ¢,—0 as n—oo, where H"» denotes the Dirichlet operator for W,, hence
||lu,,—ulllgz—>0 as n—oo, Next, let {v,} with v,€X, be a sequence such that
sup [lvallgz<co. For the limit v of a locally uniformly convergent subsequence
n

{va,}, we have, by the analogous method as in Lemma 3.5, veHM(B, R). On
the other hand, it holds v,=H* on W, and v,—HY* as k—oo, and so v=H}~

=Sv dp, where p, is the harmonic measure of W, with respect toa (Cf. p. 28 in
C. Constantinescu und A. Cornea [2]). Therefore, applying Theorem 2.4 in Fuji-i-e
[3] and Lemma 3 in Ohtsuka [8] to u, we can get easily u€ HF,(«, R).

Corollary. Let L be the regular operator associated with HM(B, RYNHF(«a, R).
Then, L=(Q)L, on Wy, L=L, on W, and L=H"Y*, where (Q)L, (resp. L) is
the Sario’s (Q)L, (resp. Lo) principal operator and HW=~ the Dirichlet operator

on Wy such that (HW“f)(a)=H’f"“(a)=Sfdpa, Mo being the harmonic measure of W,

with respect to a.

3.E. Regular operators on an open surface R (2). Let P(4,)=a\JBUr be
a partition of 4, such that a« and «\JB are closed and anp=paNr=rNna=0.
Suppose {R,} is a regular canonical exhaustion of R and R—R,\JOR,= \{ D,

where D,, denotes a component for each pair (n, k). Denote G\U (closure of G
in R¥)N4; by G* where G is a region on R, and we set

a?i=£’sf\|lk) D anDie#0], =40 D% 4NDECr}],
,B;‘::As_a';kz—rﬁ .

Then, af\JBE\Ur% is a regular partition of 4; and a¥ | a, 7% 1 7 as n—oo (Cf. [10]).
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Denoting HM(a%, R)=HM(a%) and HF,(B%, R)=HF,S%), we get the followings:
Lemma 3.8. (i) Let 2 and p be closed and relatively open sets on 4, then

we have HMQ\J p)=HMANHM(p),
(ii) HFE(aH)NHM(BE)DHF(aH)NHM(BE) for m>n,

(iii) Denote HF{a)NHM(BY) by Xu then closure(3 (\ Xib= (\closure
{ki X}, which we denote by X. From Lemma 2.2 we have X, > X.

Proof. (i) Omitted.

(ii) For each m (m>n), it holds Bn=(BhENa¥)\J(BEN B, and so HF,(a¥k)
NHM(S%) = HF(a¥) " HM(BE Na)"NHM(BEN BY).  But, HF,(a¥) C HM(a¥) C
HM(ax N\ B%), we have HF(af)NHM(BY) = HF,(af) NHM(B% N BE) D HE(a¥)
NHM(SD). .

(iii) It is evident that closure {n;i kf:\n X ’*}Cné closure {é‘;,nX,,}. On the other

hand, from HF,(a})DHF,(a¥) for k>n, we have the relations: closure {n{;‘,l kfan,,}

—closure {éHFo(a;':q éHM( B} Delosure {il HF (o) NHM(BE)} D F)lclosure { P AN

Note. X is independent on the choice of {R,}.
From the definition of Iy (*, R) we have [,(7* R)CI (7, R) since r:D7.
Hence we can get

Corollary. HM(at\JBE) > closure{élHM(a;':Uﬁ;‘;)}.
We denote the closure of {il HM(ax\U 8%} by HM(a\JB, R)=HM(a\JB).

Next, let P;, i=1, 2, ---, K be points of R and V a regular canonical region
containing \UP;, and we set

x

seH(V—\U Py,

1

X=closure { ilHF,,(a’,',‘, RNHM(B%, R)}.

Further, let a, B% and 77 be sets of Jordan curves on 0R, which are the deri-
vations of a¥, 8% and 7%, respectively. From Lemmatta 3.4, 3.5, 3.7 and 3.8 we
can construct the another regular canonical exhaustion {G,} such that X,=
HF(a}h, Gu)NHM(B,, G,) > X, where ay, and B, are the Jordan curves on 9G,
derivated by af and S%, respectively. Therefore, by Theorem 1 we have

Lemma 3.9. (i) Let p (resp. pn) be the X (resp. X7) principal function on
R (resp. G,) with singularity s such that Sav ds*=0, then there exists a sequence

{ka} of integers such that IIdpkn—deIGkn—»O as n—co,
(ii)y Let q (resp. qn) be the Z=HM(a\JB, R) (resp. Zn=HM(a?\J B4, Gy)) prin-
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cipal function on R (resp. G,) with s such that Sayds*=0, then there exists a

sequence {n,} of integers such that liga,—qlls,,—0 as k—oo.

§4. Notes on the Riemann-Roch theorem

Let P(4,)=a\JB\Ur be the partition of 4, as in §3.E. We set

An(RY={ducl(R): there exists a sequence {du,<l4.(R.)} such that (i)
U,=u on «ay and ou,/on=0 on 74, (ii) u,=constant on each component {

of B such that | du*=0, (i) llun—ullz,—0 as n—oco},
Remark. From Propositions 1 and 4, 4,.(R) is independent on the choice of

canonical exhaustion {R,}.
Further, let D be a regular region and R—D=\U{ where 2 is a component.

Divide 02 into disjoint subarcs C, (k=1, 2, -+, v, 8.(2:;)10,;) and let Q, be a

point on C,. Suppose wl=w(P, C,, Q) is the generalized harmonic measure of
C, with respect to 2 (Cf. Mizumoto [7]). We set

Ane(R)y={ducsl,(R): there exists a regular region D such that, for each
component £ of R—D with the condition: (closure of 2 in R*)Na=0, we

have u(P):Su(Q)dwgzlm 3 u@a(P, Cs, Q) for PED}.

Lemma 4.1. 1, (R)C A,.(R).

Proof. At first, we set Bi=02*Np¥% where 2*=0(closure of 2 in R¥Y)N4,,
KXno=HF,092, 2)nNHM(B%, 2) and ngclosure{f_:)ang}. Further, let Wy be an
end towards 42=0*—Q and Lyo: C°(OWa)—H(Wo\JoW,) the regular operator
associated with X, For each due 4,.R) we associated a function U=Sudw§= on
Wy, where wp=wr? Then, by use of Lemma 1.1. in [7], we have Lyo(u—v)=

u—v on Wp, hence from Proposition 1 we have due 4,(R). q.e.d.

Lemma 4.2. Suppose R satisfies the condition: An(R)={0}, then a differential
of X principal function with s on R is also a differential of Z principal function
with s on R.

Proof. Let p (resp. ¢q) be the X (resp. Z) principal function on R with s,
then from Lemmatta 3.9 and 4.1 we have dp—dge 4,.(R)={0}, and so dp=dq.

Corollary. Suppose R satisfies the condition: A, (R)={0}, then dX=dZ.
Proof. Cf. Lemma 4.2 and Corollary of Theorem 2 in Yoshida [12].

Let Y be a subspace of HD(R). Now we generalize the definition of Y prin-
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cipal function on R (Cf. Yoshida [12]). Suppose V is a parametric disc and ¢ a
simple arc on V such that dc={ —{,. We set s=0 on W and s=arg (z—¢,,)
—arg (z—{,) on V, where z is a local parameter of V and W an end towards 4.

Then Sav ds*=0, hence there exists a harmonic differential w on R—{¢,, {;} which
has the following properties: (i) |o—ds|ly<oo, (ii) @ is the differential of a har-

monic function p in R—c such that p—s=L(p—s) on W\J(V—c) where Lf=L¥f
on W and Lf=HY¥ on V—c for each feC“@W\JaV).

We call also the harmonic function p in above (ii) a Y principal function
with s on R.

Remark. For thus generalized Y principal function, all of the Theorems and
Lemmatta in §2, §3 and §4 are also true.

Let d=0p/dq be a finite divisor such that dp and d, are integral divisor. We
set

A(Y, 0)={¢: (i) ¢ is a meromorphic differential on R such that Re(¢) is a
finite sum of differentials of Y principal functions on R, (ii) divisor of ¢
(which we denote by (¢))>0¢ and 3 Res (¢)=0}

S(Y, &)={f: (i) f is a meromorphic function on R such that Re(df) is a
finite sum of differentials of Y principal functions on R, (ii) (f)>d}.

From Lemma 4.2 and its Corollary, we can get

Lemma 4.3. Suppose R satisfies the condition: A,(R)={0}, then we have
Si(X, 1/0)=S\(Z, 1/6), A\(X, 1/0)=A,(Z, 1/0) and A(X, 1/6g)=A4:(Z, 1/d¢).

Further, we consider the following linear spaces (over the real number field).
Let D be a fixed regular canonical region such that DDd. We set

A(Y, 8, D)={¢: (i) ¢ is a meromorphic differential such that Re (¢)|z-p is
an exact differential du, (ii) du is a finite sum of differentials of Y prin-
cipal functions on R, (iii) (¢)>0 and X Res (¢)=0}.

Sx(Y, 1/8, D)={f: (i) f is a multivalued meromorphic function such that du=
Re (df) is exact on R and f|p is single valued, (ii) du is a finite sum of
differentials of Y principal functions on R, (iii) (f)>d}.

Analogously as in Lemma 4.3, we can get by Lemma 4.2 and its Corollary

Lemma 4.4. Suppose R satisfies the condition: A (R)={0}, then we have
SuX, 1/8, D)=S«(Z, 1/8, D), A(X, 8, D)y=AxZ, 6, D) and
A(X, 1/8y, D)=A4Z, 1/64, D).

Now we consider the relationship between the Riemann-Roch theorems by
Mizumoto and by Yoshida. First, we have
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Theorem A. (Cf. Mizumoto [7]). Suppose R satisfies the condition: An(R)
={0}, then we have

dim Sy(X, 1/, D)=2(d+1—g)+dim 4.(X, 6, D),

where g is the genus of D and d=dega.
Next, Yoshida proved the following:

Theorem B. (Cf. Yoshida [12]). Suppose YDOHM(R), then we have

A(Y, 1/6¢)

dim S,(Y, 1/0)=2{deg dp+1—min (1, deg dg)} —dlm—m— .

As we see in the above Theorem A and Theorem B, the formulations of the-
Riemann-Roch theorems by Mizumoto and by Yoshida are different each other,
and so, in order to compare these two theorem, it is necessary to express them
in the analogous form. Therefore, we modify Theorem A (resp. Theorem B) and
reformulate it in terms of S.(X, 1/6) and A4,(X, d) (resp. Sy(Y, 1/d, D) and
ALY, 8, D)) as follows:

Theorem A’. Suppose R satisfies the condition: Az(R)={0}, then we have

A(X, 1/8¢)

dim Sy(X, 1/3)=2{deg dp~+1—min (1, deg d¢)} —dim— 755~

Theorem B’. Suppose YOHM(R), then we have
dim Sy(Y, 1/6, D)=2(d+1—g)+dim (4Y, d, D),
where g is the genus of D and d=degd.

Proof. Theorem A’ and Theorem B’ can be proved by the same method as
in Kusunoki [4] or Yoshida [12], and so omitted.

Now, to compare Theorem A (resp. Theorem B) with Theorem B’ (resp.
Theorem A’), we consider a Riemann surface satisfying the condition 4,.(R)={0}.
Then, by setting Y=Z in Theorem B, we have Theorem A’ from Lemma 4.3,
and moreover, if we set Y=Z in Theorem B’, it reduces to Theorem A from
Lemma 4.4. Therefore, we have the following :

Theorem2. Concerning the Riemann-Roch theorem on open Riemann surfaces,.
the theorem by Yoshida can be regarded as an extension of that by Mizumoto.
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