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§1. Introduction.

On all compact Riemann surfaces of genus g=2 there exist meromor-
phic functions of order n=g-+1. It is also known that every non-hyperelliptic
Riemann surface of genus g=4 admits infinitely many meromorphic functions of
order g, and that there exists no meromorphic function of odd order n<g on
hyperelliptic Riemann surfaces of genus g. But it seems to be unknown whether
there are some integers n=<g—1 such that every non-hyperelliptic Riemann surface
of sufficiently high genus g admits meromorphic functions of order n.

In this paper we shall prove that on every non-hyperelliptic Riemann surface
of genus g=4 there exists at least one meromorphic function of order g—1.
The main idea of the proof is to show the non-emptiness of the subsets W Z.a
of the Jacobi varieties (see below). The same idea will be applied to prove that
every non-hyperelliptic Riemann surface of genus g=4 admits infinitely many
meromorphic functions of order g.

In §2, we shall recall some properties of the subvarieties W of the Jacobi
variety of a compact Riemann surface, and relate the subsets W* of nongap
points of W% (Gunning [5]) with the existence of meromorphic functions of order
7 on the surface (cf. Martens [11]). We shall study in §3 the characterization
of hyperelliptic Riemann surfaces by the attainment of the maximal dimension
of the subvarieties W? (see Theorem 3).

Next in §4, we shall generalize a result of Andreotti-Mayer [2] about the
subvarieties W?%_, for the trigonal Riemann surfaces in Theorem 3, and get some
properties of the subvarieties W for the trigonal Riemann surfaces similar to
those for the hyperelliptic Riemann surfaces, especially the fact that the singular
loci of some varieties W% for a trigonal Riemann surface are W:*!. In §5, we
shall study the subvarieties W2 of the Jacobi varieties for elliptic-hyperelliptic
Riemann surfaces.

For n=g—2 we cannot make similar assertions to those for n=g, g—1 any
more, since the elliptic-hyperelliptic Riemann surfaces of genus g admit no mero-
morphic function of odd order n=g—2. There is another example of such
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Riemann surfaces given by Meis [16], which are of genus g=6 and admit no
meromorphic function of order g—2=4. We shall characterize such surfaces in
terms of the subvarieties of the Jacobi varieties in Corollary 8 of §4.

Thus it remains to be'studieq to classify the non-hyperelliptic Riemann
surfaces of genus g by making use of the existence of meromorphic functions of
order n<g—2, and to characterize the classes in terms of the subvarieties of the
Jacobi varieties if possible.

The auther wishes to express his gratitude to Professor Y. Kusunoki and
Professor R.C. Gunning for their valuable suggestions and comments, also to
Dr. M. Shiba who kindly discussed this paper with him.

§2. Preliminaries.

Let M denote a compact Riemann surface of genus g>0 and D denote a
divisor on M. We denote /(D) the dimension of the space of meromorphic func-
tions on M whose divisors are the multiples of —D, (D) the dimension of the
space of abelian differentials on M whose divisors are the multiples of D, and
K the canonical divisor.

Let J(M) be the Jacobi variety of M and ¢ be the Jacobi homomorphism.
Let W,SJ(M) denote the sets {p(D)|D: a positive divisor of degree r on M},
which are irreducible subvarieties of J(M), and WiSW, denote the sets {p(D)|D:
a positive divisors of degree » on M such that /(D)=y}. These subsets W; are
analytic subvarieties of J(M), but they may not be irreducible.

If S and T are subvarieties of J(M), we can define the following subvarieties.

—S={—s|seS},
S+T={s+t|s€S, teT}, S—T=S+(-T),
SOT={ueJ(M)|IT+ucsS} =t@ (S—1).

We shall recall some properties of the subvarieties W% of Jacobi variety J(M).

Lemma 1. k—W:=W¢ (s=2g—2—r, p=g—1—(@—v), r, s=0 and v, p=1),
where k=¢(K) is the canonical point of J(M).

Proof. This follows from the Riemann-Roch theorem and the fact that
i(D)=I(K—D).

Corollary 1. £—Wy_ =W5_..
Lemma 2.
1 W’r@Ws:VV'r—s (rzs),

2) W¢:W7—v+1@(_Wv—l) (1§V§7+1)y
3) W:(—Wy)=Wis (1=v=r and 0=s),
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4) W oW =Wi_, (1Zv<sr and 0=Ss=r—v+1).

Proof. The inclusion relation W,.,SW,OW, is obvious. Conversely for
ucsW,OW,, u+W,SW,. Then there exists a non-negative divisor D such that
¢(D)=u and D+D;~D, for some positive divisors D, and D, of degree s and 7,
where ~ means linear equivalence. If D+ D,=D,, then D is a non-negative divisor
of degree r—s. If D+D,#D,, then D~D,—D;~D,_; (some non-negative divisor
of degree r—s) and the proof of 1) is completed. To prove 2), we observe that
u—W,..EW,_,,, if and only if for every non-negative divisor D of degree v—1

there is a non-negative divisor D’ of degree »—v+1 such that ¢(D-+D")=u,
means uW? (cf. [13]).

The next observation is useful to prove 3) and 4): For any subsets 4, B, C
of J(M),

(A©B)EC=AC(B+C).
Using this observation, we have
Wi(=W =W (=W, ) ]JO(—Wy)
=Wisi (=W )=Wiis
Wi oW =W, ... &(=W..)JOW,
=Wt QW.OW.-1)
=W OWJO(—W,-)
=Wiroseui (=W, )=W7_;.
Proposition 1. dim W,=r (I1=r=g).
Proof. It follows from Abel’s theorem that the Jacobi mapping ¢: M—J(M)
is a complex analytic homeomorphism between M and W,, and from the Jacobi

inversion theorem that W,=J(M) so that dimW,=1 and dimW,=g. Since
W,=W,+W, so that dim W,,,<dim W,+1, we have dim W,=r (1=<r=<g).

Proposition 2. Wi=0 (1=v=r=2g—2, v=g+1 and 2v>r+2)

Proof. By Lemma 2,3), we have Wi=W,_,..O(—W,.)). If ueWy then
u—W, 1 EW,_,41. But since g=zv—1>r—y+1, Proposition 1 asserts that v—1=
dim(u—W,_))=dim W,_,,,=r—y-+1, which contradicts our hypothesis.

Proposition 3. If W:+0, then
dim Wii<dim Wy (1=v=r=<g—1) and

dim Wy, <dim W (1=v<r=g).

Proof. 1f Witl=0, choose an irreducible component V of Wil such that
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dim V=dim W¥fl. Since Wii=WS(—W,) by Lemma 2. 3), VEV-W,cWi!

TH1T
W.,SW: As the image of an irreducible subvariety VXW, under the addition
map J(M)X J(M)—J(M), V—W, is an irreducible subvariety of J(M). If dim(V—-W,),
then V=V—W, and by induction V=V—-W,=J(M), which is impossible since
V(EW,.EW,-,) is a proper subvariety of J(M). Thus we have dim Wiil=dimV

<dim(V—W,)<dim W% The second assertion can be proved similarly.
Proposition 4. For 1=v=r=g—1, if Wi#0, then

rv—p—1)(g+v)=dim Wi=sr—2v42.

Proof. Applying the first inequality of Proposition 3, it follows that
dim W:<dim Witl—1<--<dim W,_ ., —(v—1)
=r—(p—1)—@w—1=r—2v+2.

For the proof of the left hand side inequality, we refer to Martens [11] or
Gunning [5, Th. 14(b)]. We here have to note that in the left hand side inequa-
lity dim W% can be replaced by the lowest dimension of the components of W,

According to Gunning [5], we call the subset Wi ,+W ,SW¥ the gap variety
of W2 Its complement is an open subset W:SW> which is called the subset of
nongap points of W,

-

Proposition 5. Associated with any point ueW?r (v=2) there exists a mero-
morphic function f of order v on M whose polar divisor is precisely the divisor
—D of degree —r such that ¢(D)=u and (D)=y, and vice versa.

Proof. Let D be a divisor of degree r such that u=¢(D) and D=P,+---+
P,. Since ueWy_,+W, so that I(P)+-+P;.;+ Py, +-+P)<v—1 for each 7
(1=i<r) and [(D)=v, there exist meromorphic functions f; such that the polar
divisors of f; are

(fi)wz Di+Pi

where D; are positive divisors such as D is multiple of D;. A suitable linear
combination of f; will have precisely the divisor D as its polar divisor®. Con-
versely let f be a meromorphic function of order » having D as its polar divisor
and /(D)=v, so that o(D)eW: If o(D)eWi +W,, then I(D)=yv+1 which is
impossible.

Corollary 2. There exists at least one meromorphic function of order r on M

[r/2)3+1
if and only if L2_121 W0  (rz2).

Proposition 6. [f Wu+0, J(M), then

*If ueWH=w"_,o(—-W,), then u—W, S W,_; and u€ W’%_;+W,. This proves [(D)=y.
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dim(Wi+W,)=dim Wi+1.

Proof. Since W+W, is the image of WixXW, is the image of Wy X W, under
the addition mapping J(M)X J(M)—J(M), we have dim(Wi;+W,)=dim W;+1. If
dim(W2+W)=dim W?, then select an irreducible component V of W7 with dim V
=dim W2 Since VEV+W, and V+W, is an irreducible component of Wi+W,

it follows that dim(V+W)<dim(W:+W,)=dim V so that V=V+W,. But then
V=V+W,=---=V+4W,=J(M), which is impossible.

We prove at last the useful formula which was proved by Martens [11].
Proposition 7. For 1=v=r and w,, w.€W, with w,# ws,,
Wi+ w)INWitw)=WiiDVWi - wi+w,) .

Proof. We first prove the formula for v=1. Since W, ,+w,+w.EW,+w;
and W2,,=W.O(—W)= E(v\V(W,—l—x)g(W,-l-w,) (=1, 2), we only have to show
TEW,

that
WA w)VW ot w) EWELS Wi +w +ws) .

Let w,=¢(p), we=¢(q) with p, g€ M and p+#4. Then any point x&W,+w,)
can be written

x=@(Py+-+p-+p)=¢(g:++¢+9
for some points p;, g;€M so that
Pt bt p~g g tg

by Abel’s theorem. If these two divisors are identical, we may assume that p,=q
and ¢,=p. Then we have

x=@(pittpratgtpEW  +witw,.
If these two divisors are distinct, then I(p;+---+ p,+p)=2 so that
x=(py++p+p)EWi,.

To get the formula for v=2, the next lemma is necessary.

Lemma 3. Let A be an irreducible subvariety and B, C be two subvarieties
of J(M). Then

(BNOQA=(BOANCOA),
(BUC)OA=(BOA)J(COA).

Proof. These are immediate consequences of the definition of A©B and the
fact that

us(BUYC)OA if and only if A+u<SBUC
if any only if A+uSB or A+uc<cC.
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We have just proved that
Wiresir FwINW s+ wo)=WE_, VW, 4w+ w,) .

If we operate on both sides of the above equation with &(—W,) and use Lemma
3, we have

W2t wINWi i) =Wyt (=W ))+w ) I (Wt 1S(=W)+w.)
=Wi  .(—WHI((W, -, O(=W))+w,+w,)
=Wi VWi i+ wtw,).

Repeating this process we have the desired result.

§3. The hyperelliptic Riemann surfaces.

A hyperelliptic Riemann surface M is defined to be one that can be repre-
sented as a two-sheeted branched covering of the Riemann sphere, and have the
hyperelliptic involution # corresponding to the interchage of sheets in the repre-
sentation. Since (p+60p)=2 and p+6p~q+6qg for any points p, g=M, the
common image e=¢(p-+0p) is contained in W3 and called the hyperelliptic point
of J(IM). It is evident that if W3+0 for a Riemann surface M, then M is hy-
perelliptic, and thus hyperelliptic Riemann surfaces can be characterized as those
for which W2+0.

If uesWs?, then u—W,SW, since Wi=W,S(—W,). But since both are irredu-
cible and of same dimension, u—W,=W,. There is only one point having this
property so that for hyperelliptic Riemann surfaces Wji=e and —W,=W,—e.
Iterating the last relation, we have —W,_,=W,_;—(v—1)-e so that

Wi .={v—1)-¢ (2=sv=g).
We also have that
Wi=Wrs: (=W, )=W, ... OW..;—(v—1)-e)
=W @W, )+ —1)-e
=Wrgret@—D-e  (I=v=r=g).
If 22v=r=g and r>2(v—1), it follows that
Wi=Wi+W, s +(—1)-e=W,+Wy_,

so that Wﬁ——-O. In the special case that »r=2(v—1), we have Wi=(v—1)-¢, and
W>_,=0 by Proposition 2 so that W,_,#0. From Corollary 2 together with these
facts, it follows that on a hyperelliptic Riemann surface of genus g there exist
no meromorphic functions of odd order n=<g and the meromorphic functions of
even order n=<g are the lifts of the rational functions on the Rismann of genus
0.

We can see from the formula Wi=W, ,.,+(—1)-e that W2 is an irre-
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ducible subvariety and of maximal dimension r—2v+2 in Proposition 4. We also
can characterize the hyperelliptic Riemann surfaces by attainment of those maxi-
mal values. To do this we first prove the next Cliflord’s Theorem.

Theorem 1 (Clifford’s Theorem). If Wj,_.#0 for some index v 2=<v=g—1)
for a Riemann surface M of genus g, then M is hyperelliptic.

Proof. If we deduce W3;_,#0 for some index A (2<A<v) from our hypothesis,
we shall finally reach W2+0, which means that M is hyperelliptic. From Lemma
1, it follows that k—Wj,_,=W4,_, (u-+tv=g+1) and we can assume that v=g.
For a point xeW3,_,, we set y=k—x€W4,_,. Then we can choose a divisor
D, of degree 2v—2 and a divisor D, of degree 2u—2 such that ¢(D;)=x, ¢(D,)
=y, and that at least one point of D, also appears in D, and at least one point
of D, does not appear in D,. Let D,=D,N\D, be a divisor of degree » (1=r<
2v—2) and set z=¢(D,. We will denote L(D) the complex vector space of
meromorphic functions on M whose divisors are multiples of —D. Since L(D,)
NL(D,)=L(D,), we have

dim [L(Dz)+ L(D)1={(D)+UD,)—UD.),
and from the evident inclusion relation that

L(D)+ L(D,)S L(D,+D,—D,)

it follows that
dim [L(D,)+K(D,)]1=dim L(D,+D,--D,).

Then we have

(D)+UDy)—UD)=UD,+Dy—D.,)
ZI(K_DZ)ZZ(Dz) ’

and substituting the values /(D,)=g~+1—v and i(D,)={(D,)+g—1—r, and apply-
ing Proposition 2, we get the next inequalities.

2§21<D>—r§z([%]+1>_r,

Thus » must be an even number, say »=21—2, and then /(D,)=2. Hence z:eW}$,_,
and this completes the proof.

Remark 1. In general either Wi, _,=0 or Wj,_, consists of the unique point
ue J(M) such that —W,_,=W,_ ,—u (2<v=<g), see Gunning [5, p. 50], and for y=g
it follows from the Riemann-Roch theorem that W4, ,={k}. Clifford’s Theorem
asserts that Wi, _,=0 (2=<v=<g—1) for non-hyperelliptic Riemann surfaces.

To attain our purpose we here have to introduce some notions.

Let M™ denote the 7-fold symmetric product of a compact Riemann surface
M. Let ¢: M—J(M) be a complex analytic mapping such that p=¢-r, where
7: M"™—M® is the natural quotient mapping. At each point D€ M the image
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of Tp(M™) (tangent space at D in M under the differential of the mapping ¢
is the linear subspace d¢p(Tp(M ™)) of Typy(J(M)) dual to the subspace L3 of
the complex cotangent space T§py(J(M)) defined by

L¥={w|lwe (M) and D(w)=D},

where we identify T, (J(M)) with the space 2(M) of holomorphic differentials
on M and D(w)=D means that the divisor of @ is a multiple of D. (Gunning
(51, p. 87)

Let V be an analytic subvariety of J(M). To any point x€V associate the
linear subspace T¥(V)ZS T#*(J(M) spanned by all covectors of the form d.f, where
f is any analytic function in an open neighborhood of x in J(M) which vanishes
identically on V. The natural dual to the subspace T*(V)ST*(J(M)) is a linear
subspace T (V)ET.(J(M)) called the tangent space to the subvariety V at «x.
Its dimension is called the imbedding dimension of V at x. The points of V at
which V is a regular analytic submanifold of /(M) are called the regular points
of V and the set of such points is denoted by ®(V), and the remaining points
of V are called the singular points of V and the set of such points is denoted
by S(V). The points of R(V) are precisely those points at which the imbedding
dimension is equal to the dimension of V in a small neighborhood of the point.

It is proved by Weil that S(W,)=W?%, and more generally by Mayer that for
a proper subvariety Wi (M), Wit'S S(W3).

Proposition 8. For any point x€WA2\W: 2=r=g)® such that x=x'+x"
where x'€W?2 and x'€W,_,, let DEMD, D'eM® be any positive divisors such
that $(D)y=x and ¢(D")=x'. Then for any two points p,, po€M such that x—
o(py) and x—@(ps) are regular points of W,_,, the tangent spaces To_yepy,(Wr-y)
and Ta-ypyy(Wro1) either coincide or intersect in a linear subspace of dimension
(D4 D")+r—s—3, and the imbedding dimension of W% at x is not greater than
I(D+D"y+r—s—3.

Proof. Since x—¢(p,;) is a regular point of W,_, so that xe@(p,)EW?_,
there exists a unique positive divisor C;eM“ " such that x=¢(p;+D;), and
T2-oopWr)=Tywpp(W,-1) can be identified with d¢p (Tp (MTP)) (i=1, 2)%©
As is previously stated, the dual spaces L} ,ST*(J(M)) to these tangent spaces
are defined by

5= {wlo€ 2(M) and D(w)=D,}.

From above dim L},=g—r-+1, and dim L} ,,,=g—r+1 from the Riemann-Roch
theorem so that Ly ,=L3,.,,. The spaces T:_,p(W,r-1) and Toopipp(W,-1) can
be seen as subspaces of the tangent space to J(M) at a point, and the intersection
of these tangent spaces is just the dual space to LJ\JLH,=LF ., \ILE,.,,.

* Note that x—¢(P)EW?2_, for all PEM if and only if xEW?2_ O(—W,;=W§,
**At any point DE M such that /(D) =y, the differential of the analytic mapping ¢:
M@ —J(M) has rank given by rank d¢p=r+1—v (Cunning [5], Th. 10(b)).
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Thus its dimension is g—dim(L},+ L},)=g—dim L} —dim L},+dim (L5,NL3,)=
2r—1)—g+dim(L$,NL},). 1f P+D,=P+D, then Ly =L%, If not, let
p1+D,=D;+D” and p,+D,=D;+D” where the divisors D; and Dj; have no
common points. Then ¢(D)=x" (i=1, 2), $(D")=x", and

LENLE, =LY+ p,N LBy,
= {w|we 2(M), D(w)=D,+p, and D(w)=D,+ p.}
={wlwe 2(M) and D(w)=Di+D;+D"}.
By the Riemann-Roch theorem we have
dim(L} N LE,)=i(Di+D4-D")
=D+ D;+D")+g—1—s—r.

Each calculations show that the dimension of the intersection is as desired.
To prove the last assertion, recall from Lemma 2. 3) that Wi=W,_,.©(—W))
= (\M [W.y4¢(p)]. From this it follows that
pE

TI<W3) g T.r—ga(pl)(W‘r— l)mTz—w(p2)<WT—l) ’

and the first assertion just proved gives the proof of the last.

We now prove the generalized Clifford’s theorem which characterize the
hyperelliptic Riemann surfaces.

1

Theorem 2. If dim Wi=r—2v+2 for some pair of indices v, r (2§u§7r—|—1,

r§g—1> for a Riemann surface M of genus g, then M is hyperelliptic.

Proof. By Proposition 3, r—2v+2=dim Wi<dim W}, and dim Wiz} <r—2y43
by Proposition 4 so that dim Witl=(—1)—2(v—1)+2. Repeating the argument
we have dim W2_,,,=r—v. Thus we have only to prove the Theorem for the
case that dim W2=r—2 for some index » (2<r=<g—1), and we suppose that r is
the smallest among such indices, and M is non-hyperelliptic.

Since M is non-hyperelliptic, »>2. If W2=W2_,4+W,, then dim W2_,=dim W?
—1=(#—1)—2 by Proposition 6, and this is a contradiction. Thus we have
W20 for some index r>2. Choosing a regular point xeW? at which W2 has
dimension »—2 and a divisor D&M such that ¢(D)=x, it follows from Proposi-
tion 8 that »—2=dim Wi=dim T, (W) =<I/(2D)—3 so that /(2D)=r+1. Then ¢(2D)e

751, and Wift#0. If r<g—2, then M would be hyperelliptic by Theorem 1. If
r=g—1, ¢2D)eW§,_,={k} so that 2x=¢(2D)=*Fk. But the last equation can
only be satisfied by a finite number of points of J(M), and dim W2=r—2=1. We
can thus choose the point x€W? in the above argument which do not satisfy the
equation, and this gives a contradiction.

Remark 2. For a hyperelliptic Riemann surface,
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dim Wi=r—2v+2,
since Wi=W,_ 5,1+ —1)-2 (I=v=r=g).
At last note that for hyperelliptic Riemann surfaces

SWH=SW,_gos)t+w—1) e=Wi_, p+(v—1) e
:u/r—b_l_ e—l—(l)—‘l)' e:I/VT—ZD—l—V. e
:W¥+l .

§4. The trigonal Riemann surfaces.

A Riemann surface of genus g=3 which admits meromorphic functions of
order 3 will be called a trigonal Riemann surface. It is easy to check that a
Riemann surface is trigonal if and only if W=0 and W2+0 so that W%q&O. It
follows from Meis’s results [16] that the non-hyperelliptic Riemann surfaces of
genus g=3, 4 are trigonal. The Riemann surfaces of genus g=5 are generically
not trigonal, and for any g=3 there are trigonal Riemann surfaces of genus g.

We shall give some interesting examples of non-trigonal Riemann surfaces.
It was shown by Accola [1] and Farkas [3] that the order n<g+1—2& of a
meromorphic function on a g-hyperelliptic Riemann surface (two-sheeted covering
of a compact Riemann surface of genus g) of genus g=5 is even.

We have invoke Martens’s remark [14] to show that the above g-hyperel-
liptic Riemann surface is not hyperelliptic if the base surface is non-hyperelliptic.
Using Abel’s theorem he proved that if there exists a meromorphic function of
order n=2 on a covering of a compact Riemann surface of positive genus, then
there also exists a meromorphic function of order n on the base surface. Thus
a SZ-hyperelliptic Riemann surface of genus g (g+1—2g>3) whose base surface is
non-hyperelliptic is non-hyperelliptic and admits no meromorphic functions of
order 3.

Another such example is a normal covering of a hyperelliptic Riemann surface
of genus g=3 which is not hyperelliptic. We know that such coverings exist
[8]. Since there exist no meromorphic functions of order 3 on the base surface,
we see by Martens’s remark that there exist no meromorphic functions of order
3 on these coverings.

The third example is a Riemann surface of genus g>6 admitting a meromor-
phic function of order 4. Its non-trigonality follows from the classical result
that if two meromorphic functions f, 4 of order m, n on a Riemann surface M
of genus g generate the full field of functions on M, then g=(m—1)(n—1) (Accola
[1], Prop. D).

It is classical that for a trigonal Riemann surface of genus g=5, W} contains
only one point [7, 9, 12]. In general for a non-hyperelliptic Riemann surface of
genus g=4,
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e 1
Wi=0 (3sv=7s)

except possible the case g=6 and v=3 where if u€W3, then 2u=# [12].

We shall investigate some properties of the subvarieties W2 of J(M) for
trigonal Riemann surfaces M.

Lemma 4. If W3#0, then dim W2=r—3 (2<r=<g—1).

Proof. From Theorem 2 and Proposition 3 it follows that
0=dim Wi<dim W2<---<dimW3%_,=g—4 (g=5).

Thus we hace dim W?=r—3, and this holds also for g=3, 4.

Lemma 5. For a trigonal Riemann surface of genus g it holds that

WisWi+W, )\ (k—Wi—W§I )  QB=r=g—1D.

Proof. Let u, be any point of W3 and u be any point of W% such that ¢(Dy)
=1, and (D)=u, where D, and D are positive divisors of degree 3 and r
respectively and /(D,)=2 and [(D)=2. Then we have two meromorphic functions
f and h such that

(fle=D, and —(h)o=—D.
If 1, f, h and fh are linearly independent, then it follows that /(D,+D)=4 and
utueWi,=k—W4%7,_s by Lemma 1 so that uek—u,—Wg§7,_s. If 1, f, h and
fh are linearly dependent, then there exist constants a, b, ¢ such that (f+a)(h+b)
=c, and D~D,+D’ for some positive divisor D’ of degree »—3 so that ucsW?2

+Wiis.
Theorem 3. For a trigonal Riemann surface of genus g=4 it holds that
Wi=Wi+W, )\U(k—Wi—W§;I,_; B=sr=g—1D.
Proof. It follows that Wi=W?QOW,_, from Lemma 2, 4) and hence W22W?

+W,.s. Since Wi=k—W§;71!, by Lemma 1 and W§;7fL;, we have W2i2k—W3i—
We;T._s and thus we have the opposite inclusion relation to that in Lemma 5.

Corollary 4. For a trigonal Riemann surface of genus g=5, W3 consists of
only one point [7, 9, 12].

Proof. 1If we let »=3 in the proof of Lemma 5, then either w,+ucsW}{ or
upy=u. But for g=5 the first case is excluded by Clifford’s Theorem.

Corollary 5 (Andreotti-Mayer [2]). For a trigonal Riemann surface of
genus g=4 it holds that

Wea=Wi+ W )V —Wi—W,_)
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so that W%_, consists of two irreducible components components if g=5%.

Corollary 6. For a trigonal Riemann surface of genus 4, W% consists of
two points which may coincide, when W} is the image of a half canonical divisor
under .

Corollary 7. For a trigonal Riemann surface of genus g it holds that
Woe=(Wi+ W, )U(k—Wi—W3.)  (g=5),
Woe-a=Wi+ W, V(e —Wi—W5.,)  (g=6) and
Weoi=WEiHW, )V(k—Wi—Wi)  (g27).

Corollary of Corollary 7. For a trigonal Riemann surface of genus g=6 it

holds that
W o=Wi+ W, o)\ Ik —2W5i—W, o) IW5 .
Proposition 9. For a trigonal Riemann surface of genus g=8, W%_, consists

of at least two irreducible components. W?2_, is irreducible only if k=4W3% for
g=7, and ke3Wi+W, for g=6.

Proof. 1f W2%_, is irreducible, then it necessarily holds that Wi+W, 2k—
2W3EW . sO(—W,_o)=WE;5,=0 for g=8 by the result of Martens stated before
Lemma 4, and this prove the assertion for g=8. The rest follows from the
above.

Corollary 8. A trigonal Riemann surface of genus 6 admits no meromorphic
function of order 4 if and only if k€3W3i+W, A trigonal surface of genus 7
admits no meromorphic function of order 5 if and only if k=4W3*®,

Proof. The proofs of “only if” parts for g=6, 7 are done in Proposition 9,
and the “if” parts follow from the facts than Wi=0, and Wi=0 for g=7.

Lemma 6. [f Wi=W3i+W,. , for a trigonal Riemann surface of genus g=5,
then Wi=W3i+W,_ 3 (3<s=r).

Proof. W2 ,=W:OW,)= QV((W§+WT‘3)—14)
uew,
=Wi+(W,.W)=Wi+W,_,.
This process can be repeated till s=3.

Lemma 7. If W:=W3+W,_; (r=4) for a trigonal Riemann surface of genus
g=5, then Wi=W32i+W?2_y so that dim Wi=dim W?_,=s—6 (5=s=r-+1).

I WE+We =k—W2—W,_,, then k—2WIiEW, ,O(W,,)=W&3,=0 by Clifford’s

2g—8

Theorem.
**cf. Kato [10].
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Proof. W§+1=W3@(—W;)=uQVl(W5+u)=uQVl(W§+Wr-s+u)
=Wi+W, s (=W ))=Wi+W7_,.
From this and Lemma 4 and 6 we have desired result.

Corollary 9. If Wi=W3i+W, for a trigonal Riemann surface of genus 6,
then Wi=0.

Corollary 10. [f W2=W:i+W,. s (r=4) for a trigonal Riemann surface of
genus g=5, then Wi=2W3i4+W, , (6=s=<r+1), and more generally Wi=(—1)-W}
+Woaes Qv—3=s=r+v—2, v=2).

Proof. By applying the proofs of Lemma 6 and 7 repeatedly we can get the
desired formulae.

Remark 3. The formulae of the subvarieties W¥ of J(M) for a trigonal
Riemann surface M in Corollary 10 are analogous to those for a hyperelliptic
Riemann surface which was stated at the beginning of §3. [t should also be

noted that W2=W3i4W,_, (3§r§%(g-—l)), which we shall prove by using the
next Lemma.

Lemma 8. If W2#0 for a trigonal Riemann surface, then the surface admits
meromorphic functions of ovder r+1 and r+2.

Proof. Let f be a meromorphic function of order 3 and let 4 be a meromor-
phic function of order » which corresponds to a point u€Wz. If

(1) (f)=D—D’ and (h)=(D+E)—(D'+E")

where D and D’ are positive divisors of degree 3, E and E’ are positive divisors
of degree »—3, then u=W3%, which is a contradiction. If

(2) (f)=(D+P)—(D'+P’) and
(h=(D+E)—(D'+E)

where D and D’ are positive divisors of degree 2, P and P’ are points, E and
E’ are positive divisors of degree r—2 such that D, E and D’, E’ are relati-
vely prime respectively, then after a suitable linear transformation we can get a
function A’ such that

(H)=D+P)—(D'+P)  and
(WM)y=(F+F)—(F'+P’)

(3)

where F and F’ are positive divisors of degree »—1 and D, F and D’, F’ are
relatively prime respectively. Then (f/h’)=(D+F)—(D’+4F) so that f/h’ is a
meromorphic function of order »-+1.
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Similarly we can get a function i2” such that
(4) (/)=(D+P)—(D’'+P’) and

(h")y=(F+P)—D"

where D” is a positive divisor of degree r such that D’+P’ and D” are relati-
vely prime. Then (f/h")=(D+D")—(D’'+P'+F) so that f/h’ is a meromorphic
function of order r42.

By applying linear transformations to functions f and /, other situations can
be reduced to the above cases (2), (3) and (4).

Since there exists no meromorphic function of order = (4§n§%<g—|—l) and
(n, 3):1) by the classical result stated in the third example in §4, it follows
from Lemma 8 that W2=W3Zi+V,_, <3§r§%(g+l)> for a trigonal Riemann sur-

face.

Proposition 10. For a trigonal Riemann surface of genus g=7 it holds that

dim Wy=r—3v+3 (3v—3<r=—(g—5+», v=2) and

1
2
1
SWH) =T+ (3u§r§?(g—5)+v, v22).
Proof. The first equalities follow from Corollary 10 and the above considera-

tions. The second assertions also follow from Corollary 10 and the observation
that if »—3v—+3=3, then

SWH=(w—1)-Wi+SW;_s.+5)
=(—1) - Wi+Wi_ s
=(v—1)- Wi+ Wi+W._,,
=v-Wi+W,_s,
=Wy,
Compare this Proposition with Remark 2 and the following of it in §3.

Finally we shall prove the existence of meromorphic functions of order g—1
on a trigonal Riemann surface of genus g.

Theorem 4. A trigonal Riemann surface of genus g=4 admits meromorphic
functions of order g—1.

Proof. For g=4, the trigonality is assumed. For g=5, W2_,=W:i+W,_s)
Uk—W3i;—W2%_.3) by Corollary 7, and Wi_,=Wi4+W, )J(k—Wi—W,.,) by
Corollary 5. Since Wi+W,_,and k=W;—W,_, are distinct irreducible components
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and dim(k—Wy—W,_)=g—4>g—5=dim((k—W3;—W?%_y)+W,) by Proposition 6
and Lemma 4, we have W 2_,#0, and this completes the proof.

Corollary 11. A non-hyperelliptic Riemann surface of genus 5 admits mero-
morphic functions of order 4 [10].

. 1 .
Proof. If W3=0, then W3+0 by the known result that WZ=0 if rg—g—:— (Meis
[167). If W20, then we can apply Theorem 4, and the proof is completed.

§5. The elliptic-hyperelliptic Riemann surfaces.

A two-sheets covering of a compact Riemann surface of genus 1 will be
called an elliptic-hyperelliptic Riemann surface. On such a surface of genus g
every meromorphic function of order n<g—2 is a lift of a meromorphic function
on the elliptic base surface if n is even, and no meromorphic function of order
n=g—2 exists if n is odd, as is stated in §4.

From these facts we can deduce the following lemmas.

Lemma 9. For an elliptic-hyperelliptic Riemann surface of genus g=6, Wj

=W3=0 and dim W3,=1 (2§7’§%(g—2)>,

Proof. Since the elliptic-hyperelliptic Riemann surfaces of genus g>3 are
not hyperelliptic (Farkas [3]), we have W3=0. In addition W2=0, for otherwise
W%rﬁO and the surface would admit a meromorphic function of order 3, which
contradicts to the above facts. At last we have dim W%,=1, since any meromor-
phic function of order 2r on the surface is a lift of a meromorphic function of
order » on the elliptic base surface.

Lemma 10, For an elliptic-hyperelliptic Riemann surface of genus g=6, W?
=W3+W,_,, so that W2=0 (5=r=<g—2).

Proof. As in the proof of Lemma 4 in §4, it follows that
l=dimj{<---<dim W%_,=g—4

so that we have dim W2=r—3. We also have dim(W3i+W,_)=r—3 by Proposi-
tion 6 so that Wi+W,_, is an irreducible subvariety of W2 of maximal dimension.
We shall prove by induction. We suppose that Wi=W:i+W,., 4=<t<s—1). If
W?% has another irreducible component, then Wﬁ;é@ (5=s=g—2). But if s is odd,
the surface would admit meromorphic functions of odd order s. If s is even,
then W2SW$,, since a meromerphic function of even order s<g—2 is a lift of a

. . s ..
meromorphic function of order 5 on elliptic base surface. As Wi,=W{P-1Q

(=W so that Wi—W,SWEp-1CWe,, we have WiSW2+W,—W,SW2 ,4+W,,
which contradicts the fact that W?#O.
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. Lemma 11. For an elliptic-hyperelliptic Riemann surface of genus g=6,
Wioi=0 (r=3).

Proof. 1f W7_,#0 for some »=3, there would exist a meromorphic function
f of order s (4<s=<g—2) such that —(f). is a multiple of —D where D is a posi-
tive divisor of degree g—1 chosen so as not to contain any branch point of the
elliptic-hyperelliptic covering and ¢(( f)m)eWE and go(D)eW;_l. But by Lemma
10, s must be 4, and D has two pairs of symmetric points P, T(P); Q, T(Q),
where T is the elliptic-hyperelliptic involution. If 4 is a meromorphic function
of order g—1 whose polar divisor is D, then the function H=h—h-T would
have greater number of zeros than the poles, which is absurd.

Corollary 12. On an elliptic-hyperelliptic Riemann surface of genus g=6
there exists at least one meromorphic function of order g—1 if any only if we_,
+*0.

Now we shall prove the existence of meromorphic functions of order g—1
on an elliptic-hyperelliptic Riemann surface of genus g.

Theorem 5. An elliptic-hyperelliptic Riemann surface of genus g=6 admits
meromorphic functions of order g—1.

Proof*. Since Wi, =k—W,_,, W4, ,=k—W?%_; by Lemma 1, and the dimen-
sion of the subvariety W3+W,=k—W?2_,+W, is not greater than g—4, there is
a positive divisor D of degree g+1 consisting of points in general position and
I(D)=3 such that ga(D)engH. Let 1, f, h be linearly independent meromorphic
functions on the surface such that —(f).=—D and (h).=D, and the degree of
fber (dsr=g).

Since the divisor D consists of points in general position, we can have a
biholomorphic mapping of the Riemann surface to a plane curve C of degree
g+1. By the formula for the genus of a plane curve we have

_glg—=l)  riri—1)
g=""y  TI Ty

where 7»; are the multiplicities of the singularities of the curve C. Thus the
curve C must have at least one singularity. Let S be an s-fold singularity among
its singularities ; then @(D)=¢(S+S’) where S’ is a divisor of degree g+1—s
and go(S’)eWi“_s. Therefore we have a function of degree g+1—s<g—1.

If r=g—1, then we have done.

If 4<r<g—2, then » must be 4 by Lemma 10 and D has two pairs of points
symmetric with respect to T. Since (h—h(P)), has at least one pairs of points

* The author is grateful to Professor Accola who kindly informed him a proof of this
theorem due to J. Harris. This proof is another version of it.
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symmetric with respect to T for a zero P of the function 1—h-T, the meromor-
h—h(P)
f—f(P)
the multiple of —D and does not consist of pairs of points symmetric with re-
spect to T. Thus its degree must be g—1. This completes the proof.

phic function is of order at most g—1. But the polar divisor of it is

Corollary 13. For an elliptic-hyperelliptic Riemann surface of genus g=6,
W2 _, has at least two irreducible components.

Proof. This immediately follows from Lemma 10, Corollary 12 and Theorem

§6. The existence of meromorphic functions of order g.

It was stated in Hensel-Landsberg [7, p. 508] that on a non-hyperelliptic
Riemann surface of genus g there exist infinitely many meromorphic functions
of order g. We give here another proof from our point of view.

Theorem 6. A non-hyperelliptic Riemann surface of genus g admits infini-
tely many meromorphic functions of order g.

Proof. For a non-hyperelliptic Riemann surface of genus g, dim W%_,=g—4
by Theorem 2, and W%=k—W,_, by Lemma 1 so that dim Wi=g—2. Since
dim(W%_,+W,)=g—3 by Proposition 6, it follows that Wﬁqﬁ(b, and dim Wgzg—z
=1. Thus there exist infinitely many moromorphic functions on the surface.

Remark 4. We can prove the next weaker statement for g=4 by making
use of WeierstraB points: A Riemann surface of genus 4 admits at least one
meromorphic function of order 4.

Proof. The statement holds trivially for hyperelliptic surfaces and the
surfaces with at least one Weierstral point whose first nongap is 4. Thus we
have only to consider surfaces all whose WeierstraB points have 3 as their first
nongaps.

Let P be a Weierstra point on the surface and let f be a meromorphic
function such that divisor of f is

(H=(Q+D)-3P,

where @ is another WeierstraB point, D is a positive divisor of degree 2, and Q
and D are relatively prime. Such a function exist. For there are at least 15
Weierstrall points since gap sequence of the WeierstraB points are {1, 2, 4, 5} or
{1, 2, 4, 7}, and the total degree of ramification of the covering represented by f
is 12. There also exists a function A4 such that

(h)=(P+D")—3Q or (h)=(2P+R)—3Q,
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where D’ has the same property as D and P+ R. We then have

(fR)=(D+D")—(2P+2Q)
in the first case, and
(ftoh)=(R+D")—(P+3Q)

in the second case, where ¢ is a constant and D” is a positive divisor of degree
3. Hence there exists a meromorphic function of order 4 in each case. Note
that the case (h)=3P—3Q can be excluded.

§7. The existence of meromorphic functions of order g—1.

We have seen in §4 and §5 that a Riemann surface of genus g=6 which is
either trigonal or elliptic-hyperelliptic admits meromorphic functions of order g—1,
and here we shall prove that a non-hyperelliptic Riemann surface of genus g=4
admits meromorphic functions of order g—1. To do this, a result of Mumford
[17, Appendix] is very useful.

Theorem 7 (Mumford). Let M be a Riemann surface of genus g=5. If
dim Wi=r—23 for some integer r 3=<r=g—2), then M is trigonal, or elliptic-
hyperelliptic, or a surface represented by a nonsingular plane quintic.

Proof. Since dim Wi=r—2 for hyperelliptic Riemann surface, M is non-
hyperelliptic. Let us denote » the smallest » for which dim W2=r—3, If r=3,
then W20 and M is trigonal. In the following we assume that »=4 so that
g=6.

If W2=Ww2_,+W,, then dim W2.,=r—4=(r—1)—3 by Proposition 6, which is
contrary to our assumption on r. Thus W2#0, and choosing a regular point
xeW? at which W2 has dimension »—3 and a positive divisor D of degree »
such that ¢(D)=x, it follows from Proposition 8 that

r—3=dim W2=dim T ,(W%=dim T (W3 <(2D)—3.
Hence {(2D)=r and ¢(2D)eW3, so that 2R(WHSWS, and dim Wi.=zr—3. From

Theorem 2 and Lemma 1 it follows that dim W7%,<2r—2-r+2=2 and hence »<5
so that r=4 and dim W2=1.

We have assume that M is non-trigonal. Choose two distinct points u;, u,
€W} and positive divisors D;, D, of degree 4 such that ¢(D,)=u, and ¢(D;)=u,.
Then by the same reasoning as in the proof of Lemma 5 in §4, we have u,+ u,
€W so that u,tu,+W, EWii.=k—W,_,.. Noting that dimW3%_,<g—7, we
can generically choose a positive divisor D, of degree g—®6 such that /(D,+D,+D,)
=1, and there is an abelian differential w of the first kind divisor of which is
the multiple of Dy+D;+D,. Let f be a meromorphic function of order 4 such
that (f).=D,, then the divisors of w and fw are the multiples of D,+D,.
Since {(D,)=g—3 and hence #(D,+D,)=(g—3)—(g—6)=3, we may choose three
linearly independent abelian differentials w;, w,, w; divisors of which are the
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multiples of D,+D,. Then we can define an analytic map = : M—P*® such that
the map f: M—P! is the composition of = and a projection x; of =(M) to P!
defined by m,(®;, @, ws)=(w, fw). If d is the degree of the plane curve z(M),
then the degree of the map =z, is either d or d—1, since there are infinitely many
D, (hence f) and n(M) has only finitely many multiple points so that we may
select the projection z,; from a point of P?2—zx(M) or from a simple point of z(M).
Thus if we denote J the degree of 7, then we have d(d—1)<4. If 0=1, then
d <5, and since g=6, M must be represented by a non-singular plane quintic [4].
If 6=2, then d=<3 and M is elliptic-hyperelliptic. If 6=3, then d =<2 and M would
be trigonal. If 6=4, then d=1 and w;, w,, ws are linearly dependent, which is a
contradiction.

We have seen in Lemma 8 that for an elliptic-hyperelliptic Riemann surface,
dim W3=1, and it is known that for a non-singular plane quintic, Wi#0 [17, p.
3477, and since Wi=W2©(W,) and hence Wi—W,SW? so that dim W3=1.

Theorem 8. Every non-hyperelliptic Riemann surface of genus g=4 admits
meromorphic functions of order g—1.

Proof. For g=4, this is well-known [16]. We have proved this for g=5
in Corollary 9. Thus we shall prove the Theorem for g=6.

We have dim W2%_,=g—4 by Theorem 2, and dimW?%_,=g—6, or g—5 by
Proposition 4. If dim W%_,=g—6, then dim(W?%_,4+W;)=g—5 so that Weg_1¢0.
If dim W%_,=g—5=(g—2)—3, then we can apply Mumford’s Theorem 7 and the
three kinds of Riemann surfaces in the Theorem remain to be considered. However
a nonsingular plane quintic is of genus 6 and admits meromorphic functions of
order 5 [4, 17], and also a trigonal Riemann surface and an elliptic-hyperelliptic
Riemann surface admit meromorphic functions of order g—1 by theorem 4 and
5. This completes the proof.
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