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§ 1. Introduction.

O n  a l l  co m p ac t R iem ann  su rfaces  o f g e n u s  g 2  th e r e  e x is t  meromor-
phic functions o f order n _ g + 1 . It is also known that every non-hyperelliptic
Riemann surface of genus g admits infinitely many meromorphic functions of
order g , and that there exists no meromorphic function o f  odd order 71,. g  on
hyperelliptic Riemann surfaces of genus g .  B u t  it seems to be unknown whether
there are  some integers n.. g - 1  such that every non-hyperelliptic Riemann surface
o f sufficiently high genus g  admits meromorphic functions o f order n.

In  this paper we shall prove that on every non-hyperelliptic Riemann surface
o f genus g_. 4  there ex ists at least o n e  meromorphic function o f  order g - 1 .
The m ain idea o f th e  proof is to s h o w  th e  non-emptiness o f  t h e  subsets
of the  Jacobi varieties (see below). T he  same idea will be applied to prove that
every non-hyperelliptic R iem ann surface of genus g 4  admits infinitely many
meromorphic functions o f order g.

In  § 2, we shall recall some properties o f  th e  subvarieties W  o f  t h e  Jacobi
variety o f a  co m p ac t R iem an n  su rface , an d  re la te  the  subsets 144 o f  nongap
points of 'Hi'. (Gunning [5 ]) with the existence of meromorphic functions of order
r  on the surface (cf. M artens [1 1 ] ) .  We shall study i n  § 3 t h e  characterization
o f hyperelliptic Riemann surfaces by th e  attainment of the m axim al dim ension
o f th e  subvarieties T4i= (see Theorem 3).

Next in  § 4, we shall generalize a  result o f  Andreotti-M ayer [2] about the
subvarieties T471_, fo r the  trigonal Riemann surfaces in Theorem 3, and  get some
properties o f th e  subvarieties W;. f o r  t h e  trigonal R iem ann surfaces similar to
those fo r the  hyperelliptic Riemann surfaces, especially th e  fact that the singular
loci of some varieties IT7 fo r  a  trigonal R iem ann surface  are  W;=+1 . I n  § 5, we
shall study th e  subvarieties W,2,  o f  t h e  Jacobi varieties f o r  elliptic-hyperelliptic
Riemann surfaces.

F o r n = g -2  we cannot make similar assertions to those fo r  n = g ,  g - 1  any
more, since th e  elliptic-hyperelliptic Riemann surfaces of genus g adm it no mero-
morphic function of odd order n g - 2 .  There is another example o f  such
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Riemann surfaces g iven by Meis [16], which a r e  o f  g e n u s  g = 6  an d  ad m it n o
meromorphic function o f order g -2 = 4 . W e  sh a ll c h a ra c te r iz e  su c h  surfaces in
term s o f th e  subvarieties o f th e  Jacobi varieties in  Corollary 8 o f § 4.

T h u s  it  r e m a in s  to  b e  s tu d ie d  to  c la s s ify  t h e  non-hyperelliptic Riemann
surfaces of genus g  by m aking use of the existence of meromorphic functions of
order and to characterize the classes in term s o f th e  subvarieties of the
Jacobi varieties if possible.

T he  auther w ishes to  express h is  g ra titu d e  to  P ro fe sso r  Y . Kusunoki and
Professor R. C. Gunning f o r  the ir va luab le  suggestions and  com m ents, also to
Dr. M. Shiba who kindly discussed this paper w ith him.

§ 2. Preliminaries.

L et M  denote a  com pact R iem ann surface of g en u s g> 0  a n d  D  deno te  a
divisor on M . W e d en o te  l(D) the dim ension of the space o f  meromorphic func-
tions on  M whose divisors are  the  m ultip les of — D, i(D) the  d im ension  o f the
space o f abelian differentials on  M  whose divisors a re  th e  m u lt ip le s  o f  D , and
K  the canonical divisor.

L et J(M ) be th e  Jacobi variety o f M  a n d  ço b e  t h e  Jacobi homomorphism.
L et W r E_ A M ) denote th e  s e ts  fço(D)ID: a positive divisor o f  d eg ree  r  on M ) ,
which are irreducible subvarieties of J(M ), and 14,7 ;.g Wr  deno te  th e  se ts  tço(D) I D:
a positive divisors o f  degree r  on M  such  tha t l(D) - 2)} . T hese  subsets .147 ; are
analytic subvarieties of J(M ), but they may not be irreducible.

I f  S  and  T  a re  subvarieties of j(M ), we can define the following subvarieties.

t ET} , S — T =S +(--T ),

S S T = J(M )1T  u = L(s-t) .
W e shall recall some properties o f  th e  subvarieties W;-' o f Jacobi variety J(M).

Lemma 1 .  k — M =W 1
8
-' ( s=2 g -2 --r, p =g -1 — (r— v ), r, sO  and 2.),

where k=ça(K) is the canonical point of  J(M).

Proof . T h is  fo llow s fro m  the Riem ann-Roch theorem  a n d  th e  fa c t th a t

i(D)-=l(K--D).

C orollary 1 .  k—T47 'g _1=- TP g -i.

Lemma 2.

1) W r eW  s =IV r , s) ,

2) W.=VI7 ,-,+1e( — W,-1) (1 _1):5J---P1),

3) T/17* (— W
8
)=W' (1-1).__.r and O s),
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4 ) W (:)W 8 =W;.'_, and 0._<s_r— v+1).

P ro o f. T h e  in c lu s io n  re la tio n  Wr .,- Wr eW s is  o b v io u s . C o n v e rs e ly  for
u EW reW s, u+Ws gWr . Then there  exists a  non-negative divisor D  such  tha t
yo(D)=u and  Dd-D,"-, D , fo r some positive divisors D , and  Dr  o f  degree s  and  r,
where m e a n s  lin e a r  e q u iv a le n c e . If  D+D s =D r , then D is a non-negative divisor
o f degree r— s . I f  D±D,#D r ,  then  D -̂, Dr—D,^-'D,--, (some non-negative divisor
o f degree r— s) an d  th e  proof o f  1) is com pleted. To prove 2), w e observe that
u— W 1 47,-,+1 if  and  only if  fo r  every non-negative divisor D  o f  d eg ree  v-1
there  is  a  non-negative divisor D ' o f  d e g r e e  r — + 1  s u c h  th a t  ço(D+D')=u,
means u EW'r' (cf. [13] ).

T he  nex t observation is useful to prove 3) and 4) : F or any subsets A, B, C
o f J(M),

(AeB)ec.-Ae(B+0.
U sing this observation, w e  have

if,'-e ( — T478)=- CW,—+ICX— W-030( — Ws)

+16(— T47 S+,-1)=W;=-11

wew8=Cw,-,+ie(-w,-Diews

=[wr-H-iews]e(-w,_,)
.

Proposition 1. dim W r =r

P ro o f. It follow s from  A bel's theorem  that th e  Jacobi mapping (p : M—,J(M)
is  a  complex analytic homeomorphism between M  and W1, a n d  f ro m  th e  Jacobi
inversion theorem  that TV , = J(M ) so  th a t  d im  W1 = 1  a n d  dim W g = g .  Since
W ,= W r +W i  so  tha t d im  Wr + i

- dim Wr +1, w e have dim W r =r

Proposition 2 . W;--- =() (1 r_2g —2, 1.) g-1-1 and 21.)› r+2 )

P ro o f. B y  L e m m a  2, 3), w e  h a v e  14/;-=w,_,+ie( — W ,-,). I f  u ET47;=, then
u—W i g Wr _,+ 1 . B ut since g v - 1 > r  —1)+1, Proposition 1 a s s e r ts  th a t  v-1=
dim(u W r_,+1=r— v+1, which contradicts our hypothesis.

P roposition 3. I f  W * 0 , then

dim W;41<dim W'; (1 1).- r g - 1 )  and

dim W,<dim W"; (1 < r g ) .

P ro o f. If W #  O , choose a n  irreducible com ponent V  o f  Wr.itl su ch  th a t
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dim V = d im  W .  Since W ' g 1 = W e ( — W 1 )  b y  L em m a 2 . 3 ), V  V  — W I -W;-1-1—

W1g.W% A s the  im age  o f an  irreducible subvariety V X W, u n d e r  the addition
map J(M)X J(M) - 4(M ), V—W1 is an irreducible subvariety of J(M ) . If dim(V — W1),
th e n  V =V — W , a n d  b y  induction V -.= V—W g -=J(M ), w h ic h  is  impossible since
V(g W r g W g _i )  is  a  proper subvariety of J(M ) . T hus w e  h a v e  dim T/I7 '41= dim V
<dim(V —WI ) d im  W . T he  second  asse rtion  can be proved similarly.

Proposition 4 .  Fo r 1 r_.ç g -1 ,  i f  W * () , then

r2.)— (1)-1)(g+v )dim .

P ro o f .  Applying th e  first inequality of Proposition 3, it follows that

dim • • • dim TV,- (-1) —  0.)-1 )

-=r— (v-1)— (v-1)=r —22)+2 .

F o r th e  proof o f  th e  left hand  side  inequality , w e refer to  M artens [ I I ]  or
Gunning [5, T h . 14(b)]. W e here have to  note th a t  in  th e  left hand side inequa-
lity dim TV;: can be replaced by the  lowest dim ension of the components o f  147 .

According to Gunning [ 5 ] ,
 w e  ca ll th e  subset W,_ i --FiVi gT47 ;'. th e  gap variety

of W . Its  c o m p le m e n t is  an open subset Ik',= _T/T7 ;'. w hich is called t h e  su b se t of
nongap points of 14/.

Proposition 5. A ssociated w ith any  point uElk;'. (1. 2 )  there  ex ists a  mero-
morphic function f  o f  o rder r  on M  whose polar d iv isor is precisely  th e  divisor
— D of  degree — r such  that yo(D)=u and l(D)=- 1), and v ice versa.

P ro o f .  L et D  be a  divisor o f degree r  su ch  th a t u=g9(D) a n d  D =P,+••-+
P r .  Since u•EOV- 1-1-W 1 s o  t h a t  /(P1)+•••±Pi-1+Pi.+1+•••+Pr). - 1  f o r  e a c h  i
(1_<i_r) and  l(D)_1), there  ex ist meromorphic functions f ,  s u c h  th a t  the  polar
divisors of f ,  are

(P . =

w here D , are positive divisors such a s  D  i s  m ultip le  of D , .  A  suitable linear
combination of f ,  w ill h a v e  precisely th e  d iv iso r D  a s  its  polar divisor*). Con-
versely le t f  be a  meromorphic function of order r  having D  as its  polar divisor
and  I(D)=-- 1.), s o  t h a t  go(D) T V . I f  yo(D)E Tf.-1+1/17 ,, th e n  l(D) - 1.)± 1  w hich  is
impossible.

Corollary 2. T here ex ists at least one meromorphic f unction o f  order r on M
tri 27+ 1

if  an d  o n ly  i f  U  TV 0 (r> 2 ) .
v=2

Proposition 6. I f  14/t.#0, J(M ), then

* If u  1 ,17 ;-+ 1 =14, _ie  ( -  p v i )  ,  then u - 147-1 and u W ;._1+ VVI. This proves /(D )----1,.
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dim (W ±M )=dim  W + 1..

P ro o f. Since M.'+W i  is  the im age of 1/17 XW 1 is  the im age of W'p<W, under
the addition mapping J (M )X J (M )-4 (M ), w e  h a v e  dim(M'.-1-W1 ) d im  M + 1 . If
dim(W-PW 1 )=dim M.', then select an  irreducible component V of W  with dim V
-=dim M . S in ce  Vg V-FTV, a n d  VH-Wi  is  a n  irreducible component o f  M)--PWI
it follows that dim(V-FIV i ) dim(M.+M)--=dim V  so that V=V-]-W 1 . B u t  then

V ± M =•••=V +TV ,=J(M ), which is impossible,

We prove at last th e  useful formula which was proved by M artens [11].

Proposition 7. For and w1 , w2EW1 with w1#w2,

(W;H- w1)n(W - Pw2)=(M=-11)U(TP4-'-1 - Pw1 - 1- w2) .

P ro o f. We first prove th e  fo rm u la  fo r  v = 1 .  Since Wr_i±wi-Fw2ÇW7.-P wi
and w41=wrec-w1)= x) - (Wr - Fw i) (i=1, 2), w e on ly  h a v e  to  showxewi

that
wi)u(W,-+ w2)sW4,u(M-_ , + wi + w2) .

L et w1=y0(P), w2=ço(q) with p, ge m  and  p # g .  Then any point xE(W r + w2)
can be written

x=ço(P1-1-•••±Ar+p)—ço(qi+•••+q,+q)

fo r some points p t , q ,E M  so that

Pi+•••+Pr+P^-qi+-••+qr - Fq

by Abel's theorem. If  these two divisors a re  identical, we may assume that Pr=q
and q,.= p .  Then we have

x=S1)(P1+•••+Pr-i - Pq+P)EM._, - Fwi - Fw2.

If  these two divisors are distinct, then l(pid - - •••+Pr - F P )-2  so that

x=ça(Pi+•••+p,r+p) w 4 , .

To get the form ula for v  2 ,  th e  next lemma is necessary.

Lemma 3. L et A  be an irreducible subvariety and B, C be two subvarieties
of  J (M ).  Then

(B n C )eA .-= (B eA )n (C eA ),

(B U C )e A = (B G A )u (C e A ).

Proof. These are  immediate consequences o f the definition of  A B  an d  th e
fact that

u G (B U C )e A  if  and only if A -FugBUC

i f  any only i f  A-Puç_B or Ad-u.gC.
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We have just proved that

(147 ,-.+1+ wi)n(W7--,+1+ w2)=WL+2U(IV,-,±101+ w2) •

If  we operate on both sides of the  above equation with e ( —W1) and  use  Lemma
3 , we have

(T47 ._„+ 2 + wi)n(W --,+2)=((W ,-,+,e( — wi»+wi.)uc(w,— +Io( — w,))+w2)

=(w-_,+2e(—wo)uccw,_,e(-1/vi))+w,-Fiv2)

Repeating this process we have the desired result.

§  3 .  The hyperelliptic Riemann surfaces.

A hyperelliptic Riemann surface M  is defined to be o n e  that can be repre-
sented a s  a  two-sheeted branched covering of the R iem ann sphere, and have the
hyperelliptic involution 19 corresponding to the interchage of sheets in  th e  repre-
sentation. Since l(p+Op)=- 2  a n d  p +  Op--, q--H9q f o r  an y  p o in ts  p , qE M , the
common im age e=so(p+Op) is contained in W  and  called the hyperelliptic point
o f  J(M ) . It is evident that if W 0  a  R iem an n  su rface  M , then M  i s  hy-
perelliptic, and thus hyperelliptic Riemann surfaces can be characterized a s  those
fo r  which

I f  u  1 ,17 L then u—W 1 ç147
1 since 14, 1= w 1e(-W 1). B ut since both are irredu-

cible and  of same dimension, u—W i =iV i . There is only o n e  p o in t  having this
property so that for hypere llip tic  R iem ann surfaces I/172= e  and — W i =TV i —e.
Iterating th e  last relation, we have —W,_ 1 =W 1 —(1)-1)• e  so that

T/P2',_2= {( -1 )e} •

We also have that

W;'-=H7 , - ,+ 10 (— W, -1)= 117 ,-,+11CD(W, -1 - 0, - 1)• e)

=(W,+ IOW,-1)+ (1) — 1) • e

=TV,-_2,+2+() — 1) • e ( 1 < v r< g ) .

If a n d  r> 2 ()-1 .) , it follows that

T47 ;'-= WI ± W,-2.+1+ (I) — 1) • e==-W1+I/P;.-1

so that 1,17 ;-= 0 .  In  th e  special case th at r= 2 ( .)- 1 ) ,  w e have TI7 ;--= (1)-1).e , and
147 ;'--1= 0  by Proposition 2 so that 147 `L- 2 * 0 .  From Corollary 2 together with these
facts, it follows that on a hyperelliptic Riemann surface of genus g  there exist
no meromorphic functions o f odd order and the m erom orphic  functions of
even order n_-<g  a re  th e  lif ts  o f th e  rational functions on the Ri@ mann of genus
0.

W e can see from the formula W;==W7--2,+2+(i)-1)•e th a t W;'. i s  an  irre-
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ducible subvariety and of maximal dimension r — 21)+2 in Proposition 4. We also
can characterize the hyperelliptic Riemann surfaces by attainment o f those maxi-
mal v a lu e s . To do this we first prove the  next Cliflord's Theorem.

Theorem 1 (Clifford's Theorem). I f  V4,_ 2 *0  f o r some index  v
for a R iem ann surface M  of  genus g , then M  is hype relliptic.

P ro o f. If  we deduce W 2 - 2 # 0  for some index 2 (2 - 2<v) from our hypothesis,
we shall finally reach 1/1/ # 0 ,  which means that M  is hyperellip tic . From Lemma
1, it follows that k - 147 ,-2=W 1,-2 (1.1-4- v=g+1) a n d  w e can  assume th at 1.) /t.
F or a  po in t x we s e t  y= k — x EW1,,_ 2 . Then we can choose a  divisor
D , of degree 2 v - 2  a n d  a  divisor D u o f  degree 2 p - 2  such that ço(D,)=-x, (p(D y )
=y , and that at least one point of D , also appears in  D u a n d  at least one point
o f  D , does not appear in D .  L e t  Dz =D x n D , be a  divisor o f degree r (1 - r<
2 v - 2 )  a n d  s e t  z=ço(D,). W e w ill denote L (D ) th e  complex vector space of
meromorphic functions o n  M  whose divisors are  m ultip les o f — D . Since L ( D )
n L (D ,)= L (D ,), we have

dim [L(D „)+ L(D y )1=1(D x)±1(D y ) -1(D.)

and  from the  evident inclusion relation that

L (D )+ L (D ) L (D  „±  D  —
it follows that

dim [L (D ,)+K (D ,)]_d im  L (D s +13,--D,).
Then we have

I(D,)+1(D y ) -1(D,)_1(D x + D ,— N

=1(K— D,)=i(D2),

and  substituting th e  values I(D y )= g+1 -1 ) and i ( D ) =l( D ) +g -1— r, a n d  apply-
ing Proposition 2, we get th e  next inequalities.

2 .

Thus r  m ust be an even number, say r= 2 2 -2 , and then l (D )= 2 .  Hence z M I -2

and  this completes th e  proof.

Remark 1. In  general either T/I7 „,_2=0 or I,17 _2 consists of the unique point
u  J ( M )  such that — W „,=W ,,—  u v  see Gunning [5, p. 501, and for v =g
it follows from the Riemann-Roch theorem that WI g _2 = {h} . Clifford's Theorem
asserts that W'L_ 2 = 0  (2  1 ) . g - 1 )  for non-hyperelliptic Riemann surfaces.

To attain our purpose we here have to introduce some notions.
Let M ( r) denote the  r-fo ld  symmetric product of a compact Riemann surface

M . L e t  0 : Mm-- ,J(M ) be a  complex analytic mapping such that ço= 0 . r ,  where
r :  Mr—>M ( r)  is  th e  natural quotient mapping. A t each point D M (r )  the im age
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of T D(M T ) (tangent space  a t D  in  M ( r) u n d e r  th e  differential o f  th e  mapping 0
is  th e  linear subspace dOD(TD(M ( r ) )) o f  T om (A M )) d u a l to  t h e  subspace L t  of
th e  complex cotangent space 7 7 b ( D ) ( A M ) )  defined by

L t= {w I wES2(M) and  D(w)>D1,

w here w e identify 7 1 ( D ) ( A M ) )  w ith  th e  space S2(M) o f holomorphic differentials
o n  M  and  D(a)) D  m eans that th e  divisor o f  c o  is  a  m u lt ip le  o f  D . (Gunning

[5], p . 87)
L e t V  be an  analytic subvariety of J(/1//). T o  an y  point x E V  associate the

linear subspace T '(V )g 7T .K M ) spanned by all covectors of the form d x f , where
f  is any analytic function in  an  open neighborhood o f  x  in  J(M ) which vanishes
identically o n  V .  T h e  natural dual to  th e  subspace Tt(V )g  T t(J(M )) is  a  linear
subspace T ( V ) T ( A M ) )  called th e  ta n g e n t s p a c e  to  t h e  subvariety V a t  x.
Its  dimension is called th e  imbedding dimension of V  a t  x .  T he po in ts o f V  at
w hich V  is  a  regular analytic submanifold o f J(M ) a re  called th e  re g u la r  points
o f  V  an d  th e  se t o f such points is denoted by R (V ), a n d  th e  rem aining points
o f  V  a re  called th e  singular points of V  a n d  th e  se t  o f  su c h  p o in ts  is denoted
by  ,S(V). T he poin ts of R (V ) are  precisely those points a t w hich  th e  imbedding
dimension is equal to  the dim ension of V  in  a  small neighborhood of the point.

It is proved by Weil th a t  S(W r )=W L and m ore generally by M ayer t h a t  for
a  proper subvariety

P ro po sition  8 .  For any  point xEW N/11;. (2..?- g)*) su c h  th at x =x '± x "
w here x ' E lk ; and x 'G W ,,, let D M (r), D'EM ( s) be any  positive divisors such
that 0(D )=x  an d  0 (D ')=x '. Then f o r any two points p i ,  p2Gm s u c h  th at  x -
ço(pi) and x-p(p2) are  regular points of  W r _i , the tangent spaces Tx„,(,,)(W r-i)
and T x _w ( p 2 ) (TV,- 1)  either coincide or intersect in  a linear subspace of dimension
l(D ± D ')+r— s-3, and the imbedding dimension of 1/17 .. at x  is  n o t g reate r th an
l(D+D')-Fr— s-3.

Pro o f . Since x—ço(p i )  is  a  reg u la r  p o in t  o f  Wr _i  s o  t h a t  x Eso(p i )€047 ;-,
there exists a  u n iq u e  p o s itiv e  d iv isor C1 M ( r- 1 )  s u c h  t h a t  x=go(p i -FD,), and
Tx_,(p i )(Wr-i)— To(D,)(Wr-i) can  b e  id en tif ied  w ith  dçbp1(TD,(M ( r - 1 ) )) (i=1, 2),* )

A s is previously stated, th e  dual spaces 1.1), T*(j(m )) to  th e s e  ta n g e n t spaces
a re  defined by

LZi= {co ,Q(M) and  D(w)a. Dil

From above dim L t i =g— r+1, and dim Lt 1 „ i =g— r+1  fro m  the Riemann-Roch
theorem  so that Lt i =L:t i ± pi . T he  spaces T x - p ( p i ) ( W r - i )  a n d  T . - s , ( p 2 ) ( W r - i )  c a n
be seen a s  subspaces of the  tangent space to J(M ) a t  a point, and the intersection
o f  th e se  ta n g e n t s p a c e s  is  ju s t  t h e  d u a l  s p a c e  to  LP) ,U L t i + p i U  L k + p ,.

* N ote  th a t  x—so(P)ET47 _1 f o r  a ll P M i f  a n d  on ly  i f  xEF17 _1C)(—W1 =tV .
**A t a n y  point D M(r) s u c h  th a t  1 (D ) =v, th e  d ifferentia l o f  t h e  a n a ly tic  m a p p in g  0:

A /Co— V (1f) h a s  ra n k  g iv e n  b y  ra n k  d0D=r+1— v  (C unning [5], T h ,  10(b)).
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T hus its  dimension is  g— dim(Lt 1 +L t 2)=g— dim  L 1 —dim Lk-Fdim
2(r —1)— g+dim(Lt i n L t 2 ). If P1-ED1-=- P2+ D2, then L 1 = L 2 .  If n o t ,  l e t

Pi -FDI =Di-FD" a n d  p2 d-D2 =- D -FD " w h ere  t h e  d ivisors D ; a n d  IX  have no

common p o in ts . T hen  0 (in =  x ' (i=1, 2), 0(D").--- x", and

Lt,r ) Lt 2 .---Lt i ,p,nLt 2 ,p,

=  { ( 0 1 0 ) G  Q(M), D(0.)) D1+P1 and  D(a)).132-FP21

={ wicoGQ(M) and D(co)>= D;+DP-D"} .

By the Riemann-Roch theorem  w e have

dim(Lt i n L k ) -=- i(D-FDH - D")

=1(D;+ D")+ g —1— s—r .

Each calculations show th a t the dim ension of the intersection is  a s  desired.
To prove th e  last assertion, recall from Lemma 2. 3) t h a t  vv=w,_,e(-wo

pre)m [W r - H- l O ( P ) ] .  From  this it follow s that

T.,(W ;-)-Tx- çgp i )(147 ,-OnT x - w cp2)(W r-i),

and  the  first assertion just proved gives th e  proof of the last.

W e  n o w  p ro v e  t h e  generalized C lifford 's theorem  w hich characterize the
hyperelliptic Riemann surfaces.

1
Theorem 2. I f  dim 1/V"--=r —21)+2 fo r  some pair of indices v, r (2< v_< r+ 1,

r_ g - 1 )  for a Riemann surface M  of genus g , then M  is hyperelliptic.

P ro o f. By Proposition 3, r-2 v + 2=dim W< dim  and dim W=1< r —21)+3
by  Proposition 4 so  tha t d im  W = 1= (r-1 )-2 (1 )-1 )+ 2 . Repeating the argum ent
w e have dim 117 2=r— v . T hus w e  have o n ly  to  p ro v e  t h e  T heorem  fo r th e
case that dim -147 =r —2 fo r some index r —1), and w e  suppose th a t r  is
the  smallest among such indices, and M  is  non-hyperelliptic.

Since M is  non-hyperelliptic, r > 2 .  I f  WV=W;--id-Wi, then dim
—1=(r —1)-2 b y  Proposition 6 , a n d  t h i s  i s  a  co n trad ic tio n . T h u s  w e  have
1 #0 fo r some index r > 2. Choosing a  regular point x E I/N a t  w h ic h  147 ;- has
dimension r - 2  a n d  a  divisor D  M r )  su c h  th a t 0(D)=x, it follows from Proposi-
tion 8 that r-2= dim  x(W.;-)-1(2D)-3 so that 1(2D) Then 0(2D) Œ
W 72 ; ' ' ,  and VP2V # 0 . If  r g - 2 ,  then  M  would be hyperelliptic by Theorem 1. If
r=g -1 , 0 (2 D )E W & ,={ k }  s o  t h a t  2 x =0 (2 D )=k . B u t  th e  last equation can
only be satisfied by a  finite number of points of J(M), and dim V V =r-2>_1. We
can thus choose the  po in t x  Tif/..;. in  the  above argum ent w hich do not satisfy the
equation, and th is g ives a contradiction.

Rem ark 2 .  F or a  hyperelliptic Riemann surface,
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dim W;.'= r — 2v+ 2 ,

since L17 1/17 ,--2,+2+(1) - 1)•e

A t last note that for hyperelliptic Riemann surfaces

,S(IV)=S(TV,-2,+2)+(v-1).e= T'Pr-2,+2+ (V -  1) • e

=1'17 e d - e=W • e
Vr;. 1- 1

§  4 .  The trigonal Riem ann surfaces.

A Riem ann surface of genus g3 w h ich  adm its meromorphic functions of
order 3  will be called a  trigonal R iem ann surface . I t  is  e a sy  to  check  th at a
Riemann surface is trigonal if  and  only if ifl=0 and 1/173#  0  so  that T17 3 0 .  It
follows from Meis's results [16] that the non-hyperelliptic R iem ann surfaces of
genus g = 3 , 4  are trigonal. The R iem ann surfaces of genus g>._5 a re  generically
not trigonal, and  fo r any g 3  there are trigonal Riem ann surfaces of genus g.

We shall give some interesting examples of non-trigonal R iem ann surfaces.
It was shown by A ccola [1] and Farkas [ 3 ]  that t h e  order n <g+1 — 2k o f  a
meromorphic function on a k-hyperelliptic Riemann surface (two-sheeted covering
of a com pact Riem ann surface of genus k-)  o f  genus g 5  is even.

We have invoke M artens's remark [14] to  sh o w  th at the above "g-hyperel-
liptic Riemann surface is not hyperelliptic if the  base surface is non-hyperelliptic.
Using Abel's theorem he proved that if  there exists a  m erom orphic  function of
order n 2  o n  a  covering of a com pact Riem ann surface of positive genus, then
there also exists a meromorphic function o f order n  o n  th e  b a se  su r fa c e . Thus
a 2-hyperelliptic Riemann surface of genus g  (g + 1 -2  > 3) whose base surface is
non-hyperelliptic i s  non-hyperelliptic a n d  admits no m erom orphic  functions of
order 3.

Another such example is a normal covering of a hyperelliptic Riemann surface
o f  genus g ..3  which is not hyperelliptic . We know that such coverings exist
[8]. Since there exist no meromorphic functions o f order 3  on the base surface,
we see by M artens's remark that there exist no meromorphic functions o f  order
3  on these coverings.

T he  third example is a Riem ann surface of genus g > 6  admitting a meromor-
phic function of order 4. Its  non-trigonality follows from t h e  classical result
that if  two meromorphic functions f ,  h  of order m, n o n  a  R iem an n  su rface  M
o f genus g  generate the full field of functions on M, then g (m - 1 ) (n - 1 )  (Accola
[1 ], Prop. I).

It is classical that for a trigonal R iem ann surface of genus g _ 5 , III contains
only one poin t [7 , 9 , 12]. In  general for a non-hyperelliptic Riemann surface of
genus
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T/17 , -  1 = 0

except p o ssib le  th e  ca se  g = 6  an d  v = 3  where if u E n  th e n  2u= k  [12].
W e shall investigate som e properties of the  subvarieties  W . o f A M ) for

trigonal Riemann surfaces M.

Lemma 4 .  I f  Tt/i 0 , then dim 1,17 =r —3 (2- r _ g - 1 ) .

P ro o f. From Theorem 2  and Proposition 3 it follows that

0=dim WN < dim W,24< • • • <dim 11/ ,=g —4 (2- .  5) .

Thus we hace dim Vf7 =- r — 3, and  this holds also fo r g=3, 4.

Lemma 5. For a trigonal Riemann surface of genus g  it holds that

3)U (12 — W2— W 5) (3 r  g —1) .

P ro o f. Let u o be any point of W  and  u  be any point of W,2 such that ç(Do)
= u o and  q (D )=u , w here D o a n d  D  a re  p o s itiv e  divisors o f  degree 3  a n d  r
respectively and l(D 0 )=2  and  l(D)_>_.2. Then we have two meromorphic functions
f  and h such that

( f ) .-= D o  a n d  —(h) —D .

If 1, f ,  h and f h  a re  linearly independent, then it follows that l(D 0 + D ) .4  and
u o +u EW;%_ o= k —We;Zr ,  by Lemma 1 so that u E k—u 0 —Wh-1,- 5 . If 1, f ,  h and
f h  a re  linearly dependent, then there exist constants a, b, c such that (f +a)(h+b)
=c , and  D ,--, D 0 H-D' fo r  some positive divisor D ' o f d e g re e  r -3  so  th a t  u E T41

Theorem 3. For a trigonal R ieinann surface of genus g4 it holds that

Wl--=(W34- W7-3)U(k — W3— W h- ir,-5)

P ro o f. It follows that wg=wKDwr_3 from Lemma 2 , 4 )  a n d  hence IV P U /
+W r _3. Since W = k —Wf b y  L e m m a  1 and Wfi:242, 5,  w e h a v e  W Pk -14 7 3—
W fil,_, and thus we have the opposite inclusion relation to that in  Lemma 5.

Corollary 4 .  For a trigonal Riemann surface of genus g_5, T 41 consists of
only one point [7, 9, 12].

P ro o f. I f  w e le t  r= 3  in  th e  proof o f Lemma 5 ,  then  e ither u o + u  E W t or
u o= u .  B u t  f o r  g S  t h e  first case is excluded by Clifford's Theorem.

Corollary 5  (A n d re o tti-M a y e r  [2 ]) . F o r  a  trigonal Riemann surface of
genus g ..4 it holds that

W 1-1=(W N+W g-i)U(k— wg— w
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so that WI- 1 consists o f two irreducible components components i f  g_.5* ) .

Corollary 6. For a trigonal Riemann surface o f  genus 4, .1/n consists of
two points which may coincide, when wg is the image of a  half canonical divisor
under ço.

Corollary 7. For a trigonal Riemann surface of genus g it holds that

W1-2-=(14q+W g -5)U(k — Wi—W1-3)

wl_ s _---(wg+ws _6)v(k—wg—W3g _2) (g. - 6) and

117 2
9 _4 -=(Wg-FW g _OU(k—Wg—W4

g _,) (g>7).

Corollary o f Corollary 7. For a trigonal Riemann surface of genus g 6  it
holds that

W1-2=(Wg+W g _5 )U(k g - 6)UW a
g  - .

Proposition 9 .  For a trigonal Riemann surface of genus g8, W 2
g 2 consists

o f at least two irreducible components. 141_ 2 is irreducible only i f  k=4141 for
g=7, and kE3wg+w 1 fo r  g=6.

P ro o f. If  147 1_2 is irreducible, then it necessarily holds that VVN+Wg _5 2 k -
21/1qEWg _5 C)(—Wg _6 )=WW i i = 0  fo r g 8  by th e  result of M artens stated before
Lemma 4, and th is prove th e  a s se r t io n  fo r  g. 8. T h e  rest fo llow s from  the
above.

Corollary 8 .  A  trigonal Riemann surface of genus 6 admits no meromorphic
function o f order 4 i f  and only i f  k 3H 7 3-FWi . A  trigonal surface of genus 7
admits no meromorphic function o f order 5 i f  and only i f  k=4Wr* ) .

P ro o f. T he  proofs o f  "only if"  pa rts  fo r g=6, 7 a re  done in  P roposition  9,
and  the  " if"  pa rts  follow from the  facts than W1-.=.-0, and  wg=o fo r g=7.

Lemma 6. I f  T/17 ;-=-W3-FW,_, fo r a  trigonal Riemann surface of genus
then WT/T7H-W 8 _3 (3 s_<r).

P ro o f. M.--1-=Me(Wi)= . 0v , ((W - PW,-_3)— u)

-=M±(W 3 (DW,) ,=Tfl-FW,_ 4  .

T his process can be repeated till s=3.

Lemma 7. I f  W.;.:=Wi+W r _3 (r_4 ) fo r a  trigonal Riemann surface of genus
then wg=wg+wg_ 8 so that dim T41=dim

* If W3+ Wg _a = k— wg—wg _4 ,  t h e n  le-21/17 3G Wg _4 e(W g _4 ) = WIrg
-

8 = 0  by C lifford 's
Theorem.

**cf. Kato DO].
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P ro o f. If;+1=1/1 0 ( — W.1)--= u a i (W.;-- Fu )=-Sv i (WE+Wr_3+u)

=W id - (W r-3e( — W1))=14q - FW;.-2.

From this and Lemma 4  and  6  we have desired result.

Corollary 9. I f  W i=-W E+W , fo r  a  trigonal R iem ann surface o f  genus 6,
then Wg=0.

Corollary 1 0 .  I f  147 ;-=- W 3+W r _3 (r_ 4) f o r  a  trigonal Riemann surface of
genus g - 5, then 1/1/=2WEd-W 3 6 (6 s rd-1), and more generally TV (1)-1)•W 3

P ro o f. By applying th e  proofs o f Lemma 6  and  7  repeatedly we can get the
desired formulae.

Remark 3 .  T h e  formulae of the subvarieties 147;'. of J(M ) fo r  a  tr ig o n a l
Riemann surface M  in  Corollary 1 0  a r e  analogous to those for a  hyperellip tic
Riemann surface which was stated at t h e  beginning o f  §  3 .  It should also be

noted that W;.=M+IV,-- 3( g - 1 ) ) ,  which we shall prove by using the
2

next Lemma.

Lemma 8 .  I f  T/V;. 0 fo r a  trigonal Riemann surface, then the surface admits
meromorphic functions o f order r+1  and r+ 2 .

P ro o f. Let f  be a meromorphic function of order 3  an d  le t h  be a meromor-
phic function o f order r  which corresponds to a  p o in t u E L N . If

(1) (f )=D — D ' and  (h)=-(D+E)— (D'±E')

where D  and D ' are positive divisors of degree 3 , E  an d  E ' are positive divisors
o f degree r - 3 ,  then u EW3, which is a contradiction. If

( 2 ) (f )-=(D±P)— (D'H-P') and

(h)=(D+E)— (D'+E')

where D  and  D ' are positive divisors of degree 2 , P and  P ' a re  p o in ts , E  and
E ' are positive divisors o f d egree  r-2  such  th at D, E  a n d  D ', E ' a r e  relati-
vely prim e respectively, then after a  suitable linear transformation we can get a
function h ' such that

( 3 )
( f )=(D + P)— (D' + P') and

(h ')=- (F+F)— (F'+P')

where F and  F ' are positive divisors of degree r-1  a n d  D, F  a n d  D ', F ' are
relatively prim e respectively. Then (f lh ')=(D +F)— (D '+F) so  th a t f l h '  i s  a
meromorphic function o f order r+1.
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Sim ilarly w e can get a  function h " such that

( 4 ) (f )=(D+P)— (D'H-P') and

(h")=(F+P)— D"

w here D " is  a positive divisor of degree r  such  that D '+P ' a n d  D "  a r e  relati-
vely p r im e . T hen  (f lh ')=(D +D ")— (D '+P'+F) so  tha t f / h ' i s  a  meromorphic
function o f order r+2.

By applying linear transformations to functions f  an d  h, other situations can
be reduced to th e  above cases (2), (3) and  (4).

1
Since there exists no  meromorphic function o f  o rd e r  n (4<n - - (gd-1) and

(n, 3)=1) b y  th e  classical result stated in  t h e  th ird  ex am p le  in § 4 , i t  f o llo w s
1from Lemma 8 th a t  Vr=T/VN-TV,_, (3 (g-F1)) f o r  a  trigonal Riemann sur-

face.

P roposition 10. For a trigonal Riemann surface of genus g7 it holds that

1
dim W;.=r —31)+3 (3v-3 I.)>_ 2) and

,S(W1/V;.+' 01. )._<r (g-5)+1.), .

P ro o f. T he  first equalities follow from Corollary 10 and the above considera-
t io n s .  The second assertions also follow from Corollary 10 and the observation
th a t if  r-3".)+3 3, then

s(w;'-)=(1)-1).wg+s(wr_,„,)
=(1.)-1)• W2+W _3, ,

=(1) - 1).F9+147 N- W,--3,

Compare th is  Proposition with Rem ark 2 and  the  following o f i t  in  § 3.
Finally w e shall prove the existence of meromorphic functions of order g - 1

o n  a  trigonal Riemann surface of genus g.

Theorem 4 .  A  trigonal Riemann surface of genus g. - 4 admits meromorphic
functions o f order g -1 .

P ro o f. For g=4, th e  trigonality is  a s su m e d . F o r  g W2=(WN±Wg-5)
U(k—WI—W 2, 3 )  b y  C o ro lla ry  7 , a n d  W2

g _I=OYFFW g -4)U(k —WE—Wg _4) by
Corollary 5 . Since WH-W 9 _4 and k=W — W 4 are distinct irreducible components
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a n d  dim(k—WT—Wg _4)=- g-4>g-5---dim((k—W3—W1-3)+Wi) b y  Proposition 6
and Lemma 4, w e have W I ,*  0, and this completes th e  proof.

C orollary 11. A  non-hyperelliptic Riemann surface of genus 5 admits mero-
morphic functions o f order 4 [1O].

g+1
Pro o f . If  wg=o, then  W i*0  by  th e  know n resu lt tha t W.;-#0 i f  r (Meis

—  3
[1611). If W#Ø, then w e can apply Theorem  4, and  the  proof is completed.

§ 5. T he elliptic-hyperelliptic Riem ann surfaces.

A  two-sheets covering o f a  co m p ac t R iem an n  su rface  o f g e n u s  1 w ill be
called an  elliptic-hyperelliptic R iem ann surface. O n su ch  a  s u r f a c e  o f  g en u s g
every meromorphic function o f  order n g - 2  is  a  lif t  o f  a  meromorphic function
on  the  elliptic base surface if n is even, and no meromorphic function o f  order
n g - 2  exists i f  n  is odd, a s  is sta ted  in  § 4.

From  these facts w e can deduce the  following lemmas.

Lemma 9 .  For an elliptic-hype relliptic Riemann surface of g e n u s  g 6 , 1 4 7

1
=H73-=0 and dim HP=1

Pro o f . Since the  elliptic-hyperelliptic R iem ann  su rfaces o f g e n u s  g > 3  are
not hyperelliptic (Farkas [3]), w e have flq = 0 . In addition Wg--=0, f o r  otherwise
liq *() and the surface would adm it a  meromorphic function o f  o rd e r  3, which
contradicts to th e  ab o v e  fac ts . A t last w e  have dim W,.=1, since any meromor-
phic function o f order 2r on the surface is  a  l i f t  o f  a  meromorphic function of
order r on  the  elliptic base surface.

Lemma 10. For an elliptic-hyperelliptic Riemann surface of genus
so that 1/17 -=-0

Pro o f . A s in  th e  proof o f  Lemma 4 in  § 4, it follows that

1 = dim?, < • • - < dim WI _i =g — 4

so  tha t w e  have dim W.;. -=- r - 3 .  W e also h a v e  dim(Wi+Wr-4)=r —3 by Proposi-
tion 6 so  th a t Wi+W r ., is  a n  irreducible subvariety o f W; of maximal dimension.
W e shall prove by induc tion . W e  suppose t h a t  W! -=- W ,i+ W t - 4  ( 4 t s - 1 ) .  If
T4/ has another irreducible component, then 14/#0 (5 . s g - 2 ) .  B ut if  s  is odd,
the surface would adm it meromorphic functions o f  o d d  o rd e r  s. I f  s  is even,
then FV TV 12 s ince  a  meromerphic function o f even order s_ g - 2  is  a  lift o f a

meromorphic function o f  order —
2  

on elliptic b a se  su rfa c e . A s  T/17 3812=WVZP - 1 e

(— W1) s o  t h a t  1j7 —Wi ç:WV1P - ig.W,_„ w e  h a v e  Tilgal+W i— W iZM_i+IVi,
which contradicts th e  fac t th a t 1/1/frO.
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L em m a 11. For an  elliptic-hype  relliptic Riemann surface of g en u s g - 6,
(r?=3).

P ro o f .  If  Ikr, 1 *0  fo r some r .3 , there would exist a  meromorphic function
f  of order s (4 s :_ g -2 )  such that —(f),., is a m ultiple of —D where D is a posi-
tive divisor o f degree g - 1  chosen so a s  not to contain any branch p o in t o f  th e
elliptic-hyperelliptic covering and  ço((f)c„) e 1/f/ a n d  go(D)elkrg , .  B u t by Lemma
10, s  m ust be 4, and  D  has tw o p a ir s  o f  symmetric p o in ts  P, T (P); Q, T (Q),
where T  is th e  elliptic-hyperelliptic invo lu tion . If  h i s  a  meromorphic function
o f  order g - 1  whose p o la r  divisor is D , then t h e  function H=h— ho T  would
have greater number o f zeros than th e  poles, which is absurd.

Corollary 12. O n an elliptic-hyperelliptic Riemann surface of genus g_Z- 6
there ex ists at least one meromorphic f unction o f order g - 1  i f  any  only  if  111-1

Now we shall prove the  existence of meromorphic functions o f  order g - 1
o n  an  elliptic-hyperelliptic Riemann surface of genus g.

Theorem 5. An elliptic-hype relliptic Riemann surface of g e n u s  g 6  ad m its
meromorphic functions o f order g -1 .

Proof *). Since r g ,--= k —W g  _3 , 147
+ 1 = k — W I, by Lemma 1, and the dimen-

sion o f th e  subvariety Ws
g +W I

.-=k —W1,-EW1 is not greater than g - 4 ,  there is
a positive divisor D o f degree g+1 consisting of po in ts  in  general position and
l(D )=3 such that yo(D)E WI + ,  L e t 1, f ,  h be linearly independent meromorphic
functions o n  th e  su rfa c e  such that —(f)„ — D and (h) 0,0 =D , and  the  degree of
f  be r

Since t h e  divisor D  consists o f  p o in ts  in  general position, we can have a
biholomorphic mapping of the  R iem ann surface to  a  p la n e  curve C  o f  degree
g + 1 . By the  form ula for the genus of a  p lane curve we have

g ( g - 1 ) r i ( r , - 1 )
2 2

where r,  a re  th e  multiplicities o f  t h e  singularities o f  t h e  curve C .  Thus the
curve C m ust have at least one singularity. L et S  be an s-fold singularity among
its singularities ; then ço(D)=ço(S±S') where S ' i s  a  divisor o f  degree g+1—s
and  ço(S')E141+ 1 _,. Therefore we have  a  function of degree g-I-1—s g -1 .

If  r= g - 1 ,  then we have done.
If then r m ust be 4 by Lemma 10 and  D  has two pairs of points

symmetric with respect to T .  Since (h— h(P)) 0 has at least o n e  p a irs  o f po in ts

* T h e  a u th o r  is  g ra te fu l to  P ro fe sso r  Accola w h o  k in d ly  in fo rm ed  h im  a  p ro o f  o f  this
theorem  due t o  J .  H a rr is . T h is  p ro o f is  an o th e r  version of it.
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symmetric with respect to  T  fo r a  zero  P  o f th e  function h— hoT , the meromor-
h— h(P)phic function  i s  o f  order a t m ost g - 1 .  B ut the  polar divisor o f  i t  is
f - f ( P )

the m ultiple of — D and does not consist o f  p a irs  o f  p o in ts  sym m etric  w ith  re-
spect to  T .  Thus its degree m ust be g - 1 .  T h i s  completes th e  proof.

Corollary 1 3 .  For an  elliptic-hype relliptic R iem an n  su rf ace  o f  genus
If i_ 1 has at least tw o irreducible com ponents.

P ro o f .  T h is  immediately follows from Lemma 10, Corollary 12 and Theorem
5.

§ G. The existence of meromorphic functions o f order g.

I t  w a s  s ta te d  in H ensel-Landsberg [ 7 ,  p . 5 0 8 11 t h a t  o n  a  non-hyperelliptic
Riemann surface of genus g  the re  ex ist in fin ite ly  m any  meromorphic functions
of order g .  W e give here another proof from  our point of view.

Theorem 6. A  non-hy perelliptic R iem ann surface of  g en u s g  adm its inf ini-
tely  m any  m erom orphic functions o f  order g.

P ro o f . F o r  a  non-hyperelliptic Riemann surface of genus g ,  dim W i =g —4
by Theorem  2, a n d  W I= k — W ,_, b y  L e m m a  1  so  th a t d im  147 = g - 2 .  Since
dim(W 1±W 1)=g —3 b y  Proposition 6, it follows that W I #0, and  dim 171 1 = g -2

Thus there exist infinitely m any moromorphic functions on the surface.

Remark 4 .  W e can prove th e  next w eaker statem ent f o r  g = 4  by m aking
use of WeierstraB points : A  R iem ann  surf ace  o f  genus 4  ad m its  at least o ne
m erom orphic function o f  order 4.

P ro o f .  T h e  s ta tem en t h o ld s  tr iv ia lly  f o r  hyperelliptic su rfa c e s  a n d  th e
surfaces w ith  a t least one WeierstraB point w hose  first nongap i s  4. T hus w e
have only to consider surfaces all whose WeierstraB points have 3 a s  the ir first
nongaps.

L et P  be a  WeierstraB p o in t  o n  th e  s u r fa c e  a n d  le t  f  b e  a  meromorphic
function such that divisor of f  is

( f )=(Q ± D )-3 P ,

w here Q  is another WeierstraB point, D  is  a positive divisor o f  degree 2, an d  Q
and D  a re  relatively p r im e . Such a  function e x is t .  F o r  th e re  a r e  a t  l e a s t  15
WeierstraB points since gap sequence o f th e  WeierstraB p o in ts  a re  {1, 2, 4, 5} o r
41, 2, 4, 71, and  the  to ta l degree of ram ification of the covering represented by f
is  1 2 . There also exists a  function h  such that

(h )=(P ± D ') -3 Q  o r  (h )=(2 P+R )-3 Q
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w here D ' has the  same property a s  D  and P# R . W e  th e n  have

(fh)=(D+D')— (2P+2Q)
in  th e  first case, and

((f+c)h)=(R +D")— (P+3Q)

in the second case, w here  c  is  a  constant and D " is  a positive divisor o f  degree
3. Hence there exists a  meromorphic function o f  o rd e r  4  i n  e a c h  case. N ote
th a t the case (h )=3P-3Q  can be excluded.

§ 7 .  The existence of meromorphic functions o f  order g - 1 .

W e have seen in  § 4 and  § 5 th a t a Riem ann surface of g e n u s  g 6  w h ic h  is
either trigonal o r elliptic-hyperelliptic admits meromorphic functions of order g -1 ,
and  here w e shall prove that a  non-hyperelliptic Riemann surface of g en u s g 4
adm its meromorphic functions of order g - 1 .  T o  do  th is , a  re su lt  o f  Mumford
[17, Appendix] is very useful.

Theorem 7  (M u m fo rd ) . Let M  b e  a Riemann su rf ace  o f  genus g>_5. If
dim T47 = r - 3  fo r  som e in teger r (3-7--. . g - 2 ) ,  th e n  M  i s  trigonal, o r  elliptic-
hyperelliptic, or a surface represented by  a nonsingular plane quintic.

P ro o f .  Since dim H7.-=-r —2 f o r  hyperelliptic R iem ann surface, M  is  non-
hyperelliptic. L et us denote r  th e  smallest r  f o r  w hich dim  IV;.=r — 3. I f  T=3,
then W O  M  is  trigonal. In  the  fo llow ing  w e  assum e t h a t  r -4  so  th a t

If  147 V=1q. 1 +W 1 , then dim I47;- 1 =r —4=(r —1)-3 b y  Proposition 6 , w hich is
contrary to our assum ption o n  r. T h u s  TV. # 0, a n d  choosing a  reg u la r  point
x 72. at w hich 147 .- h as dimension r - 3  a n d  a  p o s i t iv e  divisor D  o f  d eg ree  r
such  that yo(D)=x, it follow s from  Proposition 8 that

r —3=dim I47;- -= dim T s(W )= d im  x(W. l ( 2 D )  —3 .

Hence l(2D )_r and  go(2D)e In .  s o  t h a t  2g2(IV) W'2.,  a n d  dim LI7 r r — 3. From
Theorem 2 and Lemma 1 it follows that dim  1/177

2
.,-<2r —2.r+2=2 and h e n c e  r< 5

so  th a t r= 4 and dim W =1.
W e have assume th a t M  is  non-trigonal. C hoose tw o d is tin c t p o in ts  u1, u2

Œ W  and positive divisors D1 , D 2  of degree 4 such  tha t yo(DO=u i  a n d  ç.-,(D2)=u 2 .
T hen  by  the  same reasoning a s  in  th e  proof o f Lemma 5 in § 4 , w e  have u i + u 2

E .147 s o  th a t  ui+ u2- l- W g  W 4
g +2= —Wg  _4 . N oting  tha t d im  W2

g _4 g —7, we
can generically choose a positive divisor Do of degree g-6 such that i(D0 --FDI - FD2)
=1, and there  is  an  abelian differential ai o f th e  f irs t  k in d  d iv iso r  o f  w hich is
the m ultiple of D0 +D 1 +D 2 . Let f  be a  meromorphic function  o f  o rd e r 4  such
t h a t  (f )-=D 2 ,  th e n  t h e  d ivisors o f  ai a n d  f a)  a re  th e  m u lt ip le s  o f  Do+Di.
Since i(D 1 )=g - 3  a n d  hence i(D 0 +D 1 )=(g -3 )— (g-6 )=3 , w e m ay  choose  th ree
linearly independent abelian differentials w 1 , (02, oh divisors o f  w h ic h  a re  th e
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multiples of D o +D i . Then w e can define an  analytic m ap 7r : M -4 3 2  s u c h  th a t
th e  map f: M—÷P 1 i s  the com position of r and a projection 7 1 o f  7r(M )  t o  P 1

defined by r1((01, (02, (03)=((0, fw). I f  d is  th e  degree o f  t h e  p la n e  c u rv e  7c(M),
then  the  degree o f th e  m ap  'r1 is  e ith e r  d or d -1, since there are infinitely many
D , (hence f )  and 7c(111) has only finitely m any m ultip le  points so  th a t  w e  m a y
select the projection Z 1 from  a  po in t o f P 2 -7 (M )  or from a simple point of rc(M).
T hus if  w e denote ô th e  degree o f  7r, th e n  w e  h a v e  5(d — 1 ) 4 .  I f  5 = 1 ,  then

and since g 6 ,  M  m ust be represented by a  non-singular plane quintic [4].
If  5 = 2 , then d 3  and M  is elliptic-hyperelliptic. If 5=3, then d._2 and M would
b e  tr ig on a l. If ô 4,  then  d=1 and (01, (02, (03 are linearly dependent, w hich is a
contradiction.

W e have seen in  Lem m a 8 that for an elliptic-hyperelliptic Riemann surface,
dim Tfl=1, and  it is  k n o w n  th a t fo r  a  non-singular plane quintic, wg#o [1 7 , P .
347], and since W 2 - = W i e ( W 1 )  a n d  hence Wg-1V3gT41 so that dim 1T7 i=1.

Theorem 8 .  Every non-hyperelliptic Riemann surface of genus g _ z i admits
meromorphic functions o f order g -1 .

P ro o f. F o r  g = 4 , th is  is  w e ll-know n [16 ]. W e h a v e  p ro v e d  th is  fo r  g = 5
in  C orollary  9 . Thus w e shall prove the  Theorem for g 6.

W e have dim W 2
g _1 =g — 4 by Theorem  2, a n d  dim W 2=g — 6, o r  g - 5  by

Proposition 4 . If dim W1._2 =g — 6, then  d im (W - 2-1-W1)= g —  5  s o  th a t  W I , O .
If  dim 147 1._2 = g - 5 = ( g - 2 ) - 3 ,  then w e can apply M um ford's Theorem  7 and  the
three kinds of Riemann surfaces in the Theorem remain to be considered. However
a  nonsingular plane quintic is  o f genus 6 a n d  adm its m erom orphic functions of
order 5 [4, 17], and also a trigonal Riemann surface and an elliptic-hyperelliptic
Riemann surface admit meromorphic functions o f order g - 1  b y  th e o re m  4  and
5 .  T h is  completes th e  proof.
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