The scattering theory for the nonlinear wave equation with small data

Dedicated to Professor Sigeru Mizohata on his sixtieth birthday

By

Kiyoshi Mochizuki and Takahiro Motai
(Communicated by Prof. Ikebe, Sept. 10, 1984)

1. Introduction and Results

In this paper we consider a small data scattering problem for the nonlinear wave equation

$$
\begin{equation*}
\partial_{t}^{2} w-\Delta w+f(w)=0, \quad(x, t) \in \boldsymbol{R}^{n} \times \boldsymbol{R} \tag{1.1}
\end{equation*}
$$

Here $2 \leq n \leq 5, \Delta=\sum_{j=1}^{n} \partial_{x_{j}}^{2}$ and $f(w)$ represents a nonlinearity which satisfies the following conditions:

$$
\begin{align*}
& f \in C^{1}(\boldsymbol{R}), \quad f(0)=0, \quad f^{\prime}(0)=0 \tag{A1}\\
& \left|f^{\prime}\left(s_{1}\right)-f^{\prime}\left(s_{2}\right)\right| \leq C\left(\left|s_{1}\right|^{\rho-2}+\left|s_{2}\right|^{\rho-2}\right)\left|s_{1}-s_{2}\right| \quad \text { for } \quad s_{1}, s_{2} \in \boldsymbol{R} . \tag{A2}
\end{align*}
$$

In (A2) we have to choose $\rho \geq 2$. Moreover, in the following we require a more stringent condition
(A3) $\left\{\begin{array}{cl}\frac{n^{2}+3 n-2+\sqrt{\left(n^{2}+3 n-2\right)^{2}-8\left(n^{2}-n\right)}}{2\left(n^{2}-n\right)}<\rho \leq \frac{n+3}{n-1} & \text { for } n=2,3,4 \\ \rho=2 & \text { for } n=5 .\end{array}\right.$
Scattering theory compares the asymptotic behaviors for $t \rightarrow \pm \infty$ of solutions of (1.1) with those of the free wave equation

$$
\begin{equation*}
\partial_{t}^{2} w-\Delta w=0, \quad(x, t) \in \boldsymbol{R}^{n} \times \boldsymbol{R} . \tag{1.2}
\end{equation*}
$$

The comparison will be done in the energy space. For $s \in \boldsymbol{R}$ and $1 \leq p \leq \infty$, let $H^{s, p}=H^{s, p}\left(\boldsymbol{R}^{n}\right)$ and $\dot{H}^{s, p}=\dot{H}^{s, p}\left(\boldsymbol{R}^{n}\right)$ be the Sobolev spaces which are the completion of $C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$ with norms

$$
\|u\|_{H^{s, p}}=\left\|\mathscr{F}^{-1}\left[\left(1+|\xi|^{2}\right)^{\frac{s}{2}} \hat{a}(\xi)\right]\right\|_{L^{p}}
$$

and

$$
\|u\|_{A^{s, p}}=\left\|\mathscr{F}^{-1}\left[|\xi|^{s} \hat{u}(\bar{\xi})\right]\right\|_{L^{p}}
$$

respectively. Here ${ }^{\wedge}$ denotes the Fourier transformation and \mathscr{F}^{-1} is its inverse. By $\|u\|_{e}$ we mean the energy norm:

$$
\|u\|_{e}^{2}=\frac{1}{2}\left[\left\|\partial_{t} u\right\|_{L^{2}}^{2}+\|u\|_{H^{1,2}}^{2}\right] .
$$

Now let $H=\sqrt{-\Delta}$ in $L^{2}, F(s)=\int_{0}^{s} f(\lambda) d \lambda$ and

$$
V=\left\{u ;\|u\|_{V}=\sup _{t \in \boldsymbol{R}}(1+|t|)^{d}\|u(t)\|_{H^{1, r}}<\infty\right\}
$$

with

$$
\begin{equation*}
r=\frac{2 n \rho-2}{n+1} \quad \text { and } \quad d=(n-1)\left(\frac{1}{2}-\frac{1}{r}\right) . \tag{1.3}
\end{equation*}
$$

Then the main results of this paper are the following
Theorem. Assume that f satisfies (A1)~(A3).
(a) There exists a $\delta>0$ with the following property: If

$$
\begin{aligned}
& \left(\phi^{-}, \psi^{-}\right) \in \bigcap_{j=0}^{1}\left\{\dot{H}^{\frac{n-1}{2}-\frac{n+1}{r}+j+1, \frac{r}{r-1}} \times \dot{H}^{\frac{n-1}{2}-\frac{n+1}{r}+j, \frac{r}{r-1}}\right\} \\
& \quad \cap\left\{H^{\frac{n}{n+1}+1,2} \times H^{\frac{n}{n+1}, 2}\right\}
\end{aligned}
$$

and

$$
\begin{align*}
& \sum_{j=0}^{1}\left\{\left\|\phi^{-}\right\|_{A^{\frac{n-1}{2}-\frac{n+1}{r}+J+1}, \frac{r}{r-1}}+\left\|\psi^{-}\right\|_{\left.A^{\frac{n-1}{2}-\frac{n+1}{r}+j, \frac{r}{r-1}}\right\}}\right. \tag{1.4}\\
&+\left\|\phi^{-}\right\|_{H^{\frac{n}{n+1}+1,2}}+\left\|\psi^{-}\right\|_{H^{\frac{n}{n+1}, 2}} \leq \delta,
\end{align*}
$$

then there exists a unique solution $w(t)$ of the integral equation

$$
\begin{equation*}
w(t)=w^{-}(t)-\int_{-\infty}^{t} H^{-1} \sin \{H(t-\tau)\} f(w(\tau)) d \tau \quad \text { for } \quad t \in \boldsymbol{R} \tag{1.5}
\end{equation*}
$$

such that $w \in V,\|w\|_{V} \leq \frac{4}{3}\left\|w^{-}\right\|_{V}$ and

$$
\begin{equation*}
\left\|w(t)-w^{-}(t)\right\|_{e} \longrightarrow 0 \text { as } t \longrightarrow-\infty . \tag{1.6}
\end{equation*}
$$

Here $w^{-}(t)$ is the solution of (1.2) with initial data

$$
\left(w^{-}(0), \partial_{t} w^{-}(0)\right)=\left(\phi^{-}, \psi^{-}\right)
$$

(b) Furthermore, there exists a unique solution $w^{+}(t)$ of (1.2) such that $w^{+}(t) \in H^{1,2}$ and

$$
\begin{equation*}
\left\|w(t)-w^{+}(t)\right\|_{e} \longrightarrow 0 \quad \text { as } \quad t \longrightarrow+\infty \tag{1.7}
\end{equation*}
$$

Thus, we can define the scattering operator

$$
S:\left(w^{-}(0), \partial_{t} w^{-}(0)\right) \longrightarrow\left(w^{+}(0), \partial_{t} w^{+}(0)\right)
$$

(c) If in addition $\left(\phi^{-}, \psi^{-}\right) \in H^{2,2} \times H^{1,2}$, then the energy conservation law holds and the energy of w, w^{-}and w^{+}are equal:

$$
\begin{equation*}
\frac{1}{2}\|w(t)\|_{e}^{2}+\int F(w(t)) d x=\frac{1}{2}\left\|w^{-}(0)\right\|_{e}^{2}=\frac{1}{2}\left\|w^{+}(0)\right\|_{e}^{2} \tag{1.8}
\end{equation*}
$$

For f satisfying (A1), (A2) with $\rho \geq 2$, the left side of (1.8) does not in general give a definite energy. So we can not always expect (1.1) has a global solution in time. For power nonlineality $f(w)=\lambda|w|^{\rho-1} w$ with $\lambda<0$, it is conjectured by several authors that

$$
\rho(n)=\frac{n+1+\sqrt{n^{2}+10 n-7}}{2(n-1)}
$$

should be a "critical"' power. Indeed, in case $n=3$, John [4] has already proved that most solutions of (1.1) blow up in finite time if $1<\rho<\rho(3)=1+\sqrt{2}$, on the other hand, global solution exists if $\rho>\rho(3)$. The same results for $n=2$ has been shown in the recent work [3] of Glassey. In this sense, to develop the scattering theory for (1.1) it is necessary to assume $\rho>\rho(n)$. Note that in Strauss [10] is developed the theory in case

$$
\frac{n+2+\sqrt{n^{2}+8 n}}{2(n-1)}<\rho \leq \frac{n+3}{n-1} \quad(n \geq 2)
$$

and in Klainerman [5] is treated the case

$$
\rho>\frac{n+\sqrt{2 n-1}}{n-1} \quad(n \geq 2)
$$

Compared with these works, our assumption (A3) slightly weakens the restriction on ρ, especially for $n=3$ and 4 , though it still remains some open space between $\rho(n)$ and the lower bound in (A3).

2. Decay Estimates for the Linear Wave Equation

In this section we present a short proof of a well-known result on the decay of solutions of the linear wave equation. Similar results can be found in Brenner [2] and Pecher [7] [8], and our proof is essentially due to [2].

We begin with defining the homogeneous Besov space $\dot{B}_{q}^{s, p}=\dot{B}_{q}^{s, p}\left(\boldsymbol{R}^{n}\right)$ with $s \in \boldsymbol{R}, 1 \leq p \leq \infty$ and $1 \leq q \leq \infty$. Let $\phi_{j}(\xi)=\phi\left(2^{-j} \xi\right)(-\infty<j<\infty)$, where $\phi \in$ $C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right), \phi \geq 0$ and $\operatorname{supp} \phi \subset\left\{\xi ; \frac{1}{2}<|\xi|<2\right\}$, be such that

$$
\begin{equation*}
\sum_{j=-\infty}^{\infty} \phi_{j}(\xi) \equiv 1 \quad(\xi \neq 0) \tag{2.1}
\end{equation*}
$$

Then $\dot{B}_{q}^{s, p}$ is the completion of $C_{o}^{\infty}\left(\boldsymbol{R}^{n}\right)$ in the semi-norm

$$
\|u\|_{B_{q}^{3, p}}=\left\{\sum_{j=-\infty}^{\infty}\left(2^{j s} \| \mathscr{F}^{-1}\left(\phi_{j} \hat{u} \|_{L^{p}}\right)^{q}\right\}^{\frac{1}{q}} .\right.
$$

Lemma 2.1. Let $2 \leq p<\infty$ and $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. Then we have

$$
\begin{equation*}
\dot{B}_{2}^{0, p} \subsetneq L^{p} \quad \text { and } \quad \dot{H}^{s, p^{\prime}} \hookrightarrow \dot{B}_{2}^{s, p^{\prime}}, \tag{2.2}
\end{equation*}
$$

where $A \varsigma B$ denotes that A is continuously embedded in B.
Proof. See Bergh-Löfström [1], §6.4.
q.e.d.

The following lemma can be proved by use of the stationary phase method (see, e.g., Littman [6]).

Lemma 2.2. Let $P(\xi)$ be real, C^{∞} in a neighborhood of the support of $v \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$. Assume that the rank of $H_{P}(\xi)=\left(\partial^{2} P(\xi) / \partial \xi_{j} \partial \xi_{k}\right)$ is at least μ on the support of v. Then for some $M \in N$ (natural number),

$$
\begin{equation*}
\left\|\mathscr{F}^{-1}[\exp (i t P) v]\right\|_{L^{\infty}} \leq C(1+|t|)^{-\frac{1}{2} \mu} \sum_{|\alpha| \leq M}\left\|\partial_{\xi}^{\alpha} v\right\|_{L^{1}} . \tag{2.3}
\end{equation*}
$$

Here C depends on bounds of the derivatives of P on supp v and on a lower bound of the maximum of the absolute values of the minors of order μ of H_{P} on $\operatorname{supp} v$, and on supp v.

Now let us prove the following
Proposition 2.3. Let $\gamma \geq 0, m \in \boldsymbol{N}$. Then for any $\psi \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$ the following estimate holds:

$$
\begin{equation*}
\left\|\mathscr{F}^{-1}\left[\frac{\exp \left(i t|\xi|^{m}\right)}{|\xi|^{2 m \gamma}} \hat{\psi}(\xi)\right]\right\| L_{L^{p}} \leq C|t|^{-\mu\left(\frac{1}{2}-\frac{1}{p}\right)}\|\psi\|_{A^{s, p^{\prime}}}, \tag{2.4}
\end{equation*}
$$

where $1 \leq p^{\prime} \leq 2 \leq p \leq \infty, \frac{1}{p}+\frac{1}{p^{\prime}}=1, \mu=n-1$ (if $m=1$) and $=n$ (if $m \geq 2$) and $s=(2 n-m \mu)\left(\frac{1}{2}-\frac{1}{p}\right)-2 m \gamma$.

Proof. We only prove (2.4) for $t=1$. (2.4) for general $t>0$ then easily follows from a change of variables $\xi t^{\frac{1}{m}} \rightarrow \xi$.

Let $\phi_{j}(\xi)$ be as in (2.1). Putting $2^{-j} \xi=\eta$, we have

$$
\left\|\mathscr{F}^{-1}\left[\frac{\exp \left(i|\xi|^{m}\right)}{|\xi|^{2 m \gamma}} \phi_{j}(\xi)\right]\right\|_{L^{\infty}}=2^{j(n-2 m \gamma)}\left\|\mathscr{F}^{-1}\left[\frac{\exp \left(i 2^{j m}|\eta|^{m}\right)}{|\eta|^{2 m \gamma}} \phi(\eta)\right]\left(2^{j} x\right)\right\|_{L^{\infty}} .
$$

Since $|\eta|^{-2 m \gamma} \phi(\eta) \in C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$, it follows from Lemma 2.2 that

$$
\begin{aligned}
& \| \mathscr{F}^{-1}\left[\frac{\exp \left(i 2^{j m}|\eta|^{m}\right)}{|\eta|^{2 m \gamma}} \phi(\eta)\right]\left(2^{j x} x \|_{L^{\infty}}\right. \\
& \quad \leq C\left(1+2^{j m}\right)^{-\frac{1}{2} \mu} \sum_{|\alpha| \leq M}\left\|\partial_{\xi}^{\alpha} \phi\right\|_{L^{1}} \leq C 2^{-\frac{1}{2} \mu j}
\end{aligned}
$$

where

$$
\mu=\operatorname{rank}\left(\frac{\partial^{2}|\eta|^{m}}{\partial \eta_{j} \partial \eta_{k}}\right)= \begin{cases}n-1 & (\text { if } m=1) \\ n & (\text { if } m \geq 2)\end{cases}
$$

We then have, noting the Hausdorff-Young inequality,

$$
\begin{align*}
& \left\|\mathscr{F}^{-1}\left[\frac{\exp \left(i|\xi|^{m}\right)}{|\xi|^{2 m \gamma}} \phi_{j}(\xi) \hat{\psi}(\xi)\right]\right\|_{L^{\infty}} \tag{2.5}\\
& \quad \leq\left\|\mathscr{F}^{-1}\left[\frac{\exp \left(\left.i|\xi|\right|^{\mid}\right)}{|\xi|^{2 m \gamma}} \phi_{j}(\xi)\right]\right\|_{L^{\infty}}\|\psi\|_{L^{1}} \\
& \quad \leq C 2^{j(n-2 m \gamma-m \mu / 2)}\|\psi\|_{L^{1}} .
\end{align*}
$$

On the other hand, since

$$
\left\|\frac{\exp \left(i|\xi|^{m}\right)}{|\xi|^{2 m \gamma}} \phi_{j}(\xi)\right\|_{L^{\infty}}=\sup _{1 / 2<\eta<2}\left|\frac{\exp \left(i\left|2^{j} \eta\right|^{m}\right)}{\left|2^{j} \eta\right|^{2 m \gamma}} \phi(\eta)\right| \leq C 2^{-2 j m \gamma},
$$

we obtain by the Parseval equality

$$
\begin{equation*}
\left\|\mathscr{F}^{-1}\left[\frac{\exp \left(i|\xi|^{m}\right)}{|\xi|^{2 m \gamma}} \phi_{j}(\xi) \hat{\psi}(\xi)\right]\right\|_{L^{2}} \leq C 2^{-2 m j \gamma}\|\psi\|_{L^{2}} \tag{2.6}
\end{equation*}
$$

An interpolation between (2.5) and (2.6) then gives

$$
\begin{equation*}
\left\|\mathscr{F}^{-1}\left[\frac{\exp \left(i|\xi|^{m}\right)}{|\xi|^{2 m \gamma}} \phi_{j}(\xi) \hat{\psi}(\xi)\right]\right\|_{L^{p}} \leq C 2^{j(2 n \delta-m \mu \delta-2 m \gamma)}\|\psi\|_{L^{p}} \tag{2.7}
\end{equation*}
$$

where $\delta=\frac{1}{2}-\frac{1}{p}, 1 \leq p^{\prime} \leq 2 \leq p \leq \infty$ and $\frac{1}{p}+\frac{1}{p^{\prime}}=1$.
Put $\hat{\psi}_{j}=\left(\phi_{j-1}+\phi_{j}+\phi_{j+1}\right) \hat{\psi}$. Since $\phi_{j} \hat{\psi}_{j}=\phi_{j} \hat{\psi}$, we can replace $\hat{\psi}$ in (2.7) by this $\hat{\psi}_{j}$. Next raise to the power q on both sides of (2.7) and sum over j. Then we obtain

$$
\begin{equation*}
\left\|\mathscr{F}^{-1}\left[\frac{\exp \left(i|\xi|^{m}\right)}{|\xi|^{2 m \gamma}} \hat{\psi}(\xi)\right]\right\|_{\dot{B}_{q}^{0, p}} \leq C\|\psi\|_{\dot{B}_{q}^{s, p^{\prime}}} \tag{2.8}
\end{equation*}
$$

where $s=(2 n-m \mu) \delta-2 m \gamma, q \geq 1$ and $\frac{1}{p}+\frac{1}{p^{\prime}}=1$. This and Lemma 2.1 imply

$$
\begin{equation*}
\left\|\mathscr{F}^{-1}\left[\frac{\exp \left(i|\xi|^{m}\right)}{|\xi|^{2 m \gamma}} \hat{\psi}(\xi)\right]\right\|_{L^{p}} \leq C\|\psi\|_{\mathcal{A}^{s, p^{\prime}}} \tag{2.9}
\end{equation*}
$$

and (2.4) is proved for $t=1$.
q.e.d.

3. Proof of Theorem

Let r and d be defined by (1.3), and ρ satisfy (A3).
Lemma 3.1. The following relations holds.

$$
\begin{equation*}
\frac{\rho}{r}=\frac{r-1}{r}-\frac{\frac{n-1}{2}-\frac{n+1}{r}}{n}, \tag{3.1}
\end{equation*}
$$

$$
\begin{align*}
& r>2 \quad \text { and } \quad \frac{n-1}{2}-\frac{n+1}{r} \leq 0, \tag{3.2}\\
& 0<d<1 \text { and } d \rho>1 .
\end{align*}
$$

Proof. Since $\rho=\frac{(n+1) r+2}{2 n}$, we see that (3.1) holds and (3.2) is equivalent to

$$
\begin{equation*}
\frac{n+2}{n}<\rho \leq \frac{n+3}{n-1} \tag{3.2}
\end{equation*}
$$

Further, $d=\frac{\left(n^{2}-n\right) \rho-\left(n^{2}+n-2\right)}{2 n \rho-2}$ and (3.3) is rewritten as

$$
\begin{gather*}
\frac{n+2}{n}<\rho, \quad\left(n^{2}-3 n\right) \rho<n^{2}+n-4 \quad \text { and } \tag{3.3}\\
\quad\left(n^{2}-n\right) \rho^{2}-\left(n^{2}+n-2\right) \rho>2 n \rho-2 .
\end{gather*}
$$

Thus, our problem reduces to verify (3.2)' and (3.3)', which is easy if we remember (A3).

Lemma 3.2. The following inequalities hold.

$$
\begin{align*}
& \frac{1}{r} \geq \frac{1}{2}-\frac{1}{n} \tag{3.4}\\
& \frac{1}{r} \geq \frac{1}{\rho+1}>\frac{1}{2 \rho}>\frac{r-2}{2 r(\rho-1)} \geq \frac{1}{r}-\frac{1}{n} \tag{3.5}
\end{align*}
$$

Proof. (3.4) is obvious from (3.2). The first three inequalities of (3.5) easily follow from (A3) and (1.3), since we have

$$
\frac{1}{r}-\frac{1}{\rho+1}=\frac{-(n-1) \rho+n+3}{(2 n \rho-2)(\rho+1)} \quad \text { and } \quad \frac{1}{2 \rho}-\frac{r-2}{2 r(\rho-1)}=\frac{2 \rho-r}{2 r \rho(\rho-1)} .
$$

Further, the last inequality is equivalent to

$$
\rho \geq \frac{3 n+2+\sqrt{(3 n+2)^{2}+8 n(n-2)}}{4 n}
$$

The right side being not greater than 2 , we conclude this to hold.
q.e.d.

Lemma 3.3. Let $\psi \in \dot{H}^{\frac{n-1}{2}-\frac{n+1}{r}, \frac{r}{r-1}}$. Then we have for $|t|>1$,

$$
\begin{equation*}
\left\|H^{-1} \exp (i H t) \psi\right\|_{L^{r}} \leq C|t|^{-d}\|\psi\|_{A^{\frac{n-1}{2}-\frac{n+1}{r}}, \frac{r}{r-1}} . \tag{3.6}
\end{equation*}
$$

Proof. Since $r>2$, we can choose $p=r, m=1$ and $\gamma=1 / 2$ in Proposition 2.3 to obtain (3.6).
q.e.d.

Corollary 3.4. Let $\psi \in L^{\frac{r}{\rho}}$. Then we have for $|t|>1$,

$$
\begin{equation*}
\left\|H^{-1} \sin (H t) \psi\right\|_{L^{r}} \leq C|t|^{-d}\|\psi\|_{L^{\frac{r}{\rho}}} . \tag{3.7}
\end{equation*}
$$

Proof. (3.1) and (3.2) imply the embedding $L^{\frac{r}{\rho}} \leftrightarrows \dot{H}^{\frac{n-1}{2}-\frac{n+1}{r}, \frac{r}{r-1}}$. Then (3.7) follows directly from (3.6).
q.e.d.

The proof of Theorem will be based on the following two propositions.
Proposition 3.5. There exists a $\delta_{1}>0$ with the following property: Let $w^{-}(t) \in$ V and $\left\|w^{-}\right\|_{V} \leq \frac{1}{4} \delta_{1}$. Then the integral equation (1.5) has a unique solution $w(t) \in V$, which also satisfies $\|w\|_{V} \leq \frac{4}{3}\left\|w^{-}\right\|_{V}$.

Proof. Put

$$
\begin{equation*}
\Phi u(t)=w^{-}(t)-\int_{-\infty}^{t} H^{-1} \sin \{H(t-\tau)\} f(u(\tau)) d \tau \tag{3.8}
\end{equation*}
$$

Then we can apply Corollary 3.4 and the Hölder inequality to obtain

$$
\begin{aligned}
\| \Phi u(t) & -\Phi v(t)\left\|_{H^{1, r}} \leq C \int_{-\infty}^{t}|t-\tau|^{-d}\right\| f\left(u(\tau)-f(v(\tau)) \|_{H}^{1, \frac{\digamma}{\rho}} d \tau\right. \\
& \leq C \int_{-\infty}^{t}|t-\tau|^{-d}\left(\|u(\tau)\|_{H^{1, r}}^{\rho-1}+\|v(\tau)\|_{H^{1}, r}^{\rho-1}\right)\|u(\tau)-v(\tau)\|_{H^{1, r}} d \tau \\
& \leq C \int_{-\infty}^{t}|t-\tau|^{-d}(1+|\tau|)^{-d \rho} d \tau\left(\|u\|_{V}^{\rho-1}+\|v\|_{V}^{\rho-1}\right)\|u-v\|_{V} \\
& \leq C(1+|t|)^{-d}\left(\|u\|_{V}^{\rho-1}+\|v\|_{V}^{\rho-1}\right)\|u-v\|_{V} .
\end{aligned}
$$

Here both (A1) and (A2) have been used for the second inequality, and (3.3) for the last inequality. Thus, we have for $u, v \in V$

$$
\begin{equation*}
\|\Phi u-\Phi v\|_{V} \leq C\left(\|u\|_{V}^{\rho-1}+\|v\|_{V}^{\rho-1}\right)\|u-v\|_{V}, \tag{3.9}
\end{equation*}
$$

and similarly

$$
\begin{equation*}
\|\Phi u\|_{V} \leq\left\|w^{-}\right\|_{V}+C\|u\|_{V}^{\rho} . \tag{3.10}
\end{equation*}
$$

Now choose δ_{1} to satisfy $2 C \delta_{1}^{\rho-1} \leq \frac{1}{2}$, and put $B\left(\delta_{1}\right)=\left\{u \in V ;\|u\|_{V} \leq \delta_{1}\right\}$. Then (3.9) and (3.10) show that Φ is a contraction map from $B\left(\delta_{1}\right)$ to itself, and hence it has a unique fixed point $w \in B\left(\delta_{1}\right)$, which is a solution of (1.5). Furthermore, we have from (3.8)

$$
\|w\|_{V} \leq\left\|w^{-}\right\|_{V}+C \delta_{1}^{\rho-1}\|w\|_{V} \leq\left\|w^{-}\right\|_{V}+\frac{1}{4}\|w\|_{V}
$$

This implies $\|w\|_{V} \leq \frac{4}{3}\left\|w^{-}\right\|_{V}$ and the proof is completed.
q.e.d.

Proposition 3.6. Let $w^{-}(t)$ and $w(t)$ be as in the above Proposition. For any $s \in \boldsymbol{R}$ the integral equation

$$
\begin{equation*}
u_{s}(t)=w^{-}(t)-\int_{s}^{t} H^{-1} \sin \{H(t-\tau)\} f\left(u_{s}(\tau)\right) d \tau \tag{3.11}
\end{equation*}
$$

has a unique solution $u_{s}(t) \in V$, which also satisfies $\left\|u_{s}\right\|_{V} \leq \frac{4}{3}\left\|w^{-}\right\|_{V}$ and

$$
\begin{equation*}
\left\|u_{s}-w\right\|_{V} \longrightarrow 0 \quad \text { as } \quad s \longrightarrow-\infty . \tag{3.12}
\end{equation*}
$$

If in addition $\left(w^{-}(0), \partial_{t} w^{-}(0)\right) \in H^{2,2} \times H^{1,2}$, we have

$$
\begin{equation*}
u_{s}(t) \in C_{t}^{2}\left(\boldsymbol{R} ; L^{2}\right) \cap C_{t}^{1}\left(\boldsymbol{R} ; H^{1,2}\right) \cap C_{t}\left(\boldsymbol{R} ; H^{2,2}\right) \tag{3.13}
\end{equation*}
$$

and $u_{s}(t)$ becomes a unique strong solution of (1.1).
Proof. The unique existence of $u_{s}(t)$ can be verified by the same reasoning as in the proof of Proposition 3.5. To derive (3.12), we subtract the equations (3.11) and (1.5). Then

$$
\begin{gathered}
u_{s}(t)-w(t)=-\int_{s}^{t} H^{-1} \sin \{H(t-\tau)\}\left\{f\left(u_{s}(\tau)\right)-f(w(\tau))\right\} d \tau \\
+\int_{-\infty}^{s} H^{-1} \sin \{H(t-\tau)\} f(w(\tau)) d \tau
\end{gathered}
$$

and we have

$$
\begin{gathered}
\left\|u_{s}(t)-w(t)\right\|_{H^{1, r}} \leq C \int_{s}^{t}|t-\tau|^{-d}(1+|\tau|)^{-d \rho} d \tau\left(\|w\|_{V}^{\rho-1}+\left\|u_{s}\right\|_{V}^{\rho-1}\right)\left\|w-u_{s}\right\|_{V} \\
\quad+C \int_{-\infty}^{s}|t-\tau|^{-d}(1+|\tau|)^{-d \rho} d \tau\|w\|_{V}^{\rho} \\
\leq C(1+|t|)^{-d}\left(\|w\|_{V}^{\rho-1}+\left\|u_{s}\right\|_{V}^{\rho-1}\right)\left\|w-u_{s}\right\|_{V} \\
+C_{\varepsilon}(1+|t|)^{-d}(1+|s|)^{-\varepsilon}\|w\|_{V}^{\rho}
\end{gathered}
$$

for ε satisfying $0<\varepsilon<d \rho-1$. Since $C\left(\|w\|_{V}^{\rho-1}+\left\|u_{s}\right\|_{V}^{\rho-1}\right) \leq 2 C \delta_{1}^{\rho-1}<\frac{1}{2}$, from this it follows that

$$
\left\|u_{s}-w\right\|_{V} \leq 2 C_{\varepsilon}(1+|s|)^{-\varepsilon}\|w\|_{V}^{\rho} \longrightarrow 0 \quad \text { as } \quad s \longrightarrow-\infty,
$$

and (3.12) holds.
Next we show (3.13). For this purpose it is enough to verify

$$
\begin{equation*}
f\left(u_{s}(t)\right) \in C_{t}\left(\boldsymbol{R} ; H^{1,2}\right) \tag{3.14}
\end{equation*}
$$

since $u_{s}(t)$ satisfies (3.11). By use of (3.5) we have $H^{1, r} G L^{\frac{2 r(2-1}{r-\rho}}$ and $H^{1, r} G L^{2 \rho}$. Thus,

$$
\begin{aligned}
\left\|f\left(u_{s}(t)\right)\right\|_{H^{1,2}} & \leq\left\|f\left(u_{s}(t)\right)\right\|_{L^{2}}+\sum_{|\alpha|=1}\left\|f^{\prime}\left(u_{s}(t)\right) \partial_{x}^{\alpha} u_{s}(t)\right\|_{L^{2}} \\
& \leq C\left\|u_{s}(t)\right\|_{L^{2 \rho}}^{\rho}+C\left\|u_{s}(t)\right\|_{L^{2 r(c-1)}}^{\rho-2}\left\|u_{s}(t)\right\|_{H^{1, r}} \\
& \leq 2 C^{\prime}\left\|u_{s}(t)\right\|_{H^{1, r}, r}^{\rho}
\end{aligned}
$$

and it follows that $f\left(u_{s}(t)\right) \in H^{1,2}$. Note that $w^{-}(t) \in C_{t}\left(\boldsymbol{R} ; H^{2,2}\right)$ follows from the condition $\left(w^{-}(0), \partial_{t} w^{-}(0)\right) \in H^{2,2} \times H^{1,2}$. Then

$$
\begin{aligned}
& \left\|f\left(u_{s}(t)\right)-f\left(u_{s}\left(t^{\prime}\right)\right)\right\|_{H^{1,2}} \\
& \leq \\
& \leq\left(\left\|u_{s}(t)\right\|_{H^{\prime}, r}^{\rho-1, r}+\left\|u_{s}\left(t^{\prime}\right)\right\|_{\left.H^{\prime}, r\right)}^{\rho-1}\right)\left\|u_{s}(t)-u_{s}\left(t^{\prime}\right)\right\|_{H^{1, r}} \\
& \leq \\
& C^{\prime}\left(u_{s}\right)\left\{\left\|w^{-}(t)-w^{-}\left(t^{\prime}\right)\right\|_{H^{1, r}}+\int_{t^{\prime}}^{t}\left\|H^{-1} \sin \left\{H\left(t^{\prime}-\tau\right)\right\} f\left(u_{s}(\tau)\right)\right\|_{H^{1, r}} d \tau\right. \\
& \left.\quad+\int_{s}^{t}\left\|H^{-1}\left[\sin \{H(t-\tau)\}-\sin \left\{H\left(t^{\prime}-\tau\right)\right\}\right] f\left(u_{s}(\tau)\right)\right\|_{H^{1, r}} d \tau\right\} \\
& \leq \\
& \quad C^{\prime}\left(u_{s}\right)\left\{\left\|w^{-}(t)-w^{-}\left(t^{\prime}\right)\right\|_{H^{2,2}}+\int_{t^{\prime}}^{t}\left|t^{\prime}-\tau\right|^{-d}(1+|\tau|)^{-d \rho} d \tau\left\|u_{s}\right\|_{V}^{\rho}\right. \\
& \left.\quad+\int_{s}^{t}\left\|H^{-1}\left[\sin \{H(t-\tau)\}-\sin \left\{H\left(t^{\prime}-\tau\right)\right\}\right] f\left(u_{s}(\tau)\right)\right\|_{H^{2}, 2} d \tau\right\} \longrightarrow 0 \quad\left(t^{\prime} \longrightarrow t\right) .
\end{aligned}
$$

Here we have used (3.3) and the embedding $H^{2,2} \varsigma H^{1, r}$ which follows from (3.4). Summarizing these results, we see (3.14).
q.e.d.

Proof of Theorem. (a) We can write $w^{-}(t)$ as

$$
\begin{equation*}
w^{-}(t)=\cos \{H t\} \phi^{-}+H^{-1} \sin \{H t\} \psi^{-} . \tag{3.15}
\end{equation*}
$$

Then applying Lemma 3.3, we obtain for $|t|>1$,

$$
\begin{align*}
&\left\|w^{-}(t)\right\|_{H^{1, r}} \leq C|t|^{-d} \sum_{j=0}^{1}\left\{\left\|\phi^{-}\right\|_{A^{\frac{n-1}{2}-\frac{n+1}{r}+j+1, \frac{r}{r-1}}}\right. \tag{3.16}\\
&\left.+\left\|\psi^{-}\right\|_{A^{\frac{n-1}{2}-\frac{n+1}{r}+J, \frac{r}{r-1}}}\right\}
\end{align*}
$$

On the other hand, by (3.2) we have $H^{\frac{n}{n+1}+1,2} \varsigma H^{1, r}$. Thus, it follows from (3.15) that for $|t| \leq 1$,

$$
\begin{align*}
\left\|w^{-}(t)\right\|_{H^{1, r}} \leq & C\left\{\left\|\cos \{H t\} \phi^{-}\right\|_{H^{n+1}+1,2}+\left\|H^{-1} \sin \{H t\} \psi^{-}\right\|_{H^{\frac{n}{n+1}+1,2}}\right\} \tag{3.16}\\
\leq & C\left\{\left\|\phi^{-}\right\|_{L^{2}}+\left\|\phi^{-}\right\|_{H^{\frac{n}{n+1}+1,2}}\right. \\
& \left.\quad+|t|\left\|\psi^{-}\right\|_{L^{2}}+\left\|H^{-1} \psi^{-}\right\|_{A^{\frac{n}{n+1}+1,2}}\right\} \\
\leq & C\left\{\left\|\phi^{-}\right\|_{H^{\frac{n}{n+1}+1,2}}+\left\|\psi^{-}\right\|_{H^{\frac{n}{n+1}},}\right\} .
\end{align*}
$$

Now choose δ in (a) to satisfy $C \delta<\frac{1}{4} \delta_{1}$, where δ_{1} is the constant given in Proposition 3.5. Then combining (1.4), (3.16) and (3.16)', we obtain

$$
w^{-}(t) \in V \quad \text { and } \quad\left\|w^{-}\right\|_{V} \leq C \delta \leq \frac{1}{4} \delta_{1} .
$$

This and Proposition 3.5 show the unique existence of the solution $w(t) \in V$ of (1.5) satisfying $\|w\|_{V} \leq \frac{4}{3}\left\|w^{-}\right\|_{V}$. This $w(t)$ also satisfies (1.6). In fact, noting $H^{1, r} G$ $L^{2 \rho}$ and $d \rho>1$, we have

$$
\begin{aligned}
\left\|w(t)-w^{-}(t)\right\|_{e} & \leq C \int_{-\infty}^{t}\|f(w(\tau))\|_{L^{2}} d \tau \leq C \int_{-\infty}^{t}\|w(\tau)\|_{L^{2 \rho}}^{\rho} d \tau \\
& \leq C \int_{-\infty}^{t}\|w(\tau)\|_{H^{1}, r} d \tau \leq C \int_{-\infty}^{t}(1+|t|)^{-d \rho} d \tau\|w\|_{V}^{\rho} \longrightarrow 0
\end{aligned}
$$

as $t \rightarrow-\infty$. Thus, (a) is proved.
(b) We define

$$
\begin{equation*}
w^{+}(t)=w^{-}(t)-\int_{-\infty}^{+\infty} H^{-1} \sin \{H(t-\tau)\} f(w(\tau)) d \tau \tag{3.17}
\end{equation*}
$$

Here $w^{-}(t) \in H^{1,2}$ since we have assumed $\left(\phi^{-}, \psi^{-}\right) \in H^{\frac{n}{n+1}+1,2} \times H^{\frac{n}{n+1}, 2} \varsigma H^{1,2} \times L^{2}$. On the other hand, we obtain as above

$$
\left\|w^{+}(t)-w^{-}(t)\right\|_{e} \leq \int_{-\infty}^{+\infty}(1-|\tau|)^{-d \rho} d \tau\|w\|_{V}^{\rho}<\infty .
$$

These imply $w^{+}(t) \in \dot{H}^{1,2}$. That $w^{+}(t)$ solves (1.2) is now obvious from (3.17). Finally, (1.7) easily follows from the relation

$$
w^{+}(t)-w(t)=-\int_{t}^{+\infty} H^{-1} \sin \{H(t-\tau)\} f(w(\tau)) d \tau,
$$

and (b) is proved.
(c) First we shall show that the equality

$$
\begin{equation*}
\frac{1}{2}\|w(t)\|_{e}^{2}+\int F(w(t)) d x=\frac{1}{2}\left\|w^{-}(0)\right\|_{e}^{2} \tag{3.18}
\end{equation*}
$$

holds for any $t \in \boldsymbol{R}$. For this aim we apply Proposition 3.6. Recalling (3.5) once more, we see that $H^{1, r} \subsetneq L^{\rho+1}$ holds. By use of this and (3.12), we have

$$
\begin{align*}
& \left|\int\left[F(w(t))-F\left(u_{s}(t)\right)\right] d x\right| \tag{3.19}\\
& \quad \leq C\left(\|w(t)\|_{L^{\rho+1}}^{\rho}+\left\|u_{s}(t)\right\|_{L^{p+1}}^{\rho}\right)\left\|w(t)-u_{s}(t)\right\|_{L^{\rho+1}} \\
& \quad \leq C\left(\|w\|_{V}^{\rho}+\left\|u_{s}\right\|_{V}^{\rho}\right)\left\|w-u_{s}\right\|_{V} \longrightarrow 0 \text { as } s \longrightarrow-\infty .
\end{align*}
$$

On the other hand, by use of the embedding $H^{1, r} G L^{2 \rho}$, we have

$$
\begin{array}{r}
\left\|w(t)-u_{s}(t)\right\|_{e} \leq \int_{s}^{t}\left\|f(w(\tau))-f\left(u_{s}(\tau)\right)\right\|_{L^{2}} d \tau+\int_{-\infty}^{s}\|f(w(\tau))\|_{L^{2}} d \tau \tag{3.20}\\
\leq \int_{s}^{t}(1+|\tau|)^{-d \rho} d \tau\left(\|w\|_{V}^{\rho-1}+\left\|u_{s}\right\|_{V}^{\rho-1}\right)\left\|w-u_{s}\right\|_{V} \\
\quad+\int_{-\infty}^{s}(1+|\tau|)^{-d \rho} d \tau\|w\|_{V}^{\rho} \longrightarrow 0
\end{array}
$$

as $s \rightarrow-\infty$. Moreover, $u_{s}(t)$ being a strong solution of (1.1), we see that it conserves the total energy:

$$
\begin{equation*}
\frac{1}{2}\left\|u_{s}(t)\right\|_{e}^{2}+\int F\left(u_{s}(t)\right) d x=\frac{1}{2}\left\|w^{-}(s)\right\|_{e}^{2}+\int F\left(w^{-}(s)\right) d x . \tag{3.21}
\end{equation*}
$$

Here

$$
\left\|w^{-}(s)\right\|_{e}^{2}=\left\|w^{-}(0)\right\|_{e}^{2}
$$

and

$$
\left|\int F\left(w^{-}(s)\right) d x\right| \leq C\left\|w^{-}(s)\right\|_{L^{\rho}+1}^{\rho+1} \leq C(1+|s|)^{-d(\rho+1)}\left\|w^{-}\right\|_{V}^{\rho+1} \longrightarrow 0
$$

as $s \rightarrow-\infty$. (3.19), (3.20) and (3.21) show (3.18) as follows:

$$
\begin{gathered}
\frac{1}{2}\|w(t)\|_{e}^{2}+\int F(w(t)) d x=\lim _{s \rightarrow-\infty}\left[\frac{1}{2}\left\|u_{s}(t)\right\|_{e}^{2}+\int F\left(u_{s}(t)\right) d x\right] \\
=\lim _{s \rightarrow-\infty}\left[\frac{1}{2}\left\|w^{-}(s)\right\|_{e}^{2}+\int F\left(w^{-}(s)\right) d x\right]=\frac{1}{2}\left\|w^{-}(0)\right\|_{e}^{2} .
\end{gathered}
$$

Now to complete the proof it is enough to show that

$$
\begin{equation*}
\frac{1}{2}\|w(t)\|_{e}^{2}+\int F(w(t)) d x \longrightarrow \frac{1}{2}\left\|w^{+}(0)\right\|_{e}^{2} \quad \text { as } \quad t \longrightarrow+\infty, \tag{3.22}
\end{equation*}
$$

which is obvious from (1.7) since we have

$$
\int F(w(t)) d x \longrightarrow 0 \text { as } t \longrightarrow+\infty
$$

Thus, (c) is proved.
q.e.d.

4. Final Remarks

A. In our theorem it is assumed that the initial data $\left(\phi^{-}, \psi^{-}\right)$lies in a neighborhood of 0 in the space

$$
\begin{align*}
& \bigcap_{j=0}^{1}\left\{\dot{H}^{\frac{n-1}{2}-\frac{n+1}{r}+j+1, \frac{r}{r-1}} \times \dot{H}^{\frac{n-1}{2}-\frac{n+1}{r}+j, \frac{r}{r-1}}\right\} \tag{4.1}\\
& \cap\left\{H^{\frac{n}{n+1}+1,2} \times H^{\frac{n}{n+1}, 2}\right\}
\end{align*}
$$

Note that the embedding $L^{\frac{r}{\rho}} G \dot{H}^{\frac{n-1}{2}-\frac{n+1}{r}, \frac{r}{r-1}}$ holds by (3.1) and (3.2). Then (4.1) can be replaced by a narrower but simpler space

$$
\begin{equation*}
\left\{H^{2, \frac{r}{\rho}} \times H^{1, \frac{r}{\rho}}\right\} \cap\left\{H^{\frac{n}{n+1}+1,2} \times H^{\frac{n}{n+1}, 2}\right\} . \tag{4.2}
\end{equation*}
$$

The condition $\left(\phi^{-}, \psi^{-}\right) \in H^{\frac{n}{n+1}+1,2} \times H^{\frac{n}{n+1}, 2}$ is used to give an estimation of $\left\|w^{-}(t)\right\|_{H^{1, r}}$ for $|t| \leq 1$ (see (3.16)), and to guarantee that $w^{-}(t)$ has a finite energy.

A similar estimate can be obtained for

$$
\begin{equation*}
\left(\phi^{-}, \psi^{-}\right) \in H^{2, r} \times H^{1, r} \tag{4.3}
\end{equation*}
$$

if we use the following $L^{p}-L^{p}$ estimate due to Peral [9].
Proposition 4.1. Let $w^{-}(t)$ be given by (3.15). Then we have for $|t| \leq 1$,

$$
\begin{equation*}
\left\|w^{-}(t)\right\|_{L^{p}} \leq C\left(\left\|\phi^{-}\right\|_{H^{1, p}}+\left\|\psi^{-}\right\|_{L^{p}}\right) \tag{4.4}
\end{equation*}
$$

where $p \geq 1$ is a constant satisfying $\left|\frac{1}{p}-\frac{1}{2}\right| \leq \frac{1}{n-1}$.
Now put $p=r$. Then the above condition is valid by (3.4). Hence the space $H^{\frac{n}{n+1}+1,2} \times H^{\frac{n}{n+1}, 2}$ can be replaced by $\left\{H^{2, r} \times H^{1, r}\right\} \cap\left\{\dot{H}^{1,2} \times L^{2}\right\}$ in (4.1). Combining this and (4.2), we finally see that (4.1) can be replaced by the space

$$
\begin{equation*}
\left\{H^{2, \frac{r}{\rho}} \times H^{1, \frac{r}{\rho}}\right\} \cap\left\{H^{2, r} \times H^{1, r}\right\} \cap\left\{\dot{H}^{1,2} \times L^{2}\right\} \tag{4.5}
\end{equation*}
$$

to obtain all the assertions of our theorem.
B. The method given in this paper can be applied to the scattering problem for the nonlinear Schrödinger equation

$$
i \partial_{t} w-\Delta w+f(w)=0 \quad(x, t) \in \boldsymbol{R}^{n} \times \boldsymbol{R} \quad(1 \leq n \leq 5)
$$

with f satisfying (A1), (A2) and

$$
\frac{1}{\rho}<\frac{n(\rho-1)}{2(\rho+1)}<1 \quad \text { for } \quad 1 \leq n \leq 5 .
$$

Let

$$
V=\left\{u ;\|u\|_{V}=\sup _{t \in \boldsymbol{R}}(1+|t|)^{d}\|u(t)\|_{H^{1, \rho+1}}<\infty\right\} ; d=n\left(\frac{1}{2}-\frac{1}{\rho+1}\right) .
$$

Then we obtain the following
Theorem 4.2. For sufficiently small $\delta>0$, let

$$
\begin{equation*}
\left\|\boldsymbol{\phi}^{-}\right\|_{\boldsymbol{H}^{1}, \frac{\rho+1}{\rho}}+\left\|\boldsymbol{\phi}^{-}\right\|_{\boldsymbol{H}^{\mu, 2}} \leq \delta, \tag{4.6}
\end{equation*}
$$

where $\mu=\min \left\{\frac{n+2}{2}, 2\right\}$. Then the same conclusions hold as in Theorem (a), (b) and (c), if we understand

$$
\|u(t)\|_{e}^{2}=\frac{1}{2}\|u(t)\|_{H^{1,2}}^{2}
$$

Note that a more general results has been proved in Strauss [10]. Our above theorem corresponds to his Theorem 9 in case $1 \leq n \leq 3$.

Department of Mathematics
 Faculty of Science
 Shinshu University

Reference

[1] J. Bergh and J. Löfström, Interpolation Spaces, Berlin-Heidelberg-New York, Springer 1976.
[2] P. Brenner, On $L_{p}-L_{p^{\prime}}$ estimates for the wave equation, Math. Z., 145 (1975), 251-254.
[3] R. T. Glassey, Finite-time blow-up for solutions of nonlinear wave equation, Math. Z., 177 (1981), 323-340.
[4] F. John, Blow-up for solutions of nonlinear wave equations in three dimensions, Manuscripta. Math., 28 (1979), 235-268.
[5] S. Klainerman, Long time behavior of the solutions to nonlinear evolution equations, Arch. Rat. Mech. Analy., 78 (1982), 73-98.
[6] W. Litteman, Fourier transforms of surface carried measures and differentiability of surface averages, Bull. Amer. math. Soc., 69 (1963), 766-770.
[7] H. Pecher, L^{p}-Abschätzungen und klassische Lösungen für bichtlineare Wellengleichungen 1, Math. Z., 150 (1976), 159-183.
[8] H. Pecher, Nonlinear small data scattering for the wave and Klein-Gordon equation, Math. Z., 185 (1984), 261-270.
[9] J. C. Peral, L^{p}-estimates for the wave equation, J. Funct. Analysis., 36 (1980), 114-145.
[10] W. A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Analysis., 41 (1981), 110-133.

Added in Proof. The assertions a) and b) of our Theorem can be extended to all $n \geq 2$ and f satisfying

$$
\left\{\begin{array}{l}
f \in C^{1}(\boldsymbol{R}), f(0)=0,\left|f^{\prime}(s)\right| \leq C|s|^{\rho-1} \text { for all } s \in \boldsymbol{R} ; \\
\frac{n^{2}+3 n-2+\sqrt{\left(n^{2}+3 n-2\right)^{2}-8\left(n^{2}-n\right)}}{2\left(n^{2}-n\right)}<\rho \leq \frac{n+3}{n-1} .
\end{array}\right.
$$

For this aim we introduce the function space

$$
V=\left\{u(t) \in C_{t}\left(\boldsymbol{R} ; H^{s, r}\right) ;\|u\|_{V}=\sup _{t \in \boldsymbol{R}}(1+|t|)^{d}\|u(t)\|_{H^{s, r}}<\infty\right\}
$$

with $s=\frac{n+1}{r}-\frac{n-1}{2}$, and r and d as given in (1.3). If we consider solutions of (1.1) in this space, an approximate energy method is applicable to obtain a suitable conservation property of energy, and we can follow the proof of Strauss [10, Theorem 5] to obtain the desired results. Details of the proof will be published elswhere.

