Outradii of Teichmüller spaces of finitely generated Fuchsian groups of the second kind

Dedicated to Professor Yukio Kusunoki on his sixtieth birthday

By

Hisao Sekigawa and Hiro-o Yamamoto

§ 1. Introduction.

A Fuchsian group Γ is said to be of the first kind (resp. second kind) if its region of discontinuity is not connected (resp. connected). The outradius $o(\Gamma)$ which is defined in $\S 2$ is strictly greater than 2 (Earle [7]) and not greater than 6 (Nehari [13]). This constant 6 cannot be replaced by any smaller one (Chu [6], Kalme [9]). In [14] the former author proved that $o(\Gamma)$ is strictly less than 6 for a finitely generated Fuchsian group Γ of the first kind. In this paper we prove the following.

Theorem. If Γ is a finitely generated Fuchsian group of the second kind, then $o(\Gamma)$ is equal to 6.

This theorem answers a question raised by Lipman Bers to the former author in U.S. -Japan Seminar on Kleinian Groups and Riemann Surfaces which was held at the East-West Center in Honolulu, Hawaii, during January 15-19, 1979. In $\S 3$ we state three lemmas without proofs. A proof of Theorem is given in §4. The rest of this note is devoted to prove lemmas stated in $\S 3$.

The authors would like to express their hearty thanks to Professor L. Bers for his kind indication of the problem to them.

§ 2. Definitions and notations.

Let $\hat{\boldsymbol{C}}$ be the Riemann sphere. Let Δ be the open unit disc and Δ^{*} be the exterior of Δ in \hat{C}. Let $j(z)=1 / \bar{z}$ be the reflection in $\partial \Delta$. For each μ in the open unit ball $L_{\infty}(\Delta)_{1}$ of $L_{\infty}(\Delta)$ we define two quasiconformal automorphisms w_{μ} and w^{μ} of $\hat{\boldsymbol{C}}$. Let w_{μ} be the unique quasiconformal automorphism of $\hat{\boldsymbol{C}}$ with fixed points $1, \sqrt{-1}$ and -1 which is μ-conformal in Δ and which satisfies $w_{\mu} \circ j=j \circ w_{\mu}$. In particular, w_{μ} keeps Δ invariant. Let w^{μ} be the unique quasiconformal automorphism of $\hat{\boldsymbol{C}}$ with fixed points $1, \sqrt{-1}$ and -1 which is μ-conformal in Δ and conformal in Δ^{*}.

Let Γ be a Fuchsian group keeping Δ invariant. Denote by $L_{\infty}(\Delta, \Gamma)_{1}$ the subset of $L_{\infty}(\Delta)_{1}$ consisting of those $\mu \in L_{\infty}(\Delta)_{1}$ which satisfy

$$
(\mu \circ \gamma) \bar{\gamma}^{\prime} / \gamma^{\prime}=\mu \quad \text { for all } \quad \gamma \in \Gamma
$$

Then $\mu \in L_{\infty}(\Delta)_{1}$ belongs to $L_{\infty}(\Delta, \Gamma)_{1}$ if and only if $w_{\mu} \circ \circ\left(w_{\mu}\right)^{-1}$ (or $\left.w^{\mu} \circ \gamma_{\circ}\left(w^{\mu}\right)^{-1}\right)$ is a Möbius transformation for every $\gamma \in \Gamma$ (Ahlfors [1, p. 121 and p. 123]).

Let $\lambda(z)=\left(|z|^{2}-1\right)^{-1}$ be a Poincaré density of Δ^{*}. Denote by $B_{2}\left(\Delta^{*}, \Gamma\right)$ the Banach space of holomorphic functions ϕ defined in Δ^{*} which satisfy

$$
(\phi \circ \gamma)\left(\gamma^{\prime}\right)^{2}=\phi \quad \text { for all } \quad \gamma \in \Gamma
$$

and

$$
\|\phi\|=\sup _{z \in \Delta^{*}} \lambda(z)^{-2}|\phi(z)|<\infty .
$$

For each $\mu \in L_{\infty}(\Delta, \Gamma)_{1}$ let $\phi^{\mu}=\left\{w^{\mu} \mid \Delta^{*}, z\right\}$, where $\left\{w^{\mu} \mid \Delta^{*}, z\right\}$ denotes the Schwarzian derivative of w^{μ} restricted to Δ^{*}. Then ϕ^{μ} belongs to $B_{2}\left(\Delta^{*}, \Gamma\right)$ (Ahlfors [1, p. 126]). The Teichmüller space $T(\Gamma)$ of Γ is the set $\left\{\phi^{\mu}\right.$; $\left.\mu \in L_{\infty}(\Delta, \Gamma)_{1}\right\}$. It is well known that $T(\Gamma)$ is a bounded domain of $B_{2}\left(\Delta^{*}, \Gamma\right)$ for a Fuchsian group Γ with $\operatorname{dim} B_{2}\left(\Delta^{*}, \Gamma\right)>0$ (Bers [3]). For such a group Γ the outradius $o(\Gamma)$ of $T(\Gamma)$ is defined to be the radius of the smallest ball about the origin containing $T(\Gamma)$, that is, $o(\Gamma)=\sup \|\phi\|$, where the supremum is taken over all ϕ in $T(\Gamma)$.

§ 3. Three lemmas.

In this section we state three lemmas without proofs. Lemma 1 is due to Chu [6]. Lemmas 2 and 3 are proved in $\S \S 5-7$. Let $k(z)=z+z^{-1}$. Then k maps Δ^{*} conformally onto $\hat{\boldsymbol{C}}$ with the closed real segment [-2,2] removed. Let S_{r} be the circle of radius $r(>1)$ about the origin. The image of S_{r} under k is the ellipse

$$
E_{r}: \xi^{2} /\left(r+r^{-1}\right)^{2}+\eta^{2} /\left(r-r^{-1}\right)^{2}=1,
$$

where $\zeta=k(z)$ and $\zeta=\xi+\eta \sqrt{-1}$.
For two Jordan loops J_{1} and J_{2} in the complex plane \boldsymbol{C} we define the Fréchet distance $\delta\left(J_{1}, J_{2}\right)$ as $\inf \max _{0 \leqq t \leq 1}\left|z_{1}(t)-z_{2}(t)\right|$, where the infimum is taken over all possible parametrizations $z_{i}(t)$ of $J_{i}(i=1,2)$.

Lemma 1 (Chu [6]). For each positive ε there exist constants $r_{1}>1$ and $d_{1}>0$ so that if $E_{r_{1}}=k\left(S_{r_{1}}\right)$ and J is a Jordan loop in C with $\delta\left(J, E_{r_{1}}\right) \leqq d_{1}$, then a conformal mapping f of Δ^{*} onto the exterior of J statisfies $\|\{f, z\}\|>6-\varepsilon$.

A quasidisc is the image of an open disc under a quasiconformal automorphism of $\hat{\boldsymbol{C}}$.

Lemma 2. Let Γ be a finitely generated Fuchsian group of the second kind keeping Δ invariant. Then for each $r>1$ and $d>0$ there exist a sequence $\left\{\beta_{n}\right\}_{n=1}^{\infty}$
of Möbius transformations and a sequence $\left\{\Omega_{n}\right\}_{n=1}^{\infty}$ of quasidiscs which satisfy the following.
(i) $\Omega_{n} \ni \infty, \gamma\left(\Omega_{n}\right)=\Omega_{n}$ for all $\gamma \in \Gamma$ and $\delta\left(\partial \Omega_{n}, \partial \Delta\right) \leqq 1 / n$.
(ii) $\beta_{n}\left(\Omega_{n}\right) \ni \infty$ and $\delta\left(\beta_{n}\left(\partial \Omega_{n}\right), E_{r}\right) \leqq d$.

Lemma 3. Let $\left\{\Omega_{n}\right\}_{n=1}^{\infty}$ be the sequence of quasidiscs in Lemma 2. Then there exist a sequence $\left\{F_{n}\right\}_{n=1}^{\infty}$ of quasiconformal automorphisms of $\hat{\boldsymbol{C}}$, a sequence $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ in $L_{\infty}(\Delta, \Gamma)_{1}$ and a sequence $\left\{\sigma_{n}\right\}_{n=1}^{\infty}$ of Möbius transformations keeping Δ invariant which satisfy the following.
(i) F_{n} maps Δ^{*} conformally onto Ω_{n}.
(ii) $\left(F_{n} \circ \sigma_{n} \circ w_{\mu_{n}}\right) \gamma \gamma\left(F_{n} \circ \sigma_{n} \circ w_{\mu_{n}}\right)^{-1}=\gamma$ for all $\gamma \in \Gamma$.
(iii) $\lim _{n \rightarrow \infty}\left\|\mu_{n}\right\|_{\infty}=0$.

§4. Proof of Theorem.

Now we begin to make a proof of Theorem. For each $\varepsilon>0$ let r_{1} and d_{1} be the constants in Lemma 1. Lemma 2 shows that there exist a sequence $\left\{\Omega_{n}\right\}_{n=1}^{\infty}$ of quasidiscs and a sequence $\left\{\beta_{n}\right\}_{n=1}^{\infty}$ of Möbius traqnsformations satisfying

$$
\begin{equation*}
\beta_{n}\left(\Omega_{n}\right) \ni \infty \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta\left(\beta_{n}\left(\partial \Omega_{n}\right), E_{r_{1}}\right) \leqq d_{1} / 2 \tag{4.2}
\end{equation*}
$$

By Lemma 3 there exist a sequence $\left\{F_{n}\right\}_{n=1}^{\infty}$ of quasiconformal automorphisms of \hat{C}, a sequence $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ in $L_{\infty}(\Delta, \Gamma)_{1}$ and a sequence $\left\{\sigma_{n}\right\}_{n=1}^{\infty}$ of Möbius transformations keeping Δ invariant which satisfy

$$
\begin{align*}
& F_{n} \text { maps } \Delta^{*} \text { conformally onto } \Omega_{n}, \tag{4.3}\\
& \left(F_{n} \circ \sigma_{n} \circ w_{\mu_{n}}\right) \gamma_{\circ}\left(F_{n} \circ \sigma_{n} \circ w_{\mu_{n}}\right)^{-1}=\gamma \quad \text { for all } \gamma \in \Gamma \tag{4.4}
\end{align*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\mu_{n}\right\|_{\infty}=0 \tag{4.5}
\end{equation*}
$$

Denote by v_{n} the Beltrami coefficient $\mu\left[F_{n} \circ \sigma_{n} \circ w_{\mu_{n}} \mid \Delta\right]$ of $F_{n} \circ \sigma_{n} \circ w_{\mu_{n}}$ restricted to Δ. Then (4.4) implies that v_{n} belongs to $L_{\infty}(\Delta, \Gamma)_{1}$.

Let τ_{n} be the Möbius transformation so that

$$
\begin{equation*}
W_{n}=\tau_{n} \circ w^{v_{n} \circ}\left(\beta_{n} \circ F_{n} \circ \sigma_{n} \circ w_{\mu_{n}}\right)^{-1} \tag{4.6}
\end{equation*}
$$

keeps 0,1 and ∞ fixed. Since $\mu\left[\tau_{n} \circ w^{\nu} n \mid \Delta\right]$ and $\mu\left[\beta_{n} \circ F_{n} \circ \sigma_{n} \circ w_{\mu_{n}} \mid \Delta\right]$ are both equal to v_{n}, (4.6) shows that $\mu\left[W_{n} \mid \beta_{n}{ }^{\circ} F_{n}(4)\right]$ vanishes (Ahlfors [1, p. 9]). This together with (4.6) shows $\left\|\mu\left[W_{n}^{-1}\right]\right\|_{\infty}=\left\|\mu\left[W_{n}^{-1} \mid \tau_{n} \circ w^{v_{n}}\left(\Delta^{*}\right)\right]\right\|_{\infty}=\left\|\mu\left[w_{\mu_{n}} \mid \Delta^{*}\right]\right\|_{\infty}$. On the other hand $\left\|\mu\left[W_{n}^{-1}\right]\right\|_{\infty}=\left\|\mu\left[W_{n}\right]\right\|_{\infty}$ and $\left\|\mu\left[w_{\mu_{n}} \mid \Delta^{*}\right]\right\|_{\infty}=\left\|\mu_{n}\right\|_{\infty}$ (Ahlfors [1, p. 9 and p. 99]). Hence $\left\|\mu\left[W_{n}\right]\right\|_{\infty}=\left\|\mu_{n}\right\|_{\infty}$. By (4.5) we see $\lim _{n \rightarrow \infty}\left\|\mu\left[W_{n}\right]\right\|_{\infty}=0$. Let K be the compact set $\left\{z \in C\right.$; $\left.\operatorname{dist}\left(z, E_{r_{1}}\right) \leqq d_{1} / 2\right\}$. A result on quasiconformal
mappings (Ahlfors and Bers [2, Lemma 17]) yields the existence of a positive integer n_{1} so that

$$
\left|W_{n}(z)-z\right| \leqq d_{1} / 2 \quad \text { for all } \quad z \in K \quad \text { and all } n>n_{1} .
$$

This together with (4.2) shows

$$
\begin{equation*}
\delta\left(W_{n} \circ \beta_{n}\left(\partial \Omega_{n}\right), \beta_{n}\left(\partial \Omega_{n}\right)\right) \leqq d_{1} / 2 \tag{4.7}
\end{equation*}
$$

On the other hand by (4.6) $\tau_{n} \circ W^{\nu} n(\partial \Delta)=W_{n} \circ\left(\beta_{n} \circ F_{n} \circ \sigma_{n} \circ W_{\mu_{n}}\right)(\partial \Delta)=W_{n} \circ \beta_{n}\left(\partial \Omega_{n}\right)$. Hence it follows from (4.2) and (4.7) that

$$
\begin{aligned}
& \delta\left(\tau_{n} \circ W^{v_{n}}(\partial \Delta), E_{r_{1}}\right)=\delta\left(W_{n} \circ \beta_{n}\left(\partial \Omega_{n}\right), E_{r_{1}}\right) \\
& \quad \leqq \delta\left(W_{n} \circ \beta_{n}\left(\partial \Omega_{n}\right), \beta_{n}\left(\partial \Omega_{n}\right)\right)+\delta\left(\beta_{n}\left(\partial \Omega_{n}\right), E_{r_{1}}\right) \leqq d_{1} / 2+d_{1} / 2=d_{1} .
\end{aligned}
$$

Since W_{n} keeps ∞ fixed and since both $w_{\mu_{n}}$ and σ_{n} keep Δ^{*} invariant, (4.6), (4.1) and (4.3) imply

$$
\begin{aligned}
& \left(\tau_{n} \circ w^{v_{n}}\right)^{-1}(\infty)=\left(\beta_{n} \circ F_{n} \circ \sigma_{n} \circ w_{\mu_{n}}\right)^{-1} \circ W_{n}^{-1}(\infty) \\
& \quad=w_{\mu_{n}}^{-1} \circ \sigma_{n}^{-1} \circ F_{n}^{-1} \circ \beta_{n}^{-1}(\infty) \in w_{\mu_{n}}^{-1} \circ \sigma_{n}^{-1} \circ F_{n}^{-1}\left(\Omega_{n}\right)=\Delta^{*}
\end{aligned}
$$

Hence $\tau_{n}{ }^{\circ} w^{\nu_{n}}\left(\Delta^{*}\right)$ is the exterior of $\tau_{n}{ }^{\circ} w^{\nu_{n}}(\partial \Delta)$. Now Lemma 1 shows $\left\|\left\{\tau \circ w^{\nu_{n}}, z\right\}\right\|$ $>6-\varepsilon$. Since $\left\{\tau_{n} w^{v_{n}}, z\right\}=\left\{w^{\nu_{n}}, z\right\}=\phi^{\nu_{n}}$ (Ahlfors [1, p. 125]), $\left\|\phi^{\nu_{n}}\right\|>6-\varepsilon$. Recall that v_{n} is in $L_{\infty}(\Delta, \Gamma)_{1}$. Then we see that $\phi^{v_{n}}$ is in $T(\Gamma)$. Hence $o(\Gamma)>6-\varepsilon$. Since $\varepsilon>0$ is arbitrary, $o(\Gamma) \geqq 6$. On the other hand $o(\Gamma) \leqq 6$ (Nehari [13]). Therefore $o(\Gamma)=6$. This completes the proof of Theorem.

§5. Construction of a quasiconformal mapping.

In this section we construct a quasiconformal mapping which we use to prove Lemma 2 in §6. Let r and s be real numbers with $r>1$ and $0<s<r+r^{-1}$. Let T be the vertical line in $\hat{\boldsymbol{C}}$ passing through s. Let U be the upper half plane. Then E_{r} and T intersect at exactly two points $\zeta \in U$ and ζ. Let I be the bounded closed subarc of T joining ζ to $\bar{\zeta}$. Let P be the component of $\hat{\boldsymbol{C}}-\boldsymbol{T}$ containing the origin. Denote by J the Jordan loop $\left(E_{r} \cap P\right) \cup I$. Let C be the circle with the diameter I and let B be the exterior of C. Note that T and P depend on s and that ζ, I, J, C and B all depend on both r and s.

Let D be an open disc in $\hat{\boldsymbol{C}}$. It is known that every quasiconformal automorphism w of D can be extended to a homeomorphism \hat{w} of the closure of D onto itself (Ahlfors [1, p. 47]).

Lemma 4. There exists a quasiconformal automorphism v of B satisfying the following.
(i) $v(T-I)=J-I$.
(ii) \hat{v} keeps every point of C fixed.

Proof. Let Y be the imaginary axis. Let α be a Möbius transformation which
maps B onto U and which sends ζ and $\bar{\zeta}$ to ∞ and 0 , respectively. Then we see that $\alpha(T-I)=Y \cap U$ and that $\alpha(J-I) \subset U$ is an open smooth Jordan arc joining ∞ to 0 . For each $y>0$ let H_{y} be the horizontal line in \hat{C} which passes through $y \sqrt{-1}$. Then $C_{y}=\alpha^{-1}\left(H_{y}\right)$ is a circle which passes through ζ and which crosses $T-I$ orthogonally. It is elementary that C_{y} interesects with $J-I$ at exactly one point ζ_{y}. Let $h(y)=$ $\operatorname{Re} \alpha\left(\zeta_{y}\right)$. Set $u(z)=z+h(y)$ for $z=x+y \sqrt{-1} \in U$. Then clearly u is a homeomorphism of U onto itself.

We show that u is a quasiconformal automorphism of U such that $u(Y \cap U)=$ $\alpha(J-I)$ and that \hat{u} keeps every point of ∂U fixed. Since $u(y \sqrt{-1})=y \sqrt{-1}+h(y)=$ $\left(\operatorname{Im} \alpha\left(\zeta_{y}\right)\right) \sqrt{-1}+\operatorname{Re} \alpha\left(\zeta_{y}\right)=\alpha\left(\zeta_{y}\right)$ for $y \in(0, \infty)$ and since $\cup_{y>0} \zeta_{y}=(J-I) \cap\left(\cup_{y>0} C_{y}\right)$ $=(J-I) \cap(B \cup\{\zeta\})=J-I$, we see $u(Y \cap U)=\alpha(J-I)$. Let θ_{y} and $\pi-\theta_{y}$ be the angles between C_{y} and $J-I$ at ζ_{y}. Since α is conformal, the angles between $H_{y}=$ $\alpha\left(C_{y}\right)$ and $\alpha(J-I)$ at $\alpha\left(\zeta_{y}\right)$ are also θ_{y} and $\pi-\theta_{y}$. It is easily seen that there exists a positive constant θ so that $\theta \leqq \theta_{y} \leqq \pi-\theta$ for all $y \in(0, \infty)$. On the other hand $\alpha(J-I)=\{h(y)+y \sqrt{-1} ; y \in(0, \infty)\}$. Hence $h(y)$ is differentiable in $(0, \infty)$ and $\left|h^{\prime}(y)\right|=\left|\cot \theta_{y}\right| \leqq|\cot \theta|$. Therefore u is a diffeomorphism of U and satisfies

$$
\begin{aligned}
& |(\partial u / \partial \bar{z}) /(\partial u / \partial z)|=\left|h^{\prime}(y) /\left(2-h^{\prime}(y) \sqrt{-1}\right)\right| \\
& \quad \leqq \cot \theta\left(4+\cot ^{2} \theta\right)^{-1 / 2}<1 .
\end{aligned}
$$

Thus u is a quasiconformal automorphism of U. Since $\lim _{y \rightarrow 0} h(y)=0, \hat{u}$ keeps every point of ∂U fixed. Clearly $v=\alpha^{-1} \circ u^{\circ} \alpha$ is a quasiconformal automorphism of B which satisfies (i) and (ii).
q.e.d.

§ 6. Proof of Lemma 2.

In this section we prove Lemma 2. Let T, I, P, J, C and B be as in $\S 5$. Fix an $s \in\left(0, r+r^{-1}\right)$ sufficiently near to $r+r^{-1}$ so that

$$
\begin{equation*}
\operatorname{diam} C \leqq d / 2 \tag{6.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta\left(J, E_{r}\right) \leqq d / 2 \tag{6.2}
\end{equation*}
$$

where diam C denotes the Euclidean diameter of C.
First we construct $\left\{\beta_{n}\right\}_{n=1}^{\infty}$. Let D_{0} be a Dirichlet region for Γ in Δ. Let D be the union of D_{0}, the reflection of D_{0} in $\partial \Delta$ and the free sides of D_{0}. Let A be an open circular arc whose closure is contained in a free side of D_{0}. Let β_{A} be a Möbius transformation which maps P and $T-I$ onto Δ and A, respectively. Then $\beta_{A}(C)$ is orthogonal to $\partial \Delta$ and $\beta_{A}(B) \cap \partial \Delta=A$. Hence $\beta_{A}(B) \subset D$. This shows that the family $\left\{\gamma\left(\beta_{A}(B)\right)\right\}_{\gamma \in \Gamma}$ of open discs are mutually disjoint. For each positive integer n at most a finite number of them, say $\gamma_{1}\left(\beta_{A}(B)\right), \ldots, \gamma_{l}\left(\beta_{A}(B)\right)$, have diameters greater than $1 / n$. We can replace A by a sufficiently small open subarc A_{n} of A so that $\operatorname{diam} \gamma_{i}\left(\beta_{A_{n}}(B)\right) \leqq 1 / n$ for $i=1, \ldots, l$. Set $\beta_{n}=\beta_{A_{n}}^{-1}$. Then

$$
\begin{equation*}
\beta_{n}(\Delta)=P, \beta_{n}\left(A_{n}\right)=T-I \tag{6.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{diam} \gamma\left(\beta_{n}^{-1}(B)\right) \leqq 1 / n \quad \text { for all } \quad \gamma \in \Gamma . \tag{6.4}
\end{equation*}
$$

Secondly we construct $\left\{\Omega_{n}\right\}_{n=1}^{\infty}$. Define

$$
V_{n}=\left\{\begin{array}{l}
\gamma \circ \beta_{n}^{-1} \circ v \circ \beta_{n} \circ \gamma^{-1} \text { in } \gamma\left(\beta_{n}^{-1}(B)\right) \quad \text { for all } \gamma \in \Gamma \tag{6.5}\\
\text { the identity mapping in } \hat{\boldsymbol{C}}-\underset{\gamma \in \Gamma}{\cup} \gamma\left(\beta_{n}^{-1}(B)\right),
\end{array}\right.
$$

where v is the quasiconformal automorphism of B obtained in Lemma 4. The derived set of $\cup_{\gamma \in \Gamma} \gamma\left(\beta_{n}^{-1}(C)\right.$) coincides with the limit set $\Lambda(\Gamma)$ of Γ. Clearly V_{n} is a bijection of $\hat{\boldsymbol{C}}$ onto itself and both V_{n} and V_{n}^{-1} are continuous in $\hat{\boldsymbol{C}}-\Lambda(\Gamma)$. Since V_{n} keeps every point of $\hat{\boldsymbol{C}}-\cup_{\gamma \in \Gamma} \gamma\left(\beta_{n}^{-1}(B)\right)$ fixed and since V_{n} maps $\gamma\left(\beta_{n}^{-1}(B)\right)$ onto itself for every $\gamma \in \Gamma$, we see that V_{n} and V_{n}^{-1} are also continuous at each point of $\Lambda(\Gamma)$. Hence V_{n} is a homeomorphism of $\hat{\boldsymbol{C}}$ onto itself. Furthermore V_{n} is quasiconformal off the circle $\partial \Delta$. Therefore V_{n} is a quasiconformal automorphism of $\hat{\boldsymbol{C}}$ (Lehto and Virtanen [12, p. 45]). Set $\Omega_{n}=V_{n}\left(\Delta^{*}\right)$. Then Ω_{n} is a quasidisc.

Thirdly we prove (i). The definition (6.5) of V_{n} implies that $V_{n}(\infty)=\infty$ and $V_{n} \circ \gamma=\gamma_{\circ} V_{n}$ for all $\gamma \in \Gamma$. Hence Ω_{n} contains ∞ and Ω_{n} is Γ-invariant. Also (6.5) implies

$$
\begin{equation*}
\partial \Omega_{n} \subset \partial \Delta \cup\left[\underset{\gamma \in \Gamma}{\cup} \gamma\left(\beta_{n}^{-1}(B)\right)\right] . \tag{6.6}
\end{equation*}
$$

By (6.4) and (6.6) we see $\delta\left(\partial \Omega_{n}, \partial \Delta\right) \leqq 1 / n$.
Finally we prove (ii). Using (6.5), (6.3) and Lemma 4 (i), we obtain

$$
\begin{equation*}
\partial \Omega_{n} \cap \beta_{n}^{-1}(B)=\beta_{n}^{-1} \circ \cup \circ \beta_{n}\left(A_{n}\right)=\beta_{n}^{-1} \circ v(T-I)=\beta_{n}^{-1}(J-I) . \tag{6.7}
\end{equation*}
$$

Since $J-I \subset P \cap B$, (6.7) and (6.3) show $\partial \Omega_{n} \cap \beta_{n}^{-1}(B)=\beta_{n}^{-1}(J-I) \subset \Delta \cap \beta_{n}^{-1}(B)$. This together with (6.6) implies $A_{n} \subset \Omega_{n}$. Hence by (6.3) we see $\infty \in \beta_{n}\left(\Omega_{n}\right)$. Bý (6.3) and (6.7) we have

$$
\beta_{n}\left(\partial \Omega_{n}\right) \subset \beta_{n}\left(\left[\partial \Omega_{n} \cap \beta_{n}^{-1}(B)\right] \cup\left[\hat{\boldsymbol{C}}-\beta_{n}^{-1}(B)\right]\right)=(J-I) \cup(\hat{\boldsymbol{C}}-B) .
$$

Therefore (6.1) shows $\delta\left(\beta_{n}\left(\partial \Omega_{n}\right), J\right) \leqq d / 2$. Combining this with (6.2), we get

$$
\delta\left(\beta_{n}\left(\partial \Omega_{n}\right), E_{r}\right) \leqq \delta\left(\beta_{n}\left(\partial \Omega_{n}\right), J\right)+\delta\left(J, E_{r}\right) \leqq d / 2+d / 2=d
$$

Thus Lemma 2 is proved.

§7. Proof of Lemma 3.

Let M_{Δ} be the group of all Möbius transformations which keep Δ invariant. Let $\Gamma \subset M_{\Delta}$ be a finitely generated Fuchsian group generated by $\gamma_{1}, \ldots, \gamma_{m}$. A homomorphism χ of Γ into M_{Δ} is said to be allowable if $(\operatorname{trace} \chi(\gamma))^{2}=(\operatorname{trace} \gamma)^{2}$ for all elliptic and parabolic $\gamma \in \Gamma$. Let $\left\{\chi_{n}\right\}_{n=1}^{\infty}$ be a sequence of homomorphisms of Γ into M_{Δ}. Then $\left\{\chi_{n}\right\}_{n=1}^{\infty}$ is said to converge to the identity if $\left\{\chi_{n}\left(\gamma_{i}\right)\right\}_{n=1}^{\infty}$ converges to γ_{i} for each i. Now we state a basic result on stability of Fuchsian groups due to

Bers [4, §3, Remark] in the following form, which is convenient for our proof of Lemma 3 (see also Bers [5, p. 15]).

Lemma 5. Let Γ be a finitely generated Fuchsian group keeping Δ invariant. Let $\left\{\chi_{n}\right\}_{n=1}^{\infty}$ be a sequence of allowable homomorphisms $\chi_{n}: \Gamma \rightarrow M_{\Delta}$ which converges to the identity. Then there exist a sequence $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ in $L_{\infty}(\Delta, \Gamma)_{1}$ and a sequence $\left\{\sigma_{n}\right\}_{n=1}^{\infty}$ in M_{Δ} which satisfy
(i) $\chi_{n}(\gamma)=\left(\sigma_{n} \circ w_{\mu_{n}}\right) \gamma \gamma\left(\sigma_{n} \circ w_{\mu_{n}}\right)^{-1}$ for all $\gamma \in \Gamma$
and
(ii) $\lim _{n \rightarrow \infty}\left\|\mu_{n}\right\|_{\infty}=0$.

Though Bers [4] proved Lemma 5 for non-elementary groups, obviously it also holds for elementary groups.

Proof of Lemma 3. Let $\left\{\Omega_{n}\right\}_{n=1}^{\infty}$ be the sequence of quasidiscs in Lemma 2. Let f_{n} be the conformal mapping of Δ^{*} onto Ω_{n} normalized so that $f_{n}(\infty)=\infty$ and $f_{n}^{\prime}(\infty)>0$. Since Ω_{n} is Γ-invariant, $\gamma_{n}=f_{n}^{-1} \circ \gamma \circ f_{n}$ is a conformal automorphism of Δ^{*} for every $\gamma \in \Gamma$. Hence $\Gamma_{n}=f_{n}^{-1} \Gamma f_{n}$ is a finitely generated Fuchsian group keeping Δ invariant. Let χ_{n} be the isomorphism of Γ onto Γ_{n} defined by $\chi_{n}(\gamma)=\gamma_{n}$ for each γ.

First we construct $\left\{F_{n}\right\}_{n=1}^{\infty}$. Since $f_{n} \circ \gamma_{n}=\gamma \circ f_{n}$, we see $\left\{f_{n}, \gamma_{n}(z)\right\}\left(\gamma_{n}^{\prime}\right)^{2}=\left\{f_{n}, z\right\}$ (Ahlfors [1, p. 125]). This together with a theorem of Nehari [13] yields $\left\{f_{n}, z\right\} \in$ $B_{2}\left(\Delta^{*}, \Gamma_{n}\right)$. On the other hand since Ω_{n} is a quasidisc, f_{n} can be extended to a quasiconformal automorphism of $\hat{\boldsymbol{C}}$ (Ahlfors [1, p. 75]). Hence $\left\{f_{n}, z\right\}$ also belongs to the universal Teichmüller space $T(1)$. Therefore $\left\{f_{n}, z\right\}$ is an element of $T\left(\Gamma_{n}\right)=$ $T(1) \cap B_{2}\left(\Delta^{*}, \Gamma_{n}\right)$, where the equality is due to Kra [10]. This implies the existence of $\kappa_{n} \in L_{\infty}\left(\Delta, \Gamma_{n}\right)_{1}$ such that $\left\{f_{n}, z\right\}=\left\{w^{\kappa_{n}} \mid \Delta^{*}, z\right\}$. Hence there exists a Möbius transformation ρ_{n} so that $f_{n}=\rho_{n} \circ w^{\kappa_{n}}$ in Δ^{*} (Bers [4, p. 589]). Set $F_{n}=\rho_{n} \circ w^{\kappa_{n}}$ on $\hat{\boldsymbol{C}}$. Then F_{n} is a quasiconformal automorphism of $\hat{\boldsymbol{C}}$ and F_{n} maps Δ^{*} conformally onto Ω_{n}.

Secondly we show that $\left\{\chi_{n}\right\}_{n=1}^{\infty}$ converges to the identity. For two points z_{1} and z_{2} in $\hat{\boldsymbol{C}}$ we denote by $\left[z_{1}, z_{2}\right]$ the spherical distance from z_{1} to z_{2}. For each $z \in \Delta^{*}$ we have

$$
\begin{align*}
{\left[\gamma_{n}(z), \gamma(z)\right] } & \leqq\left[\gamma_{n}(z), f_{n} \circ \gamma_{n}(z)\right]+\left[f_{n} \circ \gamma_{n}(z), \gamma(z)\right] \tag{7.1}\\
& =\left[\gamma_{n}(z), f_{n}\left(\gamma_{n}(z)\right)\right]+\left[\gamma\left(f_{n}(z)\right), \gamma(z)\right] .
\end{align*}
$$

Since f_{n} is the conformal mapping of Δ^{*} onto Ω_{n} with $f_{n}(\infty)=\infty$ and $f_{n}^{\prime}(\infty)>0$ and since $\lim _{n \rightarrow \infty} \delta\left(\partial \Omega_{n}, \partial \Delta\right)=0$ by Lemma 2 (i), a classical result on conformal mappings (Goluzin [8, p. 59]) shows that $\lim _{n \rightarrow \infty}\left[f_{n}(z), z\right]=0$ uniformly on the closure of Δ^{*}. Hence (7.1) implies $\lim _{n \rightarrow \infty}\left[\gamma_{n}(z), \gamma(z)\right]=0$ for each $z \in \Delta^{*}$. Now by a theorem on convergence of Möbius transformations (Lehner [11, p. 73]) we see that $\left\{\chi_{n}(\gamma)\right\}_{n=1}^{\infty}$ converges to γ. Therefore $\left\{\chi_{n}\right\}_{n=1}^{\infty}$ converges to the identity.

Finally we prove (ii) and (iii). Since $\kappa_{n} \in L_{\infty}\left(\Delta, \Gamma_{n}\right)_{1}$, we see that $\chi_{n}(\gamma)=$ $F_{n}^{-1} \circ \gamma \circ F_{n}$ for all $\gamma \in \Gamma$. Hence χ_{n} is an allowable isomorphism. Now by Lemma 5 there exist a sequence $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ in $L_{\infty}(\Delta, \Gamma)_{1}$ and a sequence $\left\{\sigma_{n}\right\}_{n=1}^{\infty}$ in M_{Δ} satisfying
both $\chi_{n}(\gamma)=\left(\sigma_{n} \circ w_{\mu_{n}}\right) \circ \gamma \circ\left(\sigma_{n} \circ W_{\mu_{n}}\right)^{-1}=\gamma_{n}$, that is, $\left(F_{n} \circ \sigma_{n} \circ w_{\mu_{n}}\right) \circ \gamma \circ\left(F_{n} \circ \sigma_{n} \circ w_{\mu_{n}}\right)^{-1}=\gamma$ and $\lim _{n \rightarrow \infty}\left\|\mu_{n}\right\|_{\infty}=0$. This completes the proof of Lemma 3.

Hachinohe Institute of Technology Mathematical Institute Tôhoku University

References

[1] L. V. Ahlfors, Lectures on quasiconformal mappings, Van Nostrand, Princeton, N. J., 1966.
[2] L. V. Ahlfors and L. Bers, Riemann's mapping theorem for variable metrics, Ann. of Math., (2) 72 (1960), 385-404.
[3] L. Bers, Automorphic forms and general Teichmüller spaces, Proc. Conf. Complex analysis (Minneapolis, 1964), Springer-Verlag, Berlin Heidelberg New York, 1965, pp. 109-113.
[4] L. Bers, On boundaries of Teichmüller spaces and on Kleinian groups, I, Ann. of Math., (2) 91 (1970), 570-600.
[5] L. Bers, Spaces of Kleinian groups, Several Complex Variables I (Maryland, 1970), Lecture Notes in Math., Vol. 155, Springer-Verlag, Berlin Heidelberg New York, 1970, pp. 9-34.
[6] T. Chu, On the outradius of finite-dimensional Teichmüller spaces, Discontinuous Groups and Riemann Surfaces, Ann. of Math. Studies, No. 79, Princeton Univ. Press, Princeton, N. J., 1974, pp. 75-79.
[7] C. J. Earle, On holomorphic cross-sections in Teichmüller spaces, Duke Math. J., 36 (1969), 409-415.
[8] G. M. Goluzin, Geometric theory of functions of a complex variable, Amer. Math. Soc. Transl. of Math. Monographs 29, Providence R. I., 1969.
[9] C. I. Kalme, Remarks on a paper by Lipman Bers, Ann. of Math., (2) 91, (1970), 601-606.
[10] I. Kra, On Teichmüller spaces for finitely generated Fuchsian groups, Amer. J. Math., 91 (1969), 67-74.
[11] J. Lehner, Discontinuous groups and automorphic functions, Amer. Math. Soc., Providence R. I., 1964.
[12] O. Lehto and K. I. Virtanen, Quasiconformal mappings in the plane, Springer-Verlag, Berlin Heidelberg New York, 1973.
[13] Z. Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc., 55 (1949), 545-551.
[14] H. Sekigawa, The outradius of the Teichmüller space, Tôhoku Math. J., (2) 30 (1978), 607-612.

