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§1. Introduction.

A Fuchsian group F is said to be of the first kind (resp. second kind) if its region
of discontinuity is not connected (resp. connected). The outradius o(F) which is
defined in §2 is strictly greater than 2 (Earle [7]) and not greater than 6 (Nehari [13]).
This constant 6 cannot be replaced by any smaller one (Chu [6 ], K alm e [9 ]). In
[14] the former author proved that o(F) is strictly less than 6 for a finitely generated
Fuchsian group F of the first kind. In this paper we prove the following.

Theorem. If F is a finitely generated Fuchsian group of the second kind, then
o(F) is equal to 6.

This theorem answers a question raised by Lipman Bers to the former author
in U.S. -Japan Seminar on Kleinian Groups and Riemann Surfaces which was held
at the East-West Center in Honolulu, Hawaii, during January 15-19, 1979. In
§3 we state three lemmas without proofs. A proof of Theorem is given in  §4.
The rest of this note is devoted to prove lemmas stated in §3.

The authors would like to express their hearty thanks to Professor L. Bers for his
kind indication of the problem to them.

§2. Definitions and notations.

Let e be the Riemann sphere. Let d  be the open unit disc and d*  be the ex-
terior of d in C. L e t j(z )= 1/2 be the reflection in ail. F o r  each p. in the open unit
ball L oz,(d), of L (A )  we define two quasiconformal automorphisms w„ and 10 of
C. L e t  w , be the unique quasiconformal automorphism of e with fixed points
1, -1  and -1 which is p-conformal in A and which satisfies w„. j = jow „. In partic-
ular, w, keeps A invariant. Let  w I L  b e  the unique quasiconformal automorphism
of e with fixed points 1, -1  and -1 which is a-conformal in A  and conformal
in d*.
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Let F  be a Fuchsian group keeping d invariant. Denote by LOE,(d, F) 1 the
subset of Lœ (d) i  consisting of those y e L(A ) 1 which satisfy

(yoy)r/y'=,u for all y E r.
Then y e Lœ (d) 1 belongs to L ( d ,  0 1 if and only if wp..y.(w m) - 1  (o r wttoyo(wP)- 1 )
is a Miibius transformation for every y E F  (Ahlfors [1, p. 121 and p. 123]).

Let )1.(z)= (Izi 2  — 1)- 1  be a Poincaré density of d * .  Denote by B2 (d*, F)  the
Banach space of holomorphic functions 0 defined in d* which satisfy

(0.y)(y)2= 0f o r a i !  y  e  F

and

114)11 = sup A(Z)-210(Z)1 <00.

For each it e L„(A, F ) ,  le t  4,Y  = {WP IA* , Z } , where {w11 d*, z} denotes the
Schwarzian derivative of vo  restricted to A * .  Then ofkg belongs to B2 (d*, F)
(Ahlfors [1, p. 126]).  The Teichmtiller space T(r) o f  F  i s  th e  se t {0P;

e L oo(d, F) 1 }. It is well known that T (F) is a  bounded domain of B2 (d*, F)
for a Fuchsian group F with dim B2(d*, 0> 0 (Bers [3]). For such a group F  the
outradius o(F) of T(F) is defined to be the radius of the smallest ball about the origin
containing T (F), that is, o(F)=sup 4,  the supremum is taken over all 0
in T(F).

§ 3. Three lemmas.

In this section we state three lemmas without proofs. Lemma 1 is due to Chu
[ 6 ] .  Lemmas 2 and 3 are proved in § § 5 -7 . Let k (z )=z  Then k  maps d*
conformally onto e with the closed real segment [ — 2, 2] removed. Let S , be the
circle of radius r(> 1) about the origin. The image of S,. under k is the ellipse

Er :  2 / ( r + 1 .-1)2 +  n 2/(r
- 1.-1)2 =  1,

where C= k(z) and ( =  +/hi —1.
For two Jordan loops J 1 and J2 in the complex plane C we define the Fréchet

distance 5(J 1 , J2) as inf maxo _<ts Iz1(t) — z2(01, where the infimum is taken over
all possible parametrizations z 1(t) of J (i = 1, 2).

Lemma 1 (Chu [6]). For each positive s there exist constants r 1 >1 and d 1 >0
so that if  E r i =k (S r i )  an d  J is a Jordan loop in  C  with 6(J, t h e n  a  con-
form al m apping f  of  A *  onto the exterior of J statisfies II{ f, z} II> 6 — s.

A quasidisc is the image of an open disc under a quasiconformal automorphism
of C.

Lemma 2 .  Let F  b e  a f initely  generated Fuchsian group of the second kind
keeping d in v arian t. Then for each r>1 and d>0 there ex ist a  sequence {13„}„'=,
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of M öbius transform ations and a sequence {0},T=1 o f  quasidiscs which satisfy  the
following.

(i) Q „  CO ,  y(52)= 0,, f or all y e F and 6 00 „, azo 11n.
(ii) fin (52„) D CO and 6(/6„(00„), Er ) .  d.

Lemma 3 .  L e t (0,1,7=, b e  the sequence o f  quasidiscs in  Lemma 2. Then
there exist a sequence {F, }c°,2=1 o f  quasiconform al autom orphism s o f  e, a  sequence
{,u„} = ,  in Lœ (il, F ) , an d  a sequence {o- n } „=1 o f  M öbius transform ations keeping
21 invariant which satisfy the following.

(i) Fn m aps .4* conform ally  onto 0 .
(ii) =y f or all y e F.
( l ip  lirn

n. -

§ 4. Proof of Theorem.

Now we begin to make a proof of Theorem. For each e> 0 let r1 and d1 be the
constants in Lemma 1. Lemma 2 shows that there exist a  sequence {S2} 1 o f
quasidiscs and a sequence {fin }œn,, of Möbius transformations satisfying

(4.1) A(Qn) 9  OE)

and

(4.2) 3(1322(002,),

By Lemma 3 there exist a sequence {F„} 1 of quasiconformal automorphisms
of t, a sequence Ittnr°„_, I in L.(21, F) 1 and a sequence {o-„} 1 o f Möbius transfor-
mations keeping 21 invariant which satisfy

(4.3) Fn maps .4* conformally onto 0 ,

(4.4) (F,20anow,,„)°r(Fncan.w p„) - 1 = y  for all y e

and

(4.5) Jim Ilt1.11.= 0 .

Denote by vn the Beltrami coefficient p[Fnounow,2n 121] of F n oan ow,„ restricted to J.
Then (4.4) implies that vn belongs to L no (A  F),.

Let rn be the Möbius transformation so that

(4.6) W„=rnowv-0(13„.Fnoun.w)-1

keeps 0, 1 and oo fixed. Since A r nowvnl 4] and 1.1[fin°F.'crn°wAnIzi] are both equal
to vn , (4.6) shows that p[W,,116,,oF„(4)] vanishes (Ahlfors [1, p. 9 ]).  This together
with (4.6) shows Ill2[Wn =11/1[W;11'rewv"(11*)]ll = on the
other hand llit[W;911.= and ll [wn „Id * ]Il.-12„11 nn (Ahlfors [1, p. 9 and
p. 99]). Hence lly[Wn] co = By (4.5) we see lim n,  Ilit[W]IL =O. L e t  K
b e  the compact set {z e C ; dist (z, .Er i ) di /2}. A  result o n  quasiconformal
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mappings (Ahlfors and Bers [2, Lemma 17]) yields the existence of a positive integer
n , so that

I wn(z)— zl .5 di /2 f o r  all z e K  and all n>n i .

This together with (4.2) shows

(4.7) 6(Wncfl„(00), W O O ) d 1 / 2 .

O n  th e  o th er h an d  b y  (4.6) orn owY-(0,4)= W„.(13„.Fean owij o z o = W 4 .13„(00„).
Hence it follows from (4.2) and (4.7) that

6(-cn owv-(04), E n i )=.5(w es n og -20, E n )

.5(Wefin(0 0 „), fin (ag2„))+6(fl.(ag2„), En,)-d112 +d112 =d t.

Since W„ keeps co fixed and since both w„” and a n  keep Li* invariant, (4.6),
(4.1) and (4.3) imply

(row  ")(co) =  (fin .F n a a n o w m . )-1  iv ;  1(0 0 )

= w;!ocr;', F,Y or , ' ( x)) e wTi niocr„ 10F; 1 (Q„) = 4* .

Hence r fl owv-(P) is the exterior of rn owv-(at1). Now Lemma 1 shows Il{rowy-, z}11
>6 — e. Since {rn owv-, z} = {wv-, z} = O v- (Ahlfors [1, p. 125]), 110'11> 6  — e.
Recall that v„ is in L Œ,(4, F) 1 . Then we see that Ov- is in T ( F ) .  Hence o(F)> 6 — e.
Since e > 0 is arbitrary, o(F) 6. On the other hand o(F) . 6  (N eh ari [13 ]). There-
fore o(F)= 6. This completes the proof of Theorem.

§ 5 .  Construction of a quasiconformal mapping.

In this section we construct a quasiconformal mapping which we use to prove
Lemma 2 in § 6 .  Let r and s be real numbers with r >1 and 0 < s< rd-r -1-. Let T
be the vertical line in e passing through s. Let U be the upper half p lane . Then
Er  and T intersect at exactly two points e U and C. Let I  be the bounded closed
subarc of T jo in in g  to  C . Let P be the component of e_ T containing the origin.
Denote by J  the Jordan loop (Er n P) u I. Let C be the circle with the diameter I
and let B be the exterior of C .  Note that T and P depend on s and that C, I, J, C
and B all depend on both r and s.

L et D  b e  an open disc in C .  I t  is known that every quasiconformal
automorphism w of D can be extended to a homeomorphism 0 of the closure of D
onto itself (Ahlfors [1, p. 47]).

Lemma 4 . There exists a quasiconformal automorphism v of B  satisfy ing the
following.

(i) v(T— I)=J —I.
(ii) D keeps every point of C fixed.

P ro o f . Let Y be the imaginary axis. L e t  a  be a Möbius transformation which
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maps B onto U and which sends C and C to oo and 0, respectively. Then we see that
oc(T— I) = Y n U and that oc(J — I)cU is an open smooth Jordan arc joining co to O.
For each y> 0 let Hy  be the horizontal line in e which passes through y/ — 1. Then
Cy =a - 1 (Hy ) is a circle which passes through and which crosses T— I orthogonally.
It is elementary that Cy  interesects with J —1 at exactly one point Ç .  Let h(y)=
Re a(Cy). Set u(z)= z + h(y) for z =x+ y \ I —1 e U .  Then clearly u is a homeomor-
phism of U onto itself.

We show that u is a quasiconformal automorphism of U such that u(Y  n U)=
oc(J —I) and that û keeps every point of au fixed. S ince u(yV —1)= y.,1 —1+ h(y)=
(Im z (Ç))..J-1+ Rez(Ç)=Œ(Ç) for y e (0, co) and since Uy> °Cy = (•1 I) n (vy > o c y )
=(J — I) n (B  { C} )=J —I, we see u(Y n u)=a(J—  I). L et Oy and  n— Oy be the
angles between Cy  and  J - 1  at Ç . Since a  is conformal, the angles between H y =
oc(Cy ) and Œ(J —I) at c(Ç) are also Oy and it -  O r  It is easily seen that there exists a
positive constant B so that fo r all y e (0, co). O n  t h e  other hand
oc(J — I)={h(y)+ y.N1 —1; y e (0, co)}. Hence h(y) is differentiable i n  (0, cc) a n d
Ih'(y)I = 'cot By l !cot 01. Therefore u is a  diffeomorphism of U and satisfies

I (au /02)/(au/az)1 =  h'(.01(2 —  IA N  — 1 )1

cot 0(4 + cot2 0 - '12 <1.

Thus u is a quasiconformal automorphism of U . Since limy , o  h(y)= 0, û keeps every
p o in t  o f  U  fixed. Clearly v=oc- lou.oc is a  quasiconformal automorphism o f B
which satisfies (i) and (ii). q .  e .  d.

§ 6. Proof of Lemma 2.

In this section we prove Lemma 2. Let T, I , P, J, C  and B be as in § 5 .  Fix
an s e (0, r + r- ')  sufficiently near to r + so that

(6.1) diam d/2
and

(6.2) S(J, Er ) d12,

where diam C denotes the Euclidean diameter of C.
First we construct {fin }œn _i . Let Do be a Dirichlet region fo r r  in  4 .  Let D

be the union of D,, the reflection of Do in ad and the free sides of Do . Let A be an
open circular arc whose closure is contained in a free side of Do . Let flA  be a Möbius
transformation which maps P and T— I  onto .4 and A , respectively. Then P A (C)
is orthogonal to azi and /JA (B) n ae = A .  Hence f1A (B)c D .  This shows that the
family {y(f3A (B))} y e r  of open discs are mutually disjoint. F o r  each positive integer
n at most a finite number of them, say y i (fl A (B)),..., y i(fl A (B)), have diameters greater
than 1 /n . We can replace A  by a  sufficiently small open subarc An o f  A  so that
diam yi(flA .(B )). 1/n for 1=1 ,. . . ,1 .  Set fin = /3 . Then

(6.3) )6„(4)= P, fl„(A,)= T— I
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and

(6.4) diam y(13;1(B))5 1/n for all y E F.

Secondly we construct {0„} 1 . Define

yap; 1 0v0/3,30y 1i n kpy "Ti
l (B )) for all y E F

(6.5) V .=
{

the identity mapping in e_ y(f3 1(B)),
y e r

where y is  the quasiconformal automorphism of B obtained in Lemma 4. The
derived set of U y E r  y(137Y(C)) coincides with the limit set A(F) of F. Clearly V„ is
a bijection of e onto itself and both V„ and V; 1 are continuous in C -A ( F ) . Since
V„ keeps every point of C - 'J 1 -  y(P; 1(B)) fixed and since V„ maps y(f3; 1(B )) onto
itself for every y e F, we see that V„ and V; 1 are also continuous at each point of
A (F ). Hence V„ is a homeomorphism of e onto itself. Furthermore V„ is quasi-
conformal off the circle a A. Therefore V„ is a quasiconformal automorphism of e
(Lehto and Virtanen [12, p. 4 5 ] ) .  Set 0, = V„(.4*). Then 0„ is a quasidisc.

Thirdly we prove (i). The definition (6.5) of V implies that V„(oo)= oo and
Koy = yoV„ for all y e F .  Hence 52„ contains co and 0„ is T'-invariant. Also (6.5)
implies

(6.6) 00„ c DA U [ y(13;1(B))].
ver

By (6.4) and (6.6) we see (5(00„, O A ) 1/n.
Finally we prove (ii). Using (6.5), (6.3) and Lemma 4 (i), we obtain

(6.7) ag2n n 13;1(B)= fiVov.13„(A,,)=13,-;1.1)(T— I)=- 16;1 —

Since T— IcPn B, (6.7) and (6 .3) show 00, n fl,-TI(B)= 16 ; 1(,/—/) n /3; 1(B).
This together with (6.6) implies An t2„. Hence by (6.3) we see co E A(Q„). BY
(6.3) and (6.7) we have

fin(0 0 0c fin([as2„ n fl„ 1 (B)] u [ e— fl„l(B)])=(f—i) u (e_ B).

Therefore (6.1) shows (50 .( 0 „), J) d/2. Combining this with (6.2), we get

(5( 6n(a0 „), Er):5.- 6 (fin(a0 ,,), J)+S(J, E r )_.. c112.+ c112= d.

Thus Lemma 2 is proved.

§ 7 .  Proof of Lemma 3.

Let MA be the group of all Möbius transformations which keep 4 invariant.
Let F c M ,  be a  finitely generated Fuchsian group generated by y . .  A
homomorphism x of F into MA is said to be allowable if (trace x(y)) 2 = (trace y)2 for
all elliptic and parabolic y e F .  Let {x,},T=1 be a sequence of homomorphisms of
F into M A . Then {x„}=, is said to converge to the identity if fx„(y,)},T=, converges
to y i for each i. Now we state a basic result on stability of Fuchsian groups due to
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Bers [4, §3, Remark] in the following form, which is convenient for our proof
of Lemma 3 (see also Bers [5, p. 15]).

Lemma 5 .  Let F be a f initely  generated Fuchsian group keeping d invariant.
Let be a sequence of allowable homomorphisms x„: F-1U A  which converges
to the identity . T hen there ex ist a sequence fp„}„',, in Loo (d, F) 1 an d  a  sequence
{o.„}"„..,1 in MA  which satisfy

( i ) x „ (y )= (a n ow/Joyo(o-„ow f or all y a F
and

lim 11x11. =0.
n - . 0 0

Though Bers [4 ] proved Lemma 5  for non-elementary groups, obviously it
also holds for elementary groups.

Proof  of  Lemma 3. Let {S2„} 1 be the sequence of quasidiscs in Lemma 2.
Let f n be the conformal mapping of d* onto Q„ normalized so that f ( c o)= co and
f n(oo)> O. S in ce  On is  F-invariant, yn =f;loyof„ is a conformal automorphism of
d* for every y E F .  Hence F „= f;Ilf„  is a finitely generated Fuchsian group keeping
A invariant. Let h  be the isomorphism of r  onto r n defined by x ( v )  y,, for each y.

First we construct {F„r„, i . Since 
f n ° , f  w e see { f , , , yn (z)} (y',7)2 ={f„, z}v

n = ,vQa
(Ahlfors [1, P .  1 2 5 ]) . This together with a theorem of Nehari [13] yields {f„, z} a
B2 (4*, r n ). On the other hand since On is  a  quasidisc, f„ can be extended to a
quasiconformal automorphism of e (Ahlfors [1, p. 7 5 ] ) .  Hence {fn , z} also belongs
to the universal Teichmiiller space T (1 ). Therefore {f n , z} is an element of T(F„)=
T(1) n 132 (A *, F„), where the equality is due to Kra [ 1 0 ] .  This implies the existence
of E Lœ (d, F„) 1 such that { f n , z} = {wK-Id*, z}. Hence there exists a  Miibius
transformation p„ so that f n = pn owK̂  in d* (Bers [4 , p. 589]). Set F n = pn owK- on
e. Then Fn is a quasiconformal automorphism of C and F„ maps d* conformally
onto Qn .

Secondly we show that {h} i  converges to the identity. For two points z1

and z2 in  e we denote by [z 1 , z 2 ]  the spherical distance from z 1 to z2 . For each
z e d* we have

(7.1) EY.(z), Az)] 5 EY.(z), L°Y.(z)] + [fneYn(z), Y(z)]

= [Yn(z), L(Y.(z))] + CAL(z)), Y(z)]

Since f„ is the conformal mapping of d *  onto 0„ with Moo) = oo and f (oo )>0
and since (5(00n, 0,4)=0 by Lemma 2  (i) , a  classical result on conformal
mappings (Goluzin [8, p. 59]) shows that limn _,,,, [f„ (z ), z ]=0  uniformly on the
closure of 4 * .  Hence (7.1) implies lim ,„  [y„(z), y(z)]= 0 for each z E 4 * .  Now
by a theorem on convergence of Möbius transformations (Lehner [11, p. 73]) we see
that {x,,(y)},T= 1  converges to y. Therefore {h} 1 converges to the identity.

Finally we prove (ii) and (iii). Since Kn e L„,(4, Fn) 1 ,  we see that xn (y)=-
F,Voy.F„ for all y e F .  Hence h  is an allowable isomorphism. Now by Lemma 5
there exist a sequence Din } ',,=1 in L c„,(4, F) 1 and a sequence {orn}n' , 1 in  MA satisfying
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both  zn(y)=(crnow n).y.(un0 w ) - 1 =y„, th a t i s ,  (F„.0-nowm . ).y.(F..0-now,3 - 1  = y  a n d

1111.11. = O .  T his completes the proof of Lemma 3.
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