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§1. Introduction.

In the work [11], L. Schwartz has introduced the notion of hypoellipticity,
and proposed the following question (see p. 146, Remarques 2°).

Let a(x, D) be a differential operator, and suppose that it has the following
property: there is a positive integer | such that every C' solution u(x) of

alx, D)u(x)=0

belongs to C*. Then, can we claim that a(x, D) is hypoelliptic?

We reformulate his question in the following manner.

Let P(x, D) be a differential operator of order m=1 in an open set £ in
R™, with infinitely differentiable coefficients.

Problem I. Assume that P(x, D) has the following property: given any open
subset w of £, there is an integer |=m such that every C' solution u(x) of

Y] P(x, D)u(x)=0
in @ belongs to C(w). Then, is P(x, D) hypoelliptic in 2°?

Problem II. Let P, be a point of 2. Assume that P(x, D) has the following
property : there exist an integer |=m and a neighborhood U of P, such that every
C! solution u(x) of (1) in U belongs to C(U). Then, is P(x, D) hypoelliptic at
Py?

Here P(x, D) is said to be hypoelliptic at P, if there is a neighborhood <V
of P, such that, given any distribution » in <V, u is a C>= function in every
neighborhood of P, where this is true of P(x, D)u (we recall that P(x, D) is
said to be hypoelliptic in £ if, given any distribution » in 2, u is a C* function
in every open set where this is true of P(x, D)u).

We know that both of Problems I and Il are positive when the coefficients
of P(x, D) are constants. But we observe that these are negative in general
in case of variable ones. In fact, let P(x, D)=x%P,(x, D), where a is an arbi-
trary complex constant such that |a|=m+1 and P,(x, D) is an arbitrary elliptic
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operator. Then, u(x)=4 is a solution of (1). On the other hand, we see that
u(x)eC> if u(x) of (1)eC™.

The main result of this article is that Problem I is positive for the operator
P(x, D) of principal type with analytic coefficients. That is to say, in §2, we
prove it in the following form.

Theorem A. FEuvery differential operator P(x, D) of principal type with
analytic coefficienis in 2, of order m, which is not hypoellptic in Q, has the
following property:

There is an open subset w, of 2 such that, given any integer l=m, equation
(1) has a solution u(x) in w, such that u(x)< Cw,)\C**(w,).

L. Nirenberg [7] showed that every C' solution u of
.Cuz-g—l;—l—ix(l-I—xgb(x, y))g—;=0
in a neighborhood of the origin is constant, where ¢(x, y) is a suitably chosen
infinitely differentiable real-valued function which vanishes of infinite order on the
y axis. We know £ is not hypoelliptic at the origin. Thus we see that Problem
1 is negative generally in the class of operators of principal type with infinitely
differentiable coefficients. Nevertheless, in §4, we present an another counter
example to Problem II, because it seems to be simpler than his one. In our
example the coefficients of the principal part are analytic. When the coefficients
of P(x, D) are analytic, a partial positive result to Problem Il is obtained by
Baouendi-Treves-Zachmanoglou [1].

Finally I would like to express my sincere gratitude to Professor S. Mizo-
hata for many valuable suggestions; in particular, the formulation of Theorem
A was born through the discussions of our problem with him. And my thanks
go to Doctor T. Okaji for many advices.

§2. Proof of Theorem A.

The proof can be done along the lines of L. Nirenberg-F. Treves ([8], [9])
and F. Treves [13], and ultimately relies on S. Mizohata [4]. We give a little
detailed process of the proof.

Let us denote by pn(x, &) the principal symbol of P(x, &). Set T={(x, §)e
QX R™{0}; pnlx, £)=0}. Then, by virtue of F. Treves [13], we may suppose
that there exists (x,, £% T such that gradeRe pn(x,, §°)+#0, and denoting by
I’y the null bicharacteristic strip of Re p,(x, &) passing through (x,, &°), either
of the following conditions (i) and (ii) holds:

(i) Impn(x, &) has a zero of finite odd order at (x,, &%) along I,.

(ii) Im pnm(x, &) vanishes identically on I,

Set A=A(x, &)=Re pn.(x, &) and B=B(x, &)=Im p,(x, §). First, assume
that (i) holds. We divide our argument in the following two cases.

Case 1-1. B has a zero of order 1 at (x,, &°) along I',.
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Case 1-2. B has a zero of odd order k>1 at (x,, &) along I',.
Case 1-1. Setting Cym-_:(x, e,’):lmj_i‘,1 gepj”‘ gi;”
—2H,B(x,, £°%0, where H, stands for the differentiation along I',. Then, by
virtue of L. Hormander [2] (Lemma 6.1.3), there is an analytic phase function
o(x) of pn(x, ¢,)=0 in a neighborhood of x, such that ¢(x,)=0 ¢,+0, and
Im¢(x)=0.

Now we can formulate Théoréme 4.1 of S. Mizohata [4] in the form of
Lemma A below, and we apply it to the actual case. Thus, there is a neigh-
borhood U of x, such that, given any integer l=m, equation (1) has a solution

u(x) in U such that u(x)e CHUNNCH (V).

, we see that Com-1(x,, £%)=

Lemma A. Assume that P(x, D)is of principal type with analytic coefficients.
Assume that there is an analytic phase function @(x) of pm(x, ¢z)=0 in a neigh-
borhood of a such that ¢(a)=0, ¢,(x)#0, and Im¢(x)=0. Then, there is a neigh-
borhood U of a such that, given any integer [=m, equation (1) has a solution u(x)
€ CHUNCHY (V).

From now on we call this conclusion that Mizohaia phenomenon arises at a.

Case 1-2. If there is a point (x’, &)€T in the vicinity of (x,, £°) such that
B has the non-vanishing first derivative at (x’, &) along the null bicharacteristic
strip of A passing through (x’, &’), then, from the result of Case 1-1, Mizohata
phenomenon arises at x’. Therefore, we can assume that:

There exists a neighborhood U of (x,, £°) such that, for every (x/, &)e
U where A=B=0, B has the vanishing first derivative at (x’, &) along the
null bicharacteristic strip of A passing through (x’, &).

Then, we can employ the argument of L. Nirenberg-F. Treves [8] (pp. 8-
25), and we see that there is an analytic phase function ¢(x) of pu(x, ¢.)=0
in a neighborhood of x, such that ¢(x,)=0, ¢,#0, and Ime(x)=0 (cf. [8]
Lemma 4.2). Therefore, by virtue of Lemma A, Mizohata phenomenon arises at
Xo.

Next, assume that (ii) holds. If there is a point (x’, &) in the vicinity of
(%0, &%) such that B changes sign at (x’, &) along the null bicharacteristic strip
of A passing through (x’, &’), then, it is clear that Mjizohata phenomenon arises
at x’. Hence, we can assume that:

There exists a neighborhood U, of (x,, &%) such that B never change sign
along any null bicharacteristic strip of A contained in U,.

We can assume that, in a conic neighborhood @ of (x,, &%, pn(x, &)=
(n—alx, &N)V—(vV/—=Tb(x, Ng(x, &), §=(&,, =+, &n-1), where a(x, &) and b(x, &)
are real-valued, positive homogeneous in & of degree 1, and analytic in a
neighborhood of (x,, &) and g(x, & is positive homogeneous in ¢ of degree
m—1, an analytic function nowhere vanishing in w. &} denotes (&9, ---, £3_)).
Notice that £{+0. Set t=x,, t=&, 7,=8), x'=(x1, "+, Xn_1), alx, &)=
at, x’, &), and b(x, &)=>b(t, x’, &). We may suppose x,=0. Let O bea neigh§
borhood CU, of (x,, &% such that the above expression holds. Let ©, be the
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projection of © in the ¢, x’, &’-space. Consider the integral curves defined by
—gtiz—grade'a(t, x’, &)
(2.1)
o0&’ , a
~a~t—=gradx:a(t, x’, &)
Denoting by I', the integral curve of (2.1) passing through (0, 0, &), we can
assume that:
(a) b(t, x'. &) vanishes identically on I,.
(b) b(t, x’, &) never change sign along any integral curve of (2.1) contained
n O,
We devide our argument in the following two cases:
Case 2-1. In the vicinity of (0, 0, &) there is a point (t,, xi, &) such that
b(ty, xi, £1)=0, but grade b(t,, xi, )#0.
Case 2-2. If b(t, x’, §)=0, then, grageb(t, x’, &)=0.
Case 2-1. From the argument of F. Treves [13] (p. 643), we see that there
is a real-valued analytic solution w(t, x’) of

in a neighborhood of (¢{, x;) such that w(t;, x{)=0 and %w(t{, x)=¢& (#0).

This directly implies that there exists a real-valued analytic phase function ¢(x)
of pn(x, ¢,)=0 in a neighborhood of some point %, such that ¢(%,)=0 and
¢.(x)#0. Hence, Lemma A is applicable, and Mizohata phenomenon arises at %,.
Case 2-2. Following L. Nirenberg-F. Treves [8] (pp. 21-22), we straighten
out the bicharacteristic strips of z—a(t, x/, &) passing through (¢, x/, &, 7).
Namely, let y=(y,(t, x’), -+, ¥»-1{, x’)) be an analytic solution of the equation
gTy=f(y/x’)grade'a(t, x’, J(y/x")€0)

0y, .
such that y|,.,=x’, where j(y/x’):((,;fc’;)jkill,‘::.,,;z._l1 and ‘J(y/x’) is the trans-

posed matrix of J(y/x’). Consider the change of variables (¢, x)—(s, ¥) such
that s=t and y,=y,¢, x') (j=1, -+, n—1). Let us denote by (g, 3), n=(y, -,
Nn-1), the associated new coordinates in the cotangent space. By this trans-
formation we denote by b(s, y, 7) the function b(¢, x’, £’), and set

as, y, p=a(s, x', J(y/x")ym)—<gradya(s, x’, " J(y/x"&), "J(v/x")n>.

Then, r—a(t, x’, &) becomes g—a(s, y, p). We see that, in a neighborhood of
(s, )=(0, 0),

2.2) grad,a(s, y, §&)=0
23 ais, y, £)=0.

Then the bicharacteristic strip of ¢—ada(s, y, ») passing through (so, v,, &, 00)
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is the straight line segment parallel to the s axis such that y=y,, n=§; and
gd=0c, Therefore we see that there is some positive constant ¢ such that

(¢) b(s, 0, &H=0 in J;={s; |s|<d}.

(d) grad,b(s, 0, £&)=0 in J;.

Then, the following two cases are considered:

Case 2-2-1. 3(s,, 0, £))(soEIs) such that grad,b(s,, 0, &)#0.

Case 2-2-2. grad,b(s, 0, £,)=0 in J,.

Case 2-2-1. Treves ([13]; pp. 645-646) showed that there is an analytic
characteristic real surface of P(x, D) in a neighborhood of some point x, name-
ly, he proved that there is a real-valued analytic function ¢(x) such that
Pm(x, ¢2)=0 on ¢(x)=0, where ¢(x,)=0 and ¢,+#0. Therefore, by virtue of
S. Mizohata [4] (Théoréme 3.1), Mizohata phenomenon arises at x,.

Case 2-2-2. It finally holds that

(2.4) db(s, 0, £)=0 in J;.

From (2.2), (2.3), and (2.4), Treves ([13]; pp. 647-648) proved that there is an
analytic phase function ¢(x) of pn(x, ¢,)=0 in a neighborhood of x, such that
0(x0)=0, ¢,#0, and Im(x)=0. Thus, from Lemma A, Mizohata phenomenon
arises at x,.

§3. Fundamental lemma.

Let f(y) be a real-valued continuous function in an open set containing
the origin in R'. For the next section, we prepare the following fundamental
lemma.

Lemma 3.1. Suppose that there exists a solution u=u(x. y) continuous in a
neighborhood @ of the origin and continuously differentiable in w.=w~{x=0},
satisfying the Mizohata equation

ou ou

3.1) W‘HXW:]“(J’)

in ws. Then, f(y) is analytic in oN{x=0}.

This was previously proved in H. Ninomiya [5] (in Japanese). Here we
shall reproduce it. It was inspired by H. Lewy [3].

Proof. Setting u,=u,(x, y)=u(x, y)—u(—=x, y), we see that u, is continu-
ous in w and continuously differentiable in w,, and moreover, u, satisfies (3.1)
in w. with the initial condition u,(0, y)=0. Let P be an arbitrary point (0, y,)
of wN{x=0}. We shall prove that f(y) is analytic at P. We may suppose
9,=0. Let x’ be an another independent real variable. We can consider the
function u,(x, y) that of three variables x, x/, and y. We may suppose |y|<
v, for some positive constant 7,. Let us introduce new real variables » and
6 by x=rcosf and x’=rsinf, where 0<r<r, and |0|<m/2. Setting u*=
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u¥(r, 8, y)=u,(rcos, y), we see that (3.1) can be transformed as follows:
ou¥ sinf ou*

or r a8

Hence, for an arbitrary sufficiently small positive constant e, we see that

cos 8 —tir cosf)a——f( ).

mi2=s out sinf Ju* x/z-¢ ou*
S-ﬂm (cos 05 =750 g0 )40+ S_K,“’COS% d0=(x—2¢)/(y).

Therefore, the integration by parts yields:

V/z—s (CO 06u1 4 COSl9 )dﬂ——[smauf LR

J=m/2+e a
0 n/2-¢
+zWS . roos Gutd0=(z—2¢)f().
Namely, it holds that in {(r, y); 0<r<r,, |y|<r.}
1 0 [2-¢ 0 (=l2-¢ "
o S_m rcos0u1d0+za—g_5/2+srcos0uld0

—zc—"iiu,(rsine, y)=(r—2¢)f(y).

Hence, in view of the fact that u,(0, y)=0 for any y<{|y|<r,}, letting ¢—0,
we obtain the following:

3.2) lig"” 50 *d0+‘—a—-Sx/2 0s Outdf=x ()
, r o ).,.Tcos O0ud Zay mrc urav=mnjiy.

Set R=r%*/2 and define the function u¥*=u¥*R, y) by:

["rcosourdo+ia(’r@as  (R>0)

ut* .
in! r@as (R=0)

Since u** is purely imaginary-valued on the y axis, u}* can be holomorphically
extended into {(R, y); |R|<r3/2, |y|<ro} by reflection principle. Therefore, it
is concluded that f(y) is analytic at y=0.

§4. A counter example to Problem II.

In this section we present an operator £, which zs not hypoelliptic at the
origin such that Liu=0 admits only zero C' solution in a neighborhood of the
origin.

Let f(y) be a real-valued C=(R') function which s not analytic at any point
of an interval (—p, p), where p is a positive constant, and both of a(y) and
b(y) be real-valued analytic functions in R' which vanish only at y=0 of
order=2. And let n be a non-negative integer.

Let us consider the following differential equation in two real variables x
and y:
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0x

First, we find that (1),&4d, is a distribution solution of (4.1), where (1),
denotes the distribution which is constant 1 on the x-space. Therefore, the

@) .r,u=i"—+z'xw+*a<y>g—§~—x%b(y)ﬂy)u:o.

operator _L‘lz—a——l—z'x‘"“a(y)i—xz"b(y)f(y) is not hypoelliptic at the origin.
ox dy

On the other hand, we get the following theorem:

Theorem 4.1. Any C* solution u of (4.1) in a neighborhood of the origin is
identically zero.

Proof. Let u=u(x, y) be an arbitrary C' solution of (4.1) in a neighbor-
hood w of the origin. We can assume that w={(x, ¥); | x|<e, |y|<e}, where
¢ is a positive constant<p.

First of all, we shall prove the following fact:

u(0, »)=0  for every yed.={y;|yl<e}.

On the contrary, suppose that there is some y,#0(y,=J.) such that u(0, y,)+#
0. Then, we can define the single-valued function v=v(x, y) by logu(x, y) in
a neighborhood <V of the point P(0, y,). From (4.1), we have

. 0
4.2) g—z+zxm“a(y)%:x"b(y)f(y).

Consider the change of variables (x, y)—(X, Y) such that X=x%"*'/(2n+1) and
=Sv 1/a(&)dé. This defines a homeomorphism from a neighborhood <V, ,(c<v)
Yo

of P onto a neighborhood of <% of the origin. Then we set v*=v*(X, ¥V)=
v(x, ¥) and f*Y)=b(y)f(y). v* is continuous in V* and continuously differ-
entiable in V¥, =VIN{X=0}. (4.2) becomes the Mizohata equation

ov *
X

in <&v¥,. Therefore, from Lemma 3.1, it follows that f*(Y) is analytic at

=5 i X —f*(Y)

Y =0. Since YEY(y)=S” 1/a(§)d¢ is analytic with respect to the variable y at
Vo

y=1y,, b(y)f(y) is also analytic at y=y, Hence, this implies that f(y) must
be analytic at y=y,, which contradicts our assumption on f(y). Therefore,
we see that u(0, y)=0 in J.\{0}. Therefore, by the continuity of u(x, y), we
conclude that u(0, y)=0 in J..

Now, let ¢ be an another independent real variable. We can consider the

function wu(x, y) that of the variables x, y, and ¢. Then, from (4.1), since

%—?:0, we have the following equation in X R}:

ou inet ou _ ou on .
4.3) a—-l-lx (a(y)a—y-l—T)—x b(y)f(»)u=0.
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Let U=U(t, y) be a real-valued analytic solution of
oU
ox
in a neighborhood of the origin such that U(0, y)=y. Let us consider the
change of variables (x, y, {)—(x, Y, t) such that x=x, Y=U(, y), and t=t.

(4.4) +a<y>3—g=0

. 0 . . .
Since WU(O, ¥)=1, by the implicit function theorem, y is expressed by y=

(¥, )(¥(Y, 0)=Y), where y(Y, t) is analytic in a neighborhood {(Y, #); |V |<e,,
[t] <e;}(0<e;<e) of the origin. We denote by u*—=u*(x, Y, t) the function
u(x, (Y, 1), and F(Y, t) the function b(y(Y, )f(¥(Y, t)). Then, u*eCY (9D.,)
and F(Y, 1)eC=(9.,), where 9. ={(x,Y,1); |x|<e, |Y|<ey, |t|<e}. From
(4.3) and (4.4), it follows that

ou*

; 4n+lau* 2n * H
a—x-+zx T—x FY, Hu*=0 in 9,

u*(O’ Y’ t)=0 in {(Yy t); IY]<slr It|<5|}

Therefore, by virtue of the wuniqueness theorem ([6], [12]), for every Y such
that |Y|<e,, there is a constant &(Y)(0<e(Y)=Ze¢;) such that u*=0 in {(x, ?);
|x|<e(Y), [t|<e(¥)}. On the other hand, £, is elliptic for xy+0. Therefore,
in view of the fact that u(x, Y)=u(x, y(Y, 0))=u*(x, Y, 0), by virtue of unique
continuation property of elliptic operator, we conclude that ©=0 in .

Remark. We refer to H. Saltzmann-K. Zeller [10] concerning on the existence
of function having the property such that it is not analytic at any point of an
interval.
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