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Differential operators on locally compact groups

By

Takashi EDAMATSU

Introduction

The differential operators on a C=-manifold are closely related to the dis-
tribution theory on it and can be defined simply by local character (e.g. [7]).
F. Bruhat [5] showed that a notion of differential operators can be introduced
also on any locally compact group G on the basis of his distribution theory.
The differential operators in Bruhat’s sense act on his space 9(G) of compactly
supported regular functions, and take a quite natural form consistent with those
on Lie groups ([5], p. 66). But his very method of defining them seems somewhat
intricate and unrefined. In the present paper we intend to get the “differential
operators” on G rather by local character. Here, as the base space on which
they act, we take the C=-class &£.(G) (see below) on G rather than 9(G) or
&(G), the Bruhat space of all regular functions.

The substance of the n-times derivable distributions on G in Bruhat’s sense
(n=o0, 1, 2, ---) ([5], p. 67) has been left unknown in case G is not locally con-
nected. On the other hand, we have the C"-classes on G, denoted by &,.(G)
(n=o0, 1, 2, ---) and defined by using one-parameter subgroups of G, as natural
generalizations of those on Lie groups. They were first introduced in J. Riss
[12] for the abelian case and lately generalized to any G in H. Boseck, G. Czi-
chowski and K.P. Rudolph [3].¢? &(G)is included in €.(G). Let 9D,(G) be the
linear subspace of &,(G) consisting of the compactly supported functions. We
equip each 9,(G) (resp. £€,(G)) with an inductive limit (resp. projective) topology
analogous to that of 9(G) (resp. &(G)). The differential operators on G in our
sense are defined as the support-decreasing continuous linear maps on £.(G) or,
what is substantially the same (see section 2, 1), on 9.(G). The purpose of the
present paper is twofold. One aim is to study the differential operators thus
defined in comparison with Bruhat’s ones. And the other is to show that for
each n, the n-times derivable distributions in Bruhat’s sense just coincide with
the functions in £,(G) no matter G is locally connected or not.

The paper consists of three chapters. Chapter 0 arranges some classical
facts concerning the general Lie theory on locally compact groups ([9]) and
their dimension. The contents of Chapters 1 and 2 are as follows.

The arguments on 9,(G) and &,(G) in [3] are not necessarily enough for

(1) In the notation of [3], &€,(G) is designated as C3(G; C) (n=oo, 1, 2, ---).
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us. For instance, the topological consideration on 9,(G) was made there within
the (LF)-space theory by assuming the first countability of G. So we had
better reconstruct the theory of these spaces in a form appropriate for our pur-
pose and so as to apply to any G. This somewhat tiresome work is performed
in Charpter 1 (sections 1.1-1.5).

Let 9(G), €'(G), D(G) and €4(G) be the topological dual of the spaces
concerned. They are equipped with the strong topologies of dual. 9(G)
(2&’(G)) is nothing but the space of Bruhat’s distributions. If G is abelian,
DL(G) is the space of Riss’ distributions ([12]). In 1.5 the relations among
these four spaces are also clarified. Especially, we shall have £L(G)S€'(G)
as set, and €L(G)S&(G) if G is not locally connnected. In 1.6, the last
section of Chapter 1, it is shown that €.(G) (resp. €(G)) is a topological alge-
bra under the convolution and (algebraically) isomorphic to the algebra of all
left invariant continuous linear maps on &.(G) (resp. &(G)).

Chapter 2 is concerned with the differential operators. Section 2.1 is de-
voted to the definition. It is worth noting that our definition by local character
reflects the property of the continuous derivations on &€.(G) and 9.(G) (see
Lemmas 2.1 and 2.3). The basic elements in our treatment are, in view of its
nature, the derivations associated to one-parameter subgroups of G. Sections
2.2 and 2.3 are devoted to a study of them. The totality of our differential
operators on G is denoted by D(G). D(G) is endowed with a reasonable topo-
logy (Lemma 2.7 and Definition 2.6) which makes D(G) a topological algebra.

The main results of the paper are Theorems 2.3 and 2.4. Theorem 2.3
gives to the elements of D(G) an explicit expression, similar to that of Bruhat’s
differential operators, in terms of the functions in €.(G) and the derivations
associated to one-parameter subgroups. This theorem is obtained essentially by
taking after the arguments in [5], n°12 (2.4, 2.5). From the observation of the
process to reach this theorem we can see that the differential operators in
Bruhat’s sense are nothing but the support-decreasing continuous linear maps on
D(G) (or, what is the same, on &(G)) and that they form substantially a subset
of D(G) (2.7). We can determine, among all elements of D(G), the derivations
and the left invariant elements (2.6).

Theorem 2.4 is not only significant by itself but also necessary for later
use. Let &L(G; e) (resp. €(G; ¢)) be the topological subalgebra of €4L(G) (resp.
&’(G)) of the elements with support in {e}, e being the idantity of G, and D,(G)
the topological subalgebra of D(G) of the left invariant elements. Theorem 2.4
asserts that &4(G;e) and &'(G;e) coincide with each other as topological
algebra (in contrast to the fact that &L(G)S&(G), G being locally non-
connected) and that they are topologically isomorphic to D,(G). These facts
are needed in order to combine our discussions with ones in [5], and used in
2.8 and 2.10. In 2.8 we describe the center of D,(G) by means of the “adjoint
representation” of G, as in the case of Lie groups. In 2.10. the final section,
it is proved that the n-times derivable distributions in Bruhat’s sense are no
other than the functions in &,(G) (n=w0, 1, 2, ---). To do so, the notion of the
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order of differential operators is also needed. We discuss it in 2.9.

In [6], where G is compact, a class D(G) of differential operators was
considered. The relation between D(G) and D(G) is explained in 2.9. The
contents of the sections 1.1-1.5, 2.2, 2.3 and 2.8 generalize all results in [6]

to any locally compact G.

Notation. G denotes a locally compact Hausdorff group (LC group) with
identity e and a fixed left Haar measure dg. R (resp. C) denotes the field of
real (resp. complex) numbers with the usual topology. For a C-valued function
f on G and x=G, the functions .f, f,, f and f are defined by .f(3)=f(xy),
f(0=f(x), f(»)=f(y"") and f(y)=F() (complex conjugate) (yEG). 4o de-
notes the modular function on G such that d¢dg is a right Haar measure. R(G)
denotes the totailty of one-parameter subgroups of G, where a one-parameter
subgroup means a continuous homomorphism of the additive group R into G.
¢(G) denotes the connected component of ¢ in G. If N, N’ are closed normal
subgroups of G s.t. NSN’, then =% denotes the canonical homomorphism of G
onto G/N, and zn%.5 that of G/N onto G/N’. For a closed subset /" of G,
Com (I") denotes the totality of compact subsets of I". For a set X of C-valued
functions on G, X* denotes the subset of X consisting of the R-valued non-
negative functions.

Chapter 0. Preliminaries
0.1. The Lie algebra of G.

Definition 0.1. H,(G) denotes the totality of compact normal subgroups N
of G such that G/N is a Lie group. Here every discrete group is counted as
Lie group. G is called Lie-projective or simply pro-Lie if N{NeH,(G)}={e}.

H,(G) is closed under the formation of finite intersections of the members
(e.g. [6], n°1). So it is lower directed under inclusion. Throughout the paper
we consider H,(G) as a directed set in this sense. Note that the Lie-projectivity
of G is equivalent to that for each neighbourhood V of e, there exists an N&
H(G) s.t. N&V. For any N, NeH/(G)s.t. NSN’, let n%:» denote the cano-
nical homomorphism of G/N onto G/N’. Then an inverse system {G/N, 7§y}
of Lie groups is obtained. A Lie-projective G is isomorphic to the limit of this
system: G=lim{G/N, =% y}. The isomorphy is given by the map

0.1) t¢g: xEG —> (ﬂ?v(x))zveﬂom) ,

where 7% denotes the canonical homomorphism of G onto G/N. Not all LC
groups are Lie-projective. But, by the well known approximation theorem, G
is Lie-projective if it is almost connected (i.e., G/c(G) is compact, ¢(G) denot-
ing the identity component of G) ([10], p. 175). Besides, any G contains an
almost connected (hence Lie-projective) open subgroup (loc. cit. p. 54).

We define the Lie algebra of G following R.K. Rashof [9]. First suppose
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G is Lie-projective: G=lim{G/N, n§ y} (N, NeH(G), NEN’). Then an in-
verse system {L(G/N), d=$%+y} of finite-dimensional locally convex real Lie
algebras is obtained, where L(G/N) is the Lie algebra of G/N, a Lie group,
and dz%y the differential of z#%. 5. Thus, as its limit, we have a locally convex
real Lie algebra g(G) (infinite-dimensional in general): g(G)=lm{L(G/N), dnl n}.
The following lemma is proved by the sujectivity of every dz$.y and the
theory of linearly compact vector spaces.

Lemma 0.1 ([9], Theorem 2.3). Let G be Lie-projective. The canonical pro-
Jection of g(G) into each component L(G/N) (N H\(G)) is surjective.

Now let G be arbitrary. Since ¢(G) is Lie-projective, g(c(G)) can be defined :
g(c(G)=Lim{ L(c(G)/K), dn°;} (K, K'€ H\(c(G)), KSK').

Definition 0.2. Any locally convex real Lie algebra isomorphic to g(c(G))
is called the Lie algebra of G and denoted symbolically by L(G).

This definition generalizes the notion of Lie algebra of Lie groups to any
LC groups. Let us note that G and ¢(G) have the same Lie algebra.

Remark 0.1. If G is Lie-projective, then g(G)=g(c(G)). Hence g(G), as
well as g(c(G)), gives a realization of L(G).

Before seeing this, we set two simple lemmas.

Lemma 0.2 ([10], p. 192). Let N be a compact normal subgroup of G. Then
78(c(G))=c(G/N).

Lemma 0.3. Let H be a lower directed family of compact subgroups of G
s.t. N{KeH}={e} (i.e., each neighbourhood of e contains some K& H). Then,
for each N H\(G), there exists a KEH s.t. KSN.

Proof. Obvious since G/N, a Lie group, has no small subgroups. q.e.d.

Proof of Remark 0.1. For NeH,(G), put N=NNc¢(G). Then Ne Hy(c(GY)
since C(G)/NEC(G)N/N (a Lie group as a closed subgroup of G/N). Put H=
{ﬁ;NEHo(G)}. Then, as well as H,(G), H is lower directed and satisfies
M KeH}={e}. Hence, by Lemma 0.3, it is cofinal in Hy(c(G)). Therefore,
for our proof, it suffices to show that g(G) is isomorphic to the locally convex
Lie algebra Lir_n{L(c(G)/ﬁ), dn’i%} (N, N'H(G), NeN’), which we denote by
g’'(¢(G)). Now, for each Ne Hy(G), let fy denote the canonical isomorphism of
c(G)/1\7 onto ¢(G)N/N. Then we have the following commutative diagram:
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fzv'l lf;v (N, NeH(G), NcN’).

¢(G)N'/N' D — ¢«(G)N/N

TN'N

Here ¢(G)N/N (resp. ¢(G)N'/N’) is the identity commponent of G/N (resp. G/N’)
(Lemma 0.2). Therefore this diagram yields the following commutative one:

dnc(G

L(e(G)/ Ny «——8— [(e(G)/ Ny
dil j(df,v (N, NNeHyG), NcN').

L(G/Ny «<——— L(G/N)

daf

Since dfy for each NeH,(G) is an isomorphism of L(c(G)/]\~/) onto L(G/N),
this diagram shows that g’(c(G)) is isomorphic to g(G) under the map

Y idven,ory€8'(c(G)) —> (df )Y wen,rE9(G) ,
completing the proof. q.e.d.
From the definition we see that the locally convex linear space L(G) is
minimal, i.e., isomorphic to R’ for some power I. Therefore, in particular,
it is a Baire space and also barrelled. Let us note that L(G) has a topological

linear base {X®};c; (i.e., the map (¢))ic;ERT'—ic;c: XD (unordered sum) is a
topological linear isomorphism of R’ onto L(G)).

0.2. Exponential map and one-parameter subgroups. First suppose G is
Lie-projective. For X=(Xy)yen,6>E9(G) with L(G/N)-component Xy we have

7% v(eXpasv)=eXDPo/n (AT v) Xw
=expe;v Xy (N, NeH(G), NeN'),

where each expg,» denotes the usual exponential map of L(G/N) into G/N, a
Lie group. Hence (expe/n Xn)nveny,erEte(G). Thus we can define a map of g(G)
into G by

0.2) Xr—> ' ((expern Xn)nenrye) -
Now let G be arbitrary. Then a map of g(c(G)) into G is defined as
0.3) Y > cloy((eXPeceryi kY k) renycw»)

where Y'=(Y k) kenyccenE8(c(G)).

Definition 0.3. For any LC group G, expgs denotes the map of L(G) into
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G which is given by (0.3) if L(G) is realized by g(c(G)).
Since each exp.yx (K€ H(c(G))) is continuous, it is plain that exp¢ is

continuous. ' ‘Note that the maps exps and exp,.., are the same. In particular,
expes maps L(G) into ¢(G).

Remark 0.2. Let G be Lie-projective. If L(G) is realized by g(G), expe is
given by (0.2).

Proof. Define the map exp’ (resp. exp”) of g(G) (resp. g(c(G))) into G by
(0.2) (resp. (0.3)). Suppose that X=(Xw)yemy,>E9(G) corresponds to Y=
(Y ©)kenqee»€8(c(G)) under the isomorphism of g(c(G)) onto g(G) established
in the proof of Remark 0.1. Then, for our proof, it suffices to show that
exp’ X=exp”Y holds. For each N H,(G), let P§ denote the canonical projec-
tion of ¢¢(G) onto G/N. Then n§=P§-cc. Hence

*) 7% (exp’ X)=expe/n Xn .
Similarly we have for K& H(c(G)),
**) %% (exp”Y)=expewyx Yk -

Now retain the notations as in the proof of Remark 0.1. Then, by assumption,
Xy=Wdfn)Yy (NeH\(G)). Also, it is evident that fNozr%,‘G’zyrS’v (N Hy(G)).
By these together with (*) and (**) we have

n§(exp’ X)=expe;n Xy=eXpe/n(dfn)Y ¥
=fn(Expeey Y #)=fn(n5®(exp”Y))=n$(exp”Y).

Since N (€ H)(G)) is arbitrary, this shows that ¢g(exp’ X)=¢g(exp”Y), i.e., that
exp’ X=exp”Y. q.e.d.

The above (*) is used later on. So we record it formally: Let G be Lie-
projective. Then, for X=(Xy)nen,€8(G),

0.4) n§(expeX)=expe/n Xy,

Lemma 0.4. The map X< L(G)—expstX (t real parameter) is a bijection of
L(G) onto R(G), the set of all one-parameter subgroups of G.

Proof. Since exps=eXp.w>, and obviously R(G)=R(c(G)), we can assume
that G is connected. For X=(Xn)ven,>E8(G), put ax(t)=(expe/ntXn)nen s
(t<R). Then the map X—ay gives a bijection of g(G) onto R(cs(G)). Hence
the lemma. q.e.d.

On the basis of this lemma we make the following convention which is
kept throughout the paper.

Convention. R(G) is regarded as a locally convex real Lie algebra isomor-
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phic to L(G) under the bijection X—expgstX of L(G) onto R(G).

Thus, if a, BER(G) are given as a(t)=expetX, B(t)=expstY (X, YEL(G),
teR), then (aa+bp)t)=expst(aX+bY) (a, beR) and [a, B1(t)=expet[ X, Y.
The locally convex linear space R(G) is minimal and so Baire and barrelled.
It is plain that the map (a, t)€ R(G)X R—a(t)eG is continuous.

Using Lemma 0.1 and (0.4), we have the following

Lemma 0.5. ([9], Theorem 3.5). The set {expsX; X L(G)} generates a
dense subgroup of c(G).

0.3. Differential of group homomorphisms. Let § be a continuous homo-
morphism of G into another LC group G’. Then, for each XeL(G), the map

teR—0 (expst X) belongs to R(G’). Therefore, by Lemma 0.4, one has a uni-
que element X’ L(G) s.t.

0.5) 0 (expgt X)=expet X’ (teR).

Definition 0.4. Let G, G’ and 0 be as above. The map carrying each Xe
L(G) to X’ L(G’) determined by (0.5) is called the differential of § and denoted
by dé or 4.

From 6(expgst X)=expe t0(X) (t€R, X< L(G)), one has
(0.6) ker ={Xe L(G); expstX<ker 8 for all teR}.

For a composition 7.6 of group homomorphisms, (5<8) =70 holds. Let us
note that, in case G is Lie-projective, #§ for each N H,(G) behaves as the
canonical projection of ¢(G) onto the component L(G/N) (cf. Lemma 0.1). In
fact, by (0.4), =% (expetX)=expa/ntXy t€R) for X=(Xy)yen,»€4(G), hence
#5(X)=Xn.

Lemma 0.6.> Let G, G’ and 8 be as above.

(i) 6 is a continous Lie algebra homomorphism of L(G) into L(G’). The
image 0(L(G)) is closed in L(G’) and 6 is open as a map to 6(L(G)).

(ii) If ker(@|.e)y)={e}, 0| denoting the restriction of 8 to c(G), then
ker 6={0}. If 6(c(G)=c(G"), then (L(G))=L(G").

Proof. Evidently we can assume that G and G' are connected. Let us
realize L(G), L(G') by g¢(G), g(G’) respectively.

(i): Let N'€H,G’). Since the Lie group G’/N’ has no small subgroups,
we can choose N H,y(G) s.t. NSker (n%.-6). Then n§. -6 induces a continuous
homomorphism of G/N into G’/N’, which we denote by 5. Since =% -0=n-z%,
one has 7% -0=7-7%. Here 7% behaves as the canonical projection of g¢(G)
onto L(G/N), as noted above, and 7 is evidently a continuous homomorphism

(2) Cf. [9], Theorem 3.11 and Lemma 3.12.
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of L(G/N) into L(G'/N’). Hence it follows that 7.6 is a continuous homo-
morphism of ¢(G) into L(G’/N’). Since N'(€ Hy(G)) is arbitrary, this just shows
that 4 is a continuous homomorphism of g(G) into g(G’). The rest of (i) now
follows automatically since the locally convex space g(G) is minimal (see [4],
Chap. 4, §1, exercise 13).

(if): The first half is obvious from (0.6). Let us see the second half. Let
N'eH\(G). Since 6(G)=G' by assumption, the map 7 introduced above carries
G/N onto G'/N’ in the present case. Since G/N and G’/N’ are connected Lie
groups, this implies that 7 maps L(G/N)onto L(G’'/N’). Hence 7§ 0(=%-7z%)
maps g¢(G) onto L(G'/N’). Since N’ is arbitrary, this shows that 6(g(G)) is
dense in g(G’). But, by (i), 6(g(G)) is closed in g(G’). Hence 6(g(G))=g(G").
q.e.d.

Corollary 1. Isomorphic LC groups have the same Lie algebra.

Corollary 2. 6(L(G)=L(G)/ker 6 (as topological Lie algebra). Here ker 6
s given by (0.6).

If R(G), R(G') are employed for L(G), L(G’) according to our convention,
then

0.7) 0(a)=0-a (aeR(G)).

Hence,
Corollary 3. If 0(c(G))=c(G’), then R(G')={0-a; acR(G)}.

0.4. Lie algebra of subgroups and quotient groups. For any closed sub-
group H of G, put

(0.8) Ly (G)={XeL(G); expstXeH for all teR}.

(Note that the right side of (0.6) is now designated as Lye,¢(G).) Plainly, R(H)
consists of all elements of R(G) with orbit in H. Therefore, under our iso-
morphy between L(G) and R(G), Ly(G) and R(H) are in correspondence.

Lemma 0.7. Let H be a closed subgroup of G, and j the canonical injection
of H into G.
(i) Lu(G) is a closed Lie subalgebra of L(G) isomorphic to L(H) under j.
(i) If H is normal in G, then Ly(G) is an ideal of L(G).
(iil) If H is compact and normal in G, then

(0.9) L(G/H)=L(G)/L 4(G) (as topological Lie algebra),
(0.10) R(G/H)={n%a; ac R(G)}.

Proof. (i) is easily seen from j(expputY )=expstj(Y) (t€R, Ye L(H)) and
Lemma 0.6. If H is normal, then L ,(G)=ker #% by (0.6). Hence (ii). If,
furthermore, H is compact, then #n%(c(G))=c(G/H) (Lemma 0.2). Therefore
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Lemma 0.6 and Corollaries 2 and 3 to it yield (iii). qg.e.d.
Note. Let H be a closed normal subgroup of G, and either G or H be

connected. Then, even if H is not compact, #%(c(G))=c(G/H) holds, and hence
(0.9) and (0.10) also hold. But this fact is not used in the sequel.

Lemma 0.8. Suppose G is Lie-projective. For each neighbourhood <V of 0
in R(G), there exists an Ne H,G) s.t. RIN)SV.

Proof. 1t suffices to see that each neighbourhood <V of 0 in L(G) includes
Ly(G) for some NeH,(G). But this is clear since L y(G)=ker #§ and 7%
behaves as the canonical projection of g(G) onto L(G/N). g.e.d.

0.5. Adjoint representation.

Definition 0.5. For each x=G, Ade(x) denotes the differential of the inner
automorphism y—xyx~' of G.

That is, Adg(x) is determined by x(expgtX)x '=expst Ade(x)X (t€R, X&
L(G)). In view of Lemma 0.6, Ads(x) is a topological automorphism of L(G).
The map Adg: x&G—Adg(x) gives a linear representation of G on L(G) in the
algebraic sense.

Lemma 0.9. For each X L(G), the map x—Ade(x)X of G into L(G) is
continuous.

Proof. First suppose G is Lie-projective. Realize L(G) by g(G). For X=
(Xy)venyeE8(G) and teR, we have

te(expet Adg(x)X)=ta(x(expet X)x™")
=(xy(expe/nt Xn)X ¥ ) nen (by (0.1) and (0.4))
=(expe/nt Ade/v(x¥) Xn)neny o

where xy=n%(x), and each Adg,y denotes the usual adjoint representation of
the Lie group G/N. Hence, again by (0.1) and (0.4), 7§ (Ade(x)X)=Adg/x(xx)Xn
for all Ne Hy(G). Thus

0.11) AdG(X)X:(AdG/N(XN)XN)NeHO(G) .

This evidently shows that Adgs(x)X depends on x continuously.

Next let G be arbitrary. Take a Lie-projective open subgroup G, of G
(see 0.1). We have only to show that Adg(x)X is continuous on each right G-
coset G,x, of G. Since ¢(G,)=c(G) and so L(G,)=L(G), we have eXps=eXp¢,.
Hence Ade(x)=Adg,(x) if x&G,. Therefore, for x€G,,

Ade(xx0)X=Ade,(x)(Ade(x0) X) .

By what has already been shown, this depends on x(€G,) continuously. Thus
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the lemma has been proved. g.e.d.
Since L(G) is barrelled, we have the following

Corollary. The representation Ade of G on L(G) is continuous (i.e., the
map (x, X)EGX L(G)—Ads(x)Xe L(G) is continuous).

It is needless to say that Adg(x) (x&G) acts on R(G) as Ade(x)a=xax™!
(ae R(G)), where xax™' (€R(G)) is defined as (xax™') )=zxa(t)x™* ¢t<R).

0.6. The dimension of G. By dimension of a compact space we mean its
covering dimension (e.g. [11], §16). The next lemma is elementary.

Lemma 0.10. Let S be a compact Hausdorff space. (i) The dimension of a
closed subset of S does not exceed that of S. (ii) Let A, B be closed subsets of S
s.t. AUB=S. Then the dimension of S equals the greater of the dimensions of
A and B. (iii) Let Z be a 0-dimensional (i.e., totally disconnected) compact Haus-
dorff space. Then the dimension of the product space SXZ equals that of S.

Let A, B be any two compact subsets of G with non-void interior. Then
each of them is covered by a finite number of translations of the other. There-
fore, by (i) and (ii) of Lemma 0.10, one sees that they have the same dimen-

sion. So we make the following

Definition 0.6. The identical dimension of all compact subsets of G with
non-void interior is called the dimension of G.

This definition is consistent with the dimension of a Lie group in the usual
sense. Indeed, an n-dimensional Lie group contains an n-cell as a compact

neighbourhood of its identity.
As for the proof of the next lemma, see the verification of [11], Theorem 69.

Lemma 0.11. Suppose N H,(G). Then there exists a subset L of G ful-
filling the following three conditions: (i) eL; (i) L is homeomorphic under
7% with an open neighbourhood of n$(e) in G/N (hence LN is an open neighbour-
hood of e in G); (iii) the map (y, 2)E LXN—yz LN is a homeomorphism. Be-
sides, if N is totally disconnected, such an L can be chosen so as to satisfy one
more condition: (iv) the map (z%(y), 2)€x$(LYXN—yze LN is a local isomor-
phism of (G/N)XN into G.

Lemma 0.12. Let d(G) be the supremum (finite or infinite) of the dimensions
of all cells in G. Take a pro-Lie open subgroup G, of G (see 0.1) and put r(G,)
=sup{dim G,/N; NeH\(G,)}. Then

dim G=d(G)=r(G,)=dim L(G).
Proof. (1) First we prove dim G=d(G)=#(G,) by showing dim Gz=d(G)=
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d(G,)=7(G,)=dim G,=dim G. Each cell in G is covered by a finite number of
translations of a compact neighbourhood of e. Hence, by (i) and (ii) of Lemma
0.10, one has dim G=d(G). d(G)=d(G,) and dim G,=dim G are obvious.
Furthermore, in view of the condition (ii) of Lemma 0.11, d(G,)=dim G,/N
holds for any Ne Hy(G). Hence d(G,)=#(G,). Therefore it remains now only
to show #(G,)=dim G,. To do so we can assume that 7(G,;)<eco. Then there
exists an Ny Hy(G,) s.t. dim G,/N,=r(G,). We now show that N, is totally
disconnected (cf. [10], p. 182). Suppose NeH,(G,) and NEN, Then
(Gy/N)/(No/N)=G,/N,. Since G,/N is a Lie group and N,/N is its closed
normal subgroup, this demands by the choice of N, that N,/N is discrete.
Hence N is open in N, Therefore ¢(N,)EN. Since G, is Lie-projective, N
can be chosen arbitrarily small. Thus, after all, ¢(Ny)={e} (i.e., N, is totally
disconnected). By Lemma 0.11 G, is now locally isomorphic to (G,/Ny)X N,.
Therefore, by (iii) of Lemma 0.10, we see that G,/N, and G, have the same
dimension (i.e., (G,)=dim G,).

(II) Next we prove r(G,)=dim L(G). Since L(G)=L(G,), it suffices to show
#(G,)=dim L(G,). For any NeH,G), one has L(G,/N)=L(G,)/L x(G;) ((0.9)).
Since G,/N is a Lie group, it thus follows that dim G,/N=dim L(G,/N)<
dim L(G,). Hence r(G,)<dim L(G,). For the proof of the reverse inequality,
we can assume that »(G,)<<eco. There exists in this case a totally disconnected
Ne H|(G,) (see (I)). Then, since Ly(G,)=L(N)={0} (Lemma 0.7), one has
dim L(G,)=dim L(G,/N)=dim G,/NZr(G,), completing the proof. q.e.d.

In (I) of the above proof we verified incidentally the following

Lemma 0.13. Suppose G is finite-dimensional and Lie-projective. Then there
exists a totally disconnected N& Hy(G).

A well known consequence of Lemmas 0.11 and 0.13 is this: a finite-dimen-
sional LC group is a Lie group if and only if it is locally connected.

0.7. Compact normal subgroups with finite co-dimension.

Definition 0.7. H(G) denotes the totality of compact normal subgroups N
of G such that G/N is finite-dimensional. H,(G) denotes the subset of H(G)
consisting of all Ne H(G) such that G/N satisfies the first countability axiom.

Needless to say, one has Hy(G)E H,(G). If G is almost conneted (hence o-
compact), G/N for NeH,(G) is second countable (i.e., first countable and ¢-
compact). Note that if G is finite-dimensional, H(G) consists of all compact
normal subgroups of G, containing in particular the subgroup {e}.

Lemma 0.14. Suppose G is Lie-projective. Then, for a compact normal sub-
group N of G, the following three statements are equivalent: (a) NeH(G); (b)
c¢(N)EH(G); (c) c(N)EN for some N, Hy(G).
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Proof. The verification is the same as in the compact case (see [6], Lemma
3.1) if we keep Lemmas 0.7 and 0.13 above in mind. g.e.d.

Since H,(G) is lower directed, this lemma yields the following

Corollary. Let G be Lie-projective. Then H(G) is lower directed and {c(N);
NeH\(G)} is cofinal in it.

Lemma 0.15. Suppose G is Lie-projective. The following three statements
are equivalent: (a) H(G)=H\G); (b) ¢c(N)e H(G) for every NeH\(G); (c) G is
locally connected.®

Proof. See the proof of [6], Lemma 3.2. g.e.d.

Lemma 0.16. (i) If G,, G, are pro-Lie open subgroups of G, then so is
GiNG,.

(ii) Let G,, G, be pro-Lie open subgroups of G s.t. G,SG,. Then {Ne
Hy(G,); NSG,} (resp. {NEH(G,); NSG,}) is cofinal in both of Hy(G,) and Hy(G,)
(resp. H(G,) and H(G))).

Proof. (i) is obvious. (ii) follows from Lemmas 0.3 and 0.14. g.e.d.

Chapter 1. Spaces of differentiable functions

1.1. The “C™-classes” on G (n=o0, 1, 2, ---). Riss [12] introduced the no-
tion of C"-classes on abelian LC groups. Its generalization to the non-abelian
case was attained in the book [3] by H. Boseck, G. Czichowski and K. P.
Rudolph. In this section we sketch this generalization in somewhat modified
arguments in parallel with our treatment of the compact case in [6].

Definition 1.1. Let f be a C-valued function on G and a€ R(G). Suppose
the function teR— f(xa(t)) (resp. f(a(—1t)x)) is differentiable at 0 for each x=G.
In this case we define the function d{f (resp. df) on G as

1) 4 f(0="4 S xa)|

(resp. a0 /(=% fla-00)| ) (x€6),
t t=0
and call it the right (resp. left) derivative of f with respect to a.

Definition 1.2. &,(G) denotes the set of all C-valued continuous functions
on G. For each n=1,2,3, -, &5°(G) denotes the set of all functions f in
&o(G) such that the right derivatives of higher order d} ---d{)f exist and be-
long to &(G) for any ay, -, a,€R(G) with 1=<k<n (hence &(G)28&72(G)).
We put &8(G)=N{e(G); n=1, 2, 3, ---}. For each n=1, 2, 3, --- ,00, the set

(3) Cf. [2], Proposition 5.
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eP(G) is defined similarly using the left derivatives instead of the right ones.
Suppose G is abelian (resp. a Lie group). Then, of course, €7’(G) and
&Y G) coincide with each other for each n(=o0, 1, 2, ---) and give the C"-class
on G in Riss’ (resp. the usual) sense. We now intend to prove this coincidence

for any G.
The first lemma is straightforward.

Lemma 1.1. (i) Let f, g€&((G). Then af+bg (a, bC), fg, f, 2/, and
fzy (x0EG) belong to £{°(G). And, for a=R(G), there hold

d9(af+bg)=ad P f+bdg,
dP(fe)=(dP fg+/(dPg),
d9f=df),
A (2o /)=2,d8 ),
AP )= D1, Vs,

The corresponding facts hold also for the functions in €{°(G).

(i) A C-valued function f on G belongsto €(G) if and only if fE&®(G).
In this case, for acR(G),

(1.2) dPF=d9f).

Corollary. Each of €°(G) and €P(G) (n=o0, 1, 2, --+) is an algebra over C
under the obvious algebraic operations, and stable under the left and the right
translations and the complex conjugation. The inversion f—f induces an algebra
isomorphism between £(G) and €L (G).

Definition 1.3. For each C=Com(G), Com(G) being the set of all compact
subsets of G, define a seminorm P, on the C-linear space &,(G) as

Pe(N)= gléglf(x)l (feelG)).

We topologize £,(G) by {P;; C€Com(G)}. For any Ce€Com(G) and a;, -+, a,
ER(G) (k=1, 2, 3, -+-), define a seminorm Pg;q,....a, (resp. P¢v~%¢) on the C-
linear space &{”(G) (resp. &P(G)) as

Pe.aya,()=Peld) - d&yf)  (fEEP(G)
(resp. Per“k(f)=Pc(d) - d)f)  (f€&P(G)).
We topologize each &°(G) (resp. €8(G)) (n=o0, 1, 2, ---) by the family
B ={Pc, Pc.a..a; CECom(G), @y, -, @, ER(G) (1Sk<n+1)}
(resp. FL={P¢, Per%; CeCom(G), a;, -+, a, €R(G) (1=<k<n+1)})

For each compact subgroup N of G, we define the continuous peojections
(i.e., idempotent linear maps) py and gy on &,(G) as
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ox(NR={ fGx)dyy,
an =] fondwy (fee(6), 206,

where dy denotes the Haar measure on N s.t. SNszl. If N is normal, these

two coincide with each other. One has pyoy=pnypnv=pn if NEN'. Differ-
entiation under the integral sign immediately shows that py (resp. ¢y) induces
a continuous projection on each €(G) (resp. £€7(G)) (n=o0, 1,2, ---).

Lemma 1.2. Let H be a lower directed family of compact subgroups of G
such that \{NeH}={e}. Then, for each f€E(G) (resp. EP(G)) (n=00,1,2, --+),
the net {ay(f); NEH} (resp. {pn(f); NEH}) converges to f in £(G) (resp.
eP(G)).

Proof. For any CeCom(G) and a,, -+, a,€R(G) (0=<k<n+1), we have
Pc.a,,--..ak(UN(f)—f)

= sup || {4 ~ dQFON—dR - dQ R dny |

rel

o) ... 4w AT .. AWM
§§gg§g}3 ag) - dd flyx)—ds;) da,,f(x)l.
Hence the lemma. q.e.d.
Let N be a compact normal subgroup of G. For each n=c, 1, 2, ---, let

us put
EP(G, N)=0x(EP(G) (resp. (G, N)y=px(EP(G))).

This is identical with {f€&P(G); ,f=f (yeN)} (resp. {f€&P(G); fu=Ff
(yeN)}) and hence a subalgebra of £7(G) (resp. €(G)). In virtue of (0.10)
we have the following

Lemma 1.3. Let N be a compact normal subgroup of G. A C-valued func-
tion g on G/N belongs to (G/N) (resp. €(G/N)) if and only if genl<s
EM(G, N) (resp. &{(G, N)). In this case, for a€ R(G),

(1.3) di(g-nf)=(dP g)-n5
(resp. dP(gonf)=(dP g)°7%),
where a=z%(a).
Corollary. Let N be as above. For each n=o, 1,2, ---, the map g—g-=$%

sets up an algebra isomorphism of EJ(G/N) (resp. €P(G/N)) onto £°(G, N)
(resp. €P(G, N)).
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Lemma 14. Let f€&{(G) (resp. &(G)). Then the map a—df (resp.
d¥f) of R(G) into £y(G) is R-linear.

Proof. (I) First suppose G is Lie-projective. For each Ne Hy(G), put
fv=ay(f) and take gy=&™(G/N) s.t. fy=gnn% (Lemma 1.3). Then, since
&M(G/N) is the usual C"-class on the Lie group G/N, we have, for a, f=R(G)
and a, bER,

d&’2+bpf1v=(dé’%+aﬁg1v)°ﬂ?v=(adé"g1v+bd§”g1v)°7t?v
=ad P fy+bdfy -

Since the net {fy; NeHy(G)} converges to f in &{(G) (Lemma 1.2), this yields
the equality d{)iep=f=ad{ f+bdf.

(II) Next let G be arbitrary. Take a pro-Lie open subgroup G, of G.
Then, since R(G,)=R(G) and, for each x=G, the restriction of ,f to G, belongs
to &(G,), we have by (I)

dfvopf()=dasop(af)e)  (Lemma 1.1, (i)
=ad{(:f)e)+bd (- f)e)
=adQ f(x)+bdf’ f(x),
completing the proof. g.e.d.
Remark 1.1. In the same way as above we can prove
Lpf=dPdP f—dPdPf (@, BER(G), fEEM(G)).

Lemma 1.5. For each fe&(G) (resp. €(G)) and x=G, the map a—
dP f(x) (resp. dP f(x)) of R(G) into C is R-linear and continuous.

Proof. See the proof of [6], Lemma 2.8, having in mind Lemma 1.4 above
and the fact that the map a€R(G)—a(t)eG is continuous, ¢ being fixed (see
0.2). q.e.d.

The next lemma now follows from Lemma 1.5 and the barrelledness of
R(G) (cf. Proof of [6], Lemma 2.9).

Lemma 1.6 ([3], Proposition 2.2.1.2). Let fe&™(G) (resp. &(G)). The
map (a, x)—=dP f(x) (resp. dPf(x)) of R(G)XG into C is continuous.

Theorem 1.1. For each n=oo, 1, 2, -+, the sets £(G) and €L (G) coincide
with each other.

Proof. For a function f on G, we have f(xa@®)=f(xalt)x 'x) (a=R(G),
x&G). Hence it is plain that d{’f exists for every a< R(G) if and only if so
with d®’f. And, in this case, d{’f(x)=—d¥.-1f(x) holds. Therefore, by
Lemmas 0.9 and 1.6, one sees that f belongs to &™(G) if and only if it belongs
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to €(G). That is, &{(G)=&{"(G) holds. The verification of €{(G)=€¥(G)
for n=2 is then attained in the same way as in the compact case. For details,
see [6], Lemma 2.12 and what follows it. q.e.d.

On the basis of the above theorem we generalize the notion of C"-classes
to any G as follows.

Definition 1.4. For each n=o0, 1, 2, ---, the identical sets &£{>(G) and
&P (G) are denoted by €,(G). Each element of €,(G) is called an n-times (in-
definitely if n=o0) continuously differentiable function on G.

By Corollary to Lemma 1.1, each &€,(G) is an algebra over C stable under
the left and the right translations, the inversion and the complex conjugation.
The reader should notice that by virtue of the very definition of &£,(G) based
on Theorem 1.1, the mixed derivatives d¢) - dQ)df) - df)f for fE&€,.(G)
(p, q=0,1, 2, ---) can be made. Here, as is easily seen, the “operators” d{> and
d§> commute on &4(G):

dPAPf=dPdPf  (fE€LG), a, BERG)).

The Bruhat space &(G) is included in €.(G). As for the detail of their connec-
tion, see 1.5 below.

Definition 1.5. For each n=o0, 1, 2, ---, 9,(G) denotes the ideal of the
algebra &,(G) consisting of all f€&,(G) with compact support.

For any compact subgroup N of G, we put

&G, N)p=pn(€(G)) (={fE€.(C); fr=f (yeN)D),
&G, N)o=0x(En(G) (={fEE(G); f=f (¥EN)D,
811(6, N):gn(G, N)pf\é’n(G, N),, (n:oo’ 1’ 2’ ...)'

These are subalgebras of &,(G), and coincide with one another if N is normal.
Furthermore let us put

D.(G, N),=2.(C)NEG, N, ,
9.(G, N),=9.(G)NE(G, N), ,
.G, N)=9.(G)N€(G, N).

The next theorem generalizes [12], p. 57, Theorem 2 to the non-abelian
case (also see [1], I, Satz 4.4 and [3], Theorem 2.2.2.6). We omit the verifica-
tion since it is the same as the proof of [6], Lemma 3.3 if we use our previous
Lemmas 0.5, 0.8, 0.14 and 1.5 and recall R(G)=R(G)).

Theorem 1.2. Let G, be any pro-Lie open subgroup of G. If a subset B of
&.(G) satisfies the condition
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sup |df(x)]<oo  (resp. sup [dEf(x)]<oo)
3 €6, feB

reG, fe

Jor each a= R(G), then there exists an N H(G,) (see Definition 0.7) s.t. BES
&G, N)p (resp. B<&\(G, N),).

Notice that this theorem, as well as Corollary 1 below, has significance only
when G is infinite-dimensional.

Corollary 1. Let G, be as in Theorem 1.2. If a subset B of &,(G) satisfies
the condition

sup {1dPf(O)1+1d& f(x)]}<oo

relG, fEB

for each a< R(G), then there exists an N H(G,) s.t. BS&,(G, N).
Proof. Obvious since H(G,) is lower directed. q.e.d.

Corollary 2. Suppose G is almost connected. If a subset B of &,(G) is
countable and satisfies the condition

™ sup [di f(x)] <eo

z€G, fE€B

for each a= R(G), then there exists an NEH\(G) s.t. BS&(G, N). The same
holds even if the left derivative is employed instead of the right one in (*).

Proof. Since G is almost connected and 4 is countable, we have a compact
normal subgroup N, of G such that G/N, is first countable and 8<¢&,(G, N,)
([107], p. 61). On the other hand, since G is Lie-projective, there exists an
N,eHG) s.t. 8=€&,(G, N;) )Theorem 1.2). Put N=N,N,. Then Ne&H\(G)
and 8<¢&,(G, N). q.e.d.

Corollary 3. For each n=co, 1,2, ---, there holds D,(G)=\J{D.(G, N);
Ne H(G))}, G, being the same as in Theorem 1.2. If G is almost connected, then
D.(G)=\U{D.(G, N); Ne H\(G)}.

Proof. Corollary 1 applied to each sigleton {f} of 9,(G) shows that fe&
9,(G, N) for some N H(G,). Hence the first assertion. The second one fol-
lows from Corollary 2 similarly. q.e.d.

1.2. Inductive limit topology for the spaces 9,(G). In this section we
introduce for the spaces 9,(G) a natural inductive limit topology. We start
with elementary topologies for the spaces &,(G).

Definition 1.6. For any C€Com (G) and a,, -+, ap, B1, =+, B,E R(G) (p, g=
0,1, 2, ---), define a seminorm Pé};;;ﬁ?% on E,44(G) as

Pl (H)=Pe(d$) -+ dDdf) - dR ) (fEE€pG)).

If p or g equals 0, this reduces to one of Pc,al,..._,,p, P8v 8 or P, (see Definition

*
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1.3). For n=o, 1, 2, -+, let 7, F be the same as in Definition 1.3, and put

%nz{ng;;l‘;.'.gq ; €C€Com (G), ay, -+, ap, By, =, BERG) O p+g<n+1)}.

wap

The locally convex Hausdorff topology for €,(G) defined by F, & and F.
are denoted by z,, 7, and 7, respectively without regard to n. The space
&.(G) equipped with them is denoted by £°(G), €F(G) and &£§7”(G) respectively.
(This definition agrees nicely with Definition 1.3.) A linear subspace X of
&.(G) inheriting these topologies is also denoted by X, X and KX respec-
tively.

7, is finer than =, and 7z,. Each of &€{(G), €¥(G) and &(G) is com-
plete. By (1.2) we have
Pluifa, (N=Pis? s,(f)  (FEEG).

Therefore the map f—f induces a topological linear automorphism of £5"(G)
and also a topological linear isomorphism of €{°(G) onto &€P(G) (n=o0, 1, 2, ---).
Similarly we see that the left and the right translations on €,(G) are topological
in regard to any of z,, =, and z.,.

Lemma 1.7. Let N be a compact normal subgroup of G. For each n=c0,1,2, -,
the algebra isomorphism g—g-n% of €,(G/N) onto €.(G, N) (Corollary to Lemma
1.3) is also a homeomorphism relative to each of =,, v, and .

Proof. From (1.3) we have, for any C€Com (G) and a,, -+, ap, Bi, -, B
ER(G) 0= p+g<n+1),

Phipfa (genf)=Plrole (&) (gE€4(6)),

where @;=z%(a;), B;=7%(B;). Hence, in view of (0.10), the assertion follows.
q.e.d.

Let F be a closed subset of G and N a compact subgroup. We denote by
D,(G: F) the linear subspace {f€9,(G); supp(f)EF} of D.(G) (n=c, 1, 2, --+),
and put

Du(G, N5 F),=24(G, N)p,N\Du(G; F),
Du(G, N; [)e=Du(G, N)eNDu(G; F),
Du(G, N; F)=9Du(G, N)NDA(G; F).

Note that these spaces are identical if N is normal.

Lemma 1.8. Let G, be a pro-Lie open subgroup of G, and (N, C)e H(G,)X
Com (G). Then z., v, and =, induce the same topology on each of D.(G, N; C),,
D.(G, N; C)y and 9,(G, N; C) (n=o0, 1, 2, ---), and make it a Fréchet space.

Proof. 9(G, N; C),, 9P(G, N; C), and 9(G, N; C), are topologically
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isomorphic to 9%(G, N; C™Y),, 99°(G, N; C™"), and 97(G, N; C-"), respec-
tively under the map ﬁ—»f. Besides, 9.(G, N; C) is a z.-closed subset of
9.(G, N; C),. Hence, for the proof of the lemma, it suffices to show that =,
z, and 7, coincide with one another on 9,(G, N; C), and make it a Fréchet
space.

() First suppose that G is Lie-projective and G,=G. Then, from Lemma
1.7, 95°(G, N; CN) is topologically isomorphic to D$(G/N; z%(C)). Here, in
view of finite dimensionality of G/N and Lemma 1.4, it is plain that 9(G/N;
7%(C)) is a Fréchet space. Hence so is 95(G, N; CN). Then its closed linear
subspace 9D(G, N; C) is also Fréchet. The same reasoning shows that
99(G, N; C) and 9(G, N; C) are also Fréchet spaces.

(I) Let G and G, be arbitrary. Let {x,G,, ---, x;G,} be the totality of the
left G,-cosets of G meeting C. Put C,.=CN=x,G, =1, -, s). Then, as is
easily seen,

D(G, N; C),= i‘{ D(G, N; Cy),  (topological direct sum).

Here, since left translations on &§”(G) are topological, one sees that each
DG, N; Cy), is topologically isomorphic to DP(G,, N; x7'Cy), which is a
Fréchet space by (I). Thus it follows that 9$(G, N; C), is a Fréchet space.
By the same reasoning we see that 9(G, N; C), and 2°(G, N; C), are also
Fréchet spaces. Then the identity map of 9{(G, N; C), onto each of
P2P(G, N; C), and D(G, N; C),, which is of course continuous, is topological
by the open mapping theorem. The proof has thus been completed. q.e.d.

Let G, be any pro-Lie open subgroup of G. In view of Corollary 3 to
Theorem 1.2 one has, for each n=o, 1, 2, -+,

Dua(G)=\U{Da(G, N; CO),; (N, C)€ H(G,)XCom (G)}
=U{Da(G, N; C);; (N, C)€H(G1)XCom (G)}
={92.(G, N; C); (N, C)e H(G,)XCom (G)}.

Now let us consider Com (G) as an upper directed set under inclusion, and
H(G,)XCom (G) as a product directed set. Then 9,(G) can be topologized in
three ways so as to be the inductive limits of the families {95”(G, N; C),;
(N, C) € H(G,)XCom (G)}, {9D§(G, N; C)y; (N, C)e H(G,) X Com(G)} and
{D$P(G, N; C); (N, C)e H(G,)XCom (G)}. Denote the topologies on 9,(G) thus
defined by %1, 751 and =% respectively without regard to n.

Lemma 1.9. The topologies =5, =S and =€ do not depend on the special
choice of the pro-Lie open subgroup G, of G. Besides, they coincide with one
another on each D,(G) (n=o0, 1, 2, ---).

proof. The first half immediately follows from Lemma 0.16. Next, for

" any (N, C)€H(G,)XCom (G), the canonical injection of DE(G, N; C) into
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2:7(G, N; C), is conntinuous. Hence z€>z§1. While, using Corollary 1 to
Theorem 1.2, one sees that each sequence in 9(G, N; C), converging to 0 is
a sequence in 9;7(G, N'; C) converging to 0 for some N’'€H(G,). Hence 7§
=7%. Therefore z§1=7%. The coincidence of =5 and z¢ is shown similarly.
q.e.d.

Definition 1.7. The same topologies z§!, z$' and =%, which do not depend
on the special choice of G,, are denoted by z,. Each space 9,(G) (n=c0, 1,
2, ---) equipped with z, is denoted by 9$°(G). A linear subspace X of 9,.(G)
inheriting =, is also denoted by X,

From definition, 74 is finer than =, relativized to 9,(G) and coincides with
it on each of 9,(G, N; C), and 9,(G, N; C), (N, C)€ H(G,)XCom (G)). As
a (strict) inductive limit of Fréchet spaces, each 9%(G) is barrelled and borno-
logical. If G is finite-dimensional, 9% (G) reduces to the inductive limit of the
family {95(G; C); CeCom (G)}. In particular, if G is a Lie group, 9%(G)
is the usual Schwartz space.

Remark 1.2. Let G, be a pro-Lie open subgroup of G. 74 can be defined
in two steps, too, i.e., the following two hold for each n=oo, 1, 2, ---.

(i) For each NeH(G,), the space 9{¥(G, N), is the inductive limit of the
family {957(G, N; C),; CeCom (G)}.

(ii) D(G) coincides with the inductive limit of {D$(G, N),; Ne H(G,)}.

Proof. Let us check (i). Let zy be the inductive limit topology on 9,(G, N)
defined by {957(G, N; C),; C€Com (G)}. Then, plainly, zy=74 on 9,(G, N),.
While, oy maps 23(G) onto 9,(G, N), with z, continuously because it maps
each 9,(G, N'; C), (N, C)e H(G,)xCom (G)) into 9,(G, N; CN), t,-continuously
(see 1.1). Since py behaves as the identity map on 9,(G, N),, this shows that
4=ty 0N Du(G, N),. q.e.d.

Remark 1.3. Let G, be a pro-Lie open subgroup of G, and {I ;=x;G:}e4
the totality of left G,-cosets of G. Then, for each n=oo, 1, 2, ---, the follow-
ing hold. (The employment of the right G,-cosets gives the parallel assertions
with obvious alterations in (i) and (ii).)

(i) Each 98°(G; I';) is the inductive limit of the family {9$°(G, N; C),;
(N, C)e H(G,)xCom (I",)}.

(i) D$(G; I';) is isomorphic to D(G; G,) under the map f—z,f. And
DF(G; G,) is isomorphic to D(G,) canonically.

(ili) DP(G)=21e4D5(G; I';) (topological direct sum).

Proof. Let 7, be the inductive limit topology on 9,(G; I';) defined by
{DSP(G, N; C),; (N, C)e H(G)XCom(I";)}. Then, plainly, 7,274 on 9,(G; I'y).
While, for any (N, C)€ H(G,)XCom (G), the defining function X; of I"; belongs
to €«(G, N), and so the map f—X,f carries D$P(G, N; C), into D(G, N; C
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NTI'}), continuously. Thus this map is continuous from 9$(G) onto D(G; I'2)
with z;. Hence z4=7; on 9,(G; I';), which proves (i). (ii) is immediate from
(i) and the continuity of left translations on 9$(G). The check of (iii) is left
to the reader. q.e.d.

1.3. Some properties of the spaces D¥(G).

Proposition 1.1. Let G, be any pro-Lie open subgroup of G. Each bounded
subset of D(G) (n=o0, 1, 2, --+) is included in D,(G, N; C) for some (N, C)&
H(G,)xCom (G).

Proof. Let @ be a bounded subset of 9(G). We can show in the same
way as in the proof of [12], p. 74, Propositions 2 that S 9,(G; C) for some
CeCom (G). On the other hand, since =, and 7, are coarser than z, on 9,(G),
@ is bounded relative to each of them, too. Hence it satisfies the condition of
Corollary 1 to Theorem 1.2. Thus B8E9,(G, N) for some N=H(G,), which
completes the proof. q.e.d.

Lemma 1.10. Let N be a compact subgroup of G. p. induces a continuous
projection on each DF(G) (n=c0, 1, 2, ---).

Proof. Take a pro-Lie open subgroup G, of G. For each (', C)e H(G,)X
Com (G), py maps DP(G, N'; C), into DP(G, N'; CN), continuously (1.1).
Hence the lemma. q.e.d.

Lemma 1.11., Let N be a compact normal subgroup of G. For each n=oo,
1,2, -, the map geD(G/N)—>ge-n% sets up a topological linear isomorphism of
DEN(G/N) onto D (G, N).

Proof. Denote this map by ¢. From Corollary to Lemma 1.3, ¢ is a linear
isomorphism of 9,(G/N) onto 9,(G, N) in the algebraic sense. Take a pro-Lie
open subgroup G, of G, and put G;=z%(G,). Then, plainly, G; is open and
pro-Lie in G/N. Besides, there holds H(G])={n%(K); K€ H(G,)}. Now take
any (K, C)e H(G,)XCom (G). Then, by Lemma 1.7, the spaces 95(G/N, =$(K);
z%(C)), and D{P(G, KN; CN), are isomorphic under ¢b. Since the latter space
is included in DP(G, K; CN),, this shows in particular that ¢ is continuous
from 9F¥(G/N) into (G, N). On the other hand, ¢~'eoy maps D5(G, K; C),
into 9§P(G/N, =§(K); =%(C)), continuously because py maps D57(G, K; C),
into 95P(G, KN; CN), continuously. Hence ¢y"'epy is continuous from D(G)
onto D(G/N). Therefore ¢! is continuous from D7(G, N) onto D5¥(G/N),
which completes the proof. q.e.d.

Lemma 1.12. Suppose G is Lie-projective and put H={c(N); Ne H(G)}, a
cofinal subfamily of H(G) (Corollary to Lemma 0.14). Then, for each fED,(G)
(n=o0, 1, 2, -+-), the net {px(f); NeH} is bounded and converges to f in D(G).
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Proof. Choose (N,, C)e H(G)XCom (G) so that f€2,(G, N; C), and take
the largest connected compact normal subgroup L of G ([8], Theorem 14).
Then the net in question lies in 9,(G, N,; CL). It is obviously z,-bounded and,
by Lemma 1.2, z,-converges to f. Hence the lemma. q.e.d.

The next theorem can now be verified by following the proof of [5],
Theorem 1.

Theorem 1.3. FEach space DP(G) (n=c0, 1, 2, ---) is complete.

Proof. Take an almost connected open subgroup G, of G. In view of
Remark 1.3 and the fact that the topological direct sum of complete locally
convex spaces is complete, it suffices to show that 9(G,) is complete. There-
fore we can assume that G itself is almost connected (hence o¢-compact). Put
H=D¥(G) and denote by 4’ its topological dual. Let u be any linear form
of 4’ which is o(%’, 4 )-continuous on each equicontinuous subset of 4’. The
proof depends on Grothendieck’s completion theorem ([4], Chap. 4, §3, exercise
3). Thus our task is to show that some element of 4 corresponds to u canoni-
cally.

(I) For a compact subgroup N of G, put Hy=pn(H), HXy=Kker py, Ay=
on(4’) and KXjy=ker pyy, where py denotes the adjoint of py and 4, inherits
74 Then, evidently, (i) X} is the annihilator of 4y in &'; (ii) ¥ =Hy+ Ku,
H' =9 y+ Ky (direct sum); (iii) 4y can be viewed canonically as the topological
dual of Hy; (iv) if NyEN,, then &y 24%, and Ky, S Kly,; V) on(Hn,)SH N,
for any N;, N,.

(II) Let H be as in Lemma 1.12. For each Te %', put X;={pn(T); NeH}.
Then, from Lemma 1.12, its weak closure X is weakly bounded (hence equi-
continuous because of the barrelledness of 4) and contains 7.

(Il Put X=\U{&%; NeH}. Then there exists an N,€H s.t. w(T)=0
for all TeXNKy,. Indeed, if otherwise, (iv) of (I) enables us to choose a
sequence (N;, T,) (j=1, 2, 3, ---) so that N;2N,4, T;€ Ay, NKy, and uw(T)H=L.
Put N.=N\N;. Then N;/No€H(G/N.) and N3 N;/Nw={7%(e)}. Since each
N;/N,. is connected, this shows by Lemma 0.3 and Corollary to Lemma 0.14
that {N;/N..; j=1, 2, 3, ---} is cofinal in H(G/N.). On the other hand, G/N.
is g-compact as well as G. Therefore it follows that 95(G/N.) is an (LF)-
space and so complete. Then, by Lemma 1.11, so is 4 y,. Hence, in view of
(iii) of (I), there exists an fE€H y. s.t. w(T)=T(f) for all Te Ay, Since
H vew=\UF=1d n; and so feﬂ[Njo for some j,, it follows that u(T;)=T;,(f)=0
¢.' T, JC}vjo)' which is a contradiction.

(IV) Now suppose T€XY,. Then, by (i), (v) of (I), it is seen that XrS
XNHKYy,. Hence u=0 on Xr and so, by (II) and the assumption on u, u(T)=0.
On the other hand, 4y, is complete because D*(G/N,) is evidently an (LF)-
space. Therefore there exists an f,€dy, s.t. wW(T)=T(f,) for TEHLY,.
Hence, after all, in view of (i), (ii) of (I), there holds w(T)=T(f,) for all Te4’.
This completes the proof. q.e.d.
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Lemma 1.13. Each of the left and the right translations and the inversion
induces on DE(G) a topological linear automorphism (n=oo, 1, 2, ---),

Proof. Let G, be a pro-Lie open subgroup of G and (N, C)e H(G,)XCom(G).
The map f—,f (resp. f-—»f) carries 9P(G, N; C), into D{(G, N; x7'C),
(resp. (G, N; C™),) continuously (1.2). Hence the lemma. q.e.d.

Lemm 1.14. For each h€&,(G), the map f—hf on DF(G) is continuous
(n:oo, 1) 2’ )-

Proof. Let G, be a pro-Lie open subgroup of G and (N, C)e H(G,)XCom(G).
Let f, (k=1, 2, 3, ---) be any sequence in 957(G, N; C) converging to 0. Then,
using Corollary 1 to Theorem 1.2, one sees that hf, is a sequence in
D(G, N'; C) for some N’ H(G,) coverging to 0. Hence the lemma. q.e.d.

Lemma 1.15. For each ¢=9D,(G) (n=00, 1, 2, ), the maps xECG—pE
DF(G) and xE€G—-, €D (G) are continuous.

Proof. Let G, be a pro-Lie open subgroup of G. Choose (N, C)e H(G,)X
Com (G) so that ¢€9,(G, N; C),. Then it is plain that the map x—,¢ is
continuous from each relatively compact open subset O of G into 9¢(G, N; O ‘IC)p.
Hence it is continuous from G into D (G). q.e.d.

Since each 9*(G) is barrelled, one sees from Lemmas 1.13 and 1.15 that
the left and the right regular representations of G on 9{¥(G) are continuous
(i.e., the maps (x, ¢)— 1@ and (x, @)—=¢,: GXDF(G)—>DF(G) are continuous).
Lemma 1.14 shows in particular that each 9§?(G) is a topological algebra (i.e.,
the multiplication in it is separately continuous).

1.4. Projective topology for the spaces &,(G).

Definition 1.8. Without regard to n (=, 1, 2, ---), 7, denotes the pro-
jective topology on &,(G) defined by the linear maps f&&€.(G)—ofED(G)
(p=9D,4(G)), i.e., the coarsest locally convex topology on &,(G) which makes all
these maps continuous. The space &£,(G) equipped with 7z, is denoted by
&P (G). Any linear subspace X of &€,(G) inheriting =, is also denoted by K.

Lemma 1.16. (i) 7, is finer than .. (i) T, is coarser than T4 on each
D.(G), but coincides with it on D,(G; C) for every C=Com (G).

Proof. Note that for any CeCom (G) one has ¢€9.(G) s.t. ¢(x)=1 on
C (In view of Remark 1.3 it suffices to see this for a Lie-projective G; and in
such a case this is clear since, for N& Hy(G), one has ¢ED(G/N) s.t. Hp(x§(x))
=1 on C). (i): Let f, be any net in &%’(G) converging to 0. For any Ce
Com (G) and ay, -, agz, B, =+, BER(G) 0=p+g<n+1), choose pED.(G) s.t.
¢(x)=1 on a compact neighbourhood of C. Then d--d{df) - dif.=
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ag) - dé’;dé’f d};’q’ (¢f.) on C. By assumption ¢f, converges to 0 in 9,(G)
relative to =4, hence a fortiori to z,.. Therefore

P fte (f)= Pl e (of) —> 0.

Thus f,—0 relative to z., proving the assertion. (ii): The first half follows
from Lemma 1.14. Now let f, be any net in 9% (G; C) converging to 0.
Choose = 9.(G) s.t. ¢(x)=1 on C. Then f,=¢f,—0 relative to 7z, Hence
T,=274 0N D,(G; C), proving the second half. g.e.d.

Proposition 1.2. For a subset B of £,(G) (n=o0,1, 2, --), the following
conditions are equivalent : (a) T p-bounded; (b) z.-bounded; (c) = ,-bounded; (d) z,-
bounded. If B3SD,(G; C) for some C=Com (G), these four are further equi-
valent to ty-boundedness.

Proof. Since z,=27.=7,, 7, the implication “(a)=(b)=(c) and (d)” is ob-
vious. Now assume (c). Then, for any ¢=9,(G), ¢ 8 is z,-bounded. Hence,
by Theorem 1.2, it is a bounded subset of 95°(G, N; supp (¢)), for some Ne&
H(G,) (G, being a pro-Lie open subgroup of G), and so, of 9§°(G). This shows
that @ is z-,,-bounded,' i.e., that (a) holds. Analogously it is shown that (d)
implies (a). The rest of the proposition is clear from Lemma 1.16, (ii). q.e.d.

Note. It is easily seen that if G is finite-dimensional, z,, z,, =, and 7,

are identical.
Proposition 1.3. Each space EP(G) (n=o0, 1, 2, --+) 1s complete.

Proof. Recall that 95°(G) and €57(G) are complete. Take any Cauchy
net f, in &P(G) and ¢&9D,(G). Then the net ¢f, is Cauchy in 9$°(G) and
so converges to some ¢ in D5(G). While, since z,<z,, the net f, is Cauchy
also in €$”(G), and so converges to some f in £{P(G). Then ¢f,—¢f in D{P(G).
Since z4=7+ on 9D,(G), we have thus ¢=¢f. Therefore ¢f,—¢f in DF(G).
Hence f,—f in €P’(G), completing the proof. q.e.d.

One sees easily from Lemma 1.13 that each of the left and the right trans-
lations and the inversion on &P (G) (n=o0, 1, 2, --+) is a topological linear auto-
morphism, and from Lemma 1.14 that each €%’(G) is a topological algebra.

Remark 1.4. Let G, and {I';=x;G:}1e4 be as in Remark 1.3. For each
A€, put

EG; I')={f€eG); supp ()EI2} (n=0c0, 1,2, ).

The following are easily checked.

(i) Each space €@ (G;I';) is isomorphic to &%(G; G,) under the map
f—z,f. Here &%(G; G,) is isomorphic to &(G,) canonically.

(1) EP(G)=I1e4E2°(G ; I';) (topological direct product).
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The next simple lemma is frequently used later on.

Lemma 1.17. Let G, be a pro-Lie open subgroup of G, and NeH(G,). If
fee(G, N), (n=c0,2,3, ), then d0’f€E,.4(G, N), for all a€R(G).

Proof. Let {I"3=x:G,}1cs be as in Remark 1.4. For each i€4, let f;
denote the &,(G; I';)-component of f (Remark 1.4, (ii)). Then, evidently, fr &
&G, N; I'y),, where €.(G, N; I'2),=En(G; I')NEAG, N),. Put hi;=;,fa.
Then h;EE.(G, N; G,),. Here &.(G, N; G,),=&€.(G, N; G,), since N is normal
in G,. Thus, obviously, d{’h;€&,-.(G, N; G), for all ac R(G). Then, by
Lemma 1.1, (i), d9f:=dP(4-1h)=2,-1(dPh)EEA(G, N; I';),. Hence the
assertion. g.e.d.

1.5. Connections with the Bruhat spaces 9(G) and &(G). In this section
we clarify the connections of the spaces 9$P(G) and £°(G) with the Bruhat
spaces 9(G) and &(G), and also of the topological dual of the former spaces
with those of the latter spaces.

Let G, be a pro-Lie open subgroup of G. Using the directed set H(G;)X
Com (G) instead of H(G,)XCom (G), consider the inductive limit space 9(G),
(resp. D(G),) of the family {DE(G, N; C),; (N, C)e H(G,)XCom (G)} (resp.
{DE(G, N; C)y; (N, C)e H(G,)XCom (G)}). These two do not depend on the
special choice of G; because of Lemma 0.16, and are plainly identical if G is
Lie-projective. Here we can check the following two Remarks easily analogously
with Remarks 1.2 and 1.3.

Remark 1.5. Let G be Lie-projective. (i) For each N Hy(G), the topo-
logical linear subspace D(G, N) of 9(G), (=D(G),) coincides with the inductive
limit of {257(G, N; C); CeCom (G)}, hence with 98(G, N) (by Remark 1.2,
@iy. () 9G), (=D(G),) coincides with the inductive limit of {DI(G, N);
NeH\(G)}.

Remark 1.6. Let G, and {/";=x3:G,}1e4 be as in Remark 1.3. For each 2
let D(G; I";) denote the topological linear subspace {f€9D(G),; supp (f)E1 1}
of 9(G),. Then,

(i) D(G; I'z) coincides with the inductive limit of {DL(G, N; C),; (N, C)
e H,(G)XCom (I';)}.

(i) 9(G; I';) is isomorphic to 9D(G; G,) under the map f—,f. And
9(G ; G,) is isomorphic to D(G,), (=D(G1),) canonically,

(iii) D(G)po=Z21e4D(G; I';) (topological direct sum).

The employment of the right G,-cosets enables us to obtain the parallel
assertions with respect to D(G),.

In view of the definition of 9(G) ([5], Definition 1 and Proposition 4), we
see by Lemma 1.11, Remark 1.5, (ii) and Remark 1.6, (ii), (iii) that no matter
G is Lie-projective or not, 9(G), and 9(G), are the same and nothing but 9(G)
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including the topology: 9D(G),=D(G),=D(G). This obviously yields D(G)=
\{ DG, N); NeH(G)} (ED(G)) as set. If G is locally connected, D(G)=
D¥(G) holds since in this case Hy(G,)=H(G,) (Lemma 0.15).

Lemma 1.18. Let C=Com (G), and {O,, -+, Os} be an open covering of C.
Then there exist functions fi, -+, fs in D(G)* such that supp (f)S0; (=1, ---, )
and 5., fi(x)=1 on C.

Proof. [5], Proposition 2 gives this assertion for the Lie-projective G. The
generalization to any G is immediate in view of Remark 1.6, (ii). q.e.d.

The next simple lemma is used in 2.1.

Lemma 1.19. There exists a locally finite family {a.}.cx of functions in
D(G)t (i.e., each compact subset of G meets at most a finite number of the sets
supp (a,) s.t. Deexalx)=1 for all x=G.

Proof. Remark 1.6 allows us to assume that G is Lie-projective. Take an
NeH(G). Then, since G/N is a Lie group, there exists a locally finite family
{g:}rex Of functions in D(G/N) s.t. Jexg(n%(x)=1 (x€G). So we have
only to put a,=g,°n% (,k€K). q.e.d.

By definitition &(G) consists of all C-valued functions f on G with the
property that for each xeG, there exist a neighbourhood U of x and ¢€9(G)
s.t. f=¢ on U. In view of Lemma 1.18, this property of f is equivalent to
that ¢f€9(G) for all ¢=D(G). One has obviously &(G)SELG) and D(G)=
{f€&(G); supp (f) is compact}. &(G) is equipped with the projective topology
defined by the linear maps f€&(G)—pf€D(G) (¢ D(G)). So, if G is locally
connected, &(G)=&¥>(G) holds since in this case D(G)=DLF(G).

The following facts on 9(G) and &(G) are well known ([5]) and used in
the sequel: Lemmas 1.13, 1.14 and 1.15 with 9(G), €(G) in place of DL(G),
&P(G) (resp.) are valid. 9D(G) and &(G) are topological algebras. The topology
of 9(G) is finer than that of &(G) relativized to it. 9D(G) is barrelled and
bornological, and the left and the right regular representations of G on it is
continuous. Each bounded subset of 9(G) lies in 9.(G, N; C) for some (N, C)
Hy(G,)xCom (G), G, being any pro-Lie open subgroup of G. Each of 9(G) and
&(G) is a complete Montel space.

Furthermore there obtains the following

Remark 1.7. Let G, and {I";=x;G,}1e4 be as in Remark 1.6. For each 2
let &G ; I';) denote the topological linear subspace {f€&(G); supp (f)&1":} of
&(G). Then,

(i) Each &(G; I'y) is isomorphic to &G ; G,) under the map f—,,f. Here
&(G; G,) is isomorphic to &(G,) cononically.

(ii) &(G)=II1ese(G; I';) (topological direct product).
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Lemma 1.20. The topology of D(G) (resp. E(G)) is finer than T4 (vesp. Tp)
relativized there.

Proof. From construction of 9(G) it is plain that the topology of 9(G) is
finer than 74 relativized. Now let f, be any net in &G) converging to 0, and
0EDAG). Take ¢=D(G) s.t. P(x)=1 on supp(p) (Lemma 1.18). Then ¢f,
(=¢(pf.)—0 in DE(G) since ¢f,—0 in (G) and so in DE(G). Hence f,—0 in
&P(G), proving the other assertion. g.e.d.

Lemma 1.21. 9D(G) is dense in each of &(G), D¥(G) and &P (G) (n=
0, 1,2, ).

Proof. For each C=Com (G), choose pceD(G)s.t. ¢c(x)=1 on C. Then,
for any fe&(G) and ¢g=D(G), the net {¢(pcf); C&€Com(G)} converges to ¢f
in 9(G). Hence {¢pcf; C=Com(G)} converges to f in &(G). Thus 9(G) is
dense in &(G). Analogously it is shown that 9,(G) is dense in &% (G) (n=
o, 1,2, ). So it now suffices to show that 9(G) is dense in each D¥(G).
Take a pro-Lie open subgroup G, of G. For any ¢&9,(G), choose (N, C)E
H(G,)XCom (G) so that ¢€D.(G, Ny; C),. Then the net {px(¢); NEH} con-
verges to ¢ in DP(G, Ny; CN,y), (Lemma 1.2), where H={N&€H\(G); NS N}
with a fixed N, Hy(G,). Since pylp)ED(G) (NEH), the proof is complete.
q.e.d.

Lemma 1.22. Suppose G is Lie-projective and finite-dimensional. For each
totally disconnected Ne Hy(G) (see Lemma 0.13), there exists a continuous linear
map g—g of E«(N) into DE(G) such that (a) g=g on N for all g€&«N), and
(b) geD(N)=gsD(G).

Proof. By Lemma 0.11 there exists a subset L of G such that (i) U=LN
is an open neighbourhood of e¢ in G; (ii) the map (y, z)& L X N—yzeU is a
homeomorphism; (iii) the map &:(x§(y), 2)€x$(L)XN—yzeU is a local iso-
morphism of (G/N)XN into G. Choose relatively compact open subsets V, W
of G so that NSV, VEW and WSU. And choose a=9(G) such that a(x)=1
on V and supp(a)&W (Lemma 1.18). For each ge&y(N), denote by g’ the
trivial extension of g to n$(L)X N and regard it as a function on U through é&.
We define

a(x)g’(x) if xeU,
glx)= ,
0 otherwise (i.e., x€G\U).

Then g€&y(G), supp (g)S W and g=g on N. Besides, for any a,, -+, a,€ R(G)
(p=1, 2, 3, ---), we have

(1.4) 4@ - dBg(n=(dS - dfHaXng () (xel).

Hence g€ 9.(G; W). Now let g, (k=1, 2, 3, ---) be any sequence in £(N) con-
verging to 0. Then, by (1.4) and construction of g’, the sequence g, converges



472 Takashi Edamatsu

to 0 in D®(G; W). Hence, in view of Theorem 1.2, it converges to 0 in
DY(G, Ny; W), for some N,&H(G). This proves that the map ge&y(N)—
£€DE(G) is continuous. The linearity of this map is obvious. Now suppose
g€ D(N). Then, since {NNN'; N'eH\(G)} is cofinal in H(N) (Lemma 0.3), g
belongs to D.(N, NN\N,) for some N, H(G). So g’ is constant on each NNN;-
coset of G contained in U. Therefore, if we take N,e H(G) s.t. a€D(G, N,),
then g€9D.(G, NNNNN,)SD(G). Conversely suppose that geD(G), i.e., that
€ DG, N') for some N'eH|(G). Then g=g|yEDAN, NONN)SD(N). This
completes the proof. q.e.d.

Now we prove the following

Proposition 1.4. Suppose G is not locally connected. Then, (i) D(G)E D(G).?
(ii) The topology of D(G) is strictly finer than T4 relativized there. (iii) &(G)S
E(G). (iV) The topology of &(G) is strictly finer than =, relativized there.

Proof. (iii) is obviously implied by (i). Since 9(G) (resp. &(G)) is complete
and dense in DE(G) (resp. €P(G)), (ii) (resp. (iv)) is implied by (i) (resp. (iii)).
Therefore we have only to prove (i). Here, in view of Remarks 1.3 and 1.6,
it suffices to consider the case G is Lie-projective. (I) First let G be finite-
dimensional. Then G is locally isomorphic to (G/N)XN for a totally discon-
nected Ne Hy(G) (Lemmas 0.11 and 0.13). Since N is compact and not locally
connected as well as G, we have a function g€ D.(N)\D(N) by [6], Proposi-
tion 3.2. By Lemma 1.22 g extends to a function g€D(GN\D(G). (II) Next
let G be infinite-dimensional. In view of Lemma 0.15 we can take an N'e
H(G)\H,G). Since G/N’ is finite-dimensional, Lie-projective and not locally
connected, we have an h€D(G/N'\D(G/N’) by (I). Put f=hen$.. Then it
is easy to check that feD(GN\D(G). q.e.d.

Corollary. An almost connected G is locally connected if and only if H,(G)
=H\(G).

Proof. Obvious from Lemma 0.15, Corollary 3 to Theorem 1.2 and Proposi-
tion 1.4. q.e.d.

Next we consider the topological dual of the spaces 9$°(G) and €%(G) in
connection with those of 9(G) and &(G).

Definition 1.9. 9'(G), 9L(G), €'(G) and €.L(G) denote the topological dual
of the spaces D(G), DE(G), &(G) and &P’ (G) respectively. They are equipped
with the strong topologies of dual, denoted by B(9’, 9), f(Ds, D), B(&’, €) and
B(&s, &) (resp.).

By distributions on G we mean the elements of 9'(G), i.e., the distributions

(4) Cf. [3], Theorem 2.2.2.8.
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in Bruhat’s sense. As we know ([5]), &(G) can be viewed algebraically as the
linear subspace of 9'(G) consisting of all elements with compact support. Here
the support of T'9’(G) means the smallest closed subset F' of G s.t. <p, T>=0
for all = D(G) with supp (p)NF=@. In view of Lemmas 1.20 and 1.21, 9L(G)
and &4(G) can also be viewed algebraically as linear subspaces of 9'(G) in the
canonical way. Under this convention, which we keep throughout, the following

schema is evident:
e'(G) & 9'(G)

(1.5) Ul ul
Eo(G) & DU(G).

Here notice that if A, B are two spaces appearing in (1.5) s.t. AS B, the topo-
logy of A is finer than that of B relativized to A.

Now suppose T €& (G)ND(G), and choose a=D(G) s.t. a(x)=1 on a neigh-
bourhood of supp(7T), a compact set. Then (¢, T>=<ap, T> for ¢=I(G).
Since Te9.(G), this implies that T is z,-continuous on D(G), i.e., that Te
&L(G). Hence &(GINDLAG)SEL(G). Thus, in view of (1.5), we have

(1.6) ELG)=E(GC)NDLG) .
That is, €L(G) consists of all distributions in 9(G) with compact support.

Since P(G) and DE(G) are bornological, D(G) and DL(G) are complete.
The completeness of &'(G) was proved in [5].

Proposition 1.5. The space €L(G) is complete.

Proof. We use Grothendieck’s completion theorem. Let T be a linear form
of €.(G) which is 0(€.(G), €.(G))-continuous on each z,-bounded subset. Then,
in view of (1.5), the restriction of T to &(G) (resp. D(G)) is a(&(G), €'(G))-
continuous (resp. ¢(Do(G), DH(G))-continuous) on each of its bounded subsets.
Since &’(G) and 9D,(G) are complete, this implies that T€& (G)NDL(G) (=EL(G)).
Hence the assertion. q.e.d.

Each complex Radon measure ¢ on G belongs to 9.(G) as distribution since
anEZ);*’(G)r—*SG(p(x)dy(x)EC is continuous. If g is compactly supported, then

pre€L(G). Each felLl, (G, ds) is identified with the measure fds, de denoting
a fixed left Haar measure.

Lemma 1.23. &4L(G) is dense in each of D'(G), D(G) and &'(G).

Proof. Since 9(G) and &(G) are Montel (hence refloxive), it is easy to
check that D(G) (£&4L(G)) is dense in each of 9'(G) and &'(G) (see [5], p. 53).
Hence a fortior: so is €4(G). Now let TeD,(G). For each C€Com (G), choose
ac€D(G) s.t. ac(x)=1 on C. Then the map T¢: feeP(G)—~<acf, T)>eC is
continuous, i.e., Tc=&L(G). While, since each bounded subset of D(G) lies
in 9(G; C) for some C=Com (G), the net {T¢; C=Com (G)} converges to T



474 Takashi Edamatsu
in D(G). Thus &L(G) is dense in 2'(G). q.e.d.

Proposition 1.6. Suppose G is not locally connected. Then, (i) DN(G)S D' (G).
(if) The topology of DL(G) is strictly finer than that of D'(G) relativized there.
(iii) €(G)SE(G). (iv) The topology of €L(G) is strictly finer than that of &'(G)
relativized there.

Proof. Obviously (i) is implied by (iii). Since DL(G) (resp. €4(G)) is com-
plete and dense in 9'(G) (resp. &'(G)), (ii) (resp. (iv)) is implied by (i) (resp.
(iii)). Therefore our task is to prove (iii). Here, in virtue of Remarks 1.4 and
1.7 (recall that the dual of a direct product is the direct sum of the dual), it
suffices to cosider the case G is Lie-projective.

(I) First let G be compact and totally disconnected. Then 9(G) (=&(G))
consists of all trigonometric polynomials on G ([6], Lemma 3.11) and 9$¥(G)
(=&&(G)) coincides with the space £€,(G). The group G is not finite since it
is not locally connected. Hence neither is its unitary dual G. So we can
choose an infinite sequence ¢, (k=1, 2, 3, ---) of mutually distinct elements of
G. For each k let d, (resp. X,) denotes the degree (resp. character) of g,.
Choose a sequence ¢, of positive numbers s.t.

(L.7) é}lckd,,<oo.

Let NeHy,(G). Since (G/N)"=A(G, N), the annihilator of N in G, the Fourier
series of each p€9D(G, N) (29D(G/N)) is constructed by the coordinate func-

tions of the elements of A(G, N). So choikdozo unless ¢,=A(G, N). Here,

from assumption on G, the group G/N is finite, hence so is A(G, N). There-
fore we can defite a T€9'(G) (=&'(G)) by

(1.8) p, =S ei'| potnder  (pea(G).

Now put ¢,=3fcX, (€9D(G)) for n=1, 2, 3, -+, and @,=3.¢:X, (EE(G))
(recall (1.7)). Then ¢,—¢, (n—o) in the space &(G). But {¢,, TO>=n—oo,
This shows that Te& (G)NEL(G).

(II) Next let G be finite-dimensional. Then G is locally isomorphic to
(G/N)XN for a totally disconnected Ne H,(G). Since G is not locally con-
nected, neither is N. Therefore, in view of (I), we have a T,€D'(N)\NDL(N),
a sequence ¢, (n=1, 2, 3, --+) in D(N) and ¢,&&E(N) such that ¢,—¢p, in E«(N)
but (¢, Todp—co. The restricton map ¢ED(G)—¢|y carries D(G) into D(N)
continuously because it carries each D&(G, N;; C) (N, C)e H(G)xCom (G))
into D5P(N, NyN\N), N\N\N belonging to Hy(N), continuously. Hence we can define
a TeD'(G)by Lp, T)>=<pln, To> (¢€D(G)). Then T€&'(G) since supp (THEN.
Let ¢, ¢ be the images of ¢hn, o (resp.) in D(G) by the map of Lemma 1.22.
Then ¢.€D(G) and ¢n—do in D(G). But {dhn, T>=Cn, Tod—oo. Thus, T¢&
DL(G), hence Te& (GNELG).



Differential operators on locally compact groups 475

(IIT) We consider the general case. Since G is not locally connected, there
exists an Ne H({G)\H,(G). Then, by (II), one has a compactly supported T,&
D'(G/NNDL(G/N). Analogously to the proof of Lemma 1.11 we can show
that the map g€ D(G/N)—g-n% is a topological linear isomorphism of 9(G/N)
onto DG, N)={p=D(G); ,o=¢ (y&N)}, viewed as topological linear subspace
of 9(G). Thus we can regard T, as a continuous, but not z-continuous, linear
form of 9(G, N). py maps each 9(G, N,) (N,€ Hy(G)) into itself continuously
(Lemma 1.10) and so induces a continuous projection of 9(G) onto D(G, N) (see
Remark 1.5, (ii)). So we can now define a T€9'(G) by <¢, T>=<Lpnlp), T:>
(p€D(G)). Then Te&'(G) since supp (T)S(x§) (supp (Th). But TEDLG)
since it is not z4-continuous on 9(G, N) (one has T=T, on 9(G, N)). The
proof is now complete. q.e.d.

1.6. Left invariant continuous linear maps on the spaces &(G) and £2°(G).
We conclude this chapter by showing here that the elements of &'(G) (resp.
&.L(G)) are in correspondence with the left invariant continuous linear maps on
&E(G) (resp. &P(G)).

Lemma 1.24. (i) Let T€9D'(G) (resp. D(G)). The linear map ¢—<p(x+), Tz>
carries D(G) (resp. DEO(G)) into &(G) (resp. €L (G)) continuously.

(i) If Te&(G) (resp. EL(G)), the above map carries each of DG) and £(G)
(resp. DE(G) and &P(G)) into itself continuously, too.

(i) and (ii) are valid even if {@p(x-), Tz is replaced by <¢(-y), Ty>.

Proof. We only prove here the assertions (i) for T€9.,(G) and (ii) for
Teel(G). The other assertions are verified analogously.

(i) for TEDL(G): Let ¢ED(G). In virtue of Lemma 1.15, the function
yEG—{p<xy), T5> is continuous. Besides, for each a€R(G) and yeG, we
have by the mean value theorem

%«o(xya(t)), To>—<Lp(xy), Tot=dPp(xya(s)), Tz,

where |s|<|t]. Hence, plainly, d{<p(x-), T, exists and equals <d¢(x-), T z>.
This observation immediately shows that <¢(x:), T, belongs to £.(G) and

(1.9) dg) - dgKp(x), Toy=<dq) -+ dip(x-), Tad

holds for any a,, -, a,€R(G) (p=1,2,3, ). We now show that the map
0EDP(Gy—<p(x+), T>€&P(G) is continuous. Take a pro-Lie open subgroup
G, of G. Let (N, C)e H(G,)XCom (G), and ¢; be a net in 9J°(G, N; C), con-
verging to 0. Our task is to show that, for each a€9.(G), the net alpi(x-), Tz>
converges to 0 in 9L(G). In view of Lemma 1.17, the net d{) - d{)¢a con-
verges to 0 in 99(G, N; C), for any a,, -+, ap,€R(G) (p=1, 2,3, ---). Since
the right regular representation of G on 9&(G) is continuous (1.3), it then
follows that (4§ - df{z’,go;),—>0 in 98°(G) uniformly w.r.t. y=Esupp(a). Hence
A -+ dDi(xy), T;>—0 uniformly w.r.t. yEsupp (a). By the Leibniz formula
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and (1.9) it now follows that a{pi(x-), T;> converges to 0 in 9(G, N';
supp (a)),, hence in DL(G), where N’ is chosen in Hy(G,) so that N'EN and
aED(G, N).

(ii) for Te&L(G): Choose b=D(G) s.t. b(x)=1 on a neighbourhood of
supp (T). By what has been shown, the map ¢—<¢(x-), T5> (=<b(x)(x+), T2)
carries each 93°(G, N; C), (N, C)e H(G,)xCom (G)) into 9(G ; (supp (b))7'C)
continuously. Since 7,=74x on D.(G; (supp (b))'C), this shows that DL(G) is
carried into itself continuously under the above map. Next we show that &°(G)
is also carried into itself contiuously. Let a€9D.(G). Choose c=D(G) s.t.
c(x)=1 on supp (b)-supp (a). Then, for pE&(G), alp(x-), Tz>=<a(-)b(x)p(x-),
To>=alc(x-)p(x+), T;>. Hence, in view of what has been shown, one sees
that the map ¢—al¢p(x-), T;> is ontinuous from &% (G) into DLV(G). Since a
is arbitrary, the proof is complete. q.e.d.

Let S, Te9'(G), and suppose one of them has compact support. Then the
convolution ST (€9'(G)) is defined, for which

(1.10) Lo, S¥TH>=Lp(x-), Sz», T
=), Ty, S>  (eED(G))
holds ([5]). It is not difficult to check

(1.11) supp (S*T)Ssupp (S)-supp (T).

Using (1.10) and Lemma 1.24, we can see that if the above S, T belong to
D(G), then SxT€DL(G). In this case (1.10) holds for p=D(G). Similarly, if
S, T€&'(G) (resp. €L(G)), then SxT<&'(G) (resp. €5(G)) and (1.10) holds for
e=&(G) (resp. €.(G)). By the last fact it can be seen that each of &'(G) and
&L(G) is a topological algebra under the convolution product and contains J,,
the Dirac measure at ¢, as its identity.

The modular function Ag belongs to &(G). Indeed, choose o= D(G) s.t.

g0¢da=1. Then

(0= Ac(0)p()doy= pxy)dey  (xe06).

Since ¢E9.(G, N), for some N&Hy(G,), G, being a pro-Lie open subgroup of
G, this shows that Age&.(G, N), (£&(G)). Now let us define an involutive
map T—T on 9'(G) as the adjoint of the topological linear automorphism o=
(A(;VgD)v of D(G): <o, T}———((Aggo)v, T> (p€9(G), TED'(G)). (Notice that (fdg)”
=fds holds for feL},[(G, ds).) Then, obviously,

(L.12) supp (T)=(supp (TN (T€D'(G)).

Since the map ¢—¢ is continuous also on D$(G), we see that if TeD(G),
then T€9L(G). For the same reason, if T€&'(G) (resp. €L(G)), then T€&'(G)
(resp. &L(G)).
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Lemma 1.25. Let X designate 9(G), DE(G), &G) or &¥(G). Then, for
each o= X and TE X', there holds

(1.13) oxT=<p(-y), T,>  (as distribution).

Proof. By the above mentioned remarks, we have, for ¢=(G),

@, pT>=(] gxrpader, T,)
:<SG¢(X)¢(xy)de’ Ty>=<<P, gb*T}

={ pegan, Tyydox.
Hence o+xT=<¢(-y), T,>. q.e.d.

Corollary. Let X be as in Lemma 1.25. For each p& X and TE X', there
holds
(1.14) <p, T>=¢+T(e).

Let S, T€9'(G), and suppose one of them has compact support. Then, by
(1.10) and (1.13),

(1.15) (p, SxTy={pxT, S>  (pED(G)).
Furthermore, as is easily checked,

(1.16) (S+T) =TxS.

New let X stand for &(G) or €&(G). In view of Lemmas 1.24 and 1.25
we can define, for each T X’, a continuous linear map Dy on X as

(1.17) Drf=f+T (fex).

Since 0, 1+f=.f (x€G, f€ LG, dg)) (use 1.10)), d, denoting the Dirac measure
at x, we see by the associativity law for distributions that D7 is left invariant
(i.e., Dr(of)=:(Drf) (x€G, fEX).

Theorem 1.4. Let X designate &(G) or &% (G). The map T—Dr sets up
an isomorphism of the algebra X’ onto the algebra of all left invariant continuous
linear maps on K. Its inverse map is given by D—Tp, where Tp (EX') is
defined as

(1.18) f, Toy=Dfle) (feX).

Dy decreases supports (i.e., supp (Drf)Ssupp(f) for all f€X) if and only if
supp (T)E {e}.

Proof. Denote the map T€ X'—Dr by ¥. Itis clear from (1.16) and (1.17)
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that ¥ is an algebra homomorphism. Its injectivity follows from (1.14). Let
us see its surjectivity. Take any left invariant continuous linear map D on X.
Define the linear map Tp on X by (1.18). Then, plainly, Tp= X’. Besides,
for any feX and x€G,

Df(x)=D(.f)e)=<xf, Tpd
=.f+Tple)  (by (1.14)
=Dr(:f)e)=Dr, f(x).

Hence D=Dr,. This shows that ¥ is surjective and, at the same time, that
its inverse map is given by D—Tp. Finally, from (1.11), (1.12), (1.17) and (1.18),
we see that Dy decreases supports if and only if supp (T)E {e}. g.e.d.

Theorem 1.4 together with Lemmas 1.24 and 1.25 yields the following

Corollary. Every left invariant continuous linear map on &(G) (resp. EF(G))
leaves D(G) (resp. each of D(G), DE(G) and &(G)) invariant and induces on it a
continuous map.

Theorem 1.4 together with Proposition 1.6, (iii) shows that if G is not
locally connected, the class of the left invariant continuous linear maps on &(G)
is strictly wider (in the obvious sense) than the class of the maps on &%(G)
with the same properties. But we shall see in 2.7 that their subclasses con-
sisting of all support-decreasing elements coincide with each other. As against
the present section, we intened to discuss in the next chapter the support-decreasing
(not necessarily left invariant) continuous linear maps on the spaces &£ (G),
DE(G), &(G) and D(G).

Chapter 2. Differential operators

2.1. Derivations and differential operators. A linear map d on an algebra
& over C is called a derivation if d(fg)=(df)g+ f(dg) holds for f, g€&.

Lemma 2.1. Let d be a derivation on E(G) or on D(G). Then supp(df)S
supp(f) holds for feD(G).

Proof. Take any f€9.(G) and any neighbourhood U of supp(f). Choose
a€PD(G) such that a(x)=1 on supp(f) and supp(a)SU (Lemma 1.18). Then,
since f=af, we have df=(da)f+a(df). Hence supp(df)SU. Since U is arbi-
trary, the assertion follows. g.e.d.

Lemma 2.1 shows in particular that each derivarion on £.(G) leaves D(G)
invariant and so induces a derivation on it.

Lemma 2.2. If a derivation d on E.(G) is Ty-continuous on D(G), then it is
T p-continuous on E«(G).
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Proof. Obvious from the equality ¢(df)=d(pf)—(d@)f (fEEG), o< D).
q.e.d.

Lemma 2.3. Let D be a continuous linear map on EP(G) s.t. supp((Df)S
supp(f) for all f€DA(G). Then,

(i) D induces a continuous linear map on DE(G).

(ii) supp(Df)Ssupp(f) holds for all fEE(G).

Proof. Let G, be a pro-Lie open subgroup of G. Take any (N, C)e H(G,)
XCom(G). Then, since 74=7, on DL(G; C) (Lemma 1.16), it is clear from
assumption that D maps 957(G, N; C) into 9&(G; C) continuously. Hence
the assertion (i) follows. Next, take a locally finite family {a,}.ex of functions
in 9G) s.t. Seexalx)=1 on G (Lemma 1.19). Let F={F} be the upper
directed family of all finite subsets of K. Then, for each fE&«(G), itis plain
that the net {S,era.f; FEF} converges to f in &¥(G). Hence it follows
that the net {J.erD(a.f); FEF} converges to Df relative to z,, hence a
fortiori pointwise. Since supp(D(a,.f))Ssupp(a.f)Ssupp(f) for all k€K, this
implies that supp(Df)Ssupp(f). The assertion (ii) has thus been proved.
q.e.d.

Lemma 2.4. Let D be a continuous linear map on DEP(G) s.t. supp(Df)S
supp((f) for all fE€DAG). Then D is extended uniquely to a continuous linear
map on EP(G). Here, if D is a derivation, this extension is also a derivation on
E{G).

Proof. Let ¢, ¢€D(G). Choose a€D(G) so that a(x)=1 on a neigh-
borhood of supp(¢). Then, since supp(D((1—a)p))Ssupp((l—a)p)Ssupp(l—a)
and so ¢D((1—a)p)=0, we have ¢Dp=¢D(ap). Hence it follows that the map
€ DP(G)~¢pDps 9L (G) is continuous. Since ¢ is arbitrary, this shows that
D is continuous on 9.(G) in regard to the relativized z,. Since &P (G) is
complete and 9D.(G) is dense in it, the first half of the lemma now follows.
The second half is easy to check since €¥’(G) is a topological algebra. q.e.d.

Let &, (resp. 8,) denote the totality of continuous derivations on &%’ (G)
(resp. DP(G)). Then, by Lemmas 2.1, 2.3 and 2.4, we see that 8, corresponds
bijectively to 8, through the restriction map d=3d,—d| g..cc5>. S0, in the sequel,
we do not distinguish between 8, and 8,. That is, d= 48, and d| g..cs, are always
identified.

Definition 2.1. Each continuous derivation on £%°(G) or, what is the same,
on 9E(G) is called a continuous derivation on G. The totality of continuous
derivations on G is denoted by 8(G).

Let D, (resp. D,) denote the totality of support-decreasing continuous linear
maps on &P (G) (resp. DE(G)). Lemmas 2.3. and 2.4 obviously shows that the
restriction map DEDy—D| g, sets up a bijection of D, onto D,. So, as in
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the case of continuous derivations, we always identify D, and D, through this
map. Here note that this identification preserves the left and the right in-
variancy of maps. That is, a map in D, is left or right invariant on &.(G)
if and only if so it is on D.(G).

We now make the following

Definition 2.2. Each support-decreasing continuous linear map on &% (G)
or, what is the same, on 9DE&(G) is called a differential operator on G. The
totality of differential operators on G is denoted by D(G). The totality of its
left (resp. right) invariant members is denoted by D,(G) (resp. D.(G)).

Note that 3(G) is included in D(G) (Lemma 2.1). Under the obvious algebra
operations D(G) becomes an algebra over C. Each of D,(G) and D.(G) is its
subalgebra. 8(G) is a Lie algebra under the linear operation in D(G) and the
commutator product [d, d’]=dd’—d’d. For each D& D(G), we can define
DeD(G) by Df=(Df)V(f€€.(G)). Then the map D—D is an algebra auto-
morphism of D(G), and carries D,(G) and D.(G) onto each other. Also, this
map induces a Lie algebra automorphism of 3(G). D(G) includes €.(G), where
each element of £.(G) is regarded as a multiplication operator. A map D€ D(G)
does not necessarily leave 9(G) invariant, but is determined by the behavior on
it because of its density in €% (G). Now suppose D€D,(G). Then D leaves
D(G) invariant because it leaves each 9D.(G, N), (N Hy(G,), G, a pro-Lie open
subgroup of G) invariant (or by Corallary to Theorem 1.4). Furthermore it
leaves 9(G,), identified with 9(G; G,), invariant and is determined by the
restriction there (recall Remark 1.6).

2.2. Derivations associated to one-parameter subgroups.

Definition 2.3. R(G)° denotes the complexification of the Lie algebra R(G).
For each a+ifE R(G)° (a, BE R(G), i=+/—1), d{1:5 (resp. d{}:p) is defined to be
the derivation

fr——>dPf+idf (resp. fr—>dP f+idf f)
on E(G)(see Lemma 1.1, (i)).

d{:s is continuous on D& (G) because it maps each 98(G, N; C), (N, C)
e H(G,)XCom(G), G, a pro-Lie open subgroup of G) into itself continuously.
Hence, by Lemma 2.2, d&,58(G). Besides, from Lemma 1.1, d$2iseD(G)
and (d{:sV=d8is.

Theorem 2.1. The map a+if—dis is a Lie algebra isomorphism of R(G)
into 8(G). The image of this map coincides with the totality of left invariant
elements of 8(G) (i.e., with 3(G)ND,(G)).

Proof. From Lemma 1.4 and Remark 1.1 it is clear that the above map is
a Lie algebra homomorphism. Let G, be a pro-Lie open subgroup of G.
Suppose d§2:3=0. Then, for any NE Hy(G)), g€ 9D(G,/N) and x€G,, we have
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by (1.3)
d‘g‘rl)\/"'ilsNg(ﬂgl(x)):dgllﬂ(go71' 1)(X) 0

where ay=7§(a) and By=7r§(B). Hence d{)+i5,=0. Since G,/N is a Lie
group, this implies that ay=pfy=0. Since N is arbitrary, we have thus a=p
=0(i.e., a+i8=0), which proves the injectivity of the above homomorphism.
Next take any d€d(G)N\D,(G). To complete the proof, it suffices to show that
d=d{’+id§ holds on 9(G,) for some a, B€ R(G). Since d makes each Du(G1, N)
(Ne Hy(G))) invariant, we obtain a left invariant element d y& 8(G,/N) determined
by (dyg) x§r=d(g-n§") (g€ D(G,/N)). Then, since G,/N is a Lie group, there
exists a unique pair (ay, By) of elements of R(G,/N)s.t. dy=d$},+id§),. Now
suppose N, N'e H(G,) and NSN’. Take any g’'€9(G,/N’) and put g=g’°
T v(ED(G,/N)). Then

@&y +id g ) ml
=(dy g )end=d(g'*ni)=d(g°na)=(dyg) 7
=((d&}+id§))8)m§
=((dD y+ids e,

where ay y=7%y(ay) and By y=z#ny(By). Hence d& +id$y =d%y v+
diy ie, ay =759 y(ay) and ‘Bleﬁ,G,,l,N(ﬂN). This shows that the maps
te R—(ayt))nemyep and tER—(By(D)neny e,y belong to R(cq (Gy)) (see (0.1)).
Now put a(t)=csi(ax(D)nen,e,y) and BE)=ce(Br())venye,)) CER). Then @, B
€ R(G,(=R(G)). And, evidently, we have d=d{+id§ on D(G,, N) for all
Ne Hy(G,), and hence on 9(G,). This completes the proof. q.e.d.

2.3. The enveloping algebra of R(G).

Definition 2.4. D,(G) (resp. D.(G)) denotes the subalgebra of D(G) gener-
ated by all the derivations d{}:5 (resp. d¥2:5) (@, B€ R(G)) and 1, the identity
operator on E«(G).

Each DeD(G) (resp. D.(G)) is expressed as

D=2cal,...,apd§{l’---d,‘,’1’,
(resp. D=2cal_...,,, d,‘,‘l’u-df,”) (finite sum),

where ay, -+, @, € R(G), Ca,,.. Lap €C and, for the case p=0,d)- df{’ (resp.
d,‘,’l’n-d,‘,’;) means the identity operator 1. The automorphism D—D of D(G)
maps D,(G) and D ,.(G) onto each other. D,(G) is of course contained in D,(G)
but, as will be seen in 2.9, does not in general coincide with it.

Definition 2.5. U(G) denotes the universal enveloping algebra of the Lie
algebra R(G)°. C and R(G)‘ are identified with their canonical images in U(G).

Theorem 2.2. The map a+iB—d{):z of R(G)® into D,(G) extends uniquely
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to an algebra isomorphism of U(G) onto D,(G) mapping the identity of U(G) to
that of D(G).

This theorem is well known if G is a Lie group, and makes the algebra
structure of D,(G) clear. By Theorem 2.1, the map a+if—d{l;s is a Lie
algebra homomorphism of R(G)® into D,(G), viewed as Lie algebra under the
commutator product. Therefore it extends uniquely to an algebra homomorphism
of U(G) into D,(G) mapping 1 to 1. Denote this extension by @¢. It is then
evident that @¢ is surjective. So, for the proof of the theorem, it remains only
to show that @ is injective.

Notation. For any finite number of linearly independent elements a;, ---,
a, of R(G) and positive integers gy, --+, ¢, we denote by u(I17-,a4?) the element
of U(G) which corresponds canonically to the element II?-,a%¢ of the symmetric
algebra of R(G)*. (That is, u(I1?-,a%4!) is formally the coefficient of TI7?_,A#4:
multiplied by IT(g:!)/(Zp:)! in the expansion of (37.,a;A4;)*#¢, A, being supposed
to commute with each other and with every a;.) Here we include the case
n=0(.e., {a,, -+, a,} =) and define for this case u(II?-,a%) to be the identity
element 1. We denote @g(u(I1%-,a%4%)) by DII%?-,a%?).

Now let us take an algebraic linear base {y;}ic;r of R(G). (We do use
here the symbol “I’”. “I” is put aside for another use in the next section.)
We denote by I' the totality of the elements y=(v;)ie; of Z{', Z, denoting the
set of all non-negative integers, such that v;=0 for all but at most a finite
number of 7€I'. For each vel’, put u,=u(ll,«7s) and D,=DIL, .75 (=
Ds(u,)). Then {u,; vel'} is an algebraic linear base of U(G). Therefore, to
complete the proof of Theorem 2.2, it suffices to show that D, (v ') are linearly
independent in D,(G).

Lemma 2.5 Suppose G is Lie-projective. For any finite number of linearly
independent elements a‘®, -+, @™ of R(G), there exists an N& Hy(G) such that
aP =z§a®)(G=1, -+, n) are linearly independent in R(G/N).

Proof. We prove this by finite induction. Assume that, for some k<n,
there has been chosen an N, H,G) such that a}&’k (z=1, -+, k) are linearly
independent in R(G/N,). This assumption obviously holds for k=1. Now, if
ap,G=1, -, k, k+1) are linearly independent in R(G/N,), we choose N, as
Ni4i. Otherwise, afft? is expressed uniquely as

k
affiP=2cal, (GER).
=1

But, since a‘® (=1, -+, k, k+1) are linearly independent in R(G), there exists
an Ne Hy(G) such that

k )
aftv += tleia;J) .
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Put N,.;.=N,NN. Then a}&’kﬂ(i-——l, .-+, k, k+1) must be linearly independent
in R(G/Ni+) because we have a{,=z%,~,,,(af,,) and af =7%n,,  (@f,,)
for any 7. The induction is now complete. q.e.d. ‘

Proof of Theorem 2.2. We prove the linear independency of {D,; vel’}.
Let {y®, ..., u™} be any finite subset of [’. Put J={i€l’; v{*+0 for some
k(=1, ---, m)}. Take a pro-Lie open subgroup G, of G. Then, by Lemma 2.5,
there exists an N Hy(G,) such that 7§ (y;)(¢€]) are linearly independent in
R(G,/N). Each D,(vel') makes 9(G,, N) invariant and so induces a map D,
on 9(G,/N)s.t. (D,g)en§ =D, (g-n§) (g€D(G,/N)). Evidently, the Lie algebra
homomorphism #§' of R(G,(=R(G)) into R(G,/N) extends uniquely to an
algebra homomorphism of U(G,(=U(G)) inte U(G,/N) mapping 1to 1. Denote
this extension again by #§1. Then, obviously, D,=®s,,»(7§(,)) holds. Here,
since G,/N is a Lie group, the homomorphism Q)G],N of U(G,/N) into D,(G,/N)
is an isomorphism onto. On the other hand, as is seen from the fact that
{7§1(y:); i€J} can be extended to a linear base of R(G.,/N), 7§ (uyw)
(k=1, -+, m) are linearly independent in U(G,/N). Hence, after all, D,w(k=
1, .-+, m) are linearly independent in D,(G,/N). This means that D, (k=1,
.-, m) are linearly independent on 9.(G,;, N), hence a fortiori on D-(G), which
completes the proof. q.e.d.

Remark 2.1. From the above arguments, {D,; v&[’} is an algebraic linear
base of D,(G).

Proposition 2.1. Let a,, -+, a, be any finite number of linearly independent
elements of R(G) which correspond to X, -, X & L(G) respectively, and p,
, tn be any positive integers. Put D=DII%.,a4i). Then, for each fEELG)
and x<G, the function f(xexpeXt—:8:XP) in (s, -+, S,)ER™ is smooth (i.e.,
€ C>) on some neighbourhood of 0= R", and there holds
@.1) Df(x)y=- Y 5. XD

. x)-—Ha—sﬂllf<xexpgi='Zi SiX )

Proof. Evidently it suffices to consider the case x=e.

(1) First suppose that G is finite-dimensional and Lie-projective. Take a
totally disconnected Ne Hy(G) (Lemma 0.13). Then there exists a local homo-
morphism 6 of G into N such that the map x—(z§(x), 6(x)) sets up a local
isomorphism of G into (G/N)X N (Lemma 0.11). Therefore, for each fE&.(G),
we have an he&.((G/N)XN) such that f(x)=h(xr$(x), 8(x)) holds for x near
e. Put h=h(-, 0(e)(€€(G/N)). Then, since exps(L(G)Sc(G) and
0(c(G))={0(e)}, we have for small s,i=1, ---, n),

(89)=(0)

(2.2) f(expggsiX(“)zhl(n?v(expthZ‘,lsiX‘“))

=h1(expauv :g 5: X 5&") (by (0.4)),
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where X§=z§(X?). Since G/N is a Lie group, this shows that the function
fexpe2toy5: XP) in (s;) is certainly smooth in a neighbourhood of 0= R™.
On the other hand, for each a= R(G) and x near e, we have

dd f()=dZ oh(z$(x), 0(x)),
where a=z%(a). Hence, obviously,
(2.3) Df(e)=Dhy(n(e)),

where D=D(I"_,a@%}). (Here @,(i=1, ---, n) are linearly independent in R(G/N)
since N is totally disconnected (see (0.6)).) Since G/N is a Lie group, the
right side of (2.3) is given as (0%*i/TT10s4%)h\(expo/n27-15:X )1 ¢sp=0», Which
equals (0%#¢/T10s%%) f(expe=7t-15:X | (s5-c» by (2.2). This completes the proof
for the present case.

(II) Let G be arbitrary. Take a pro-Lie open subgroup G, of G. Then,
for each fe&.(G), we can choose N=H(G,) and g€ D.(G,/N) so that a,=
7§ (a;) (=1, ---, n) are linearly independent in R(G,/N)(Lemma 2.5) and that
f=gem§ holds on a neighbourhood of ¢ in G,. Then, since exps(=expes,) maps
L(G) into ¢(G)XEG,), we have for small s;G=1, ---, n),

f(expg lé 3iX‘“>=g(7tf(,‘(expg él siX"')))

=g(eXDo IN i S'X(“)
1 Pl i N »

where X =z5(X®). Since G,/N is finite-dimensional, we see by (/) this
function in (s;) is smooth in a neighbourhood of 0= R". Besides, if we put
D=D(II;-.a%t), then

Df(e)=Dg(n §1(e))

oz z @
= Tiagr £(oXPoun 25X i)
azﬂt

Has/‘l

The proof has now been completed. q.e.d.

(by (D)

(s{)=(0)

flexpe 2 S: X‘”)

(8)=C0)

The above formula (2.1) is well known if G is a Lie group. It generalizes
(1.1), and applies in particular to each D, (v&1’).

We conclude this section with simple remarks. Let # be a continuous homo-
morphism of G into another LC group G’. Then, evidently, the Lie algebra
homomorphism & of R(G) into R(G’) has a unique extension to an algebra homo-
morphism of U(G) into U(G’) mapping 1to 1. In the sequel this extension will
be denoted also by 4. It is easy to see that if [# is injective or surjective
as a map of R(G) into R(G’), then so it is as a map of U(G) into U(G’). If
76 is a composition of group homomorphisms, then 7-6=7<4 holds as algebra
homomorphism. In virtue of Theorem 2.2 6 can be viewed also as a homo-
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morphism of D/(G) into D,(G’). For instance, if N is a compact normal sub-
group of G, #§ maps D,(G) onto D,(G/N). Here, if we identify DL(G/N)
with 98°(G, N), 7% behaves as the restriction map DeD,(G)—D| g, v>-

2.4. Explicit form of differential operators. We now intend to describe
all differential operators on G explicitly. For this purpose we use a topological
linear base of the minimal locally convex space R(G) (see 0.1), taking after the
discussions in [5], n°12.

Let {y:}:cr be a topological linear base of R(G). We fix it for all subsequent
arguments of the paper. Let {r:}:c;r (ISI’) be an algebraic linear base of R(G)
extending {7:}:c;. Then, in view of the arguments in 2.3, we have an alge-
braic linear base {D,; vel’} of D,(G), where I'={v=(v)ic; €Z} ; v;=0 for
all but at most a finite number of ;=l'} and D,=D(I1,,x0%) (vel). For any
subset J of I, we put J={vel; v;=0 for all i€I’\J}, and denote by R,(G)
the closed linear subspace of R(G) spanned by {7:}:cs\s. Note that {D,; v}
does not depend on the choice of y; for 7/=I’\I, and that one has {D,; vell=
{D,; vel'} (i.e., I=I") only when G is finite-dimensional.

Lemma 2.6. Suppose G is Lie-projective. For each Ne H(G), there exists a
finite subset J of I s.t. R;,(G)S R(N).

Proof. Let R(G) be the topological dual of R(G). Since the topological
dual of R! is the restricted direct product R¢?’, it is plain that R(G)' has an
algebraic linear base {e;}:e; such that ei(y;)=1 if i=j, and =0 otherwise
(i, j€I). For a subset M of R(G) (resp. R(G)’), let M* denote the annihilator
of M in R(G) (resp. R(G)). Then, for Ne H(G), R(N)* is fiite-dimensional
since it is the dual of the finite-dimensional quotient space R(G)/R(N) (=2 R(G/N)
by (0,9)). So we can choose a finite subset J of I such that the linear span of
{e;; ieJ} includes R(N)*. Then, by the choice of {e;}ic;, Rj(G)E{e;; ic]}*
S R(N)**=R(N). q.e.d.

Corollary. Let G, be any pro-Lie open subgroup of G. For each Ne H(G)),
there exists a finite subset J of I such that D,f=0 for all ve INJ and feeG, N),.

Proof. Immediate from Lemmas 1.17 and 2.6. g.e.d.

Lemma 2.7. Let I, (resp. T«) denote the topology on D(G) of uniform tp-
convergence (vesp. ty-convergence) on each bounded subset of £ (G) (resp. D(G)).
Then I, and T+« are equivalent.

Proof. Each bounded subset of 9$(G) is contained in D.(G; C) for some
CeCom (G), and 74 coincides with 7, there (Lemma 1.16). Besides, 9.(G; C)
is stable under every DeD(G). Hence, evidently, we have 9,=9,. Next let
D® be any net in D(G) converging to 0 in regard to 94 Take any bounded
subset B of £€¥(G) and bED(G). Choose a=D(G) so that a(x)=1 on a neigh-
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bourhood of supp(b). Then bD®f=bD‘®(af) (f€B). Since aB is bounded
in 98°(G) and b is arbitrary, this shows that the net D‘f converges to 0 in
& (G) uniformly w.r.t. fe 8. Hence D‘—0 in regard to 9, Thus we
have shown that 94,=>9,, which completes the proof. qg.e.d.

Definition 2.6. The equivalent topologies 9, and T4 on D(G) are denoted
by a. D(G) is equipped with g throughout. (Thus D(G) is locally convex and
Hausdorff.)

Definition 2.7. An element (a,).e; of €.(G)!, the set &£.(G) raised to the
power [, is called admissible if for each finite subset J of I and C&Com (G),
the set {ve/; supp (a,)NC+ @} is at most finite.

Let (a,),e; be an admissible element of €.(G)!. Let G, be a pro-Lie open
subgroup of G, and (N, C)e H(G,)XCom (G). Then, in virtue of Corollary to
Lemma 2.6 and the admissibility of (a,),e7, all but at most a finite number of
the differential operators a,D, (v&l) vanish on 9(G, N; C). Hence it is clear
that we can define a differential operator D on G as the map f€9D.(G)—
Sera,D,f. Now let F={F} be the upper directed family of all finite subsets
of I. Then, since each bounded subset of 9&(G) is contained in 9.(G, N; C)
for some (N, C)€ H(G,)XCom (G), it is plain that the net {3,cra,D,; FEF} in
D(G) converges to D in regard to 9. Thus we have

Lemma 2.8. For each admissible element (a,).e1 of E(G)I, the sum 3,cra,D,
of the differential operators a,D, converges in the space D(G) unorderedly.

Let (a,).,e;r be as in Lemma 2.8. Put D=3X,c;a,D,. Then, for each f&
E«(G), the numerical equality

2.4 Df(x)=2era.(x)D.f(x)  (x€G)

holds, where the right side reduces to a finite sum on each CeCom (G). Indeed,
from the definition of I, X,c7a.D,f converages to Df in regard to 7, hence
a fortior: pointwise. Here, if we choose a€9(G) so that a(x)=1 on a neigh-
bourhood of C, then a,(x)D,f(x)=a,(x)D,(af)x) for x&C. But, since afe
D.(G, N; supp (a)) for some NeH(G,), the functions a,D,(af) vanish for all
all but at most a finite number of v.

Lemma 2.8 enables us to associate to each admissible element (a,),c; of
E(G)T a differential operator D=3,c;a,D, on G. The explicit description of
all differential operators on G is now attained by the following theorem, which
we prove in the next section.

Theorem 2.3. The map (a,).er—2.e1a.D, sets up a bijection of the set of all
admissible elements of E.(G)! onto D(G).

Remark 2.2. The following facts concerning the topology ¢ will be used
later on. (i) D(G) is a topological algebra under g (i.e., the multiplication is
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separately continuous). (ii) The algebra automorphism D—D of D(G) is topo-
logical. (iii) The injection a—d¢> of R(G) into D(G) (Theorem 2.1) preserves
the topology. (iv) 8(G) and D,(G) are closed in D(G).

Let us check (iii). Since the space R(G) is of minimal type, it suffices to
see that the above injection is continuous. Let {a‘®} be a net in R(G) con-
verging to 0, and # a bounded subset of 9&(G). Our job is to show that
d@% f converges to 0 in 9L°(G) uniformly w.r.t. f€ 8. Take a pro-Lie open
subgroup G, of G. Then @ is a bounded subset of 95(G, N; C), for some
(N, C)e H(G,)XCom (G). Choose a finite number of B,, -+, B.€R(G) so that
Br=7§uB:) (k=1, ---, n) constitute a linear base of R(G,/N). Then each
z§(a®) is expressed as ,ciP B (ciPER). Here c{P¥—0 for all & since
7§1(a?)—0. Meanwhile, each f€9.(G, N), is expressed as a finite sum of
left translations of functions in 9.(G, N; G), (29D(G;, N)). Hence, in view
of (1.3), d"%f=XpiciPdg)f holds for f€9D.(G, N),. Therefore it is now
plain that d{, f converges to 0 in 98°(G, N; C), (hence in 9L°(G)) uniformly
w.r.t. fE€ 3.

2.5. Proof of Theorem 2.3. We retain the notations as in 2.4.

Lemma 2.9. Suppose G is Lie-projective. For any finite subset | of I, there
exists an Ne H(G) s.t. R(N)E R;(G).

Proof. Put L=R;;(G). Then £ and R,(G) are the topological comple-
ments of each other in R(G). Let P, denote the projection of R(G) onto L.
Since £ is finite-dimensional, we can choose a neighbourhood U of 0 in .£
including no linnear subspace other than {0}. Now, as a neighbourhood of 0
in R(G), P7X(U) includes R(N) (=ker (d=$)) for some N H,(G). Then, by the
choice of U, R(N)SR,;(G), which completes the proof. q.e.d.

Now let us denote by X© the element of L(G) corresponding to y; ((€1).
Since the map ($:)ie;ER'—icrs: XP is a topological linear isomorphism of R
onto L(G), we have, for each fe=9(G) and x&G, a function (8;)icsi—
f(x expeXlicss: XP) defined on RI.

Note. In reality the above function depends only on a finite number of s;.
Indeed, take a pro-Lie open subgroup G, of G. Then, since .fED(G, N), for
some N& H,y(G,), one has geD(G,/N) such that ,f=gex§ holds on G,. Since
eXpe (=eXpg,) maps Zic;$: X P ((s)€R!) into ¢(G) (SG,), we have

2 f(€XPeDiersi XP)=g(r §1 (eXpeZicr $: X 7))
=g(expG,/N2iel 5: X§) (by (0.4)),

where X =7z§1(X‘?). Here, by Lemma 2.6, there exists a finite subset Jof I
such that R, (G)SR(N), i.e, that X{P=0 for all i€I\J. Thus
2f(eXpeicrs: X ) depends only on s; ((€]).
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Lemma 2.10. Let G, be a pro-Lie open subgroup of G. Let v=(v;)ic,E]
and x€G. Put J={iel; v;#0} and choose an N H\(G,) s.t. R(N)S R,G,)
(=R,(G)) (Lemma 2.9). Then there exists a function f€D.(G, N), such that

f(x expeicrsiXP)=Tlie(vi ) 's¥i
holds on a neighbourhood of 0 in R.

Proof. It suffices to consider the case x=e¢. So, moreover, we can assume
that G is Lie-projective and G,=G. For any finite subset J, of I, let L, (G)
denote the closed linear subspace of L(G) corresponding to R, (G). For any
XeL(G) and N, € Hy(G), put Xy =z%,(X).

Now let us choose by Lemmas 2.6 and 2.9 a finite subset /' of [ and N'&
H,(G) so that Ry/(G)S R;«(G)S L y(G) and N'SN. Then, since Ly(G)SL ,(G)
by the assumption of the lemma, we have JSJ’. It is evident that {X{;:€]}
(resp. {X§);i<I}) spans L(G/N) (resp. L(G/N’)) algebraically. This together
with the inclusion relation Ly.(G)ES L y(G)S L ,(G) enables us to choose a finite
number of Y¥Pe L ,(G) and Z¥ L y(G) so that X§ (€]) together with Y'§
constitute a linear base of L(G/N), and X§ ({€]) together with Y{ and Z®
constitute that of L(G/N’). On the other hand, since Ly.(G)SL;(G), we can
choose a finite number of W L ,.(G) so that X§{ (i<]’) together with W
constitute a linear base of L(G/N’). Note that the change between the bases
(X$ Ge), Y@, Z®} and {XP c€)), X$ GeJ'\)), Wt of L(G/N') is
performed by the transformation

(s ).

where 1, denotes the identity matrix of order |J|, the cardinal of J.
Since G/N is a Lie group, there exists a g€ 9D(G/N) such that

(2.5) g(expe/n(Zicssi XP + 25t Y PN=ITTics(v 1) 's5

holds so long as the real parameters s; and ¢; are sufficiently small. Put f=
g°7% (E9.(G, N)). Since N'SN, there exists g€D(G/N’) s.t. f=g"-nf.
Now, since Z$#=0 for all k, the left side of (2.5) equals g(expe/n(Dicss: X+
SHY P +3uZ¥)) for any u,eR. By (0.4) and through the above change
of the bases, this is furthermore equal to

f(expa(Dicssi X P+t Y P+ u, Z9)
=g'(expe/n (SDics i X P+t Y P+ ku Z§))
=g'(expe/n (Siessi X+ Diesus: XN+ 2w W),

where s; (=J'\J) and v, are connected with ¢; and u, through the transfor-
mation * appearing in the above matrix. Thus, after all, we have

g'expern (Sier si X+ w W) =Tlies(w: )7 s3e,

provided the parameters s; and v, are sufficiently small. Since this does not
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depend on v,, we can put here v,=0. Then
fexpeDies s: X P)=ILies(vi )'stt,
s; (f€]') being supposed to be small. Here, since L, (G)= L x(G) and so XP=0
for ;eI\ J’, the left side is equal to
2(eXpe/nDies $: X §)=g€xpe/nDicrS: X )
=/f(expeZicss:i X?®)

for any s;€R (G€I\]J’). The proof is now complete. q.e.d.

Corollary. For each vl and x<G, there exists a function f€D(G) s.t.

1 if vV=y,
(2.6) D»'f(x)={

0  otherwise (i.e., v'el, #v).

Such an f can be chosen in D (G, N), if N is taken as in Lemma 2.10.

Proof. Using Proposition 2.1, we see easily that the function f given in
Lemma 2.10 satisfies (2.6). q.e.d.

Proof of Theorem 2.3. Let DeD(G). Our task is to show that there exists
a unique admissible element (a,).e; 0of €(G)! for which D=3),c;a,D, holds.
But, in view of (2.4) and Corollary to Lemma 2.10, the uniqueness is obvious.
So we prove its existence.

(I) First suppose G is Lie-projective. For this case we make the proof in
three steps. (I,) Let Ne H(G) and C=Com (G). For each x&G, consider a
distribution 7T(x) on the Lie group G/N defined by (g, T(x)>=D(gn%)(x)
(ge9D(G/N)). Then, since supp (T(x))S {n%(x)}, there exists a unique element
Dy(x)eD,(G/N) s.t.

@7 D(gen)(x)=(Dn(x)g)nf(x))  (gEDG/N)).

We now show that the orders of Dy(x) (x&C) (what is the same, the orders
of T(x) (x&C)) are bounded.

To do so, let us choose a€9D.(G, N) s.t. a(x)=1 on a neighbourhood of C.
Since the map f€9& (G, N ; supp(a))—»DfeE&,(G) is continuous, we can choose
a finite number of D, ---, D, D/(G) so that

gténg(af)(x)l =37, sup [Di(af)y)l (fEDLG, N)).

If a finite number of Dj, ---, D;e D,(G) are suitably chosen, the right side of this is
majorized by >9., sug | D;f(y)]. On the other hand, by the choice of a, D(af)(x)
YE

=Df(x) holds for any f€&.(G) and x&C. Thus we have
sup| Df(x)| £ Zi.supl Dif(¥)] (fEDG, N)).
zel YEG

This can be rewritten as
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gggl D(g-n¥)(x)| =X, sup | Dig(x%(y))] (g€ D(G/N)),

where D;=z$(D;) (see the end of 2.3). The last inequality shows that the
orders T(x) (x&C) are certainly bounded.

(I,) Let J be any finite subset of I. Choose an N& Hy(G) s.t. R(IN)S R,(G)
(Lemma 2.9). And choose a finite subset J’ of I so that #§(y;) GEJ’) consititute
a linear base of R(G/N). This is possible since z%(y;) (G€I) span R(G/N).
Note that these choices imply JSJ'. We now intend to apply the result in (/,)
to the present N. Evidently D,=z%(D,) (v’ constitute an algebraic linear
base of D,(G/N). Therefore, for each x&€G, Dy(x) is expressed uniquely as
Dy(x)=3,es an.(x)D,, where all but at most a finite number of ay.(x) (€C)
are 0. Thus (2.7) has now the form

D(g-z§))=Zer an(x)D,g(z§(x))  (gENG/N)),

which is rewritten as

2.8) Df(x)=2eran(x)D.f(x)  (f€D«(G, N)).

Let us now consider the functions ay,: x—ay.(x) defined on G (vej’), Let O
be any relatively compact open neighbourhood of a point x,&G. Then, by ({,),
the orders of Dy(x) (x0) are bounded, and therefore, all except at most a
finite number of ay, vanish on O. Let {aw, a, -, @n,p»} be the totality of those
exceptional functions. By Corollary to Lemma 2.10 we can choose f;€9(G)
(j=1, -, p) so that D ,f;(x)=1 if i=j, and =0 otherwise. Then, from (2.8),
we have

(2.9) (Df(x), -+, Dfp(x))=(am.n(x), -, am(x)A(x)  (x€0),

where A(x) denotes a matrix of order p with (¢, j)-component D ¢, f(x). If O
is taken to be sufficiently small, A(x) is non-singular for every x&O because
A(xo)=1, an identity matrix. Therefore, from (2.9), we see that all ay,w are
smooth on O (i.e., “indefinitely continuously differentiable on O”). Since x, is
arbitrary, we have thus seen that all ay, (ve ] ) belong to €(G) and also that
they form a locally finite family (i.e., the set {vej’; supp(ax,)N\C#@} is at
most finite for every C&Com (G)).

(2.8) together with Corollary to Lemma 2.10 obviously shows that each of
ay, for ye f is determined only by v, not depending on the special choice of N
and J’ in the above indicated manner. So, for v/, let us write a, instead of
an,. Also let us write (2.8) as

(2.10)  Df(x)=X.era.(x)D, f(x)+D.crvan(x)D,f(x) (fED(G, N), xEG).

(I) The procedure in (I,) yields, for every finite subset J of I, a locally
finite subfamily {a,; ve f } of €.(G). Here, as is seen from what was just
mentioned, each @, is determined not depending on the special choice of J s.t.
vef. Thus, after all, we obtain an admissible element (a,),c; of €=(G)!. We
now show that D=3),c;a,D, holds. To do so it suffices to show that for
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each f€9D(G) and x€G, Df(x)=3,cra.(x)D,f(x) holds. Choose an N,€H\(G)
and a finite subset J of I so that f€9.(G, N;) and R;(G)S R(N,) (Lemma 2.6).
Then, since dh=0 for any h€9D.(G, N;) and a= R ;(G), we have

(2.11) D.f=0 (el\j).

Next let us choose an NeH,(G) and a finite subset J’' of I so that NEN,
(hence fEDLG, N)), RIN)YSR,(G), and z%(y;) € ]’) constitute a linear base
of R(G/N). For the present J, N, J' and f, (2.10) is of course valid. There-
fore, by (2.11), we see that the equality Df(x)=3.era.(x)D,f(x) holds. The
proof for the Lie-projective case has thus been completed.

(ID Next let G be arbitrary. Take a pro-Lie open subgroup G, of G. Let
us recall Remark 1.3 and denote by D, the restriction of D to D(G; I').
Then the map ge.@w(Gl)v—»”(D;(zilg)) belongs to D{(G,). Therefore, by (I),
there exists an admissible element (a{®).,e; 0f €.(G,)! such that

22(Dap@N(0)=2heraP(0)D.g(x)  (EEDAG), xEGY).
Hence
(2.12) Dih(x)=cratP(x7'x)D,h(x) (h€DL(G:; Iy), x€I'y).

For each vel], define a function a,€€.(G) as auzgﬁlaé". Then (a,).er
(E€.(G)I) is evidently admissible. Besides, from (2.12),

Df(x):zyeiau(x)va(x) (feg)w(c)r XEG) .

That is, D=3},c7a,D, holds. The proof of the theorem is now complete. q.e.d.

2.6. Elements of 8(G) and D,(G). In this section we determine, among all
differential operators on G, the elements of 3(G) and D,(G).

Lemma 2.11. Let D=3 ,cra.D,, where (a,).e; is an admissible element of
E(G). For D to be a derivation (i.e., €8(G)), it is necessry and sufficient that
a,=0 unless |v|=1, where |v|=ic v:.

Proof. 1f |v|=1, D, coincides with d{;’ for some /=]. Hence the sufficiency
of the condition is obvious (see Remark 2.2, (iv)). Conversely suppose that D
is a derivation. For each v®®&[ with [v®|>1, we can choose v/, v”<1 so that
V| >1, [v”|>1 and vi4v?=v{” for all i€l. For each x&G, choose f, g€D(G)
such that f(x expeXiersiXV)=TL;.0st" and g(x expeXicss:XV)=IL w5 hold
on some neighbourhood O of 0 in R! (Lemma 2.10.). Put hA=fg. Then
h(x expgzie,siX“")=I'[,,i<o>¢os§i‘°’ on O. Hence, by Proposition 2.1, Dh(x)=
Z,Eiay(x)Dyh(x)zav<o>(x)1'[y;o)$o(v§°’!). Meanwhile, since f(x)=g(x)=0, we have
Dh(x)=(Df(x)) g(x)+ f(x)Dg(x)=0. Thus, after all, a,w(x)=0. Since »** and x
are arbitrary, it has been shown that ¢,=0 if |v|>1. Now, if [v|=0, then
a,=D(1). Since D is a derivation, we have D(1)=0. The necessity of our con-
dition has thus been proved. q.e.d.
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It is plain that there exists a natural bijection of €.(G)! onto the set of all
admissible elements of &£.(G)! which satisfy the condition stated in Lemma 2.11.
So the following proposition holds.

Proposition 2.2. For each (a:)ie1€E(G)?, the sum icra:dfyY of the ele-
ments a;df? of 8(G) converges in the space D(G) unoderedly. The map (a:)icr—
Sicra:dfy sets up a bijection of ELG)' onto 8(G).

Lemma 2,12, Let D=3,c;a,D,, where (a.).c; is an admissible element of
E(G)I. For D to be left invariant (i.e., €D,(G)), it is necessary and sufficient
that all functions a, are constant.

Proof. D is left invariant if and only if we have Df(x)=D(,f)e), i.e.,
Sera(x)D, f(x)=3cra,(e)D,f(x), for all fe€.(G) and x=G. In view of
Corollary to Lemma 2.10, this is equivalent to that a,(x)=a.(e) holds for all
vel and x€G, i.e., that all a, are constant. q.e.d.

Now let us call an element (¢,),e; of C? admissible if, for each finite subset
J of I, the set {vef; ¢,#0} is at most finite. If we view each ¢, as a con-
stant function on G, this condition is equivalent to that (c,),e; is an admissible
element of €.(G)I. Therefore, by Lemma 2.12, the following proposition holds.

Proposition 2.3. For each admissible element (c,),e; of CZ, the sum 3,ecic,D,
of the elements ¢,D, of D,(G) converges in the space D(G) unorderedly. The map
(co)er—heic,D, sets up a bijection of the set of all admissible elements of C!
onto D(G).

Corollary 1. D,(G) is T-dense in D,(G), and coincides with it if G is finite-
dimensional.

Proof. The density in question is clear from Proposition 2.3. Now suppose
G is finite-dimensional. Then the set [ is finite. Therefore each admissible
element (c,),e; of C7 has at most a finite number of non-zero components.
Hence, by Proposition 2.3, D,(G)=D(G). g.e.d.

In 2.9 we shall see that if G is infinite-dimensional, D,(G) does not coincide
with D,(G).

Corollary 2. If D,€D,G) and D,€D.(G), then D,D,=D,D,.

Proof. 1f D,D,(G) and D,eD (G), we have D,D,=D,D,. So the asser-
tion follows from Corollary 1 together with (i) and (ii) of Remark 2.2. q.e.d.

2.7. Support-decreasing continuous linear maps on the spaces 9(G) and
&(G). All discussions in 2.1-2.6, which we made with 98(G) and &¥(G) as
base spaces, remain valid even if the spaces 9(G) and &(G) are taken instead.
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The straightforward certification of this fact we leave to the reader. Thus the
following in particular hold.

(i) The algebra of all support-decreasing continuous linear maps on &(G)
can be identified, through restriction of maps, with the algebra of all maps on
9(G) having the same properties. This identification preserves the left invari-
ancy of maps.

Let us denote by Dg(G) these identified algebras.

(i) For Dx(G), the topology of uniform convergence on each bounded sub-
set of €(G) and that of uniform convergence on each bounded subset of 9D(G)
are equivalent.

We equip Dy(G) with these equivalent topologies.

(iii) Define the admissible elements of &(G)! as in the case of £.(G)! (thus,
(a,),e1€E(G)! is admissible if and only if it is admissible as element of €.(G)I).
Then the map (a,),c;—>cia,D, gives a bijection of all admissible elements of
&(G)T onto Dg(G), where each a,D, is viewed as a map on &(G) or 9(G) (recall
Corollary to Theorem 1.4) and 3,c7a.D, converges in Dy(G) unorderedly.

(iv) X.era,D, with an admissible element (a,).e;&(G)! is left invariant
if and only if all a, are constant.

Let (a,).e; be an admissible element of £(G)!. Since the topology of &(G)
is finer than =, relativized there, it is easy to see that 33,c;a,D, as element of
Dy(G) coincides with the restriction to &(G) of 3,e7a,D, as element of D(G) in
the previous sense. Thus each DEDg(G) is extendable to an element of D(G)
(needless to say, uniquely). So, apart from topology, Dy(G) can be viewed
as a subalgebra of D(G). Under this convention, the subalgebra of Dy(G) of all
left invariant elements coincides with D,(G) because of (iv) above and Lemma
2.12. Also, since the map f— f on &(G) is continuous, we see that the auto-
morphism D—D of D(G) leaves Dx(G) invariant.

Now let us denote by £.(G; e) (resp. £(G; e)) the topological subalgebra of
&L(G) (resp. &'(G)) consisting of all elements with support in {e} (see (1.11)).
Then the left invariant elements of Dz(G) are in correspondence with the
elements of &’(G;e) (Theorem 1.4). While, each of such elements of Dy(G)
has an extension in D,(G) as just mentioned, and each element of D,(G) is
obtained from some T €&L(G; e) (£€'(G; e)) (Theorem 1.4). Hence it follows
that €(G; e)=&%4(G ; e) as set.

Remark 2.3. For C=Com (G), put &(G; C)={T<&'(G); supp (T)SC} and
LG ; CO)={T<&l(G); supp(T)SC}. Proposition 1.6, (iii) implies that these
two Sets are not necessarily identical.

Meantime, as we know ([5]), Proposition 6), 9'(G) and &'(G) induce the
same topology on each &(G; C). It can be similarly shown that 9L(G) and
&L(G) induce the same topology on each &4L(G; C).

We next demonstrate the following

Theorem 2.4. (i) The map Te&L(G; e)—Dr ((1.17)) is a topological algebra
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isomorphism of €(G; e) onto D(G), where D,(G) inherits the topology .
(i) €LG; e) and &'(G; e) coincide with each other as topological algebra.®.

As we have already seen, the map Te&L(G; e)»Dr=D,(G) is algebraiccally
an isomorphism onto (Theorem 1.4) and the sets €L(G;e) and &'(G; e) are
identical. Now, for any topological linear space X over C, let us denote by
B(X) the totality of bounded subsets of X. Then, evidently, one has B(DL(G))
2B(9(G)). For each 8€ B(9&(G)), define a seminorm Pg on D,(G) as Pg(D)
=sup{|Df(e)|; f€ B} (DeD,G)). Let T, (resp. T,) denote the locally convex
topology on D,(G) determined by {Pg; B B(D(G)) (resp. {Pg; B< B(D(G)))}),
and g, the relativized ¢ to D,(G). Then we have ,=9,>9,. Note that T,
(resp. T5) is nothing but the image of the relativized f(D%, 9..) (resp, (D, D))
to €.(G; e) (=&'(G; e)) under the algebra isomorphism T+—D; of €4(G; e) onto
D,G). Here B(Di, D) (resp. (D', D)) coincides with B(EL, E.) (resp. B’ e)
on &L(G; e) (=&'(G; e)) (Remark 2.3). Therefore, to prove the theorem, it
suffices to show that ,=9,=9, holds.

Lemma 2.13. I, and I, coincide with each other.

Proof. We have only to prove 9,29, Let D' be any net in D,(G) con-
verging to 0 relative to I,. Our task is to show that this net converges to 0
relative to g,. Take any BB@S(G)). Then 2B is a bounded snbset of
28(G, N; C), for some (N, C)€ H(G,)XCom (G), G, being a pro-Lie open sub-
group of G. Put @'={.f; x€C, fe8}. Then 8’ is plainly bounded in
29(G, N; C'C), and so €B(DL(G)). Since Dy(G) equipped with 7, is a
topological algebra (isomorphic to €4(G; e)), the net DD® for each DeD,(G)
converges to 0 in D,(G) relative to 7,. Hence Pg.(DD*)—0, that is, D(D‘® f)(x)
(=DD®(,f)(e))—0 uniformly w.r.t. f€ 8 and x=C. Here we see by Lemma
1.17 and Corollary 1 to Proposition 2.3 that D f€ 9(G, N; C), (f€3B). There-
fore, in view of arbitrariness of D€D\(G), D' f—0 in 9¢(G, N; C), (hence
in 98°(G)) uniformly w.r.t. f€ 3. Since B is arbitrary, this shows that D¢®
—0 relative to T,. g.e.d.

Lemma 2.14. I, and 9, coincide with each other.

Proof. We prove T,=2,. Let D® be any net in D,(G) converging to 0
relative to T, (i.e., Pg(D?)—0 for all 83€ B(9(G))). Take any B,& B(QL(G)).
Our task here is to show that Pg,(D‘?) converges to 0.

(I) First assume that G is Lie-projective and finite-dimensional. Then
there exists a totally disconnected N& Hy(G) and a local homomorphism 6 of G
into N such that the map x—(a%(x), 8(x)) is a local isomorphism of G into
(G/N)XN (Lemmas 0.11 and 0.13). For each f€ 3, we can choose h,c
D((G/NY)XN) so that f(x)=h(x%(x), 6(x)) holds for x near e and the set
{hy=h;(-, 0(e)); f€ B,} is bounded in DG/N). Put Bi={h}z%; f=B,}.

(5) In [5] &(G;e) is denoted by U(G) though, in our notation, U(G) denotes the
universal enveloping algebra of R(G)¢ which corresponds with D;(G).
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Then B;€ B(9(G)), and PQO(D(Z))=P_¢36(D(“) since D f(e)=(z§(D)h})(xG(e))
=DP(h}on)e) (fE Bo). Hence Pg (DP)—0.

(II) Next merely assume that G is Lie-projective. Choose N, H(G) so
that $,S9.(G, N,). For each A, choose D§¥&D,(G) s.t. D{®=D‘® holds on
D.(G, N,) (recall Corollary to Lemma 2.6 and Proposition 2.3). Put D=
7#%,(D§P) (€D(G/Ny). For each 8€ B9 (G, Ny)), let 3 denote the element
of B(9(G/N,)) corresponding to 8 under the topological linear isomorphism
gEDE(G/Ny)y—g-n§,€DE(G, Ny). As is easily checked, Hyo(G/No)={n%,(N);
N,SNeH\(G)}. Hence B(D(G/No)=\U{BD(G/N,, n%,(N)); NoS NE Hy(G)}.
Here, each 98°(G/N,, n%,(N)) corresponds to 9% (G, N) under the above iso-
morphism. Since Pg(D‘?)—0 for every B B(9D(G)), it thus follows that
Pa(DM)—0 for every 3 B(D(G/N,), Since G/N, is Lie-projective and finite-
dimensional, this implies by (I) that Pz(D*)—0 for every B B(QL(G/Ny)).
Hence, in particular, Pg (D‘?*)—0.

(III) Finally let G be arbitrary. Take a pro-Lie open subgroup G, of G.
Denote by X the indicating function of G,. Then X8, B (G; G,)) and
Pg (D‘P)=Py 4,(D‘»). Here we can view X3, as an element of B(9S$¥(G,)) and
D™ as a net in D,(G,) s.t. Pg(D‘®)=0 for every 8 B(9(G,)). Therefore, by
(I), Pyg,(D‘®)>0. That is, Pg,(D‘®)—0. The proof of the lemma is now
complete. q.e.d.

Through the above two lemmas Theorem 2.4 has now been proved.

Finally we touch on the differential operators u on G in Bruhat’s sense.
They were defined as maps on 9(G) in a somewhat intricate manner in [5],
n°12. But, by the sketch given there, it can be been that they are in corre-
spondence with the admissible elements (a,),e; of €(G)! in the following way:

wf=Zwera.Toxf  (f€DG)

(for Tp, see (1.18)). Here the right side is equal to E,EIa,(f*TDP)'=E,e,-aLDpf.
(This reduces to a finite sum for each f€9(G) due to Corollary to Lemma 2.6.)
Since Dyx(G) is stable under the map D—D on D(G) as has been mentioned, this
after all shows that the differential operators on G in Bruhat’s sense are no other
than the elements of Dy(G), i.e., the support-decreasing continuous linear maps
on D(G) (or, what is the same, on &(G)).

2.8. The center of the algebra D,(G). In this section we describe the
center of D,(G) by means of the adjoint representation as in the case of Lie
groups.

Let 6 be a continuous homomorphism of G into another LC group G’. Then
we have a continuous linear map 4 of &£(G’) into &(G) defined by O4(g)=g-8
(g€&(G")) ([5], Proposition 8). Let 6} denote the adjoint of 6§, :

(2.13) g, 0T)H=<0(8), T> (g€&(G’), T€&'(G)).
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Since (1.10) holds for S, T€&'(G) and ¢=&(G), it can be seen that G4(S*T)=
0:(S)*0(T) (S, Te&'(G)) holds. Thus @4 is a continuous homomorphism of
&'(G) into &'(G'). Besides, as is easily checked,

supp (0(T)HSO (supp (7)) (T (G)).

Hence in particular % induces a continuous homomorphism of &’(G;e) into
&'(G'; 6(e)). Let us denote this homomorphism by §. By Theorem 2.4 § can
be viewed also as a continuous homomorphism of D,(G) into D,(G’). From
(2.13) we have 0(0,)=0¢¢> and ﬂ'(Td;n):Td(gpa (ae R(G)). Hence it turns out
that 0 extends the homomorphism of D,G) into D,(G’) which was introduced at
the end of 2.3. Since D,(G) is dense in D,(G) (Corollary 1 to Proposition 2.3),
this is the unique T-continuous extension.

Lemma 2.15. Let 8 be as above. For any DED,(G) and gE&LG'),
(2.14) (0(D)g)-0=D(g-0).

Proof. Evidently, g-0 (g€&.(G’)) belongs to £.(G) and (2.14) holds if De
D,(G). Since D,(G) is dense in D,(G) and 4 is continuous, the assertion for
any DeD,(G) follows at once. q.e.d.

It is obvious that if n<f is a composition of group homomorphisms, then
(n-8)"=7-6 holds.

Now, for each x&G, let Is(x) denote the inner automorphism y—xyx~! of
G. Then Is(x)” is an automorphism of the topological algebra D,(G) leaving
D,(G) invariant. Since it extends the Lie algebra automorphism Adg(x) of R(G)
(0.5), let us denote it again by Ade(x). Then the map Adg: x€G—Ads(x)
gives a representation of G on D,(G) in the algebraic sense. We have obviously
Ig(x)(T)=0,%T*0,., (x€G, T€£&'(G)). Hence, in particular,

(2.15) Ade(x)T=0.+T*0 -, (x€G, TeE (G e0).

As is easily checked, we have D;,=R. (x€G), R, denoting the right transla-
tion f—f, on £4(G). Therefore (2.15) is rewritten as

(2.15%) Adg(x)D=R;°D<R__, (xeG, DeD(G)).

Let € bz a continuous homomorphism of G into G’ as above. Then #<Is(x)
=Is(0(x))-0 (x=G). Hence

(2.16) foAde(x)=Ade (6(x))-6 (x€G).
Lemma 2.16. Let j, be the canonical injection of ¢(G) into G.

(i) o is a topological algebra isomorphism of D,(c(G)) onto D/(G).
(ii) For each x=c(G),

jo°Adc(G)(x)=AdG(x)°jo
holds on D,(c(G)).
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Proof. (i): Note that j, extends the identity map dj,: R(c(G)—R(G)
(=R(c(G))) and that the algebra D,(G) is isomorphic to D,(c(G)) under j, apart
from the topology. Then, in view of Remark 2.3, it is obvious that D,G) is
isomorphic to D,(¢(G)) under j, including the topology. (ii): This is merely a
special case of (2.16). q.e.d.

Lemma 2.17. Suppose G is Lie-projective. Let DED(G). If z%(D)=0 for
all N=HyG), then D=0.

Proof. Let D(G/N) (Ne HyG)) be identified with 9D.(G, N) canonically.
If we put §=z% in (2.14), it is seen that 7% behaves as the restriction map

DeD/(G)—>D| g v Hence the assertion. q.e.d.

Theorem 2.5. Let Z(G) denote the center of D,(G). Then
Z(G)={DeD,(G); Adg(x)D=D (i.e., R,eD=D-R}) for all xec(G)}.

In particular, Z(G) includes D,(G)N\D .(G), and coincides with it (f G is connected.

Proof. Lemma 2.16 allows us to assume that G is connected. As a special
case of (2.16) we have, for each Ne H(G), x&G and DeD,G),

2§ (Ade(x)D)=Ade/n(xF(ONEF(D)) .
Hence, in view of Lemma 2.17, it follows for each x&G that
(2.17) Adg(x)D=D
& Ade/w(xF (N EXD)=7F(D) for all Ne H(G).
While, for each Ne H(G), we have
(2.18) Adg/y(m§(x)(zG(D)N=75(D) for all x€G
&= D)€ Z(G/N),
since G/N is a connected Lie group. From (2.17) and (2.18),
(2.19) Adg(x)D=D for all xeG
& #$(D)EZ(G/N) for all Ne H,(G).

Since each 7§ maps D,(G) (hence D,(G)) onto D,(G/N) (:DL(G/'N)‘), we see
again by Lemma 2.17 that the latter condition in (2.19) is equivalent to that
De Z(G), which completes the proof.  q.e.d.

Since D(G) is a topological algebra and D,(G) is dense in it, we have the
following

Corollary. Let Z(G) denote the center of D,(G). Then
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Z(G)=Z(G)ND(G)
={DeD(G); Ads(x)D=D for all x=c(G)}.

The center of £'(G ; e) is given by {T€€'(G; e); 0.xT=Txd, for all xec(G)}
(see (2.15)). As against, the center of &'(G) (resp. €L(G)) is easily found and
given by {T€€&'(G) (resp. €u(G)); 0,xT=Tx*d, for all x&G} (use (1.10)).

2.9. Order of differential operators. The order of each ucU(G) is defined
to be the smallest integer n (=0) s.t. uEw(Z,?:oé)R(G)“), where w denotes the

canonical homomorphism of the tensor algebra EZLOé)R(G)‘ onto U(G). We de-
fine the order of each DeD(G) to be the order of u€U(G) which corresponds
to D (Theorem 2.2). Therefore it equals the smallest integer n (=0) such that
D is expressed as

D=3cp,.p,df) -+ df)  (finite sum),

where 0sk<n, 8,, -, B+ ER(G) and ¢y,..5,€C. For each non-negative integer
n, let us denote by D}¥G) the linear subspace of D,(G) formed of all the ele-
ments of order <n.

Remark 2.4. (i) D?(G) is contained in the g'-closure of the linear span of
{D,; v&l, |v|€n} in D(G). (Use (i) and (iii) of Remark 2.2.) (i) If {Biticr
is an algebraic linear base of R(G), then {D(IL,,+B%); (Wi)icr €EI', Zicrvi<n}
is an algebraic linear base of D}G). Each ID(IL,,..f%) has order 3ie; vi.

Definition 2.8. Let DeD(G) and n be a non-negative integer. Take a
pro-Lie open subgroup G, of G. We say that D satisfies the condition (C,) if,
for each Ne H,(G,), there can be chosen a finite number of a,£&.(G) and D,
D}(G) so that Df=33.a.D,f holds for all f€9D.(G, N),. (Because of Lemma
0.16 this condition does not depend on the special choice of G,.)

Lemma 2.18. An element D of D(G) satisfies the condition (C,) if and only
if it has order <n.

Proof. Suppose that D satisfies the condition (C,). For an Ne H,(G,), let
us choose a;E€4(G) and D, D}G) as in Definition 2.8. Then Df(x)=D(,f)(e)
=3%ae)Df(x) (fEDG, N),, x€G). In particular, D=3} a,(e)D; holds on
DG, N; G)), (29(G,, N)). Each element of D,(G) can be viewed as an ele-
ment of D,G,). Therefore, from the Ilast equality, we have z§1(D)=
Sase)7§u(D;). In view of (ii) of Remark 2.4 and Lemma 2.5, it is not difficult
to see that #%1(D) has the same order as D if N is taken to be sufficiently
small. On the other hand, whatever N may be, 3as(e)z §1(D;) has order <n
as well as each D,. Hence it follows that D has order <n. This proves the
“only if” part of the lemma. The “if” part is trivial. q.e.d.
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We now make the following definition, the consistency of which with the
orders of the elements of D,(G) previously mentioned is assured by Lemma 2.18.

Definition 2.9. Suppose that an element D of D{(G) satisfies the condition
(C,) for some n. In this case we say that D has order <n, and call the mini-
mum of such n’s the order of D. If D satisfies the condition (C,) for no n,
we say that D has infinite order.

Proposition 2.4. Let D=3 c;ja,D,, where (a,).e; s an admissible element
of €(G)!, and n be a non-negative integer. For D to have order <n (i.e., to
satisfy the condition (C,)), it is necessary and sufficient that a,=0 unless |v|<n.

Proof. The sufficiency of the condition is obvious from Corollary to Lemma
2.6. We now prove its necessity. So assume that D has order<n. For any
v e with |¥®|>n and x,€G, choose fE€D(G) s.t. D,f(xe)=1 if v=0 and
=0 otherwise (Corollary to Lemma 2.10). Since f belongs to 9.(G, N), for
some Ne H\(G,), G, being a pro-Lie open subgroup of G, our assumption enables
us to have a finite number of a,E€.(G) and D,€D?G) s.t. Df=3,a:D;f.
Here, each D; belongs to the T-closure of the linear span of {D,; vel, |v|<n}
(Remark 2.4, (i)). Hence, by the choice of f, D,f(x,)=0 ('s), and so, Df(x,)=0.
Therefore, again by the choice of f, a ¢)(x,)=0. Since v and x, are arbitrary,
the proof is complete. g.e.d.

As an easy consequence of Proposition 2.4 together with Corollary to Lemma
2.10 we have the following

Corollary 1. Let n be a non-negative integer. All elements of D(G) of
order <n form a closed linear subspace of D(G).

Corollary 2. All elements of D(G) of finite order constitute a subalgebra of
D(G).

Proof. Suppose that D;&D(G) (j=1, 2) has order <n;. To prove the as-
sertion, it suffices to show that D,D, has order <n,+n,. By assumption D; is
expressed as D;=3],c;a{”D, with an admissible element (a{?),e; 0f €u(G)I s.t.
a®?=0 unless |v|=n; It is evident that each a{’D,-a® (€D(G)) satisfies the
condition (C,,) and so has order <|v|. Hence, by Corollary 1, D,eal®
(=2Z.er(aPD,eaf?)) has order <n,. Since D, leaves each D.(G, N), (N H\(G)),
G, a pro-Lie open subgroup of G) invariant (Lemma 1.17), it then follows that
D,°af® D, has order <n,+|v’|. Hence, again by Corollary 1, D,D, has order
<n,+n,. qg.e.d.

Corollary 3. Let DeD(G). D and D have the same order ( Jfinite or infinite).

Proof. 1t suffices to show, for each integer n=0, that if D has order <mn,
then so does D. Take the admissible element (a,).e; of €o(G)! s.t. D=c7a,D,.
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Then D=3,c;4,D,. Here, by assumption, a,=0 unless |v|<n. Meanwhile,
each d{” (a€R(G)) has order <1 because it is a derivation (recall Lemma 2.11).
Therefore, as we see from the proof of Corollary 2, each & D, has order <|v|.
Hence, by Corollary 1, D has order <n. q.e.d.

Corollary 4. For each non-negative integer n, let D}G) denote the linear
subspace of D,(G) formed of all elements of order <n. Then D}G) inheriting
g is a minimal locally convex space with the topological linear base {D,; vel,
vl <n}.

Proof. Put I,={vel; |v|<n} and consider the minimal locally convex
space C». By Propositions 2.3 and 2.4 the map (Cher—2ei D, is a linear
bijection of CI» onto D}G). In view of Proposition 1.1, Lemma 1.17 and
Corollary to Lemma 2.6 we see easily that this bijection is topological. q.e.d.

As promised in 2.6, let us see here that if G is infinite-dimensional, then
D,(G)+D,(G). Indeed, we can take in this case an infinite sequence Ti, (B=
1, 2,3, ---) of mutually distinct elements of the base {yi}.c;. Then the ele-
ment 2;°=1(d,‘;>k)k of D,(G) (Proposition 2.3), for instance, has infinite order
(Proposition 2.4) and so does not belong to D (G).

Proposition 2.5. Let n be a positive integer. FEach DED(G) of order <n
can be extended uniquely to a continuous linear map of €P(G) into (G). This
extension decreases the supports of all fe&,(G).

Proof. Since £.(G) is dense in &£’(G), the uniqueness is obvious. Let us
see that the extension is possible. By assumption D is expressed as D=
el 0. D, (a,€E.(G)), where I,={el; |v|<n}. It is evident that each D,
s.t. |v|<n can act as a continuous linear map of D(G) into &,(G). Now
consider the formal sum X.er,a.D.f (f€D.(G)). Take a pro-Lie open sub-
group G, of G. From Lemmas 1.17 and 2.6 it can be seen that this sum reduces
to a finite sum on each 9.(G, N), (NEH(G,)). Therefore it makes sense and
we can define a continuous linear map D of 9D((G) into &,(G) by l~)f-——
DenaD.f (f€D(G)). For a CeCom(G), take a€D(G) s.t. a(X)=1 on a
neighbourhood of C. Then, since D decreases supports, we have Pc(ﬁgo)=
Pc(ﬁ(ago)) for p=9,(G). Hence we see that D is continuous also as a map of
DP(G) into &(G). Since D,(G) is dense in €P’(G) and &,(G) is complete, this
shows that D extends to a continuous linear map of &% (G) into &(G). By
construction of ﬁ, this extension coincides with D on 9.(G), hence on &.(G).
Furthermore, since it decreases the support of each f€9,(G), we can show in
parallel to the proof of Lemma 2.3, (ii) that it decreases the supports of all
feen.(G). g.e.d.

Note. Let D(G) denote the subalgebra of D(G) generated by D,(G)UD.(G)
UEL(G) algebraically. In [6], where G is compact, we defined the differential
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operators on G as the elements of D(G). For our purpose there to discuss
U(G), such a definition was enough. But D(G) does not in general coincide
with D(G). In fact, D(G) contains no element of infinite order (Corollaries 2
and 3 to Proposition 2.4). If G is finite-dimensional, D(G) coincides with the
set of all elements of D(G) with finite order. In general, however, this is false.
For instance, in case G is abelian and infinite-dimensional, it can be seen with-
out difficulty that 8(G)ND(G)#@. For D(G) to coincide with D(G), it is neces-
sary and sufficient that one of the following two conditions is fulfilled: (a) G
is totally disconnected; or (b) G is compact and finite-dimensional.

2.10. On derivable distributions in Bruhat’s sense. Let n be a non-
negative integer. In [5], n°12 a distribution T€9'(G) was said to be n-times
derivable if Tp+T is a continuous function on G for every D& D}G).® But,
if G is not locally connected, the substance of such a T€9'(G) has been left
unknown. We now show that such a T is no other than a function in &.(G)
no matter G is locally connected or not.

Lemma 2.19. Let n be a positive integer. For each fE€&,(G) and De D}G),
there holds

Toxf=Df  (as distribution),

where D is viewed as a continuous linear map of EFP(G) into E(G) (recall Pro-
position 2.5 and Corollary 3 to Proposition 2.4).

Proof. 1t is evident that the map fe&,(G)—f=2D’(G) is continuous. Hence
so is the map fe€P(G)~f€'(G). Since <¢, f¥Tp>=<@*Tp, f> ((1.15)) and
oxTpeD(G) (Lemma 1.24 and (1.13)) for p=D(G) and fE&,(G), it then follows
that the map fe&P (G)—Tpxf (z(f*TD)')E.CD/(G) is continuous (recall that the
map T—T is continuous). Since 9(G) is dense in €(G) and Tpxf=Df holds
for fED(G), it is now clear that Tpxf=Df holds for fe&,(G). q.e.d.

Lemma 2.20. Let fe&(G). If Taoxf belongs to &(G) for every ac
R(G), then fe&,(G).

Proof. For each a= R(G), put fa=Td{<Xr>*f (€€4(G)). Then, for o= D(G),

Sago(x)fa(a(——t)x)dgx
={ PN (W dor=Cap, Tagrs>

=({ play f()dox, (Tap),)

(6) By Theorem 2.4 and Corollary 4 to Proposition 2.4 it is seen that {Tp; DE L} (G)}
is identical with U™(G) appearing in [5].
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[ ptdex] rutat—nn di={ o(nif(@-0— (0} dox.
Since ¢ is arbitrary, this implies that
fa=9n—f@ = rua-nndt  (xe0).

Thus d{f exists and equals f,. Since a is arbitrary, this shows that f€&,(G).
q.e.d.

Lemma 2.21. Let n be a non-negative integer and T€ D' (G). If Tmap,,._,al)*T
belongs to &4(G) for all D(a,, -, a,):d,‘,’l’, - dd) 0=p=n, ay, -, a,€R(G)),
then TE&,(G).

Proof. Since T,=4., the assumption of the lemma implies in particular that
Te&y(G). So let us write f for T. We now show by finite induction that f
belongs to £€,(G) for k=1, ---, n. To do so, assume for a 2<n that f€&,(G).
Then, by Lemma 2.19 and the assumption of the present lemma,
Tom*x(Dag, -+, @) I=T a0 Tocay,ap*f) = Toa agmap*f EE(G)  for any
ay, -, ay, aER(G). Since D(ay, -, a))” fE€E,(G), this shows by Lemma 2.20
that D(ay, -+, a,)” f€&,(G). Hence f€&,+,(G), which completes the induction.

q.e.d.
Lemmas 2.19 and 2.21 establish the following

Theorem 2.6. Let n be a non-negative integer and T€9D'(G). TpxT belongs
to €(G) for every DED(G) of order <n if and only if T is a function in €,(G).
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