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Differential operators on locally compact groups

By

Takashi EDAMATSU

Introduction

The differential operators o n  a  C- -manifold are closely related to the  dis-
tribution theory o n  i t  and can be defined simply by local character (e. g . [7]).
F . B ruhat [5 ] showed that a notion of differential operators can be introduced
also o n  any locally compact group G  on the basis of his distribution theory.
The differential operators in  B ruhat's sense act on his space Z (G ) of compactly
supported regular functions, and take a quite natural form consistent with those
on Lie groups ([5], p. 66). But his very method of defining them seems somewhat
intricate and unrefined. In  the present paper we intend to get the  "differential
operators" on G  rather by local character. H ere, as the base space o n  which
they a c t , w e take  t h e  C°'-class e (G ) (see below) on G  rather than 2 (G ) or
E(G), the Bruhat space of all regular functions.

The substance of the n-times derivable distributions on G  in  B ruhat's sense
(n = 0 0 , 1, 2, • • •) ([5], p . 67) has been left unknown in case G  is not locally con-
nected. O n  th e  other hand , w e have the Cn-classes on G , denoted by e n (G)
(n = 0 0 , 1, 2, • • -) and defined by using one-parameter subgroups o f G , a s  natural
generalizations of those on Lie groups. They were first introduced in  J . Riss
[12] for the abelian case and lately generalized to any G  in  H. Boseck, G. Czi-
chowski and K. P. Rudolph [3]. ( i)  e (G ) is included in  eco(G). Let 2„(G ) be the
linear subspace of e n (G) consisting o f  th e  compactly supported functions. We
equip each 2 7,(G ) (resp. en(G)) with an inductive limit (resp. projective) topology
analogous to that of 2 (G ) (resp. e(G )). The differential operators on  G  in our
sense are defined as the support-decreasing continuous linear maps on e (G ) or,
what is substantially the same (see section 2, 1), on 2 . (G ) .  T he purpose of the
present paper is twofold. O ne aim is to study the differential operators thus
defined in  comparison with B ruhat's ones. And the other is to show that for
each n , the  n-times derivable distributions in B ruhat's sense just coincide with
the functions in n (G) no matter G  is locally connected or not.

T h e  paper consists o f  three chapters. Chapter 0  arranges some classical
facts concerning the general L ie  theory o n  locally compact groups ([9 ])  and
their dimension. The contents of Chapters 1 and 2  are as follows.

The arguments on 2„(G ) and En (G ) in  [3 ]  a re  not necessarily enough for

(1) In  th e  n o ta tio n  o f  [3], 8 ( G )  is  d e s ig n a te d  a s  C ( G ;  C) (n=oo, 1, 2, •••).
C om m unicated by Prof. Yoshizawa, F ebruary  26, 1987
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us. For instance, the topological consideration on 2„(G) was made there within
th e  (LF)-space theory by assuming th e  first countability o f  G .  So we had
better reconstruct the  theory of these spaces in  a  form appropriate for our pur-
pose and so as to apply to any G .  This somewhat tiresome work is performed
in Charpter 1 (sections 1.1-1.5).

Let .0'(G), E'(G), .D(G) and E.„(G) b e th e  topological dual o f th e  spaces
concerned. They a r e  equipped with t h e  strong topo log ies o f dua l. fil(G)
( _e/(G)) is nothing b u t  th e  space of Bruhat's distributions. If G  is abelian,
.cD(G ) is the space of R iss' distributions ([12]). I n  1 .5  the relations among
these fo u r spaces a r e  also clarified. E specially , w e shall have E(G )Ç e'(G )
as se t, and  e ( G ) e ( G )  i f  G  is not locally connnected. I n  1 .6 , th e  last
section of Chapter 1, it is shown that e (G ) (resp. E'(G )) is a  topological alge-
bra under the convolution and (algebraically) isomorphic to th e  algebra of all
left invariant continuous linear maps on e (G ) (resp. E(G)).

Chapter 2  is concerned with the differential operators. Section 2.1 is de-
voted to the definition. It is worth noting that our definition by local character
reflects the property o f  th e  continuous derivations o n  e .(c )  a n d  2.0(G) (see
Lemmas 2.1 and 2.3). The basic elements in our treatment are, in view of its
nature, the derivations associated to one-parameter subgroups o f  G . Sections
2 .2  a n d  2 .3  a re  devoted to a  study of them . The totality of our differential
operators on G  is denoted by D(G). D(G) is endowed with a  reasonable topo-
logy (Lemma 2.7 and Definition 2.6) which makes D (G ) a  topological algebra.

T h e  m a in  results o f  th e  paper a re  Theorems 2.3 and 2.4. Theorem 2.3
gives to the elements of D(G) an explicit expression, similar to that of Bruhat's
differential operators, i n  terms o f  th e  functions in E.(G) and the derivations
associated to one-parameter subgroups. This theorem is obtained essentially by
taking after the arguments in [5], n°12 (2.4, 2.5). From the observation of the
process to reach this theorem we can see that th e  differential operators in
Bruhat's sense are nothing but the support-decreasing continuous linear maps on
.0(G) (or, what is the same, on e(G)) and that they form substantially a  subset
of D(G) (2.7). We can determine, among all elements o f D(G), the derivations
and the left invariant elements (2.6).

Theorem 2.4 is not only significant by itself b u t  also necessary f o r  later
u se . L e t e .' (G; e) (resp. e'(G ; e)) be the topological subalgebra of eL(G) (resp.
e(G)) of the elements with support in fel, e being the idantity of G, and D i (G)
the topological subalgebra of Ti(G) of the left invariant elements. Theorem 2.4
asserts that EL(G ; e) a n d  E'(G ; e) coincide with each other a s  topological
algebra ( in  contrast to t h e  fa c t th a t E (G )E '(G ) ,  G  being locally non-
connected) and that they are topologically isomorphic to Di (G). These facts
a r e  needed in  order to combine our discussions with ones in  [5 ] , and used in
2.8 and 2 .1 0 . In 2.8 we describe the center of D i (G) by means of the "adjoint
representation" of G, as in the case of Lie groups. In 2.10. the final section,
it is p roved  that t h e  n-times derivable distributions in Bruhat's sense are no
other than the functions in en(G) (n=00,1, 2, • •.). To do so, the notion of the



Differential operators on locally compact groups 447

order of differential operators is also needed. W e discuss it in 2.9.
In  [6 ] , w here  G  is  com pact, a  c lass D (G ) o f  differential operators w as

considered. T he  re la tion  betw een D (G ) and  D (G ) is  exp la ined  in  2 .9 .  The
contents of the sections 1.1-1.5, 2.2, 2.3 and  2 .8  g en e ra lize  a ll re su lts  in  [6]
to any locally compact G.

Notation. G  denotes a  locally compact Hausdorff group (LC group) with
identity e  and a  fixed left H aar m easure cic . R  (resp. C )  denotes the field of
real (resp. complex) num bers w ith the  usual topology. F or a  C-valued function
f  on G  and x E G , the functions x f  , f  and . 7  a re  defined by xf (Y)= f  (x3),
f  x (Y )-- f (3 ,  x ), f ( Y ) = f ( y ')  and .7(y )= f (y ) (complex conjugate) ( y  G ) .  J G  de-
notes the modular function on G  such that 4 G c/0 is a r ig h t H aa r m easu re . R(G)
denotes th e  to ta ilty  o f  one-parameter subgroups o f G , w here a  one-parameter
subgroup means a  continuous homomorphism of the  additive  g rou p  R  in to  G.
c(G ) denotes th e  connected component of e  in  G .  If N , N ' are closed normal
subgroups of G  s. t. N Ç_N ', then  rf, deno tes the canonical homomorphism of G
o n to  G I N ,  a n d  e v , p, t h a t  of G I N  o n to  G / N '.  For a  closed subset T  of G,
Com ( I ')  denotes the to ta lity  of compact subsets of 1". F or a  se t ,IC of C-valued
functions on G, ,X + denotes the subset of JC consisting o f  th e  R -valued non-
negative functions.

Chapter 0 .  Preliminaries

0 . 1 .  The Lie algebra o f  G.

Definition 0 . 1 .  H O(G) denotes the totality of compact normal subgroups N
of G  such  tha t G /N  is  a  L ie  g roup . H ere every discrete  group is counted as
L ie group. G  is called Lie-projective or simply pro-Lie if  n { N E H o (G)}={e} .

110(G) is closed under the formation of finite  intersections of the members
(e . g . [5], n°1). So it is low er d irected  under inclusion. Throughout the paper
we consider H o(G) as a  directed set in  this sense. Note that the Lie-projectivity
of G  is equivalent to  that for each neighbourhood V of e , th e re  e x is ts  an N E
110(G) s. t. N Ç .V . F or any  N , N 'E H o(G) s. t. le t 7:17 , N  deno te  the cano-
nical homomorphism o f G /N  onto  GIN'. T h e n  an inverse system  {G/N , NI
of Lie groups is  ob ta ined . A Lie-projective G is isom orphic to the  lim it of this
system : IrGiv, N I .  T he isomorphy is g iven  by  the  map

(0.1) CG: X  E Gi - - ). (ni(x ))N en o cc),

w h e re  7r.GA,  denotes th e  canonical homomorphism o f G  onto  G I N .  N o t  a l l  LC
groups are Lie-projective. But, b y  the w ell know n approximation theorem , G
is  Lie-projective if it is alm ost connected (i. e., G,/c(G) i s  compact, c(G) denot-
in g  th e  identity  com ponent o f  G) ([10], p . 1 7 5 ) . Besides, any G  contains an
almost connected (hence Lie-projective) open subgroup (loc. cit. p. 54).

W e define the Lie algebra o f G  fo llow ing  R . K . R ashof [9 ]. F irst suppose
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G  is Lie-projective : G G/N , 16 'N }  (N , N 'E H 0 (G), N N ' ) .  T h e n  a n  in-
v e rse  sy s te m  {L(G/N), dr7.1 ,  N I o f  finite-dim ensional locally convex real Lie
a lg eb ra s  is  o b ta in ed , w h e re  L (G/N ) i s  the  L ie  algebra of C/N, a  L ie group,
an d  d76 , N  t h e  differential o f  76 , N . Thus, as its limit, we have a locally convex
real Lie algebra g(G) (infinite-dimensional in general) : g(G)=1im{L(G/N), dir?v ,  N } .

T h e  fo llow in g  lem m a is  p ro v ed  by  th e  su je c tiv ity  o f  every  drci , N  an d  th e
theory o f linearly compact vector spaces.

Lemma 0.1 ([9 ], T heorem  2 .3 ). Let G be L ie-projective. The canonical pro-
jection of  g(G) into each component L (G/N ) (N EH 0 (C)) is surjective.

Now le t G  be  arb itra ry . S ince  c(G) is Lie-projective, g(c(G)) can be defined :
g(c(G))=Iimi L(c(G)/K), dire,P),}  (K , K 'EHo (c(G)),

Definition 0.2. Any locally convex real Lie a lgeb ra  isom orph ic  to  g(c(G))
is called the L ie algebra o f  G  and denoted symbolically by L(G).

T h is  definition generalizes the notion of L ie algebra of L ie  groups to any
LC g ro u p s . L et us no te  th a t  G  and c(G) have the sam e Lie algebra.

R em ark 0.1. I f  G  i s  Lie-projective, th e n  g(G)-- g(c(G)). H ence g(G ), as
w ell a s  g(c(G)), gives a  realization o f  L(G).

Before seeing this, we se t tw o simple lemmas.

Lemma 0.2 ([10], p . 1 9 2 ) . L et N  be a compact normal subgroup of  G. Then
zg,T(c(G))=c(GIN).

Lem m a 0.3. L et H  be a  lower directed family of compact subgroups of G
s. t. n I K E H I = I e l  (j. e., each neighbourhood o f  e  contains some K E H ) .  Then,
f o r each N EIL (G), there exists a K E H  s. t. KEN.

P ro o f. Obvious since C/N, a  L ie  g ro u p , has no sm all subgroups, q. e. d.

Proof of  Remark 0.1. F o r N E H 0 (G), p u t g =N n c ( G ) . T h e n  gEHo(c(G))
since c(G)11-c(G)N /N  (a  L ie  group a s  a  closed subgroup of C/N). P u t  H =

N E H 0 (G )} . T h e n ,  a s  w e ll a s  H o (G ) , H  is  lo w e r d ire c te d  and satisfies
n { K e ll} ={ e } .  H ence , by  L em m a 0 .3 , it is  cofina l i n  H o (c(G )). Therefore,
fo r  our proof, it suffices to show that g(G ) is isom orphic to th e  locally convex
L ie  algebra lim{ L(c(G)/St), dirn }  (N , N 'H o (G), INI_Ç_N'), w hich w e denote by

G/ (c (G )). N ow , for each N E H 0 (G), le t I N  deno te  the  canonical isomorphism of
c(G)/1 f  onto c(G )N /N . T hen  w e  have the  following commutative diagram :
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cco)
R'  C(G)/ .1■1/  < c(C)/N

f N, I N (N , N 'E H o (G ), N g.N ').

c(G)N'/N' <  c(G)N/N
, . a

Here c(G)N/N  (resp. c(G )N '/N ') is the identity commponent of C /N  (resp. GIN')
(Lemma 0.2). Therefore this diagram  yields th e  following commutative one :

L(c(G)/Sf')<

d  f

L (G /N ') 

d egP h

 

L (C (G )/

Id f N (N , N 'EH 0(G ), N ÇN ').

L(G/N)

  

d7r7v, N

 

Since d f N  f o r  each  N E  H o (G )  i s  a n  isomorphism o f  L (c (G )/ g )  onto  L(G/N),
this diagram  shows th a t  g '( c (G ))  is isom orphic to g(G) under th e  map

(Yii)NEll o ca)Eg i (c(G)) 1- - > ((df N)37  iv)NEll o w )E g(G ) ,

completing th e  p ro o f . q. e. d.

F ro m  th e  d e f in it io n  w e  se e  th a t t h e  locally convex linear space L (G ) is
minimal, i. e ., isomorphic to f o r  s o m e  p ow er I. T h ere fo re , in particular,
it  is  a  Baire space and a lso  ba rre lled . L e t u s  n o te  th a t  L (G ) has a  topological
linear base { X  }i , / ( i .  e ., th e  m ap ( c , ) , , / ER'—*E i E i c,X ( ') (unordered sum) is  a
topological linear isomorphism o f R I  onto L(G)).

0 .2 .  Exponential map and one-parameter subgroups. F ir s t  suppose G  is
Lie-projective. For X = ( X N ) N e u o ( G ) g ( G )  w ith  L(G/N)-component X N we have

77 7■0  N(eXPGIN)
=

eXPGIN'
(
d 7r0N' N)X N

= ex p G 1 N 3XN
,( N ,  N 'E H o (G),

where each exp G / N  deno tes th e  usual exponential m ap o f  L(G /N ) in to  C/N , a
L ie  g ro u p . Hence (exp G / N XN ) N E l l o ( G) E cG (G ). Thus we can define a m ap o f  g(G)
into G  by

(0.2)X cci((exPGINXN)NEHocc)) •

Now le t G  b e  a rb itra ry . T h e n  a  m ap o f  g (c(G )) in to  G  is defined as

(0.3) Y te-c)((exPc(o)/KYOKEHocc(c))),

w here Y=(17  K)KEn o ccco»EG (c(G )).

Definition 0.3. F o r an y  L C group G , exp G deno tes th e  m ap  o f  L (G ) into
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G w hich is given by (0.3) if  L (G) is realized by g(c(G)).

Since each exPc(G)/K (K E H o (c(G))) is  con tinuous, it is  p la in  tha t exp G is
continuous. ' Note th a t  the maps exp G a n d  exp c ( G )  are the sam e. In particular,
exp G m a p s  L (G) into c(G).

R e m a rk  0 .2 . Let G be Lie-projective. If L(G) is realized by g(G), exp a  is
given by (0.2).

Pro o f . Define th e  m ap exp ' (resp . exp") of g(G) (resp. g(c(G))) in to  G by
(0.2) (resp. (0.3)). Suppose t h a t  X = ( X N ) N E H o ( G ) E g ( G )  co rre sponds t o  Y =
(YK)KeHo ccw»Eg(c(G)) under the isomorphism o f  g (c (G ))  onto g(G) established
in  th e  p ro o f o f  R e m a r k  0 .1 .  T h e n , fo r  our proof, it suffices to  show that
ex p 'X = ex p"Y  h o ld s. For each N E H 0(G), le t pg deno te  th e  canonical projec-
tion  of c (G )  onto GIN. T h e n  76 --=Pg.t a . Hence

(4 ' ) (exp'X)=expG/NXA, .

Similarly we have for K I - l o (c(G)),

(**) c(a)r i , (exp" Y)=expe(c)/KYK •

N ow  retain the notations as in the proof of R em ark  0 .1 . Then, by assumption,
X N =(df u)Y  (N E H 0(G )). A ls o , it  is  e v id e n t  th a t  f N 0irVG ) =-77,7 (N E  Ho(G)).
By these together w ith (*) and (**) w e  have

r7v(exP'X)=expG/NXN=exPGIN(dfN)YY

=fiv(exPc(a)IRY N)=f N(rVG ) (exP" Y ))=76(exP" .

Since N  (E H o (G)) is  a rb itra ry , th is shows that e G (exp'X)=c G (exp" Y), e . ,  t h a t
exp' X= exp" Y. q. e. d.

The above (*) is used later o n .  So w e record it formally : Let G be Lie-
pro jec tive . Then, for X=(XN)NŒH 0 (G)Eg(G),

(0.4) 76(expGX)=expG/A•XN ,

L em m a  0 .4 . The m ap XE L (G)—)expG tX  (t real param eter) is a bijection of
L(G) onto R(G), the set of all one-parameter subgroups of G.

Pro o f . Since expc=exPc(G) a n d  obviously R (G)= R (c(G)), w e can assume
th a t  G is connected. For X = (X N )N e il o (G )E g (G ), Put ax(t)-=(expG/NtXN)NEH o (a)

( t E R ) .  T h e n  th e  m a p  X—a1  g iv e s  a  bijection of g(G) onto R(c G (G ) ) .  Hence
the  lemma, q .  e .  d.

On the basis of th is  lem m a  w e  m ak e  th e  follow ing convention w hich is
kept throughout the paper.

C onvention. R(G) is regarded as  a  locally convex real Lie algebra isomor-
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phic to  L(G) under the bijection X---)exp G tX of L(G) onto R(G).

T hus, if  a, 13ER(G) are g iv en  a s  a(t)=-- expaX , p(t)= expG tY  (X, YEL(G),
t e R ) ,  th e n  (aa+ bp)(t)= expct(aX -kbY ) (a, bE R ) a n d  [a, p ](t)= ex p G t[X , Y].
The locally convex linear space R(G ) is  m inim al and s o  B aire  a n d  barrelled.
I t  is  plain th a t  the m ap (a, t)ER(G)xR— , a(t)E G  is continuous.

Using Lemma 0.1 and (0.4), w e have the following

Lemma 0.5. ( [9 ] , Theorem 3.5). The set {expaX; XEL(G)} generates a
dense subgroup of c(G).

0 .3 .  Differential o f  group homomorphisms. Let 0  be a  continuous homo-
morphism of G into another LC group G'. Then, for each XE L(G), the map
te k -0  (expaX ) belongs to R (G ') . Therefore, by Lem m a 0.4, one h a s  a  uni-
que element X' E L(G) s. t.

(0.5)0  (exp c tX)-=exp c , tX' (t E R ).

Definition 0.4. Let G, G ' and 0 be as a b o v e . The map carrying each  X e
L(G) to  X'EL(G') determined by (0.5) is called the differential o f 0  and denoted
by dB or O.

From  0(exp 0 tX)=exp 0 ,t0(X ) (tER, XEL(G)), one has

(0.6) ker 0= { XE L(G); expaXEker 0  for all tER}.

For a com position no e  o f  group homomorphisms, (72.0) - = T2.0 h o ld s . Let us
note th a t, in case G is  Lie-projective, Tr% f o r  e a c h  N E llo (G ) behaves as the
canonical projection of g(G ) onto the component L(GIN) (cf. Lemma 0.1). In
fact, by (0.4), rV expctX )= expaI N tXN  ( tE R )  f o r  X=(XN)NEH„(G)Eg(G), hence

(X)= X N .

Lemma 0.6." )  Let G , G ' and 0  be as above.
(i) 0  is a con tin ou s Lie algebra hom om orphism  o f  L (G ) in to  L (G ') . The

image 0(L(G)) is closed in L(G') and O is open as a m ap to 0(L(G)).
(ii) I f  k er( 0 1(a))= = iel, O le(a) denoting the restriction of 0  to c(G ), then

ker 0={0}. I f  0(c(G ))= c(G '), then 0(L(G))=L(G').

Pro o f . E v id e n tly  w e  c a n  assume t h a t  G  and G ' are  connected . Let us
realize L(G), L(G') by g(G), g(G') respectively.

(i): L e t N'EH0(G ') .  S ince  the L ie group G'/N' has no small subgroups,
we can choose NEH0(G ) s .t . N g ker (7r1;, .0). Then ir oO induces a  continuous
homomorphism of G IN  in to  G'IN', which we denote by n. Since 2r ,
one h a s  fr?„;,00-=)-pirl. H e re  it% behaves as the canonical projection of g(G)
onto L(G/N), as noted above, and is ev idently  a  continuous homomorphism

(2) Cf. [9 ] ,  Theorem 3.11 and Lemma 3.12.
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o f  L(G /N ) in to  L (G '/ N '). H ence it follow s that 771,;,.0 is  a  continuous homo-
morphism of g(G) into L (G '/ N '). Since N '(E H 0 (G)) is arbitrary, this just shows
that 61 i s  a  continuous homomorphism of g(G) in to  g (G ') . T h e  r e s t  o f  ( i)  now
follow s autom atically  since t h e  locally convex space g(G) is minimal (see [4],
Chap. 4, § 1, exercise 13).

(ii): T h e  first half is obvious from  (0 .6). L e t us see the second half. L et
N 'e H o (G ) .  Since 0(G )=G ' by assumption, th e  map y) introduced above carries
C /N  on to  G 'IN ' in  th e  present c a s e .  Since C /N  a n d  G'/N' a r e  connected Lie
groups, this im plies that f) m aps L(G/N) onto  L (G '/ N '). Hence kg,;,.0(=77. )
m ap s g (G ) o n to  L (G '/ N ').  Since N ' is  a rb itra ry , th is  shows th a t 0(g(G)) is
dense  in  g (G '). B u t, b y  (i), 0(g(G)) is  c lo se d  in g(G '). Hence 0(g(G))=- - g(G').
q. e. d.

Corollary 1. Isom orphic L C groups have the sam e Lie algebra.

Corollary 2. 0(L(G)) L(G)/ker 0 (as topological Lie algebra). H ere  ker
is giv en by  (0.6).

I f  R(G), R(G ') a re  employed fo r  L(G ), L (G ') according to  our convention,
then

(0.7) 0(a)=0.a E R(G)).

Hence,

Corollary 3. I f  0(c(G))=c(G'), then R(G ')={0.a; aER(G )}.

0 .4 .  Lie algebra o f subgroups and quotient groups. F or any closed sub-
group H o f  G , put

(0.8) LH (G )={XEL(G ); exp G tX E H  for a ll tc R } .

(Note th a t th e  righ t side  of (0.6) is now designated as L k e r e ( G ) . )  P la in ly ,  R(H)
consists o f  a ll e lem en ts  o f  R (G ) w ith  orb it in  H .  Therefore, under our iso-
morphy between L(G ) and R (C ), L H (G) and  R(H) a re  in  correspondence.

Lemma 0 .7 .  Let H  be a closed subgroup of G, and j  the canonical injection
of H  into G.

(i) L H (G) is  a closed Lie subalgebra o f L(G ) isom orphic to L(H ) under 1,
(ii) I f  H  is  normal in G, then L H (G) is  an ideal o f  L(G).

(iii) I f  H  is  compact and normal in G, then

(0.9) L(G/H)-_'L(G)/LH(G) (as topological Lie algebra),

(0.10) R(G/ H)= {76.a ; aE R(G)}

P ro o f .  ( i )  is  easily  seen  from  j(exp litY )= exP cti(Y ) (tcR , YEL(H )) and
Lem m a 0.6. I f  H  i s  normal, then L H (G)=k er b y  (0.6). Hence (ii). If,
furtherm ore , H  i s  com pact, th e n  71-7,(c(G))=c(G/11) (Lem m a 0.2). Therefore
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Lemma 0.6 and  Corollaries 2  and  3 to it yield (iii). q. e. d.

N o te .  L e t  H  b e  a  closed norm al subgroup o f  G, and  either G  o r  H be
connected. T hen , even i f  H is not compact, 76,(c(G ))=c(G/H ) holds, and hence
(0.9) and  (0.10) also h o ld . B u t  this fact is not used in  th e  sequel.

Lemma 0 .8 .  Suppose G is  Lie-projective. For each neighbourhood CV  o f  0
in  R (G ), there ex ists an N E H 0 G) s. t. R (N )C V .

P ro o f .  It suffices to see that each neighbourhood c- I2 o f 0  in  L (G ) includes
L N (G )  f o r  some N E H o (G). B u t  th is  is  c lea r s in ce  L N (G)=ker an d  77,,
behaves as  th e  canonical projection of g(G) onto L(G/N). q. e. d.

0 .5 .  Adjoint representation.

Definition 0 .5 .  F o r each xE G , Ad G (x ) denotes the differential o f th e  inner
automorphism y ,--->xyx - '  o f  G.

That is, A d o (x ) is determ ined by x(expGtX)x - ' =exp c t Ad G (x )X  (tE R , XE
L (G ) ) .  In  view o f Lemma 0.6, Ad G (x) is  a  topological automorphism o f  L(G ).
T he  map Ad G : xEG--->Ad G (x )  gives a linear representation o f  G  o n  L (G ) in the
algebraic sense.

Lemma 0 .9 .  For each X E L (G ),  the m ap  x ,—+AdG ( x )X  o f  G  in to  L (G )  is
continuous.

P ro o f .  First suppose G  is  Lie-projective. Realize L (G ) by g (G ) .  F o r X =
(XN)NEfl o ca)Eg(G) and  tE R , w e have

cc (expct Ad 0 (x )X )= c 0 (x(exp 0 tX )x - 1 )
=

(X N (e X P G / N tX N )X
-
1■71 ), N e llo (G ) (by (0.1) and  (0.4))

=- --(exPG/Nt AdGiN(xN)XN)NEff,,(G)

where x N =7r7v (x ) ,  and each AdG/N  denotes th e  usual adjo in t representation of
the L ie group G / N . Hence, again by (0.1) and (0.4), 77GN(AdG(x)X)=AdGiN(xN)XN
fo r all N H / G ) .  Thus

(0.11) Ada(x)X=(AdGiN(xN)XN)NEH„(G) •

T his evidently shows that Ad G (x )X  depends o n  x  continuously.
Next le t  G  b e arb itra ry . T ake  a  L ie-pro jective  open  subgroup G ,  o f  G

(see 0.1). We have only to show  that Ad G (x )X  is continuous on  each right G 1-
coset G i x o o f  G .  Since c (G 1) = c (G ) and so L(G 1) = L (G ) ,  w e have expG=exPG,.
Hence AdG(x)=AdG i (x ) i f  x  GI . T h erefo re , fo r  x E GI,

Ad 0 (xx 0 )X=Ad0 1(x)(AdG (x0X).

By what has already been shown, this depends o n  x(E GI ) continuously. Thus
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th e  lemma has been proved, q. e. d.

Since L(G ) is barrelled, we have the following

C o ro llary . The representation AdG o f  G  o n  L (G ) is continuous (i. e., the
map (x, X )EGXL(G ) ,—>AdG (x )XEL(G ) is continuous).

It is needless to say that Ad o (x) (xE G) acts o n  R (G ) a s  AdG (x)a=xax - '
( ER(G)), where xax - ' (E R (G )) is defined a s  (xax - ') (t)-=xa(t)x - ' (tER).

0 .6 .  The dim ension of G .  By dimension of a compact space we mean its
covering dimension (e. g . [111 § 16). T h e  next lemma is elementary.

Lem m a 0.10. Let S be a compact Hausdorff space. ( i )  The dimension of a
closed subset o f S does not exceed that o f  S .  ( i i )  Let A, B  be closed subsets o f S
s. t. A U B --=-- S .  Then the dimension of S equals the greater of the dimensions of
A  and B .  ( i i i)  Let Z  be a 0-dimensional (i. e., totally disconnected) compact Haus-
dorff space. Then the dimension of the product space S X Z  equals that of S.

L et A , B be any two compact subsets o f G  with non-void interior. Then
each o f them is covered by a finite number of translations of the other. There-
fo re , b y  ( i)  a n d  (ii) o f  Lemma 0.10, one sees that they have the same dimen-
sion. So w e m ake th e  following

Definition 0.6. T h e  identical dimension of a ll com pact subsets o f G  with
non-void interior is called the dimension of G.

T his definition is consistent with the dimension of a Lie group in  the  usual
s e n s e . Indeed, a n  n-dimensional L ie  group contains a n  n-cell as a com pact
neighbourhood of its identity.

A s fo r  th e  proof of the next lemma, see the verification of [11], Theorem 69.

Lem m a 0.11. Suppose N EH o (G ) .  Then there exists a subset L  of G  ful-
filling the following three conditions: (i) e E  L; ( i i )  L  is  homeomorphic under
r?,, with an open neighbourhood o f 7rVe) in GIN (hence L N  is an open neighbour-
hood o f e in G ) ;  (iii) the map (y, z)ELXN—>yzELN is a homeomorphism. Be-
sides, i f  N  is totally disconnected, such an L  can be chosen so as to satisfy one
more condition: ( iv )  the map (ni(y), z)E7r7v (L )xN — yzELN  is a local isomor-
phism o f (G/N)xN  into G.

Lem m a 0.12. Let d(G) be the supremum (finite or infinite) of the dimensions
of all cells in G . Take a pro-Lie open subgroup Gi  o f  G  (see 0.1) and put r(G 1)
=sup{clim G1 /N; NEH 0 (G 1 )}. Then

dim G=d(G)-=r(G i )=dim L(G).

P ro o f. (I) First we prove dim G=d(G)=r(G i )  by showing dim G .d (G )..
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Gi =dim G .  Each cell in  G  is covered by a  finite number of
translations of a com pact neighbourhood o f e. Hence, by (i) an d  (ii) o f Lemma
0.10, o n e  has dim G.>_d(G). d ( G ) d ( G 1) a n d  dim G IG  a r e  obvious.
Furthermore, i n  view  o f  th e  c o n d itio n  ( i i )  o f  Lemma 0.11, d(G i ) dim
holds fo r  any N E H o ( G ) .  Hence d(Gi).>_r(G,). Therefore it remains now only
to  show r (G 1) dim G , .  To do so we can assume that r(G i ) <OED. Then there
exists a n  N 0 E110 (G 1 ) s. t. dim G i/N o=r(G ,). W e now sh o w  that N o is totally
disconnected (cf. [1 0 1  p .  182). S uppose  NE H o (G1) a n d  N_ZN o . Then
(G i /N )/(N o /N ) G,/N o . Since G i / N  i s  a  L ie  group a n d  N o / N  is its closed
normal subgroup, this demands by t h e  choice o f  N o t h a t  N o / N  is discrete.
Hence N  i s  o p e n  in  N o . Therefore c (N 0 ) N .  Since G , is Lie-projective, N
can be chosen arbitrarily small. Thus, after all, c (N 0 )— e}  (i. e ., N o is totally
disconnected). B y  L e m m a  0.11 G , is now locally isomorphic to (G i /N o )x N o .
Therefore, by (iii) o f Lemma 0.10, we see that G O/N O a n d  G , h a v e  th e  same
dimension (i. e., r(G 1)=dim G1).

(II) Next we prove r(G 1)=dim L (G ). Since L (G)=L (G,), it suffices to show
r(G 1)=dim L(G i ). For any N E H o (G), one has L(Gi/N) L(Gi)/LN(Gi) ((0.9)).
Since G I N  i s  a  L ie  g r o u p , it thus follows that dim  Gi /N=dim L(G i /N )
dim L(G i ). Hence r(G,)_.<dim L(G i ). F o r th e  proof o f  th e  r e v e r s e  inequality,
we can assume that r(G 1 ) < 0 0 .  There exists in  this case  a  totally disconnected
N E H o (G ,) (see (I)). T h e n , since LN(GO-L-'L(N)= I0/ (Lemma 0.7), o n e  has
dim L(G 1)=dim L(G i /N)=dim G i / N r( G ,) ,  completing th e  proof. q. e. d.

In  (I) o f th e  above proof we verified incidentally th e  following

Lemma 0 .1 3 . Suppose G is finite-dimensional and Lie-projective. Then there
exists a totally disconnected NEH0 (G).

A  well known consequence o f Lemmas 0.11 and 0.13 is this : a  finite-dimen-
sional LC group is a  L ie  group if  and  only if  it is locally connected.

0 .7 .  Compact normal subgroups with finite co-dimension.

Definition 0 .7 .  H(G) denotes the  totality of com pact norm al subgroups /V
o f  G  such that G /N  is finite-dimensional. H i (G) denotes th e  subset of H(G)
consisting o f all N EH(G) such that G /N  satisfies th e  first countability axiom.

Needless to say , one has H o (G)g H i ( G ) . I f  G  is almost conneted (hence a-
compact), G /N  f o r  NG H i (G ) i s  second countable (i. e., first countable and  a-
compact). Note that i f  G  is finite-dimensional, H (G ) consists o f  a l l  compact
normal subgroups o f G , containing in  particular th e  subgroup {O.

Lemma 0 .1 4 .  Suppose G is  Lie-projective. Then, for a compact normal sub-
group N  of G, the following three statements are equiv alent: (a) N E H (G ); (b)
c(N) H(G); (c )  c(N0 )_ N  fo r  some N0EH0(G).



456 Takashi Edamatsu

P ro o f .  The verification is the same as in the compact case (see [6 ] ,  Lemma
3.1) if we keep Lemmas 0.7 and 0.13 above in mind. q. e. d.

Since H o (G) is lower directed, this lem m a yields the following

Corollary. L et G  be L ie-projective. Then H(G) is lower directed and {c(N);
N E11 0 (G)}  is cof inal in it.

Lemma 0 .1 5 . S uppose G i s  Lie-projective. T h e  follow ing three statem ents
are  equiv alent: (a) H (G )=H 0 (G ); (b) c(N )EH 0 (G) f o r ev ery  N EH 0 (G ); (c) G  is
locally connected." )

P ro o f .  See the proof o f [6 ] ,  Lemma 3.2. q. e. d.

Lemma 0 .1 6 . (i) I f  G 1 ,  G 2  are  p ro -L ie  open subgroups o f  G , then so is
GinG2.

(ii) L et G i ,  G 2  be pro-L ie open subgroups of  G  s .  t .  G 1 G2 . T h e n  { N E
H o (G 2 ); ( r e s P .  { N E H ( G 2 ); N .Z GII) is cof inal in both of  H0 (G 1 ) and 110(G2)
(resp. H(G1) and H(G2)).

Pro o f . ( i)  is  o b v io u s . (ii) follows from Lemmas 0.3 and 0.14. q. e. d.

Chapter 1. Spaces o f  differentiable functions

1 .1 .  The "Cn-classes" on G (n=00, 1, 2, Riss [1 2 ] introduced the no-
tion o f C"-classes on abelian L C groups. Its  genera liza tion  to  the non-abelian
case w a s a tta in e d  in  th e book  [ 3 ]  b y  H . Boseck, G . Czichowski and K. P.
R ud o lph . In th is section w e sketch th is genera liza tion  in  somewhat modified
arguments in parallel w ith our treatm ent of the compact case in [6].

Definition 1 .1 .  Let f  be a C-valued function on G  and aE R ( G ) . Suppose
the function t ER--> f (xa(t)) (resp. f (a(----0x)) is differentiable at 0 for each x G.

In th is case we define the function d V  f  (resp. c4') f ) on G  as

(1.1) f (x)=-- —

d  

f  (xa(t))dt 2=0

(resp . (4' ) f (x)= —
d

dt f  ( a ( — t ) x ) 1= 0)
(x E G),

and ca ll it the r ig h t (resp. left) derivative of f  w ith  respect to  a.

Definition 1 .2 .  e 0 (G) denotes the set of a l l  C-valued continuous functions
on  G .  For e a c h  n=1, 2, 3, ••• , ev (G ) denotes the set of all functions f  in
e 0(G) such  that the right derivatives of higher o rder c41) ••• ca.,) f  exist and be-
long to e 0 (G) for any  a 1 , ••• , a k E R (G ) with 1 k -< n  (hence ev(G)2e7r11(G)).
W e put E V (G )=N E V (G ); n=-1, 2, 3, •••}. For each n=1, 2, 3, ••• ,00, the set

(3) C f . [2 ] , Proposition 5.
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e (G )  is defined similarly using the left derivatives instead of the right ones.

Suppose G  i s  ab e lian  (re sp . a Lie group). Then, of course,  C T ( G )  and
6T(G) coincide with each other for each n(=00, 1, 2, •••) and g iv e  the C"-class
on G  in Riss' (resp. the usual) sense. We now intend to prove this coincidence
for any G.

The first lemma is straightforward.

Lemma 1 .1 .  (i) L e t f, geE T ) (G ) .  T hen af-l-bg (a, beC), fg, f ,  x j ,  and

fx. (x c,e G ) belong to e r )(G ). And, for aeR (G ), there hold

cUr)(af-Pbg)=ad,Vf±bdr)g ,

ce,")(f g)=(dV f(d,V g) ,

f =(ca,") f) -  ,

d ',- ) (. 0f)=.x 0(dV  f),

d,'") (f xo)=(d'xr i„ s o f)x o •

The corresponding facts hold also for the functions in ef 1 ) (G).
(ii) A  C-valued function f  on G belongs to e ( G )  if and only  i f  I Eefo(G).

In  this case, fo r aeR (G ),

(1.2) d,V)1=(C',") f

C oro llary . Each of e (G )  and e (G )  (n=00, 1, 2, •••) is an algebra ov er C
under the obv ious algebraic operations, and stable under the le f t  and the right
translations and the com plex  conjugation. The inversion f ,- 4  induces an algebra
isomorphism between e V (G ) and enG ).

Definition 1 .3 .  For each CECom(G), Com(G) being the set of a ll compact
subsets o f G, define a seminorm P c  on the C-linear space e 0 (G) as

Pc(f) = suPI f(x)1 (f Ee.(G)).
xEC

We topologize eo (G )  b y  { P ;  C E C o m (G )} . For any CECom(G) and a l ,  •-• , ak
E R(G ) (k=1, 2, 3, •••), define a  seminorm P c ; ,  k  (resp. 1"i , . . . , "k ) on the C-
linear space 6 V (G ) (resp. e,y)(G)) as

PC, cr i , k (f)-=Pc(n;' • • • d,Vk f ) ( f  6 1 ' ) (G))

(resp. k(f )= Pc(d,(,!,) • • • cl f ) (f eeP ) (G))) •

We topologize each e ( G )  (resp. e ( G ) )  (n=00, 1, 2, •••) by the family

7 = { P , CECom(G), a l , •-• , akER(G ) (1 k<n-F1){

(resP• W ) .={/7 c, . k  ;  C  E C O M  (G), a 1 ,,  a k e R (G ) (1 k<n±1){)

For each compact subgroup N  o f G, w e define the continuous peojections
(i. e., idempotent linear maps) p p i  and a-  N  on e o (G) as
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PN(f)(x)-4 v f(xY)dNY

a N (f)(x )-=  f(Y x )d N Y  (fE eo (G ), xE G ).

where dN  denotes th e  Haar measure on N  s. t. dN = 1 .  If  N  is  normal, these

,N ,-N , -=p N , p N =p N , i ftwo coincide with each other. One has n  PIP

entiation under th e  integral sign immediately shows th at p N  (resP. aN)
a  continuous projection on each e2 (G ) (resp. ev(G )) (n =- 00, 1, 2, ••.).

Lemma 1 .2 .  L e t  H  be a  lower directed family of compact subgroups of G
such that nfATEH I=fel. Then, for each  fE e (G )(resp . C (G )) (n=00, 1, 2,

the net {0 'N(f); N H }  (r e s t, .  fr N (f); N E H 1 ) converges t o  f  in  eV (G ) (rasp.
6T ) (G)).

P ro o f. F or an y CECom (G ) and a 1 , ••• , a k E R (G )(0k<n --1 -1 ), w e have

Pc..,—a k (ciN(f) — f )

.sr12 1.ÇN{dr1) •••  
d V k f (Y  x) — (1.7-

1
) • c i r

ilf(x)} d N

sup sup
S E C  Y E N

d,;',?••• d f (x )

Hence the  lemma, q. e. d.

L et N  b e  a com pact norm al subgroup o f  G .  F or each n=00, 1 , 2 , «, let
us put

e n G , N )= 6 N (e V (G )) (re s P . e (G ,  N )-- = p N (e (G )) ) .

T h is  is  id en tica l w ith  if  E e n G ); y f=  f  (Y EN)} (resp . ffEe(G ); f yr= f
(y  E N )}) and hence a  subalgebra of e ( G )  (resp. eW)(G)). I n  virtue o f (0.10)
w e have the following

Lemma 1 .3 .  Let N  be a compact normal subgroup o f  G .  A C-valued func-
tion  g  on  G IN  be longs to  e (G /N ) (rasp . e ll ) (G/N)) i f  and only if g.7rGN E
elr)(G, N ) (rasp. elt)(G, N ) ) .  In  this case, for aER(G),

(1.3) dngoirf,,)=(dVg)oeN

(rasp. dP(g.4 )= (dY ) g).KGN ),

where ã= (a).

Corollary. Let N  be as above. For each n=00, 1, 2, ,  the map g.-->gorgv

sets up an algebra isomorphism of EV (G /N ) (ra s p . e (G / N )) o n to  e (G , N )
(rasp. e ( c ,  N)).

Differ-
induces
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Lemma 1 .4 .  L e t fE e ir ) (G ) (resp. eft)(G )). Then the m ap a—>nr )  f (resp.
cli ) f )  o f R(G) into e 0 (G ) is R-linear.

Proof. (I) F ir s t  suppose G  i s  Lie-projective. F o r  e a c h  NE110 (G ), put
fN=0'N(f ) and take  g N Eein ) (G/N) s. t. f N = g N .7c,Gv  (L e m m a  1.3). T hen , since
eir ) (G/N) is  the usual C"-class on the Lie group GIN, w e  have, for a, pE R(G)
and a, bER,

d + b p f N (d + b g N )°76=(adV g N  +bd (i) g ) °

=adVfN4-b4r ) f N  •

Since the  net {fN ; NERo(G)} converges to f  in e ( G )  (Lemma 1.2), this yields
the equality d V H - b p = f  =adP, - ) f±bd V f.

(II) N e x t  le t  G  b e  a r b it r a r y . T a k e  a  pro-Lie open subgroup G, of G.
Then, since R(G 1 )=R (G ) and, for each xEG, the restriction of x f  to  G1 belongs
to  e r (G ,), w e have b y  (I)

cQ-.1-F1pf (x)=c/ r2,+bp(xf)(e) (Lemma 1.1, (i))

= a d (x f)(e )± b d r(x f)(e )

=an "' f(x)-Ebd (i ) f(x) ,

completing the proof. q. e. d.

Remark 1 .1 .  In the sam e w ay as above we can prove

da;)f f i f =dVd (pr)  f —dVdVf (a, PE R (G ), f  E e (G ))

Lemma 1 .5 .  F o r  each fEelo (G ) (resp. efo (G )) and x E G , the map a---*
dVf(x) (resp. f (x )) o f R(G) into C is R-linear and continuous.

Pro o f . See the proof o f [6], Lemma 2.8, having in mind Lemma 1.4 above
a n d  th e  f a c t  th a t  th e  m ap aER(G) ,—a(t)EG is  continuous, t being fixed (see
0.2). q. e. d.

T h e  nex t lem m a now  fo llow s from  L em m a 1.5 and the barrelledness of
R(G) (cf. Proof o f [6], Lemma 2.9).

Lemma 1.6 ([31, Proposition 2.2.1.2). L e t fE e r (G ) (re s p . e fo (G )). The
map (a, x) ,—*clP,9  f(x) (resP. f (x )) o f R(G)XG into C  is continuous.

Theorem 1 .1 .  For each n=00, 1, 2, ••• , the sets e ( G )  and e ( G )  coincide
with each other.

Pro o f . F or a  function f  o n  G , w e  have f(xa(t)) ,  f(xa(t)x' x) (aER(G),
x  E G ). H ence it is plain th a t  d  f  exists for every  ac R(G) if  and  only if  so
w ith  d P f .  A n d , in  th is  case , dVf(x)----= — dav-if(x) holds. T herefo re , by
Lemmas 0.9 and 1.6, one sees that f  belongs to e> (G ) if and only  if  it belongs
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to  e l"(G ). T h a t is , e r (G )= e 1 (G )  h o ld s . T h e  verification of 6 (G )= e (G )
for n 2  is  th e n  a t ta in e d  in  th e  sam e w ay as in  the com pact case. For details,
see  [6 ], Lemma 2.12 and  what follows it. q. e. d.

O n the  basis o f  th e  above theorem we generalize th e  n o t io n  o f  Cn-classes
to  an y  G  a s  follows.

Definition 1.4. F o r  e a c h  n=00, 1, 2, ••• , t h e  identica l s e t s  eV (G ) and
a ( G )  a re  denoted by e „ (G ).  Each element o f e n (G) is called a n  n-times (in-
definitely i f  n=00) continuously differentiable function o n  G.

By Corollary to Lemma 1.1, each e 0 (G) is  a n  algebra over C  stab le  under
th e  le ft and  the  r ig h t translations, the inversion and the complex conjugation.
T h e  reade r sh o u ld  notice tha t by  v irtue  o f th e  very definition of e (G ) based
on Theorem  1.1, t h e  m ixed derivatives Ar;,••• c4ri'dg i)  •-• cPs ii ) f  f o r  f Ee„,(G)
(p, q=0, 1, 2, •••) can be m ade . H ere , a s  is easily seen, th e  "operators" dV and
d u) commute on e,(G):

clVq ) f=d (d) dr ) f (.f ee,(G), a, i3ER(G)).

T h e  Bruhat space e(G) is included in  eco(G). As for the detail o f  their connec-
tion , see 1.5 below.

Definition 1.5. F o r  e a c h  n=00, 1, 2, ••• , 2 „ (G ) deno tes t h e  idea l o f the
algebra e„(G) consisting o f all f e n (G ) w ith  compact support.

F o r any  compact subgroup N  o f  G, w e put

e n (G, pN(e„(G)) (= if ce „(G); f y =  f (y N )} ),

e„(G, N) aN(e.(G)) (= If Een(G); y f = f  (Y eN )1 ),

e n (G, N)=e„(G, N) p ne(G, N),, (n=00, 1, 2,

These a re  subalgebras o f e,(G), and coincide with one another if  N  is  normal.
Furthermore let us put

„(G, N) 0 =0„(G)ne 0 (G, ,

N) 0 = 2 „ (G )n e 0 (G, ,

0„(G, N)-=2„(G)ne(G, N).

T h e  next theorem generalizes [12 ], p . 57, Theorem  2  t o  t h e  non-abelian
case (also see [1 ], I , Satz 4.4 and [3 ], Theorem 2.2.2.6). W e om it the verifica-
tion  since it is th e  same as the  proof of [6 ], Lemma 3.3 if  w e  use our previous
Lemmas 0.5, 0.8, 0.14 an d  1.5 and recall R(G)=R(G1).

Theorem 1 .2 .  Let G 1 be any pro-Lie open subgroup o f G .  If a subset 3 of
e 1(G) satisfies the condition
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sup (IV f(x)1 <00 (resp. s u p  I  dP f (x)I <00)
xeG, Jeff? x e G , fe 2

f o r  each aER(G), then there exists an NEH(G i )  (see Definition 0.7) s. t.
ei(G, N)p (resp. N ),).

Notice that th is theorem , a s  well as Corollary 1 below, has significance only
w hen G  is infinite-dimensional.

C o ro lla ry  1 . Let G , be as in  Theorem 1.2. I f  a subset g o f e 1 (G ) satisfies
the condition

s u p  {Id V  f(x )I+ Id P f(x )I}< 0 0
x e G , fe 2

fo r each aER(G), then there exists an NEH(G i ) s. t. N).

P ro o f. Obvious since H (G 1 )  is lower directed. q. e. d.

C orollary  2 . Suppose G is almost connected. I f  a  subset g of e 1 (G ) is
countable and satisfies the condition

(*) sup f(x)1<00
xeG, f e

fo r each aER(G), then there exists an  N EH i (G) s .  t .  g g e , (G ,  N ) .  The same
holds even if the left derivative is employed instead of the right one in (*).

P ro o f. Since G is almost connected and 2  is countable, we have a compact
norm al subgroup N1 o f  G such that  C/N, is first countable a n d  gge,(G , N1)
([101,  p . 61). O n the  o th e r  h a n d , s ince  G  i s  Lie-projective, th e re  e x is ts  an
N 2 E1-1(G) s. t. N2) )T h eo rem  1 .2 ). P u t  N=N1N2. T h e n  N eH ,(G )
a n d  g  e i (G, N). q. e. d.

Corollary 3. F o r  each n=00,1, 2, •••, there  ho lds g .(G )=U {gn (G , N );
NEH(G i )}, G, being the same as in Theorem 1.2. I f  G  is almost connected, then
25(G )=U{07.(G , N ); NEIL(G )}.

P ro o f. Corollary 1 applied to each sigleton { f } o f  0 1 (G ) sh o w s t h a t  f
g i(G , N ) fo r some NE H(G i ). Hence th e  f irs t  a sse r tio n . T h e  se c o n d  o n e  fol-
lows from Corollary 2 similarly. q. e. d.

1 .2 .  Inductive lim it top o logy fo r the spaces 2 ( G ) .  In  th is  section we
introduce fo r  th e  spaces 2 n (G ) a  n a tu ra l inductive lim it  to p o lo g y . W e  s ta r t
w ith elem entary topologies fo r  th e  spaces e n (G).

Definition 1.6. For any  CECoIn (G) and  a i , ••• , cep, p i ,  • • • ,  19q E R(G) (1), .7=
0, 1, 2, • • •), define a  seminorm 14,1,,„:A , p  on  e + 2 (G) as

1='!•,;',•;.'?;7, 7,(f )= P c (d r i
) ••• d d191,) ••• d,V ) (fE e ,,,,(G )).

If  p o r  q equals 0, this reduces to one of Pc,a 1 ,., ,  P g ''" '• t3q or Pc (see Definition
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1.3). F or n=00, 1, 2, •••, let M "), M " be the same as in  Definition 1.3, and put

& = .•{Pg!',,;: i9 ?. p ; CECom (G), a 1 , • ••, a p , ••• , 13, R (G ) (0 /H-q<n-1-1)}.

T h e  locally  convex Hausdorff topology for E n (G ) d e f in e d  b y  ;,!"), a-;,.' )  a n d  a'.
are denoted by r r ,  Y i  and  r  r e s p e c t iv e ly  w ith o u t  regard  t o  n .  T h e  space
e n (G) equipped with them is denoted by eV(G), eg)(G) and e ( G )  respectively.
(T h is definition agrees nicely w ith D efinition 1.3.) A  linear subspace ..1( of
en(G) inheriting these topologies is also denoted by ,X( ' ) , ,X ( /)  a n d  ,K( ÷)  respec-
tively.

r +  is  f in e r  th a n  y r  a n d  r i . Each of S (G ),  6 V (G ) a n d  e;,+)(G) is com-
p le te . B y  (1.2) w e have

PN 1: 19 !a r (f)=Pc' 121,',9'?  .f i g (f) (fE en+ q (G )).

T herefo re  th e  m a p  f - 4  induces a  topological linear automorphism of e » ( G )
and also a  topological linear isomorphism of e V (G ) onto e ( G )  (n=co, 1, 2,
Sim ilarly w e see that the  left and the right translations on e n (G) are topological
in regard to  any  of y r , Y i a n d  r + .

Lemma 1 .7 .  Let N be a compact normal subgroup of G. For each n=co, 1, 2, •••,
the algebra isomorphism g ,---)go7r7v  o f e n (G/N) onto en(G, N) (Corollary to Lemma
1.3) is also a homeomorphism relative to each of r,-, r 1 an d  r + .

P ro o f. From  (1.3) w e have, for a n y  CGCom (G ) and a i , •••, ap, pi, • - •  ,

R(G) (0 _- p+q<n+1),

(gEen(G )),

w here cT = GN (a i ), g .i =itGi v (i3i ). Hence, in view  of (0.10), the assertion follows.
q. e. d.

Let F be a  closed subset of G and N  a compact subgroup. W e denote by
F )  the linear subspace  { f (G ); suPP(f ).F1 of 2, i (G ) (n=09, 1, 2, •••),

and put

N ; F ),= .0 „ (G , N )r1 2 „(G ; F ),

.0„(G , N ; f),= (G , N ),(12, i (G ; F ),

N ; F )-2 ,,(G , N )(1 0 7,(G ; F ).

Note that these spaces are  identical if  N  is normal.

Lemma 1 .8 .  Let G 1 be a pro-Lie open subgroup of G, and (N, C)EH(G,)X
Corn (G). Then y T., r i  and  r ,  induce the sanie topology on each of 2„(G , N ; C ),,
2„(G, N; C), and .0„(G, N; C) (n=- 00, 1, 2, •••), and make it a Fréchet space.

P ro o f. .0 (G , N ; C )„ , O n G , N ; C ), and 2 (G ,  N ;  C ) ,  are topologically
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isom orphic  to  Z i"(G, N; .0;r)(G, N; C - ' ) ,  a n d  .0;,+) (G, N; C - ' ) ,  respec-
tiv e ly  u n d e r  t h e  map B e s i d e s ,  2 (G , N ; C ) i s  a  r + -closed subset of

N ; C ),,. Hence, fo r  th e  proof o f  th e  lem m a, it suffices to show  th a t r r ,
r t a n d  r +  c o in c id e  w ith  one another o n  2 (G , N ; C),, and  m ake  it a  Fréchet
space.

(I) F irs t suppose th a t  G  is  Lie-projective and Gi = G .  T h en , from Lemma
1.7, .0;r(G, N; CN) is topologically isom orphic to El,+)(G/N; ei v (C ) ) .  Here, in
view  of finite dimensionality o f  G/N and Lemma 1.4, i t  is  plain th a t Z,+ ) (G/N;
7 (C ))  is  a  Fréchet space. H ence so is 0 (G ,  N ;  C N ) .  Then its closed linear
subspace OV ) (G , N ; C ) i s  a l s o  Fréchet. T h e  sam e  reason in g  s h o w s  that
OV(G, N; C) and  .0W) (G, N; C) a re  also Fréchet spaces.

(II) L et G  an d  G, b e  a rb it r a ry . Let { xi Gi , • • •, x s G,} b e  th e  totality of the
le f t  G1-cosets o f  G  m ee tin g  C. P u t  C ,=C nx i G, (i=1, ••• , s). T h en , a s  is
easily seen,

2;,+) (G, N; C),„-= ±, 2;,÷) (G, N; C,),, (topological direct sum).

H ere , s in c e  le f t  translations on  e ( G )  a r e  topological, o n e  sees that each
g;,+) (G, N; C i ),, is topologically isom orphic to .g);,+)(G1 , N ; xV C ,), w h ic h  is  a
Fréchet space by (I). T h u s it fo llo w s th a t g;,+) (G, N; C),,, is  a  Fréchet space.
By the  sam e reasoning w e see that 2Z ) (G, N; C),, and  Z i ) (G, N; C),, are  also
Fréchet spaces. T h e n  t h e  id e n tity  m a p  o f  Z;P(G , N ; C ),, o n to  e a c h  of
2;,r)(G, N; C),, and Z1 ) (G, N; C),,, which is of course continuous, is topological
by  the open m apping theorem . T h e  proof has thus been completed.  q. e. d.

L e t  G , b e  a n y  pro-Lie o p en  subgroup o f  G .  I n  view  o f Corollary 3 to
Theorem  1.2 one  has, fo r each n=00, 1, 2, • • •,

gn(G)-=U{On(G, N; C),,; (N, C)EH(G,)XCom (G)}

=U{On(G, N; C), ; (N, C)eH(G i )xCom (G)}

=-U{ 2 n(G, N; C); (N, C)EH(Gi)xCom(G)}.

N o w  l e t  u s  consider Com (G ) a s  a n  upper d irec ted  se t under inclusion, and
H(G i ) X Corn (G) a s  a  product directed set. T hen  Z n (G ) c a n  b e  topologized in
th re e  w a y s  s o  a s  t o  b e  the  inductive lim its o f  th e  fam ilies {0;,+) (G, N; C),,;
(N, C) E  H(G,)XCom(G)}, {2;,+ ) (G , N ; C ),,; (N , C ) E  H(G 1 ) X  Corn (G )}  and
10 ) (G , N ; C ); (N , C )EH (G0xCom (G )}. Denote the topologies on 0„(G) thus
defined by rg i and r G I respectively without regard  to  n.

Lem m a 1.9. The topologies r7,1, r i a n d  r a t  do not depend on the special
choice of the pro-Lie open subgroup G , o f  G. B esides, they  coincide w ith  one
another on each 2 .(G ) (n= 0 0 , 1, 2, •.•).

p ro o f . T h e  first half im m ediately  follow s from  L em m a 0.16. N e x t, for
a n y  (N , C )EH(G,)xCom (G), the canonical in je c t io n  o f  .Z+ )(G , N ; C ) into
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N ; C ),, i s  conntinuous. Hence ic >z.G, . W hile, using Corollary 1 to
Theorem  1.2, one sees that each sequence in  Z,+ ) (G, N; C),, converging to 0 is
a  sequence in  0;,+)(G, N '; C ) converging to 0 f o r  som e N'EH(G i ). Hence

Therefore z l i = e i .  T h e  coincidence o f  rg i an d  el is show n sim ilarly.
q. e. d.

Definition 1 . 7 .  T h e  same topologies ri , e d  and e l ,  w h ic h  do not depend
o n  t h e  special choice o f  G,, a re  denoted by z* . Each space 2,,(G) (n=00, 1,
2, •••) equipped with .1-*  is  deno ted  by  Z,* ) (G ) .  A  linear subspace i f  o f  2„(G)
inheriting z*  is  a lso  deno ted  by  if (*) .

From definition, r *  is  f in e r  th an  r + relativized to  O n (G ) and coincides with
i t  o n  e a c h  o f  2 (G , N ; C),, and .0„(G, N; ( ( N ,  C)EH(G i ) xCom (G ) ) .  As
a (strict) inductive lim it o f  Fréchet spaces, each 2;.,*)(G ) is barrelled and borno-
lo g ic a l. I f  G  is finite-dimensional, 2.,*)(G) reduces to the inductive lim it of the
fam ily {01,+)(G ; C ); GECom (G)}. In  particu lar, if G  i s  a  L ie  g ro u p , 20*)(G)
is  th e  usual Schwartz space.

Remark 1 . 2 .  L et G, be a  pro-Lie open subgroup o f  G .  r *  can be defined
in  tw o steps, too, i. e., th e  following two hold fo r  each n = c o ,  1, 2, •••.

(i) F or each NEH(G,), th e  space 2;,*)(G, N), is  the inductive lim it of the
fam ily {0;,+) (G, N; C),„; CECom(G)).

(ii) 2;,*)(G) coincides with the inductive lim it o f  {.0;* ) (G, N) p ; NEH(G,)}.

P r o o f .  Let us check (i). Let t-N  be the inductive limit topology on .0„(G, N)
defined by {Z + ) (G, N; C ),,; CECoin (G)}. Then, plainly, z-Ar y* on g f l (G, N) p .
W hile, pN  m a p s  0;,*)(G ) onto 0 (G , N ) i,  w ith  t-N  continuously because it maps
each .00 (G, N'; C),, ((N', C)E H(G,)XCom (G)) into 2 0 (G , N;CN), r r continuously
(see 1 .1 ) .  Since pN  behaves a s  th e  identity map on  0, i (G, N)„, th is  shows that
r * >_DN  o n  0 0 (G, N) p . q. e. d.

Remark 1 . 3 .  L et G , be a  pro-Lie open subgroup o f  G , a n d  F2= xzGil 2E1

th e  to ta lity  o f  le f t  Gr cosets o f  G .  T h en , fo r each n=00, 1, 2, ••-, the  follow-
ing  h o ld . (T h e  employment o f the  r ig h t Gr cosets gives th e  parallel assertions
with obvious alterations in  (i) and (ii).)

(i) Each Z,* ) (G ; F2) is  the inductive lim it o f  th e  fam ily  {2;,±) (G, N; C)„;
(N, C)EH(G i ) xCom (P 2 )}.

(ii) .0.,*)(G; 2 )  is isomorphic to .gq,*) (G ; GI )  under th e  m ap f ' - 0
1 .f. And

Z*)(G  ; G,) is isomorphic to ..0;,*) (G,) canonically.
(iii) 2;,*) (G)=E2EA2 *) (G ; TA) (topological direct sum).

P r o o f .  L e t  r  b e  th e  in d uc tive  lim it topology o n  2„(G; 1 -2 ) defined by
{.WV) (G, N; C),,; (N, C)EH(G,)XCom(r 2 )}. Then, plainly, r 2 _>:r*  on 2 0 (G ; 2 ).
W hile, fo r any  (N, C)EH(G,)XCom (G), the  defining function ZA of [ ' 2 belongs
to  e c o (G, N),, and so  the  m ap f —42 f carries Z i+) (G , N ; C ), in to  2;,+)(G, N; C
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( r A ), continuously. Thus this map is continuous from .0*)(G ) onto 2„(G; TA )

w ith  1-2. Hence r * ._>.r2 o n  El n (G; r,), which proves (i). ( i i )  is immediate from
(i) and  the  continuity o f  le ft translations on Z;,+) (G ) .  The check of ( i i i )  is left
to  the  reader, q. e. d.

1.3. Some properties of the spaces .0;,* ) (G).

Proposition 1.1. Let G, be any  pro-Lie open subgroup o f G. Each bounded
subset o f gq,*) (G) (n=00, 1, 2, •••) is included in .0n (G , N ; C ) f o r  som e (N, C)e
H(G,)XCom (G).

P ro o f .  L e t g  be a  bounded subset o f  .0 " (G ) .  W e can  show  in  the  same
w ay a s  in  th e  proof o f  [12], p . 74, Propositions 2 th a t  gç_O n (G ; C ) fo r  some
CECom (G ) .  O n the  o ther hand, since r r  and z-1 a re  coarser than r * o n  D (C ),
.0 is bounded relative to  each  o f  them , too. H ence it sa tisfies the condition of
Corollary 1 to  T h eo rem  1.2. T h u s  g ç O n (G , N ) fo r  some NrE-H(G,), which
completes th e  proof. q. e. d.

Lemma 1.10. Let N  be a compact subgroup o f G .  pn  in d u ces a  continuous
Projection on each Z* ) (G) (n-=00, 1, 2, •••).

P ro o f .  T ake  a  pro-Lie open subgroup G, o f G .  For each (N', C)EH(G,)X
Corn (G ), p N  m a p s  2W) (G , N '; C ) ,  in to  .g;V (G , N '; C N ),  continuously (1.1).
Hence th e  lemma. q. e. d.

Lemma 1.11. Let N  be a compact normal subgroup o f G .  F o r each n=00,
1, 2, • • •, the m ap gE Z n (G/N) ,—*go2r?s, sets up a topological linear isom orphism  of
Z * ) (G/N) onto .g) ) (G, N).

P ro o f .  D enote this m ap by 0 .  From Corollary to Lemma 1.3, 0  is  a  linear
isomorphism o f .0n (G/N) onto Ø (C ,  N ) in the algebraic s e n s e . T ake  a  pro-Lie
open subgroup G I o f  G , an d  p u t G-=- 2-61 (G , ) .  T h e n , p la in ly , G ; i s  open and
pro-Lie in C /N .  B e s id e s , th e re  h o ld s  H (G 1 )= {7 6 (K ); K II(G ,)} . Now take
any (K, C) H(G,)XCom(G). Then, by Lemma 1.7, the spaces .0;,+ ) (G/N, 26(10 ;
76 (C ) ) ,  and  Z i+) (G, KN; CN),0 a r e  isomorphic under 0 .  Since th e  la tte r  space
is  inc luded  i n  Z i+) (G , K ; C N ), th is  show s in  particular that 0  is continuous
from .0;,*) (G/N) into .V ) (G , N ). On the other hand, 0 -1 .p , maps Z ,-`)(G, K; C),
into 2;,+ ) (GIN, 26(K); 77(C))p continuously because p y  m a p s  .0;j ) (G, K;
into .0;1

4-) (G, KN; CN),„ continuously. Hence 0 -1 . pN  is continuous from  Z*)(G )
onto .0 *)(G /N ). Therefore 0 - 1  is continuous from  Z:k)(G, N) onto Zr(G /N ),
which completes th e  proof. q. e. d.

Lemma 1.12. Suppose G is L ie-projective and put H = fc (N ); N E H o (G)}, a
cofinal subfam ily  o f H(G) (Corollary  to L em m a 0.14). T hen, fo r  each f (C)
(n=00, 1, 2, •••), the net { p N ( f ) ;  N eill is bounded and converges to f  in  .0;,*)(G).
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Proof. Choose (N o , C)cH(G)XCom (G ) s o  th a t  f  e 0 (G ,  N ; C ), a n d  take
th e  la rgest connected  compact normal subgroup L  o f  G  ([8 ], Theorem  14).
T h en  the net in question lies in 2 o ,(G, N o ; C L ) . It is obviously r 1-bounded and,
by Lemma 1.2, s- 0-converges to  f .  Hence the  lemma, q. e. d.

T h e  n e x t th e o re m  c a n  n o w  b e  v e r if ie d  b y  fo llo w in g  th e  proof o f [5],
Theorem  1.

Theorem 1.3. Each space .0* ) (G ) (n = œ , 1, 2, ---) is complete.

Proof. Take a n  alm ost connected open subgroup G i  o f  G .  In  view  of
R em ark  1.3 a n d  th e  f a c t  th a t  th e  topological direct sum  of complete locally
convex spaces is complete, it suffices to show that gl,* ) (G i ) is com plete. There-
fore  w e can assume th a t  G  itself is alm ost connected (hence a-com pact). Put
.31C=  0* ) (G ) a n d  d e n o te  b y  ,4C' its topological d u a l. L e t u be any linear form
of SC' w hich is a(3C', SC)-continuous on each equicontinuous subset of S C '. The
proof depends on Grothendieck's completion theorem ([4 ], Chap. 4, § 3, exercise
3). T h u s o u r ta sk  is  to  show that some element of sC corresponds to  u canoni-
cally.

(I) For a  compact subgroup N  of G , p u t XN=p2v(N), <-1C Ar=ker p N ,  S
'
IV

=

6 (J C ') and S 'N =ker p'N ,  w here 6  denotes the adjoint of p N  a n d  JC, inherits
r * . Then, evidently, (i) ,X'N is  the annihilator of C N  in  SC '; (ii) JC =N N +SN ,

' = 1CAr+,10v  (d irec t sum ); (iii) M'Ar can be viewed canonically as the topological
dual of N  ;  (iv) if  N ,_N o ,  then SCivi ,1CN2 and S'Ar i -Ç , ICAr2 ; ( y ) pN1 (scN 2 ) ---qrN2

for any NI, N2.

(II) Let H  be as in Lemma 1.12. For each TEJC ', put XT
=

 I p V T ); N E  H }.
Then, from Lemma 1.12, its w eak closure XT is w eakly  bounded (hence equi-
continuous because of the barrelledness of S )  and contains T.

(III) Put X = U { ;
 N E H } .  T h e n  th e re  e x is ts  an N H  s. t. u(T)=-0

for a l l TE Xn‘X 'N .. Indeed, i f  otherw ise , (iv) of (I) enables us to choose a
sequence (N ,, T,) (j=1, 2, 3, • •.) so that and u(T 1 )=1.
Put N .=n7=,N ,. Then N,/N_EH(GINc.) and ();=INJ/N--= { r L ( e ) } .  Since each
N1 /N,,, is  c o n n e c te d , th is  shows by L em m a 0.3 and Corollary to Lemma 0.14
th a t  IN 1 / N ,; j= 1 , 2, 3, ••• is  cofinal in H(G/ No.). O n  th e  o th e r  hand, G/No.,
is  a -com pac t a s  w ell as G .  Therefore it follow s that 0 * ) (G/No.) is  an  (LF)-
space and so  com ple te . Then, by Lemma 1.11, so  is  SCN .. Hence, in view  of
(iii) o f  ( I ) , th e re  e x is ts  a n  fEJC N c o  s . t . u (T )= T ( f )  for a ll T E s0 , 0 0 . Since
NNe.=U7-ISCN ., and so  f  ESC N J °  fo r  some j o, i t  fo llo w s  th a t  u(T 1 0 )= T 1 0 ( f)= 0
('.•T , D ESC'1, Jo ), w hich is a contradiction.

(IV) Now suppose T E S .  Then, b y  (i), (N) of (I), it is seen that
x n s 'N u . Hence u=0 on X r  and  so , by  (II) and the assumption on u, u(T)=0.
On the other hand, SCN .  is complete because Z i*'(G/N,L)  is evidently  an  (LF)-
space. T h e r e f o r e  t h e r e  e x is t s  a n  f u e,4C N .  s . t .  u ( T ) = T ( f )  f o r  TESC'N . .
H ence, after all, in  view  of (i), (ii) of (I), there holds u (T )= T (f . )  for a ll T E N '.
This completes the  proof, q. e. d.
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Lemma 1 .1 3 . Each o f  th e  le f t  and the right translations and the inversion
induces on 0;„* ) (G ) a topological linear automorphism (n=00, 1, 2, ••.).

Pro o f . Let G, be a pro-Lie open subgroup of G and (N , C)EH(G 1) XCom(G).
T h e  m a p  f ,—, p f  (resp. P -4 1 ) c a rr ie s  2 ; (G ,  N ; C), in to  2;,+) (G , N; x - iC ),
(resp. 2;,+) (G , N ; C - 1 ), ) continuously (1.2). Hence the  lemma, q. e. d.

L em m  1.14. For each hEe n (G ), the  m ap  f—>hf o n  2 * ) (G )  is continuous
(n=00, 1, 2, • .).

Pro o f . Let G, be a pro-Lie open subgroup of G and (N, C)EH(G,)xCom(G).
Let f k (k =1, 2, 3, ••.) be any sequence in Z + ) (G , N ; C ) converg ing  to  O . Then,
u sin g  C o ro lla ry  1  to  T h e o r e m  1.2, o n e  s e e s  t h a t  hf k i s  a  sequence in
2);,+) (G , N '; C ) for some N 'E H (G ,) coverging to  O . H ence  the  le m m a . q.e.d.

Lemma 1.15. F o r each y),E .0„(G ) (n = - 00, 1, 2, •••), th e  m aps xEG'— 'xPe
g):4`) (G ) and xE0—>so s E . V ) (G ) are continuous.

Pro o f . Let G1 b e  a  pro-Lie open subgroup of G .  Choose (N , C )EH (G ,)x
Com (G ) s o  t h a t  g oE 2 „ (G , N ; C ),. T h e n  i t  i s  plain  th a t  the  m ap x,--)x so is
continuous from each relatively compact open subset 0 of G into 2 (G ,  N ;  O C ).
Hence it is continuous from  G  into 2 ) (G). q. e. d.

Since each .0* ) (G) is barrelled, one sees from Lemmas 1.13 a n d  1.15 that
the le ft and the right regular representations of G  o n  0 * ) (G )  a r e  continuous
(i. e., the maps (x, y o  and (x, ço) ,--y x : G X2;,* ) (G) ,-4 0 * ) (G ) are  continuous).
Lemma 1.14 shows in particular that each Z * ) (G ) is  a topological algebra (i. e.,
the multiplication in it is separately continuous).

1 .4 .  Projective topology for the spaces e n (G).

Definition 1 .8 .  W ithou t regard  t o  n (= co , 1, 2, ••.), z-, deno tes the  pro-
jective topology on e ( G )  d efin ed  b y  th e  lin e a r  m a p s  f c e k (G) ,--->p fE Z ,* ) (G)
(ç9 (G)), e . ,  the coarsest locally convex topology on e (G )  which makes all
th e se  m ap s co n tin u o u s. T h e  space  e n (G) eq u ip p ed  w ith  r „  is  deno ted  by
ev )(G ). Any linear subspace JC of e (G )  inheriting r ,  is also denoted by ,X( P) .

Lemma 1 .1 6 .  ( i )  r ,  is  f in e r th an  r + . (ii) r ,  is coarser than r *  on  each
2 .(G ), but coincides with it on 2 (G ;C )  f o r every CECom (G).

Pro o f . Note th a t fo r  a n y  CECorn (G ) one h a s  v E 2 . (G ) s. t. T.(x)-- -- 1 on
C (In view  of Remark 1.3 it suffices to see this for a Lie-projective G ; and in
such a case this is clear since, for N E H 0(G), one has 0 E 0 .(G / N ) s. t. 0(7:1,(x))
= 1  o n  C). ( i ) :  L et f ,  be  any  net in e V (G) co n v e rg in g  to  O . For a n y  C E
COM (G ) and a1 , ••• , ap , p„ ..• , p,ER(G) (05_ p d-q<n +1), choose p E g .(G ) s .t.
ço(x)=1 o n  a  co m p ac t neighbourhood o f  C. T h e n  d  • • •  c4r;d (

i9
1: ••• dgf,,
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dZ)  ••• d4cl`d'i )  ••• d( w f , )  on C .  By assumption çof, converges to  0  in  0„(G)
relative to z * , hence a f o rtio ri to z ÷ . Therefore

P P :7 a p (M -= - P .?. 7) (çof,) - - - > O.

Thus f,--->0 relative to z + ,  proving the assertion. ( i i ) :  T he first half follows
from Lemma 1.14. Now le t  f ,  b e  a n y  net in  ( G ; C )  converging to O.
Choose 0E20(G ) s. t. 0(x) --1 o n  C . Then f ,= ço f„ -0  relative to  z * . Hence
zp. - z * on 0„(G ; C ), proving the second half , q .  e .  d.

Proposition 1 .2 . F o r  a  subset g  o f  e n (G) (71=00, 1, 2, •••), the following
conditions are equiv alent: (a) Dr -bounded; (b ) z.,.-bounded; (c ) r,-bounded; (d) z- 1 -
bounded. I f  g g g „ (G ; C ) f o r some CeCom (G ), th e se  f o u r a re  f urther equi-
v alent to z * -boundedness.

P ro o f .  Since r i ,  the implication "(a) (b) (c) and (d)" is ob-
vious. Now assume (c). Then, for any çoe g n (G ), çog  is  r r -bounded. Hence,
by Theorem 1.2, it  is  a  bounded subset of O n G , N ; supp (O p  f o r  some NE
H(G 1 ) (G , being a  pro-Lie open subgroup of G ), and so, of 2;,* ) (G ) .  This shows
that i s  z r bounded, i .  e ., th at (a) holds. Analogously it is shown that (d)
implies (a). T h e  rest of the proposition is clear from Lemma 1.16, (ii). q .e .d .

N ote. I t  is  e a s ily  s e e n  th a t if  G  is finite-dimensional, y,, z i ,  r ,  and r„
are identical.

Proposition 1 .3 . Each space e 5 (G ) (n=00, 1, 2, •••) is complete.

P ro o f .  Recall that g n G )  and e ( G )  a re  co m p lete . T ake  an y  Cauchy
net f ,  in  67 ) (G ) and w eg n (G ) .  Then the net çof, is  Cauchy in .0Z" ) (G ) and
so converges to some 0  in Z * ) (G ) .  While, since r + _<_z-p, the net f ,  is Cauchy
also in e;,+) (G), and so converges to some f  in EV ) (G ) .  Then sof,—*sof in g ; i+)(G).
Since r r + on D (G ) ,  w e have thus 0-=- 0 f .  Therefore çof,--->çof in  ..Z * ) (G).
Hence f,--> f in eV)(G), completing the proof. q. e. d.

One sees easily from Lemma 1.13 that each of the left and the right trans-
lations and the inversion on e V (G ) (n=00, 1, 2, •••) is  a  topological linear auto-
morphism, and from Lemma 1.14 that each e;p)(G) is  a  topological algebra.

Remark 1 .4 . L et G ,  an d  {/- 2-=xaG 1 I 2 E A  b e  as in Remark 1.3. For each
2GA, put

C (G  ; 2 )= 1 f e e , i (G ); supp (f)EP 2 I (n=00, 1, 2, •••).

The following are easily checked.
(i) Each space ev)(G ;  P 2 ) is  isom orph ic  to  EV ) (G ; G O  under the map

f - 2 f .  Here e;,20)(G; GO is isomorphic to EV)(G i )  canonically.
(ii) efp(G)=E[ 2 ,,,e),,P)(G; r 2 ) (topological direct product).
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T h e  next simple lem m a is frequently used later on.

Lemma 1 .1 7 .  Let G , be a  pro-L ie open subgroup of G, and N eH (G i ). I f
f E e p (G , N ) , (n=09, 2, 3, •••), then dV  fEe7,_,(G, N ) p  fo r  allR ( G ) .

Pro o f . L e t  TA=x2G1}2ŒA b e  a s  i n  R em ark  1 .4 .  F o r  each  A GA , le t Li
denote the e.(G ; r2)-com ponent o f f  (Remark 1 .4 ,  ( i i ) ) .  T h en , evidently, f 2c
en(G, N; ra ) , ,  w h e re  6 (G , N ; ra ) p =e n ( G ;r2 ) n e ( G , N ) p . Put hÀ =X 1fA .
T h en  haEen(G, N ; G O ,.  Here e i ,(G , N ;G i)p=en(G ,  N ; G 1)  since N  is  normal
i n  G 1 . T hus, obv iously , dV h a e n _,(G, N ; G 1 )p  f o r  a ll a E R ( G ) .  T hen , by
Lemma 1 .1 , ( i) ,  dV f2-=- d ( , x 2 -ih2)=.,,-1(d2h1)Een_i(G , N ; rA ) p . H ence the
assertion , q .  e .  d.

1 .5 .  Connections with the Bruhat spaces g(G ) and e ( G ) .  In  th is  section
w e  c la r ify  the  connections of the  spaces 0. 0*) (G) and 6 ( G )  w ith  th e  Bruhat
spaces g(G ) and  e(G), and also o f  th e  topological dual o f  th e  f o r m e r  spaces
w ith those o f  th e  la tte r  spaces.

L et G , be a  pro-Lie open subgroup o f  G .  U sing  th e  d irected  se t  110(G 1) x
Corn (G ) instead  o f  H(G i ) XCom (G ), consider the  inductive lim it space g(G ),
(resp. (G ) ,) o f  t h e  fa m ily  {g l t ) (G , N ; C ),; (N , C )E H o (G,)X Com (G)}  (resp.
{gnG , N ; C ),; (N , C )E110(G 1)X C om  (G)} ). T hese  tw o do  not depend on the
special choice o f  G , because o f  Lemma 0.16, an d  a re  plainly identical if  G  is
L ie-projective. Here we can check the following two Remarks easily analogously
with Rem arks 1.2  an d  1.3.

Remark 1 .5 .  L et G  be  Lie-projective. ( i )  F o r  e a c h  N E H 0(G ) , t h e  topo-
logical linear subspace gl.„(G, N) of g(G), ( , --- 0(G)„) coincides with the inductive
lim it o f  {21,+) (G , N ; C ); C E C om (G )} , hence w ith ..Tr ) (G , N ) (by R em ark 1.2,
(i)). ( i i )  .D (G ), (=g(G ),)  coincides w ith  th e  in d u c tiv e  lim i t  o f  {0 , (0*) (G, N );
N e H o (G)}.

Remark 1 .6 .  L et G , a n d  {T A =xÂGi }2EA be a s  in  Remark 1 .3 .  F or each
le t D(G; ['A ) deno te  t h e  topological linear subspace { f  E g ( G ) ,; supp (f)._ r2}
of g(G) p . Then,

(i) g(G ; T '2) coincides with the inductive lim it  o f  {g c(.,+) (G, N ; C) p ; ( N , C)
E H o( G) x Com ( r a)}.

(ii) g (G ; 1 '1 )  is  iso m o rp h ic  to  g(G ; G i ) u n d e r  t h e  m a p  f— x a f .  And
g(G ; GO is isomorphic to ..T(G i )„, ( = O (G i),) canonically,

(iii) 2(G),,,=E2EA 2(G ; VA) (topological direct sum).
T h e  em ploym ent o f  t h e  r ig h t G 1-cosets enables u s  to  obtain  th e  parallel

assertions w ith  respect to  2(G) a .

In  view  o f th e  definition o f  g(G ) ([5 1,  Definition 1  and Proposition 4 ) ,  we
see by Lemma 1.11, Rem ark 1 .5 , ( ii) and  Rem ark 1 .6 , ( i i ) ,  ( i i i )  t h a t  n o  matter
G  is  Lie-projective or not, g (G ) , and g (G ), are the same and  nothing but g(G)



470 Takashi Edamatsu

including th e  topology : g(G),0 -=g (G ),„=g (G ). T h is  obviously yields D (G )=
U fg .(C , N ); N E H 0(G )} (..0 00(G)) a s  s e t .  I f  G  is locally connected, D (G )=

2"(G) holds since in this case Ho (G1 )=H(G 1 ) (Lemma 0.15).

Lemma 1.18. Let CECom (G), and {0,, •-• , 0, } be an open covering of C.
Then there exist functions f,, ••• , f, in g(G)+ such that supp ( f ) O  (i=1, ,  s )
and E = 1f , ( x ) _ 1  on C.

P ro o f . [5 ] , Proposition 2 gives this assertion for the Lie-projective G . The
generalization to any G  is immediate in view of Remark 1.6, (ii). q .  e .  d.

The next simple lemma is used in 2.1.

Lemma 1.19. There exists a  locally finite family {a,},E K  o f  functions in
g(G )+  (i. e., each compact subset of G  meets at most a finite number of the sets
supp (a3 )) s. t. E3Exci3(x)=1. fo r  all xEG.

P ro o f. Remark 1.6 allows us to assume that G  is  Lie-projective. Take an
NEH o (G ) .  Then, since G I N  is  a Lie group, there exists a  locally finite family
{g,} K E K  o f  functions in  g (G /N ) s . t .  E 3 K g 3 (7rGN (x ) )= 1  (x E G ).  S o  w e  have
only to put a,, ,----- gergv  (KEK). q. e. d.

By definitition e (G ) consists o f  all C-valued functions f  on G with the
property that for each x E G, there exist a  neighbourhood U  o f x and ÇDeg(G)
s.t. f=ço on U .  In view  of Lemma 1.18, this property o f  f  is equivalent to
th a t yofeg(G ) fo r  a l l  y9E g (G ) .  O ne has obviously e (G )_e , 0(G) and g (G )=
{ f E (G ); supp ( f )  is  com pact). e(G ) is equipped with the projective topology
defined by the linear maps fEe(G )=99fEg(G ) (çoEg(G )). S o ,  i f  G  is locally
connected, e(G)=-- 6 7' ) (G) holds since in  this case .0(G)=.0,;,* ) (G).

T h e  follow ing facts o n  g (G ) and e(G ) are well known ([5]) and used in
the sequel : Lemmas 1.13, 1.14 and 1.15 with D (G ), e(G ) in  p la c e  o f  o c

,„,*) (G),
4 23 ) (G ) (resp.) a re  v a lid . g(G) and e(G) are topological algebras. The topology
o f  g (G ) is  f in e r  th an  th a t o f  e (G ) relativized to  it. g (G ) is barrelled and
bornological, and the left and the right regular representations o f  G  o n  it  is
continuous. Each bounded subset of o (G ) lies in g..,(G, N; C) for some (N, C)
H o (G1 ) XCom(G), G, being any pro-Lie open subgroup of G .  Each of o (G ) and
e(G ) is  a  complete Montel space.

Furthermore there obtains the following

Remark 1.7. Let G, and f'A=xAG,}2 E A b e  as in  Rem ark 1.6. For each
let e(G ; A) denote the  topological linear subspace { f Ee(G ); supp (f)_Sra } of
e (G ).  Then,

(i) Each e(G ; 2 )  is isomorphic to E (G ;G ,) under the  map Here
e(G; G,) is isomorphic to e(G,) cononically.

(ii) e(G)=112cAe(G ; FA) (topological direct product).
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L em m a 1.20. The topology of .0(G) (resp. E(G)) is f iner than r *  ( r e sp . r p )
relativized there.

Pro o f . From construction of .0(G) it is  plain that th e  topology of 2 (G ) is
finer than r *  r e la t iv iz e d . Now let f ,  be any net in  e(G ) converging to 0 , and
goE .O .(G ). Take 0E 2(G ) s. t. sb (x )-= 1 o n  supp (ço) (Lemma 1 .1 8 ) . Then çof,
(=y0(0f,)) —*0  in  .0$0*)(G ) since O f,--0 in 2(G ) and so in 2 ( *) (G ) .  Hence in
ecf.23)(G), proving the other assertion. q. e. d.

Lem m a 1.21. Z (G ) i s  dense in each o f  e(G ), ,g),* ) (G) and e ( G )  (n=
co, 1, 2, •••).

Pro o f . For each CECom (G ), choose soc E.O(G)s.t. yo c (x) ---=1 on  C . T hen ,
for any fE e (G ) and 0 E 0 (G ), the  ne t {0(Wcf ); CECom  (G )} converges to Of
in 2 (G ) .  Hence {o c f ; CECom (G)} converges to  f  in  e (G ). Thus Z (G ) is
dense in e (G ). Analogously it is shown that .0„(G ) i s  dense in e ( G )  (n =
co, 1, 2, •-•). So it now suffices to show that 2 (G ) is dense in each .0;,* ) (G).
Take a  pro-Lie open subgroup G , of G .  For an y  yoEZ„(G), choose (No , C)E
H(G i ) XCom (G ) so that çoE 2 (G , N o ; C ) , .  Then th e  n e t IpN (W ); NEH I con-
verges to çû i n  O (G ,  N o ; CNi)o, (Lemma 1 .2 ), where H=--{NEH 0(G);
with a  fixed N1EH0(G1). Since pN(y0) 0 (G ) (N E H ), th e  proof is complete.
q. e. d.

Lem m a 1.22. Suppose G is L ie-projective and f inite-dimensional. For each
totally disconnected N E H 0 (G ) (see Lemma 0.13), there ex ists a  continuous linear
map g—*g o f 80 (N ) into 2 Z ) (G ) such that (a) = g  on  N  for all  g E e o (N ) ,  and
(b) gE2(N)4=>gE2(G).

Pro o f . By Lemma 0.11 there exists a  subset L  of G  such that ( i )  U = L N
i s  an  o p en  neighbourhood o f  e  in  G ;  (ii) the map (y, z)ELXN-->yzEU is a
homeomorphism ; (iii) th e  map e  (rgl (y ), z )E ev (L )X N --*y zE U  is  a local iso-
morphism of (G / N )xN  into G .  Choose relatively compact open subsets V ,W
of G  so that N V ,  V g W  and  W U. A n d  choose aE.W(G) such that a(x)--- --.1
o n  V  a n d  supp (a )g W  (Lemma 1.18). F o r  each g E e o (N ), denote by g ' the
trivial extension of g  to 7r,Gv (L )x N  and regard it a s  a  function on U  through C.
We define

I a (x )e (x ) if  xEU  ,
g(x).=

0 otherwise (i. e ., xEG\U).

Then - e 0(G), supp (g)_Z —H7  and  g = g  on N .  Besides, for any a„ ••• , apE R(G)
(p=1, 2, 3, • ••), we have

(1.4)d c / ' ( x ) = ( c / i , ?  ••• d a)(x)g'(x) (x E U ).

Hence kOE2ço(G; W ).  Now le t g o (k =1, 2, 3, •••) be any sequence in e 0 (N ) con-
verging to 0. Then, by (1.4) and construction of g ', the sequence h.- k  converges
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t o  0  i n  D n G ; W ).  H ence, i n  v ie w  o f  Theorem  1.2, i t  converges to  0 in
0,!,"(G, N o ; TT), f o r  so m e  N 0 1-1(G). T h is  p ro v e s  th a t  t h e  m a p  g E o (N).—>
kE.V.,*)(G) is  con tinuous. T h e  linearity o f th is  m ap  is  ob v io u s. N o w  suppose
g E 2 (N ).  T hen , since {Nr\N'; N 'E H o (G )} is  cofinal in  H o (N ) (Lemma 0.3), g
belongs to .00(N , NnN i )  for some N,EH o (G ) .  So g ' is constant on each Nr1Ni-
coset o f G  contained in  U .  Therefore, if we take AT2 EH 0 (G) s. t. aE.g)o.,(G, N2),
then  Ar. N r 1 N 1 (1 N 2 ) _ 2 (G ) .  Conversely suppose th a t  kE0(G), j. e., that

N ') for som e N' H o (G ) .  T hen  g=k1 N E.0.(N, N nN ')Z .W (N ). This
completes th e  proof, q. e. d.

N ow  w e prove th e  following

Proposition 1 . 4 .  Suppose G is not locally connected. Then, (i) g)(G)_ gos(G).( 4 )
(ii) The topology o f D(G) is strictly finer than z * relativized there. (iii) E(G)
Ec.,(G ) .  (iv ) The topology o f E(G) is strictly finer than 2-2,  relativized there.

P ro o f. (iii) is obviously implied by ( i ) .  Since g(G) (resp. e(G)) is complete
and dense in 0 * ) (G ) (resp. e) ) (G)), (ii) (resp. (iv)) is implied by (i) (resp. (iii)).
Therefore w e have only to  prove ( i ) .  H e re , in  v ie w  o f  Remarks 1.3 an d  1.6,
it  su ff ice s  to  co n sid e r  th e  c a s e  G  is  L ie-projective. (I) F irs t le t  G be finite-
d im en sio n a l. T h en  G  is locally isom orphic to (G /N )xN  fo r  a  totally discon-
nected NEHa(G) (Lemmas 0.11 and 0.13). Since N  i s  com pact and not locally
connected a s  w e ll a s  G, w e have  a  function g e 2 c.,(N)VO(N) b y  [6], Proposi-
tion  3.2. By Lemma 1.22 g  e x te n d s  to  a  function  kE2..,(G)\0(G). (II) Next
l e t  G  be infinite-dim ensional. I n  v ie w  o f  Lemma 0.15 w e can  tak e  a n  N'
H(G)\H0 (G ). Since G /N ' is finite-dim ensional, L ie-projective and not locally
connected, we have  an  hEgoo(G/N 1 )\.0(G/N') b y  (I). P u t  f=12.7rfv , . Then it
is  easy  to  check th a t  f g.(G)VZ(G). q. e. d.

C oro llary . An almost connected G  is locally connected if and only i f  1-1,(G)
=1-10 (G).

P ro o f. Obvious from Lemma 0.15, Corollary 3 to Theorem  1.2 and Proposi-
tion  1.4. q. e. d.

Next we consider the  topological dual o f  th e  spaces .V.,*)(G) and 823 )(G) in
connection with those o f Z (G ) and E(G).

Definition 1 . 9 .  V(G), ei(G) and E.,(G) denote th e  topological dual
o f th e  spaces .0(G), .V.* ) (G), e(G) and e ( G )  respec tive ly . T hey  are  equipped
w ith  the  strong topologies of dual, denoted by p(0', 0), p(2:„„ p(6', e) and

(resp.).

By distributions on G  we mean the elements of 2'(G), j. e., the distributions

(4) C f. [3 ], Theorem 2.2.2.8.
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in  Bruhat's se n se . A s  w e know  ([5]), E'(G) can be viewed algebraically as the
linear subspace o f EY(G) consisting of all elements with com pact support. Here
the support of TEgY(G) means the smallest closed subset F o f  G  s. t. <gp, T>=0
for a ll gpEO(G) w ith  supp (o n F = 0 .  In view of Lemmas 1.20 a n d  1.21, 2 (G )
and e (G) can also be viewed algebraically a s  linear subspaces o f  .0'(G) in the
canonical w a y .  U nder this convention, which we keep throughout, the following
schema is evident :

e'(G)
(1.5) Ull Ull

e (G ) ..V.,(G).

Here notice th a t if  A, B a re  two spaces appearing in  (1.5) s. t. A B ,  the  topo-
logy o f  A  is  fine r than  tha t o f  B relativized to  A.

Now suppose TEE'(G)(120(G), and choose ae.W(G) s. t. a(x)_1 o n  a  neigh-
bourhood o f  supp (T ),  a  c o m p a c t  s e t .  T h e n  <T,, T>=<aço, T> f o r  TE.W(G).
Since TE ,V (G ), th is im plies that T  is pp-continuous on D(G), e., th a t  TC
eWG). Hence e'(G)ngL,(G)ç_eL(G). T hus, in  view  o f (1.5), w e have

(1.6) EL(G)----e(G)(10L(G).

T h a t is, e (G )  consists o f  a ll distributions in gL(G) w ith  compact support.
S ince ..0(G) a n d  .V n G ) a r e  bornological, .0'(G) and  .o,,,(G) a re  complete.

T h e  completeness o f E'(G) w as proved in  [5].

Proposition 1.5. T he space EL(G) is complete.

P ro o f .  W e use Grothendieck's com pletion theorem . Let T  be  a  linear form
of 6c(G) w hich is a(e.(G), 6.,(G))-continuous on each pp-bounded subset. Then,
in  view  o f  (1.5), the  restric tion of T  t o  e(G ) (resp. .V„*) (G )) is  u(E(G), e'(G))-
continuous (resp. c(2.0(G), Z o(G))-continuous) o n  e a c h  o f  its bounded subsets.
Since e(G ) and .0L(G) are complete, this implies that TEE'(G)n.gX0 (G)
Hence the assertion , q. e. d.

Each complex Radon measure i t  o n  G belongs to Z„,(G) as distribution since

T * ) (G) ,-4 G ço(x)dp(x) C  is  con tinuous. I f  du  is compactly supported, then

ttE E (G ) .  Each f E Lioc(G, dG) is identified with th e  measure fdG , (lc denoting
a  fixed left Haar measure.

Lemma 1 .2 3 .  e.,(G) is  dense in each o f  0 '(G ), Z .(G ) and E'(G).

P ro o f .  Since g(G ) and  e (G ) a re  M o n te l (hence reflaxive), i t  is  e a s y  to
check th a t 2(G) (E_e< (G)) is  dense in each o f 2 '(G ) and E'(G) (see [5], p . 53).
Hence a f o rtio ri so is e (G ) .  Now let TEOL,(G). For each C ECom (G), choose
ac E0(G) s. t. ac (x)_-1 o n  C .  T h e n  th e  m a p  Tc: fEE,L7' ) (G )- -><acf,T>EC is
continuous, i. e., T c E e (G ) .  W hile, since each bounded subset o f  .V!)(G ) lies
in  .0,,o (G ; C ) for some CECom (G ), th e  n e t { Tc  ; CECom (G)} converges to  T
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in  .Z .,(G ). Thus G (G ) is  dense in 0'(G). q. e. d.

Proposition 1 .6 .  Suppose G is not locally connected. Then, (i) .Z„(G).0'(G).
(ii) The topology of .Z0 (G ) is strictly  f iner than that of .V(G) relativized there.
(iii) E (G )Z E '(G ). (iv) The topology of C (G ) is strictly  f iner than that of  e(G )
relativized there.

Pro o f . Obviously (i) is im plied by (iii). Since N0(G) (resp. ec.s' (G)) is com-
p le te  a n d  d e n s e  in  .0 '(G ) (resp. E'(G)), (ii) (resp . (iv)) is implied by (i) (resp.
(iii)). Therefore  our task  is to  prove (iii). H ere, in  v irtue o f Remarks 1.4 and
1.7 (recall that the  dual o f a  d irec t p ro d u c t is  th e  d ire c t  su m  of the dual), it
suffices to cosider the  case  G is  Lie-projective.

(I) F irs t le t  G b e  com pact and to tally  d isconnected. Then Z(G) (=-- E(G))
consists o f  all trigonometric polynomials o n  G ( [6 ] , Lemma 3.11) and .vp)(G)
(=e,P)(G)) coincides with th e  space 60 (G ) .  T h e  group G is  no t f in ite  s in ce  it
is  n o t  lo c a lly  c o n n e c te d . H e n c e  n e ith e r  is  its  u n ita ry  d u a l O. So we can
choose a n  infinite sequence crk (k=1, 2, 3, •••) o f  m utually  d istinc t elements of
O. F o r  e a c h  k  l e t  dk ( r e s p . Xk )  denotes the  degree (resp. character) o f  ak.
Choose a  sequence c,, o f positive  numbers s. t.

(1.7)
k=1 c k d k <c .)  •

L et N E I -10(G ) . Since (G/ -=A(0, N), the  annihilator o f  N  in  6 ,  the Fourier
series o f each soE 2 .(G , N ) (--2 c.,(G/N)) is constructed by th e  coordinate func-

tions o f  th e  elem ents o f  A (6 , N ). S o  0 9DZ- k cic=0 unless a k E A (6 , N ). Here,

from assumption o n  G, the  group G/N is  fin ite , hence  so  is  A(G.  , N ). There-
fore  w e can defite a  T e g '(G ) (= e (G )) by

(1.8)< ç a ,  T > =  k
cs

i Ci l
G ç)(X );,-4(X )dG X (Ç D E g(G )) .

N o w  p u t  go,i= E lk'=ickXk (EZ(G)) fo r  n=1, 2, 3, ••• , and so0=E17---IckXk (Geo(G))
(recall (1.7)). T hen  y9,,--T o (n—c>0) i n  t h e  space  Co(G). B ut <y9„, T>=n-->co.
This show s th a t TEe'(G)\e.,(G).

(II) N e x t l e t  G  be  fin ite -d im ensiona l. T hen  G  is locally isomorphic to
(G/N)XN fo r  a  totally disconnected NEH 0(G). S ince  G  is  no t loca lly  con-
nected, neither is N .  Therefore, in  view  of (I), w e  h av e  a  T o EgY(N)\.0L,(N),
a  sequence 0„ (n=1, 2, 3, •••) in  2 (N ) and 0 0 Ee 0(N ) such  that 0„—>00 in  e 0 (N)
bu t <0„, T,> — co. T h e  restricton m a p  wEg(G).—>yo N  carries .0(G) into .0(N)
continuously  because it carries each .V,' ) (G, Nl; C) ((Arl, C)EH0(G)><Com(G))
into 2,L+)(N, Ni nN), N 1 l - 1N belonging to Ho (N), continuously. Hence we can define
a  T e o ' (G )  by <ça, T>=<y)I N, TO> ( g) E 2 (G ) ) .  Then TEei(G ) since supp (T) N.
L et çbn , ç'b0 b e  the im ages of On ,  gbo (resp.) in .0.0(G) b y  th e  m ap o f  Lemma 1.22.
T h en  çb„E2(G) and in 0 * ) (G ) .  But <Ç'b,„ T>=<O n , C°. T hus, TO
.0 (G ), hence TEe(G)\e,s(G).
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(III) W e consider the general c a se . Since G is not locally connected, there
exists an  NEH(G)\110 (G ) .  Then, by  (II), one has a  compactly supported T I E
gY(G/N)\_C,(G/N). A nalogously to  th e  p ro o f  o f  Lemma 1.11 w e  c a n  show
th a t the m ap gE2(G /N ) ,-->g.76 is  a  topological linear isomorphism of 0(G/N)
onto 2(G , N )= -{w ED (G ); p yo=go (yEN )}, viewed as topological linear subspace
of 2 (G ) .  T hus w e can  regard T, as a continuous, but n o t z* -continuous, linear
form of 2 (G , N ). p N  m aps each 02"(G, N1)(N1EH0(G)) into itself continuously
(Lemma 1.10) and so induces a  continuous projection of 0 (G ) onto 2 (G , N ) (see
Remark 1.5, (ii)). S o  w e  c a n  n o w  d e f in e  a  T E .V (G ) b y  <ço, T>=<pN(w), T1>
(ço E 0 (G )). T h e n  T e e '(G )  since  supp (T )  (7cGN ) --1 (supp (T O ) .  B u t TO Z„(G )
s in c e  i t  i s  n o t  z * -continuous o n  2 (G , N ) (one h a s  T — T , on 0 (G , N )) .  The
proof is now complete. q. e. d.

1 .6 .  Left invariant continuous linear maps on the spaces e(G) and eS,P) (G).
W e co nc lu d e  th is  ch ap te r b y  sh ow in g  h e re  th a t the elements of e (G ) (resp.
eco' (G)) are in  correspondence with the le ft invariant continuous linear maps on
e(G) (resp. ELP) (G)).

Lemma 1 .2 4 . (i) Let TEgY(G )(resp. Z.(G )). The linear map ço,-40(x-),T x>
carries 0(G ) (resp. Z o* ) (G )) into e(G) (resp. 4,P ) (G )) continuously.

(ii) If T ee '(G ) (resp . E (G )), th e  above map carries each of 2(G) and e(G)
(resp. 22' ) (G ) and e cloP)(G)) into itself continuously, too.

(i) and (ii) are valid even if <yo(x•), T > is replaced by  <ço(•y),

Pro o f . W e  o n ly  p ro v e  h e re  the assertions ( i )  for T Ø ( G )  and (ii) for
T E E W G ). T he other assertions are verified analogously.

(i) for T E Z , (G ) :  L e t çoE.W.(G). I n  v ir tu e  o f  Lemma 1.15, the function
yEG ,--><yo<xy), T >  is  con tinuous. B esides, f o r  e a c h  a E R (G ) a n d  y e G ,  we
have b y  the mean value theorem

1 
<W(xY a(t)), T x> — <So(xY), T x>}=<dno(xYa(s)), T x>,

where s i  < I tl . Hence, plainly, dV<<p(x•), T >  exists and equals <dVy0(x-),T x>.
This observation immediately shows th a t <go(x•), T x > belongs to  e (G )  and

(1.9) •-• cl«r<ç9(x•), T x>=<n .2 ••• (1 ço(x•), T >

ho lds f o r  a n y  a„ ••• , apER(G) (p=1, 2, 3, •-•). W e  n o w  show th a t  the map
(pE2*)(G).—<ço(x •), T s >E61,P ) (G ) is  con tinuous. T ake  a  pro-Lie open subgroup
G, of G .  Let (N , C )EH(G i ) XCom(G), and Ç02  be a  ne t in  2 (G ,  N ;  C ) ,  con-
verging to 0 .  Our task is to show that, for each a E 2 .(G ), the net a<spl(x •), Tx>
converges to  0 in 2 * ) (G ) .  In view  of Lemma 1.17, th e  n e t  d,,r2 ••• cl y92 con-
v e rg e s  to  0  in 2V(G, N; C ),,, for any a„ ••• , a p E R (G ) (p=1, 2, 3, • Since
the right regular representation o f  G  o n  .V.,*)(G) is continuous (1.3), it then
follow s that (clP,? ••• c4so,1)„-0 in 2 * )(G ) uniformly w. r. t. y supp (a ) .  Hence

••• cl,r;,Ço1(xy), T s >—+0 uniformly w. r. t. y Esupp (a). By the Leibniz formula
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a n d  (1 .9 ) i t  n o w  fo llo w s  th a t  a<Ç, 2(x -), T>  c o n v e rg e s  t o  0  i n  OV(G, N';
supp (a )),, hence in Z.s*) (G), w here N ' is chosen in 110 (G1) s o  th a t  N ' U N  and
aE0c.0(G, N').

( i i )  f o r  TEEL,(G ): Choose b E g (G ) s. t. b(x) 1  o n  a  neighbourhood of
supp (T ) .  By what has been shown, the map vp--3<go(x • ), T>  (=<b(x)yo(x•), T .>)
carries each .0,(

0r) (G, N; C) 0 ((N, C)EH(G i ) XCom (G)) in to  Z.0P) (G ; (supp (b)) - 1 C)
continuously. Since t-p=r *  o n  2 .(G ; (supp (b)) - 1 C), th is  shows th a t  .0,(

0*)(G) is
carried into itself continuously under the above m a p .  Next we show tha t eLP) (G)
is  a lso  c a r r ie d  in to  its e lf  contiuously. L e t  aEg oo(G ) .  Choose c Ø ( G )  s. t.
c(x) 1 on supp (b)•supp (a ). Then, for ÇoEec.,(G), a<T(x.), T.x>=<a(•)b(x)yo(x•),
T r >-=a<c(x•)ço(x•), T r >. H ence, i n  v ie w  o f  w hat has been  show n, one sees
th a t th e  m ap ço,—>a<yo(x-), T>  i s  ontinuous fro m  e,LP) (G ) in to  0,J,* ) (G ) . Since a
is a rb itrary , the  proof is complete.  q. e. d.

L et S , T E )'(G ), and suppose one of them has com pact support. T hen  the
convolution S*T (E ,V (G )) is defined, fo r which

(1.10)< c c ,  S*T>=-- <<ço(x•), Sr >, T>

-=--<<ço(• Y), u >, S> (çoEg(G))

holds ( [ 5 ] ) .  It is not difficult to check

(1.11) supp supp (S)•supp (T).

Using (1.10) and  Lemma 1.24, w e can  see  tha t if  th e  above S, T  belong to
„(G), then  S*T .V,a(G). In  th is case (1.10) holds for so .0 (G ).  Similarly, if

S, TE0'(G ) (resp. EL(G)), then  S*T Ee'(G) (resp. e (G ) )  a n d  (1.10) h o ld s for
spEe(G) (resp. e .(G )). B y th e  last fac t it can  be  seen  tha t each  o f  er(G) and
e (G ) i s  a  topological algebra under the convolution product and contains 5,,
the D irac m easure at e, a s  its identity.

T h e  m odular function A G  b e lo n g s to  E (G ). Indeed, choose çoE2(G) s. t.

G ç6dG = .--1. Then

AG(x)=1Ac(xWY)dGY= G 5D(x.Y- 1 )dcY x  G )

Since spE2.(G, N)„ fo r  some NEH 0 (G 1), G , being a  pro-Lie open subgroup of
G , t h is  show s t h a t  AG Ee„(G, N ), (Ze (G )). N ow  le t u s  define an involutive
m ap T -4 ' on  .231'(G) as the  ad jo in t of the  topological linear automorphism
(Acço) -  of 2(G) : <cc, T>=-- <(AGçW T> (ÇDE-g(G), Teg)'(G)). (Notice th a t  (fda) -

= 1 dG  ho lds fo r  f ELL(G, c10).) T hen , obviously,

(1.12) supp (T) , (supp (T))' E  ( G ) )  .

Since t h e  map is continuous also on  2,:' ) (G), w e see  tha t i f  T.Z.,,(G),
then  '1' F o r th e  same reason, if T e '(G )  (resp. eWG)), then  't e e' (G)
(resp. eL(G)).
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Lemma 1 .2 5 . Let S  designate Z(G), OL,* ) (G ), E(G) o r  E P )(G ). Then, for
each yoE S  and T ES ', there holds

(1.13) yo*T=<yo(• y), a > (as distribution).

Pro o f . B y the  above mentioned remarks, we have, for 0 (G),

<gb,v)*T>.-= 1 0 (x y »(x )d cx , T y )

=- 10(xW xy)clox, T y )=-<yo, 04'>

—10(x)<SD(xY), T y >dcx .

Hence yo*T=<yo(- y), q. e. d.

Corollary. Let S  be as in Lemma 1.25. For each yoE S  and T E S ', there
holds

(1.14) <go, T>=yo*te).

L et S, TE2 '(G ), and suppose one of them has com pact support. T hen , by
(1.10) and (1.13),

(1.15) <yo, S*T>=<yo*i', S> (yoE.W(G)).

Furthermore, a s  is easily checked,

(1.16) (S*Tr .

N ew  let S  stand fo r  E(G) o r  EL,P)(G). I n  v ie w  o f  Lemmas 1.24 and  1.25
we can define, fo r each T E S ',  a  continuous linear map DT o n  JC as

(1.17) DT f  =  f ( f  E s ) .

Since iis _i * f  =  (x E G , fE L 1 0 ,(G, dG )) (use 1.10)), 3.x denoting the Dirac measure
a t  x, w e see  by  th e  associativity law for distributions th a t  DT is  le f t invariant
(i. e., Dr(sf )= x(DTf) (xEG, f E S ).

Theorem 1 .4 .  Let S  designate e(G) o r E.,P)(G). The m ap T ,—>D2,  sets up
an isomorphism of the algebra S ' onto the algebra o f all le f t invariant continuous
linear m aps on  S .  I t s  inverse m ap is g iv en  by  D-->TD ,  where T D  (E S ')  is
defined as

(1.18)< f ,  D >=D f (e ) (f E S ) .

DT decreases supports (1 . e ., supp (Drf)E,suPP ( f )  fo r  all f E S )  i f  and only i f
supp (T). { e

Pro o f . Denote th e  m ap TES'— *DT  by  W . It is c lear from  (1.16) and (1.17)
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th at q f i s  a n  algebra homomorphism. Its injectivity follows from (1.14). Let
us see its surjectivity. Take any left invariant continuous linear map D  on S .
Define th e  linear m ap T D  on i f  by (1.18). Then, plainly, T D E „IC'. Besides,
for any f  E‘X  and x E G,

Df(x)=DG. f )(e)=<xf ,TD>

---- xf*TD (e ) (by (1.14))

=DT D (x f  )(e)=DrD f  (x ).

Hence D =D T D . This shows that Y . is  surjective and, a t  th e  same tim e, that
its inverse map is given by /3,--+TD . Finally, from (1.11), (1.12), (1.17) and (1.18),
we see that DT decreases supports if and only if  supp (T )E- el. q. e. d.

Theorem 1.4 together with Lemmas 1.24 and 1.25 yields the following

Corollary. E v ery  le f t invariant continuous linear map on e(G) (resp. EP ) (G))
leav es 0(G) (resp. each of  0(G ), g ,* ) (G) and E(G)) inv ariant and induces on it  a
continuous map.

Theorem 1.4 together with Proposition 1.6, (iii) show s that if  G  is not
locally connected, the class of the left invariant continuous linear maps on E(G)
is strictly  w ider ( in  th e  obvious sense) than the class of the maps on e..P)(G)
with the same properties. But we shall see in  2.7 that their subclasses con-
sisting of all support-decreasing elements coincide with each other. As against
the present section, we intened to discuss in the next chapter the support-decreasing
(not necessarily left invariant) continuous linear maps on the spaces eoP)(G),
21*)(G), E(G) and D(G).

Chapter 2 .  Differential operators

2.1 . Derivations and differential operators. A  linear map d on an algebra
e  over C  is called a  derivation if  d(f g )=(d f )g±  f (dg) holds for f ,  gE 6 .

Lemma 2.1 . L e t d  be a derivation on E.(G ) or on 2 . ( G ) .  Then supp(df),E_
supp (f ) holds f o r f  E 2 .(G ).

P ro o f .  Take any fE .W .(G ) and any neighbourhood U  of supp(f). Choose
aE O (G ) such that a(x) --. 1  on supp(f) and supp(a).VJ (Lemma 1.18). Then,
since f  =af ,  we have d f =( d a ) f +a ( d f ) .  Hence supp(df ) U .  Since U  is arbi-
trary, the assertion follows, q. e. d.

Lemma 2.1 shows in particular that each derivarion on e (G )  leaves 2 .(G )
invariant and so induces a  derivation on it.

L em m a 2 .2 .  I f  a  derivation d on eco(G) is D.-continuous on 2—(G), then it is
rp-continuous on e.(G).
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Pro o f . Obvious from the equality ço(df)=d(çof)—(4)f (f Ee.(G), soE 0.(G)).
q. e. d.

Lemma 2 .3 .  L et D  be a continuous linear map o n  ec,P)(G) s. t. supp((Df).Ç
supp(f) f o r all f E 2 . (G ) .  Then,

(i) D  induces a continuous linear map on 21*'(G).
(ii) supp(Df )_supp(f) holds f o r all fEe.(G ).

Pro o f . L et G, be a  pro-Lie open subgroup o f  G .  T ake  any  (N, C)EH(G,)
xC om (G ). T h e n , s in c e  r * = r ,  o n  2 .(G ; C ) (Lemma 1.16), it is clear from
assum ption that D  maps 21+) (G , N ; C ) in to  21* ) (G ; C ) continuously. H ence
the assertion (i)  fo llo w s. N e x t, ta k e  a  locally finite family { d,}EK of functions
i n  2 (G ) S. t• EKEK a(x)=--  1 o n  G  (Lem m a 1.19). L e t  F=-- {F }  b e  th e  upper
directed family o f  all finite subsets o f  K .  T h en , fo r each f ee .(G ), it  is  plain
th a t th e  n e t { E,EFa.f ; F E F }  converges t o  f  i n  elP ) (G). Hence it follows
th a t  t h e  n e t  la e F D (a c f); F E F I converges t o  D f  re la tive  t o  r p ,  hence a
fortiori pointwise. S ince  supp(D(a,f))ç supp(a,f)g supp(f) f o r  a l l  KEK, this
im p lie s  th a t  su pp (D f) su pp (f). T h e  a s se r t io n  (ii) h as thu s b een  p rov ed .
q. e. d.

Lemma 2 .4 .  L et D  be a continuous linear map on  01*'(G) s. t. supp(Df)
supp((f) f o r  a l l  f E 2 . (G ) .  T hen D  is extended uniquely to a continuous linear
map on EIP '(G ). Here, if  D  is a derivation, this extension is also a derivation on
e.(G).

Pro o f . L et w, 2— (G ). C hoose a E 2 (G ) s o  t h a t  a(x)-. 1  o n  a  neigh-
borhood o f  supp(0). T h e n , s ince  supp(D((1— a)w)).çsupp((1— a » )  supp(1— a)
and so 0D((1— a)ço)=0, w e have ODgo-=- 0D(aço). Hence it follows that th e  map
wE2Y ) (G) ,-0DwE.V.0* ) (G ) is continuous. S ince 0  is  a rb itra ry , th is shows that
D  is continuous on  2—(G) in  r e g a r d  t o  t h e  relativized r i ,. S in c e  e ( G )  is
complete a n d  2c..(G) i s  d e n s e  in  it ,  th e  first ha lf o f  th e  lemma now follows.
The second ha lf is  easy  to  check since e l (G )  is a topological algebra.  q. e. d.

L e t  8 , ( r e S P . a 2 )  denote  th e  to ta lity  o f  continuous derivations on e ( G )
(resp. 21* ) (G )) . T hen , by Lemmas 2.1, 2.3 and 2.4, w e see that 8 , corresponds
bijectively to  82 through the restriction m ap dE81 — c112...(G). S o , in  the  sequel,
w e do not distinguish between 8, and 8 2 . T h a t is, dE8 1 and  d I ge„,(G) are always
identified.

Definition 2 .1 .  Each continuous derivation on e2' ) (G) o r , w h a t is  the same,
on 01*) (G ) is called a  continuous derivation on  G .  T h e  to ta lity  o f  continuous
derivations o n  G  is denoted by a(G).

L et Di  (resp. D 2 )  denote th e  totality of support-decreasing continuous linear
maps on e > (G ) (resp. g r ) (G ) ) .  Lemmas 2.3. and 2.4 obviously show s th a t the
restriction m ap DED1 ,-- D I a...(0) se ts  up a bijection of D, o n t o  D .  S o , a s  in
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th e  ca se  o f  continuous derivations, we always identify D, and D, through this
m a p .  Here note th a t  th is  identification preserves t h e  le f t  a n d  th e  r ig h t in -
variancy o f  m a p s .  T h a t  is , a  map in  D , is  le f t o r  r ig h t invariant on  e (G )
if  and  only if  s o  i t  is  on  0.(G).

W e now  m ake th e  following

Definition 2 .2 .  Each support-decreasing continuous linear map on e 1 (G)
o r ,  w h a t  i s  the  sam e, on  g r ) (G ) is called a  differential operator on  G .  The
totality  o f differential operators o n  G  is denoted by D (G ). T h e  totality  o f  its
le ft (resp. right) invariant members is denoted by  D 1(G) (resp. D r (G)).

Note th a t  a(G) is included in  D(G) (Lemma 2.1). Under the obvious algebra
operations D (G ) becomes a n  algebra over C .  Each o f D i (G ) and D r (G ) is its
subalgebra. a(G) is  a  L ie  algebra under th e  linear operation in  D(G) and  the
com m utator product rd , d ']=dd '— d 'd . F o r  e a c h  D  D (G ),  w e can  define
b E D (G ) b y  D f= (D j)v  (fc e . (G )) .  T h e n  th e  m ap D ,-->b is  a n  algebra auto-
morphism o f D(G), and  carries D i (G ) and D r (G ) o n to  e a c h  o th e r . A lso , th is
map induces a  L ie  algebra automorphism o f a (G ). D (G ) includes ec.(G), where
each element of e(G) is regarded as a multiplication o p e ra to r . A  map D D (G )
does not necessarily leave g (G ) invariant, but is determ ined by th e  behavior on
it because o f  its density  in  elP) (G ). Now suppose D E D ,(G ). T h e n  D  leaves
D(G ) invariant because it leaves each 00.(G, N), (NEH0(G1), G, a  pro-Lie open
subgroup o f  G ) invarian t (o r b y  Corallary to  T h eo rem  1.4). Furtherm ore it
leaves g(G i ), iden tified  w ith  g (G ; G ,), in v a r ia n t a n d  is  de te rm ined  by  the
restriction there (recall Rem ark 1.6).

2 .2 .  Derivations associated to one-parameter subgroups.

Definition 2 .3 .  R(G)c denotes th e  complexification of the Lie algebra R(G).
F or each ad-i ISE R(G) 1 (a, 13E R(G), i=,../="), cn"2„, s (resp. n ,p )  is defined to be
the  derivation

f  c l ( P  f  f  (resp. f f +id (
13

1 ) f)

on e (G ) (see Lemma 1.1, (i)).

is continuous o n  or)(G) because it maps each 2>(G , N ; C ), ((N , C )
H(G i )XCom(G), G , a  pro-Lie o p en  subgroup o f  G ) into itself continuously.

Hence, by Lemma 2.2, d V E  ( G ) .  B esides, from  L em m a 1 .1 , d "O E D /(G)
and (C 0 )v=c/ i i3.

Theorem 2 .1 .  The m ap a-Fip—)d,'"2,0 is a Lie algebra isomorphism of R(G) 2

into a (G ). The image of this map coincides with the totality  o f  le f t  invariant

elements o f a(G)(i.e., w ith a(G)(D,(G)).

Pro o f . From Lemma 1.4 and Rem ark 1.1 it  is  c lea r  th a t th e  above map is
a  L ie  a lgeb ra  homomorphism. L e t  G ,  b e  a  pro-Lie o p e n  subgroup o f  G.
Suppose dV,,3 --=- 0. T h en , fo r  any  NEH D(G ,), gEO(G,IN ) an d  xE G i ,  w e have



Differential operators on locally compact groups 481

by (1.3)

cl,',"1„,,, A N g (rgl i(x))=d,T_Vg.2rffi)(x)=-0,

where a,v=--- iï. g i(a ) and PN -= itg l(g ). Hence n - ,,p N -=0. S ince G I N  i s  a Lie
group, this implies that a N = P N = 0 .  Since N  is arb itrary, w e have thus a= p

(i. e., a + iP = 0 ), which proves th e  injectivity o f  th e  above homomorphism.
Next take any d (3(G)r1D / (G ) .  To complete the proof, it suffices to show that
d=dV +id (pr) holds on 2(G 1) for some a , PE R (G ). Since d makes each 0.(G 1 , N )
(NEH0(G1)) invariant, we obtain a left invariant element d,v E a (G 1N ) determined
by (d N g).7rg i=d (g07P)(gEg(G i / N )) .  T hen , since G IN  is a L ie group, there
exists a unique pair (criv, PN) of elements of R(G 1N ) s. t. dN -- = d r + id n , .  Now
suppose N ,N 'E H o (G i ) and T ake any g 'E g (G d N ') and put g=-- g '-

r P N ( g ( G I N ) ) .  Then

((d V ,,,+ id ,)g ').7 r G,v 1,

=(d,v
, g').7r G

N
1,=d(g'.n. G

N
1,) =d(go7r G

N
1 )=- (d N g).7r v i

=((d,f,'" ),+ id n )g )a rg i

--=((dV,,, ,
N -kidp? N )g i ).7r GN1„

w here aN , N=77GN1, N(aN) a n d  PN , N= 7'1*  N(PN). H ence (1 ) + id ;9?„, =dV,,, N +
N , e., aN , -=- 77GNI, N(aN) and PN , - -- 77- GNI, N(ISN). T h is  sh o w s  th a t  t h e  maps

tER ,— *(aN(0)NEHow 1) and  t E R ,— (SN(0)Neirocc i ) belong to R(cc 1(G1)) (see (0.1)).
Now p u t a(t) -=c61((aN(t))NEH o cG1 )) and f3(0=c61((PN(t))NeH 0 ( G o ) ( t E R ) .  Then a, /3
ER(G 1)( = R (G ) ) .  A nd, evidently, we have d = d  + i d r  on (G 1 ,  N ) f o r  all
NE H o(G I), and hence on  2(G 1 ). T his completes th e  proof. q. e. d.

2 .3 .  The enveloping algebra o f  R(G)c.

Definition 2.4. D i (G ) (resp. D r (G )) denotes th e  subalgebra o f D (G ) gener-
ated by all the  derivations d ( r e s p .  d,(„1_),,p )(a , pE R (G )) a n d  1, t h e  identity
operator on e.(G ).

Each D ED 1(G)(resp. D r (G )) is expressed as

(resp. D=Eca,,...,a p d - • • d )  (finite sum),

w here a l , ••• , ap  R (G ), c a r . , a p E C  a n d , f o r  th e  c a s e  p= 0, (resp.
cl ••-d )  means th e  identity operator 1. T h e  automorphism D.—>b o f  D(G)
maps A (G ) and D r (G ) onto each other. D i (G ) is of course contained in  D i (G)
bu t, a s  will be seen in  2.9 , does not in  general coincide with it.

Definition 2 .5 .  U (G ) denotes th e  universal enveloping algebra of the L ie
algebra R (G )c. C  and R(G)c are identified with their canonical im ages in U(G).

Theorem 2 .2 .  The map a+ii3 ,—>d,,r_ i g  of R (G )e into D i (G) extends uniquely
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to an algebra isomorphism of U(G ) onto D I (G) mapping the identity of U(G) to
that of D I (G).

This theorem is well known if  G is a  L ie  group, and  makes th e  algebra
structure of D 1(G ) clear. By Theorem 2.1, th e  map ad-i i3,—dV, 1 ,5 i s  a Lie
algebra homomorphism o f R(G)c into D I (G), viewed a s  L ie  algebra under the
commutator product. Therefore it extends uniquely to an algebra homomorphism
o f U (G ) into D i (G ) mapping 1 to 1. Denote this extension by O a .  It is then
evident that O G  is surjective. So, for the proof of the theorem, it remains only
to show that O a is  injective.

Notation. For any finite number of linearly independent elements a 1 ,•••
a n  o f  R (G) and positive integers p i , ••• , p n , we denote by u(Hr= i atli) the element
of U(G) which corresponds canonically to the element 11 1 aPt i  of the symmetric
algebra o f R (G )c . (That is , u(11=1aqi) is formally the coefficient of MLA/1i
multiplied by ri(p i  !)/(Ett i ) !  in the expansion of (E 7

ii=1 a 1 A t ) Pi, Ai being supposed
to  commute with each other a n d  with every a i .) Here we include the case
n=0 (i. e., { a , • •• , a n } = 0 )  and define for this case u (fr i,a Pi i )  to be the identity
element 1. We denote OG(u(117-ialli)) by D(117-1ce).

Now let us take an  algebraic linear base o f  R ( G ) .  (W e do use
here th e  symbol " / " .  "I"  is  put aside for another use in the next section.)
We denote by 1 ' the totality of the elements i.)=(1.) 1 ),, /

, o f  Z+ denoting the
set of all non-negative integers, such that 1.),= 0  fo r  a l l  b u t  at m ost a  finite
number o f  i E F .  F o r  each 1.,E P ,  put u,,=u(11, 1 * o f )  and A,=D(11, 1#07V)(=
Po ( u ) ) .  Then { 1,4 ; P }  is an algebraic linear base of U ( G ) .  Therefore, to
complete the proof of Theorem 2.2, it suffices to show that D, (i Ï ' )  are linearly
independent in D t (G).

Lemma 2 .5  Suppose G is Lie-projective. For any f inite num ber of linearly
independent elements a"),  ••• , a " )  o f  R (G), there ex ists an  N 1 - 1 0 (G ) such that
60 ) ----- 777,(a0 ))(i=1, ••• , n) are linearly independent in R (G/N ).

Pro o f . W e prove this by finite induction. Assume that, for some k <n ,
there has been chosen a n  N k E H o (G ) such that al,P, ,  k )  are linearly
independent in  R (G/N k ). This assumption obviously holds fo r h = 1 .  Now, if
aWk (i=-- 1, ••• , h, k +1) are linearly independent i n  R (G/N k ), we choose N k  as
N k + 1 . Otherwise, a rk "  is expressed uniquely as

a rk " =  E cia'APk  ( c i E  R)1=1

But, since a") (i-=1, ••• , k, k +1) a r e  linearly independent in  R (G ), there exists
an  N E H o (G ) such that

a r " cia'AP •
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Put N k +1 = N k n N .  Then a} 1(i=1, ••• , k, k+1) must be linearly independent
i n  R(G/Nk + , )  because we h a v e  aWk =itgv,,N k + ,(aWk + i )  and ag ) = .--2111Nk+,(a (APk+,)

for any i. The induction is now complete. q. e. d.

Proof  o f Theorem 2.2. We prove the linear independency o f  ID, ; P l.
L et Iv" ) , ••• , v ( m) }  be any finite subset of P .  Put J = ; 1.41e) # 0 for some
k(=-1, •••, m)}. Take a  pro-Lie open subgroup G, of G .  Then, by Lemma 2.5,
there exists an N E H 0 (G 1 )  such that kgic r o ( i E j )  a r e  linearly independent in
R(G i / N ) .  Each D ,,(vE  ) makes 20.(G 1 , N ) invariant and so induces a  map D,,
on 2(G,/ N) s.t. (r),,g).7r gi= r  g i)  (g E  2 (G  1 /  N )).  Evidently, the Lie algebra
homomorphism Trgri o f  R (G ,)(= R (G )) into R(G i / N ) extends uniquely to an
algebra homomorphism of U(G i )( = U (G )) into U(G 11N ) mapping 1 to 1. Denote
this extension again by ff-g i .  Then, obviously, D , , = d ) a i i n ( f f l i i ( 2 4 ) )  h o ld s. Here,
since G IN  is  a Lie group, the homomorphism O G ,IN  of U(G i /N) into D I (G i /N)
i s  a n  isomorphism onto. O n  t h e  other h an d , a s  is seen from the  fact that
{TrIN T E ) ; iE j}  can  b e  ex ten d ed  to  a  linear b a s e  o f  R (G ,IN ), Eg i (14(k))
(k=1, ••• , m) are linearly independent in  U(G i / N ) .  Hence, after all, A,(k)(k=
1, •••, m) are linearly independent in  D L(G i / N ) .  T h is  means that D„(k)(k =1,
••• , m) are linearly independent on 0.(G 1 , N ), hence a fortiori on goo(G), which
completes the  proof. q. e. d.

Remark 2 . 1 .  From the  above arguments, {D„; PI is an algebraic linear
base of D i (G).

Proposition 2.1. Let a l , ••• , a„ be any finite number of linearly independent
elements of R (G ) which correspond to  X " ) , ••• , X ( " E L (G )  respectively, and p i ,
••• , p . be any  positive integers. Pu t D =D (H = l agi). T h e n , fo r  each fE e .(G )
and xEG , the function f (x e x P 0 Z 7 -1 s ,X ) i n  (Si, ••• , s„)Elin is smooth (i. e.,
E  C- )  on some neighbourhood o f OE Rn, and there holds

a . p i
(2.1) D f f (x exp G s i X ( 0 )

( 3 0 = (0 )  •

Pro o f . Evidently it suffices to consider the case x=e.
( I )  First suppose that G  is finite-dimensional and Lie-projective. Take a

totally disconnected N E W G )  (Lemma 0.13). Then there exists a local homo-
morphism 0  o f  G  into N  such that the map .x,—>(rg(x), 0(x)) sets up a local
isomorphism of G  into (G /N )xN  (Lemma 0 .1 1 ) . Therefore, for each fE e .(G ),
we have an hEeç..((G/N)xN) such that f (x )= h (rg (x ), 0 (x )) holds fo r x  near
e. Put h 1

— h ( ,  0 ( e ) ) ( c e . ( G / N ) ) .  T h e n ,  s in c e  expG(L(G))._Çc(G) and
0(c(G ))={0(e)}, we have for small s,(i-=1, ••• , n),

(2.2) f(expG s 1X('))=11,(7rqexp G s j ) )

hi(expG/N g s i x (by (0.4)),
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where Xk':=7"tff(X ( " ) .  Since GIN is  a L ie  group, this show s that the  function
f(exp G E7 1 s1 X ( 1 ' )  in  (s i )  is certainly smooth in  a  neighbourhood of OcRn.

O n the  other hand, for each aE R(G) an d  x  near e, w e have

f ( x ) = d  o )  h ( ( x ), 0 (x)),

where d=771 (a ). Hence, obviously,

(2.3) Df(e)=Dh1(76(e)),

where D=D(117=16Pii). (Here ã(i=1, ••• , n) are linearly independent in R(G/N)
since N  is totally disconnected (see (0.6)).) Since GIN i s  a L ie group, the
right side o f (2.3) is  g iv e n  a s  (FPi/Hasql)h i (exp X  (.1: )1GI =1—i— C si)=(o), which
equals (a2 P i /Has Pzi )f (exPGE 7,2 =isiX ( i )  ( )=(0) by (2.2). T h is  completes th e  proof
fo r  th e  present case.

( II ) L et G  be arb itrary . T ake a  pro-Lie open subgroup G, o f G .  Then,
f o r  each  f Ee.,(G ), w e can choose NEH (G ,) a n d  gED—(G,/N) so that d i =
7T-g1(ai) (i=1, ••• , n) a re  linearly independent i n  R(G,/ N) (Lemma 2.5) a n d  that
f , g . r g i  holds o n  a  neighbourhood o f  e in G ,.  Then, since expG(=expc,) maps
L(G ) into c(G)(EG,), w e have for small si(i=1, • •• n ) ,

f(exp c  s i X ( i ) ) = g ( 4 1 (exp G s i X ( i ) ) )
1=1 i=1

g(expc i /N s i X ,

where .X (pP =7-t i.,91(X " ) ) .  Since G,/ N is fin ite-dim ensional, w e see by ( I )  this
function in  (s i ) is sm ooth i n  a  neighbourhood o f O E R n . Besides, if  w e put

= DJ-17,aq°, then

Df(e)--=- Dg(rgi(e))

g ( e x p o i IN si X )
(si)=(0)

(by (I))
Hasqi i=1

aEpi
f ( e x p Gs i X( i ) )
HasPi i 2:=1 (si>=0) •

T h e  proof has now been completed. q. e. d.

T h e  above formula (2.1) is well known i f  G  is a  L ie  g ro u p . It generalizes
(1.1), and applies in  particular to each D, (vEP).

We conclude this section with simple rem arks. Let 0 be a  continuous homo-
morphism o f  G  into another LC group G '.  T hen , evidently, the L ie algebra
homomorphism 0 o f  R(G) into R(G') has a unique extension to a n  algebra homo-
morphism o f  U(G) into U(G ') mapping 1 to 1. In  th e  sequel this extension will
be denoted also by Û. I t  i s  e a s y  t o  s e e  t h a t  if  :0  i s  injective or surjective
a s  a  m ap o f  R(G) into R(G'), then so it is a s  a  map o f  U(G) into U (G ').  If
77.0 is  a composition of group homomorphisms, then no 0=) . .6+ holds as algebra
homomorphism. I n  v irtue o f  Theorem 2.2  0  can be viewed also as a homo-
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morphism o f D I (G) into D i ( G ') .  For instance, if N  is  a  co m p ac t n o rm a l sub-
group o f G, maps D i (G) onto D i (G/ N). H e r e , i f  w e id en tify  2 0,*) (G/N)
with Z.,* ) (G, N ), 77%. behaves as the  restric tion  map DED 1(G)—D

2.4. Explicit form o f  differential operators. We now intend to describe
all differential operators o n  G  exp lic itly . For this purpose we u se  a  topological
linear base of the m inim al locally convex space R(G) (see 0.1), taking after the
discussions in [5], n°12.

L e t  r , } 2 e /  b e  a topological linear base of R (G ). We fix it fo r  all subsequent
a rg u m en ts  o f th e  p ap e r. L e t Ir,I, E i , (IL/') be an algebraic linear base  of R(G)
extending I Î i }

 T h e n ,  i n  view  of the  a rgum ents in  2.3, w e  h a v e  a n  alge-
braic linear base { D ;}  o f  D i (G), where P {2.)=- (v i )1 E r ;  2 , , = 0  for
all but at most a  finite number o f i c  }  and  D, , D(H„,orz i )  ( v E r ) .  F o r  any
subset J  o f  /, w e  put j= {vE ; 1),-=0 fo r a ll iE /NJ}, and  denote by R (G )
the  closed linear subspace o f  R(G) spanned by fr, Note th a t D ;
does not depend o n  th e  choice o f I ,  for i / ' \ / ,  and  that one h as D ; v E ll=
ID ,; v E PI (i. e., I = I ')  only when G  is finite-dimensional.

Lemma 2.6. Suppose G is Lie-projective. For each N EH(G), there ex ists a
f inite subset J of  I s. t. R  j (G)_Z.. R(N).

Pro o f . L e t  R (G )' b e  t h e  topological dual o f  R (G ). Since th e  topological
dual o f IV  is  th e  restricted direct product R " ) , it  is  p la in  th a t  R (G )' has an
algebraic linear b a s e  eil iez su ch  th a t e,(7.,)=1 i f  i = j ,  a n d  = 0  otherwise
( i ,  jE I ) .  F o r  a  subset M  o f  R(G) (resp. R (G)'), le t  M ' denote th e  annihilator
o f  M  i n  R (G )' (resp. R (G )) . T h e n , fo r  N EH(G), R (N ) 1  is flute-dimensional
since it is the dual of the finite-dimensional quotient space R (G)/R(N) R ( G / N )
by (0,9)). So we can choose a  finite subset J  o f I  such that th e  linear span of
f e ,; iE j}  includes R (N )± . T hen , b y th e  choice of R j(G ){ e ,; iE j} "

R(N) 1 1 = R(N). q. e. d.

C o ro llary . Let G , be any pro-Lie open subgroup o f G .  For each NEH(Gi),
there exists a finite subset J of I such that D,,f  for all v E L j and f  Ee.(G, N ),.

Pro o f . Immediate from Lemmas 1.17 and  2.6. q .  e .  d.

Lemma 2.7. Let g  ( re s p .  * )  denote the topology on D(G) o f uniform  rp-
convergence (resp. r * -convergence) on each bounded subset of 841)) (G)(resp. .ge ) (G)).
Then g . p  and g *  are equivalent.

Pro o f . Each bounded subset o f g cl,*) (G) is contained in  0.0(G; C) fo r some
C  Com (G ), an d  r *  coincides with r p  there (Lemma 1.16). Besides, .0.0(G; C)
is  stable under every D E D (G ). Hence, evidently, we have g p g * . Next let
D" )  b e  any n e t in  D(G) converging to 0 in  regard  to g * . Take any bounded
subset .23 of e ( G )  and b E 2 .( G ) .  Choose aEZ (G) so that a( x) 1 o n  a  neigh-
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bourhood o f  supp (b). T h e n  bD( 2 ) f =bD ( ' ) (af )  ( f E .B ) . Since a g  is bounded
in  21,*)(G) and b is  a rb itra ry , th is shows th a t th e  n e t D " ) f  converges to  0 in
e.v)(G) uniformly w. r. t. f  E g .  H ence D — >0  in  r e g a rd  t o  g p . T h u s w e
have show n that g' * g p ,  which completes th e  proof. q. e. d.

Definition 2 .6 . T h e  equivalent topologies g 9 a n d  g *  o n  D(G) a r e  denoted
b y  g . D (G )  is equipped w ith Er throughout. (Thus D(G) is locally convex and
Hausdorff.)

Definition 2.7 . A n  element (a E i  of 8*(G) 1 ,  th e  se t  e ( G )  raised to  the
p o w er / ,  is  c a lle d  admissible if  fo r  each finite subset J  o f  I  a n d  C G Com (G),
th e  se t { vG/ ; suPP (a,)(1C 0} is at most finite.

L et (a,) ,,,  be an admissible element o f 6.(G) 1 . L et G , b e  a  pro-Lie open
subgroup o f  G , and  (N, C)EH(G i ) X Com ( G ) . T hen , in  v irtue o f Corollary to
Lemma 2.6 and  the  admissibility o f (a,), E 1, a ll bu t a t m ost a  fin ite  num ber of
the  differential operators a„D,, (1,E1) vanish on  2 .(G , N ; C ) . Hence it is clear
th a t  w e  c a n  d e f in e  a  d ifferentia l operator D  o n  G  a s  th e  m ap fE2.(G).—*
E , i  a ,D ,f. Now let F ={ F }  be th e  upper directed family o f  all finite subsets
o f  I. T hen , since each bounded subset o f g e ) (G) is contained in  2c.,(G, N; C)
fo r some (N, C)EH(G1)X Corn(G), i t  is  plain that t h e  n e t  aEFa,D , ; F F }  in
D(G) converges to  D  in  regard  to  g .  T hus w e have

Lemma 2.8 . For each admissible elem ent (a,)7 of eco(G) 1 , the sum
of the dif ferential operators a,D, converges in the space D(G) unorderedly.

L e t  (a,), E i  b e  a s  i n  Lemma 2.8. P u t D = E I  a ,D , .  T hen , fo r each f  E
e co(G), th e  numerical equality

(2.4) Df(x)--=-E,Eia(x)D,f(x) ( x  G )

holds, where the  right side reduces to a finite sum on each CECom (G ) .  Indeed,
from  the  definition o f  g , E, e 1  a,D ,f converages to  D f  in  re g a rd  to  r p , hence
a fortiori pointwise. H ere , if we choose aE 2(G ) s o  th a t  a(x) 1  o n  a  neigh-
bourhood o f  C, t h e n  a,(x )DJ(x )=a„(x )D,(af )(x ) f o r  x E C .  B u t, s ince  af  E

N ; supp (a))  f o r  som e N E H (G ,), t h e  functions a,D ,(af ) vanish fo r all
a ll bu t a t m ost a  finite number o f v.

Lem m a 2.8 enables u s  to  a sso c ia te  to  e a c h  admissible element (a,), E 1 of
er„,(G) 1 a  differential operator D =E , E la„D , o n  G .  T h e  explicit description of
all differential operators o n  G  is now  attained by the following theorem, which
w e prove in  the  nex t section.

Theorem 2.3. The map (a,)„,i— E, E laD , sets up a bijection of the set of  all
admissible elements o f 6..(G) 1 onto D(G).

Remark 2.2 . T h e  following facts concerning the  topology g  w ill be used
la te r  o n .  (i) D(G) is  a  topological algebra under g  (i. e., the m ultiplication is
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Separately continuous). (ii) T h e  algebra automorphism D— I5 o f  D(G) is topo-
lo g ica l. (iii) The injection a ,-->d» o f  R(G ) in to  D (G ) (Theorem 2.1) preserves
the topo logy . (iv) 8(G) and D i (G) are closed in  D(G).

Let us check (iii). Since the space R(G) is  of m inim al type, it suffices to
see  t h a t  th e  above  injection is  co n tin u o u s. Let {a" ) } be a  n e t in  R(G) con-
verging to 0 , and 3  a  bounded subset o f  O L n G ). O u r j o b  i s  t o  show  that
d A ) f  converges to 0 in  .V n G ) uniformly w. r. t. f  _B. T ake  a  pro-Lie open
subgroup G i o f  G .  T h e n  _B is  a  bounded subset of DZ)(G, N; C),„ for some
(N, C)GH(G i ) XC om (G ). Choose a  finite number o f  Pi, ••• , PneR (G ) so  th a t
IL=TcP(Pk) (k=1, ••• , n) constitu te  a  linear b a s e  o f  R(G,/ N). Then each
27g1(a " ) ) is  ex p re ssed  a s  Ek- i cV rig k ( c V ) E R ) .  H ere c -->O for a ll k since
ft g 1( a "  )) - —> 0 . M eanw hile , each fE .T .(G , N ), is expressed a s  a  finite sum of
left translations of functions in  3,„,(G, N; G1), ( (G1, N)). H ence, in  view
of (1.3), h o l d sho lds f o r  fE 3 . (G ,  N ) , .  T herefore  it is now
plain th a t  dacr(),o f  converges to  0  in  OV(G, N; C ), (hence in  Z.,* ) (G )) uniformly
w .r .t . fE

2 .5 . Proof of Theorem 2 .3 .  W e retain the notations as in 2.4.

Lemma 2 .9 .  Suppose G is L ie-projective. For any finite subset J o f  I , there
exists an NEH 0 (G) s. t. R (N )g R j (G).

P ro o f. P ut _C=R i \ j (G ) .  T h e n  _C and R (G )  are  the topological comple-
ments o f  e a c h  o th e r  in  R (G ).  Let P i - denote the projection of R(G) onto L .
Since _C is finite-dimensional, we can choose a  neighbourhood V  o f  0  in
including n o  linnear subspace o ther than  {0} . Now, as a neighbourhood of 0
in  R (G ), PV (V ) includes R (N ) (=ker (d2r,$)) for some N e H o (G ) .  Then, by the
choice of V ,  R(N)_12,(G), which completes the proof. q. e. d.

Now let us denote by X " ) th e  element o f L(G ) corresponding to  r ,( i n .
Since the m ap (s,), E I ER / i—*E ,, i s i X" )  i s  a topological linear isomorphism of R I

o n to  L (G ), w e  h a v e , fo r  each f 2 ( G )  a n d  x E G , a  fu n c tio n  (s1) z 0 1 —>
f(xexp G E ,, i s , X )  defined on R '.

N ote . In  reality the above function depends only on a  finite number of s i .
Indeed, take a  pro-Lie open subgroup G i o f  G .  Then, since x fG2.(G , N ),, for
some NEDVG 1 ), one has geg)(G i /N) such  that x f= g .n g l holds on G I. S ince
expG  (=exp G i ) m aps E i E i s i X(i) ((s i )ER/) into c(G) ( G,), w e have

xf (exPGZiElstX" ) ) = g(ir (e x P G E ie l siX ( ' ) ))

= g (expc i i NEJEI s i X ;0) (133r (0.4)),

w here .x. 4)=7-Eg1(x(i)). Here, by Lemma 2.6, there exists a  finite subset J of /
s u c h  t h a t  12,(G1) R(N), e., that XP = 0  for all i  /\J. T h u s
sf (exPGZi E / s X ( 0 )  depends only on s i  ( i i ) .
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Lemma 2.10. L e t G , be a pro-L ie open subgroup o f G .  Let 1.)=('),) i E , E I
and x E G .  P u t J= f ic 1 ; v i# 0 }  and choose an N E H ,(G ,)  s .t . R (N ) R (G 1)
(=R J (G)) (Lemma 2.9). Then there exists a function f E 2 .( G ,  N ) ,  such that

f  (x  ex p G E 1 E 1  s tx )= I I iE J ( v i ! ) - '

holds on a neighbourhood of 0 in RI.

P roo f. It suffices to consider the case x =- e .  So, moreover, we can assume
th at G  i s  Lie-projective and G i = G .  F o r any finite subset j ,  o f I ,  let L 1 (G)
denote the  closed linear subspace o f  L (G ) corresponding to 1?, 1 (G). F o r  any
X L ( G )  and  N i E H o (G), p u t X N 1 =- 777v 1 (X ).

Now le t u s  choose by Lemmas 2.6 and  2.9 a  finite subset J '  o f I  and  N 'E
H o (G) so that R  (G ) R ,p(G )E- L  N (G) and  N 'E N .  T h e n ,  since L N (G)g L J (G)
by th e  assumption o f th e  lemma, we have J_ Ç J'.  It is evident that IX P ; i c I l
(resp. X ; 1;iE .I} )  spans L (G IN ) (resp. L (G /N ')) algebraically. This together
with the inclusion relation LN , (G)g L N (G)g L J(G) enables u s to choose a  finite
number o f 37 (.7)E L ,(G ) an d  Z ( k ) E L N (G) so that X (

AI)  ( iE J ) together with PP
constitute a  linear base of L (G /N ), an d  XI,» ( iE j )  together with YciP  and  a l
constitute that o f  L ( G /N ') .  O n the other hand, since L Ar, (G) L ,v (G ), we can
choose a  finite number o f W ( 1 ) E L ( G )  so that X (

IP  ( iE J')  together with W5,I?
constitute a  linear b a se  o f  L ( G /N ') .  Note that the change between the bases
{X1.0 (iE J), 1 7 5 I , a ? }  a n d  { X ?  (iE J), ( i E r \ J ) ,  W 1 0 1  o f  L (G /N ')  is
performed by the transformation

(  1 ,  0
"0 )

where 1, denotes th e  identity matrix o f order IL  the cardinal of J.
Since G I N  is  a  L ie  group, there exists a  g E 2 (G /N )  such that

(2.5) g(expG /N (E iEJsiX `P  +E itiYV ) )) — HiEJ(17, !)

holds so long  as the  real parameters s ,  and  t, a r e  sufficiently small. P u t f =
g o ev N ) ) .  Since N 'A Ç  th e re  ex is ts  g '.0 ( G / N ')  s . t .
Now, since a ) =- 0 fo r a ll k ,  th e  left side o f (2.5) equals g(expviN(Ei c ,s iX (AP+
E i t,P AP - FEkukZW)) f o r  a n y  u k E R .  By (0.4) and through the  above change
of the bases, this is furthermore equal to

f(exPv(EiEJsiX ( i ) + E i t i r j ) +Ekuk Z` k ) ))

=--g'(exp G ,N
, (E  ,s i X (

i;ii? EitiY (P +E k u k a ?) )

+E/v/VAP))

where s i ( iE r \ J ) and  v i a r e  connected with t ;  a n d  u k  th rough  th e  transfor-
mation * appearing in  th e  above matrix. Thus, after a ll, we have

g'(expc, (EiEJ , s i . V P t v / 1 4 )  (nir? )) =ILEJ(vi ,

provided t h e  parameters si  a n d  v i a r e  sufficiently small. Since this does not
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depend on  v 1 ,  w e can  p u t here  v1 = 0 .  Then

f (expG E iE J , si x ( " ) = I l i  J ( v i ! ) - ' ,

s i  ( i G T )  being supposed to be sm all. Here, since L LN(G) and so  X P =0
for i E / \ r ,  th e  left side is equal to

g(exp G , N E j E J
, si X5)=g(expG1 N E ie l  S iX  (10 )

=f (ex p G E i E /  s i X ( i ) )

fo r any  s i E R (iE  i \ J ' ) .  T h e  proof is now complete. q. e. d.

C o ro lla ry . For each L E I  and x E G , there exists a function f E Z (G )  s. t.

5 1i f  V =v ,

1 0 otherwise (j. e., v 'E l ,  # v ) .

Such an f  can be chosen in  .0_(G , N ), i f  N  is taken as in Lemma 2.10.

Pro o f . U sing  Proposition 2 .1 , w e see  easily  tha t th e  function f  given in
Lemma 2.10 satisfies (2.6). q. e. d.

Proof  o f  Theorem 2.3. L et D E D (G ) . Our task is to show that there exists
a  unique adm issib le  element ( a ) 1  o f  e .( G ) /  fo r  w hich D =E , E la,D , holds.
B ut, in  view  o f  (2.4) and  Corollary to Lemma 2.10, t h e  uniqueness is obvious.
So w e prove its existence.

(I) F irs t suppose G  is  L ie-projective. For th is  case w e m ake  th e  proof in
t h r e e  s t e p s .  J O  L e t  N E I-10 (G ) and  C E Com ( G ) .  F or each x E G , consider a
distribution T ( x )  o n  t h e  L ie  g ro u p  G / N  d efin ed  b y  <g, T (x )>=D (g.26)(x )
(g E O (G /N )) . T hen , since supp (T (x ))S  {7t1v (x )} , there  ex ists a  un ique  element
DN (x )ED / (G /N ) s. t.

(2.7) D(gozP(x)=(DN(x)g)(irGiv(x)) (g E 2 (G /N )) .

W e now show th a t th e  orders o f  DN(x) (xE C ) (w h a t is  th e  s a m e , th e  orders
o f  T (x ) (x E C )) a re  bounded.

T o  do  so , le t us choose aE..0 .(G , N ) s. t. a(x) - - 1 on a neighbourhood o f  C.
Since the  m ap f  E O Z ) (G, N ; supp (a)) ,— qJf Ee o (G) is continuous, we can choose
a  finite number o f  D 1 , ••• , D p E D I (G ) so that

sup l D (a  f)(x )I 5_Ef=i sup I D,(af)(3))1 (f E 0 0 (G , N )).
x eC yEG

If a finite number of .D1 , • • • , D D / (G) are suitably chosen, the right side of this is
majorized b y  El=, s u p  1;1; f (y) I . On the other hand, by the choice of a, D(a f)(x)

yeG

D f (x ) holds fo r an y  f  Eeco(G) an d  xE C .  T hus w e have

sup I D f(x )1 sup I D'if(Y)1 (f Eff)—(G, N )).xEc yeG

T h is  can be rew ritten  as

(2.6) f  (x )=
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sup1D(goz,GN)(x)1 supg ( 7 6 ( Y ) ) 1 (gEO(G/N )),xEC yeG

w h ere  A = ( D ; )  (se e  th e  e n d  o f  2.3). T h e  last inequality shows th a t the
orders T (x ) (x EC) a re  certainly bounded.

(lb) L e t  J  be any finite subset of I. Choose an NE H o (G) s. t. R (N ) R  J (G)
(Lemma 2.9). A nd choose a finite subset J ' of I  so  tha t 7T-ck(r,) ( i E r )  consititute
a  lin ea r  b a s e  o f  R ( G /N ) . T h is  i s  possible since 77 (r , )  ( i c r )  span R(G/N).
Note that these choices imply JÇ - J'.  W e now intend to apply the  result in  (/.)
to  th e  present N .  Evidently r),--77;,(D,) (vEj ,  c o n s titu te  a n  algebraic linear
b a s e  o f  D 1(G 1 N ) . T herefore , fo r each x EG , D N (x ) is expressed uniquely as
DN(x)=E,Ei , aN,(x)D,, w here all bu t a t m ost a  fin ite  num ber o f  aN ,(x ) ( E C )
a re  0. T hus (2.7) has now  th e  form

D (g.76)(x )=E, E J,  N ,(x)D,g(7a,(x)) (gED(G/ N)) ,

w hich is rew ritten as

(2.8) Df(x)=E,E,PaN ,(x)D,f(x ) ( f  E g.(G , N )).

L et us now consider th e  functions aN ,: x.— aN,(x) defined o n  G  ( v E j ') .  L e t 0
be any relatively compact open neighbourhood of a point x 0 E G .  Then, b y  (I .),
t h e  o rd e rs  o f  DN (x ) (x  G 0 )  a re  bounded, and  therefore, all except at m ost a
finite number of aN , vanish on O .  L e t  aN,(1), • • • , aN,,(p)I be the totality of those
excep tiona l func tions. B y  C oro lla ry  to  L em m a 2.10 we can choose f .,E.D(G)

..•, p) so  th a t D(,)f  .1(x0)= 1 i f  i =j ,  and =0 o th e rw ise . T hen , from  (2.8),
w e have

(2.9) (Dfi(x), ••• , Dfp(x))=-(aN1)(x), ••• , aN,,(p)(x))A(x) ( x  0 ) ,

w here A (x) denotes a  m atrix  o f  order p w ith  (i, j)-component D, ( , ) f ) (x). I f  0
is taken to be sufficiently sm all, A (x) is non-singular f o r  e v e ry  xE 0  because
A(x 0)=1 , a n  iden tity  m atrix . T herefo re , from  (2.9), w e  se e  th a t a ll aN ,(i) are
smooth o n  0  (i. e., "indefinitely continuously differentiable o n  0 " ) .  Since x 0 is
arbitrary , w e have thus seen  tha t a ll aN , ( E l ')  belong to e .(G ) and also that
they form  a  locally finite fam ily (i. e., th e  se t  fvEP ; supp (aN ,,)r1C 0 1  is at
most finite fo r every  CECom (G)).

(2.8) together with Corollary to Lemma 2.10 obviously show s th a t e a c h  of
aN ,  fo r v  j  is determined only by  n o t  d e p e n d in g  o n  th e  special choice o f  N
and J ' in  the  above indicated m anner. So , for vE j ,  le t  u s  w rite  a ,  instead of
aN ,. Also le t u s  w rite  (2.8) as

(2.10) D f (x )=E ,ja,(x )D ,f (x )+E , E i , \ Ja N ,(x )D,f (x ) (fEZ ,„,(G, N ), xEG).

(I,) The procedure  i n  ( lb )  y ie ld s , fo r every finite subset J  o f I ,  a  locally
finite subfamily {a, ; vE .II o f  6'...(G ) .  H e re , a s  is  s e e n  f ro m  w h a t  w a s  ju s t
mentioned, each a ,  is determined not depending o n  th e  special choice of J  s. t.
v E f .  T hus, a fte r a ll, w e obtain an admissible elem ent (a,), E i  o f e.(c)i . We
n o w  sh o w  t h a t  D =E„ c ia ,D , holds. T o  d o  so  it  su ff ic e s  to  show th a t for
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each f  E..0(G) and x E G , D f ( x ) = - E , , E . t a . ( x ) D , f ( x )  holds. Choose an  N i E H o(G)
and a finite subset J  of I  so that f  EgL (G , NO and R ( G ) R ( N 1)  (Lemma 2.6).
Then, since d'a '') h =0 for any h E 2 0.„(G, N i )  and aE R J (G), we have

(2.11) D,f  =0 (vER.1).

Next le t  u s  choose a n  N E110(G ) a n d  a  finite subset J '  of I  so that Arç_Ni

(hence f E 2 c.,(G , N )), R (N )Z R J (G), and 77Giv (7 ,)  ( iE r )  constitute a  linear base
of R ( G /N ) . For the present J ,  N ,  J ' and f ,  (2.10) is  of course valid. There-
fore, by (2.11), w e see that the equality D f (x )=E , E la,(x )D ,f (x )  holds. The
proof for the Lie-projective case has thus been completed.

(II) Next le t G  be arbitrary. Take a  pro-Lie open subgroup G 1 o f  G . Let
u s  recall Remark 1 .3  a n d  denote by DA  the restriction of D  to D .(G ; r,z).
Then th e  map gE.W .(G1)-4x 1 (D2( x i ig ) )  belongs to D(G i ). Therefore, by (I),
there exists an admissible element (a ),E 1 of e .(G ,) /  such that

x 2(D 2(z v g))(x )=E,Ia2)(x )D ,g(x ) (gE 2.(G 1), x E G O .

Hence

(2.12) D 2h (x ),--aE l x)D,h(x) (hE .O .(G ; T 2 ) , x E T  2 ).

F o r  each v I , d efine a  function a ,E e .( G )  a s  a„-=U Then ( a , ) 1
i x 2

( E C  c .,(G) 1 )  is evidently adm issible. Besides, from (2.12),

D f (x )=E,E1 a,(x )D,f (x ) (f  EZ .„(G), x EG) .

That is , D =E , E 1 a,D, holds. T he proof of the theorem is now complete. q.e.d.

2 .6 . Elements o f  8(G) and D i ( G ) .  In this section we determine, among all
differential operators on G , the elements of 8(G) and D (G ).

Lemma 2 .1 1 .  L e t  D =E , E la ,D , ,  w here (a,), E 1  is an admissible element of
e co(G) 1 . For D  to be a derivation (i. e ., E8(G )), it  is  necessry and sufficient that
a,=0  unless Ivi =1 , w here 11)1 E i E /Li.

Pro o f . I f  1v1=1, D, coincides with cl,Vi
) for some i E / .  Hence the sufficiency

of the condition is obvious (see Remark 2.2, (iv)). Conversely suppose that D
is a  derivation. For each v("E I  with 11.)" ) 1>1, we can choose 1/, V e .I so that
11/1 > 1 , v" I > 1 and v/i + 0 = v i"  for all iE / . For each x E G , choose f , g E 2 (G )
such that f (x  ex PoEiEisiX " ) )=I t io s 'z 'i  and g(x  ex PoEiersiX ( i ) )=14, ,i#osn hold
o n  some neighbourhood 0  o f  0  in (Lemma 2 .10 .). P u t  h = f g .  Then
h(x e x P o E 1 e i s i X ( i ) ) = 1 1 q 0 ) * 0 4 i ( ° )  o n  O. H ence, by Proposition 2 .1 , Dh(x )=
E,„1 a,(x )D,h(x) -= a„(0)(x )Itio, o(vP) !). Meanwhile, since f (x )=g (x ) =0 , we have
Dh(x )=(Df(x )) g ( x ) + f ( x ) D g ( x ) = 0 .  Thus, after all, a,(o )(x )=0 . Since pc°) and x
a r e  arbitrary, it has been shown that a ,= 0  i f  11., 1 > 1 .  N ow , if 11)1= 0, then
a,=D ( 1 ) .  Since D  is a  derivation, we have D (1)= 0. The necessity of our con-
dition has thus been proved, q. e. d.
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I t  is  plain tha t there  ex ists a  natural bijection of e.(G ) 1 o n to  the  se t o f all
admissible elements of co(G)1 which satisfy the condition stated in  Lemma 2.11.
So th e  following proposition holds.

Proposition 2.2. F o r  each (a i ) j E l e e .(G ) 1 , the sum  E i E ,  i d,Vi
) of the ele-

m ents ad ,T  of 8 (G ) converges in the space D(G) unoderedly. The map (a i ) i , 1 -4
E i E l  a i d,ri )  sets up a bijection of e-(G) 1 onto 8(G).

Lem ma 2.12. L e t D = E , E la ,D ,, w here (a,), E 7 is an admissible element of
e„,(G)1. For D  to be lef t invariant (i. e ., ED I (G )), it is necessary and sufficient
that all functions a, are constant.

P ro o f . D  i s  l e f t  in v a r ia n t if  a n d  only if  w e  have D f ( x ) = D ( x f ) ( e ) ,  e . ,
E, E i a,(x)D,J(x)=E, E 1 a,(e)D,f(x), f o r  a l l  f  e ( G )  a n d  x E G .  I n  v ie w  of
Corollary to Lemma 2.10, th is  is  e q u iv a le n t to  th a t a ,(x )=a ,(e ) holds f o r  all
v E  an d  xE G , i. e ., th a t  a ll a, are constant. q. e. d.

Now le t u s call a n  element (c,), E i  of C I adm issible if, for each finite subset
J  o f  I ,  th e  s e t  fi, E j ;  01 is  a t  m o s t f in ite . If  w e view  each c, a s  a  con-
stant function on  G , th is  condition is equivalent to  that (c,,),E I  is  an admissible
element of e (G ) 1 . Therefore, by Lemma 2.12, the  following proposition holds.

Proposition 2.3. For each admissible element (c,),„1 o f C I, the sum E, E ic,D,
of the elements c,D, o f D i (G ) converges in the space D(G) unorderedly. The map
(c,),,,p—E, E ic,D , sets up a bijection of the set of a l l  admissible elements of
onto D (G ).

C oro lla ry  1 . D i (G ) is ET-dense in  D i (G), and coincides with it if  G  is finite-
dimensional.

Pro o f . T h e  density in  question is clear from Proposition 2 .3 .  Now suppose
G is finite-dim ensional. Then th e  se t I  is finite. T h e r e f o r e  e a c h  admissible
elem ent (c,), E 1  o f  C 7 h a s  a t  m o s t  a  finite num ber of non-zero components.
Hence, by Proposition 2.3, D i (G )=D i (G). q. e. d.

In  2.9 w e shall see  that if G is infinite-dimensional, D /(G ) does not coincide
w ith  ri t (G).

C orollary 2. I f  D i ED I (G ) and D ,E D ,(G ), then D1D2=D2D1.

Pro o f . I f  D i ED I (G ) and  D2 ED,-(G), w e have  D1 D2=D2D1. S o  th e  asser-
tion follows from Corollary 1 together w ith (i) and  (ii) o f Remark 2.2. q . e . d .

2 .7 .  Support-decreasing continuous linear maps on  the spaces g)(G ) and
e (G ) . A ll discussions in 2.1-2.6, w hich w e m ade w ith  21,*)(G) and eL,P)(G) as
base spaces, remain valid even if  th e  spaces .0(G) and e(G ) a r e  taken instead.
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T he straightforward certification of this fact w e leave to  th e  re a d e r . T h u s  the
following in  particular hold.

(i) T h e  algebra o f  all support-decreasing continuous linear m aps o n  e(G)
can be identified, through restriction of m aps, w ith th e  algebra o f  all m aps on
0(G) having th e  sam e p roperties. This identification preserves th e  le ft invari-
ancy of maps.

L et us denote by DB (G) these identified algebras.
(ii) F o r  B (G) , th e  topology o f  uniform convergence on each bounded sub-

se t of e(G) and th a t o f  uniform convergence on each  bounded  subse t o f 2(G)
are  equivalent.

W e equip DB (G) w ith these equivalent topologies.
(iii) Define the admissible elements of e(G)i as in the case of  e (G ) 1 (thus,

(a,),E iEe(G)/ is  adm issible if and only if  it is  admissible as element of C(G)Î).
T hen  the  m ap (a,),E 1,—*E,E la,D, gives a bijection of a ll admissible elements of
e(G)7 onto DB (G), w here each a,D, is viewed as a map on  e(G) o r  0(G) (recall
Corollary to Theorem  1.4) and converges in DB (G) unorderedly.

(iv) E, E 7a,D, w ith  an admissible elem ent (a,), E 1 Ee(G)/ i s  l e f t  invariant
if  and  only if  a ll a, are constant.

L et (a,), E 1 be  an admissible element o f e(G) 7 . Since th e  topology of e(G)
is finer than r ,  relativized th e re , it is  easy  to  see  tha t E, E i a,D, a s  element of
DB (G) coincides with the restriction to  e(G) of E,,E1 a,,D, a s  element of D(G) in
the  previous s e n s e . T hus each  DED B (G) is extendable to  a n  element of D(G)
(needless to say , uniquely). S o , ap a rt fro m  to p o lo g y , DB (G ) can  be  v iew ed
a s  a  subalgebra of ( G ) .  U n d e r  th is  convention, the subalgebra o f DB (G) o f all
le ft invariant elements coincides with D i (G) because o f (iv ) above  a n d  Lemma
2 .1 2 . A lso , s in ce  t h e  map on E(G) is continuous, w e see that the  auto-
morphism D,-->b of D(G) leaves DB (G) invariant.

Now le t u s  denote by E.,' (G; e) (resp. E'(G ; e)) the  topological subalgebra of
e (G )  (resp. E '(G )) consisting o f  all elem ents w ith support in  fe l (see (1.11)).
T hen  t h e  le f t  invarian t elem ents o f  DB (G ) a r e  i n  correspondence w ith the
elem ents o f  e'(G ; e ) (Theorem  1.4). W hile , each  o f such elements o f DB (G)
has an extension in D i (G) a s  just m entioned , a n d  each  e lem en t o f  Di (G ) is
obtained from some Tce,:,,(G ; e) (ge(G; e)) (Theorem  1.4). H ence it follow s
th a t E'(G ; e)=C0(G; e) as set.

Remark 2 .3 .  F o r  C E Com (G), put E '(G ; C )={TEE '(G ); supp (T) C1 and
E:0 (G ; C )={TE6'„(G ); supp (T ).  C I .  Proposition 1 .6 , ( iii)  im plies tha t these
tw o se ts  a re  not necessarily identical.

M eantim e, a s  w e  k n o w  ( [5 ] ) , Proposition 6), .F (G ) and E'(G) induce the
same topology on each e '(G ; C ). I t  c a n  b e  s im ila r ly  sh o w n  th a t OL,(G) and
e (G )  induce th e  same topology on  each E(G ; C ).

W e next dem onstrate th e  following

Theorem 2 .4 .  ( i )  The m ap T E E (G ;  e)—D T  ((1.17)) is a  topological algebra
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isomorphism of E.,,(G; e) onto D I (G), where D I (G ) inherits the topology g.
(ii) e) and E'(G ; e) coincide with each other as topological algebra.( 5).

A s we have already seen, the map TEK.,(G; e) ,—q)T ED-
1 (G ) is algebraiccally

a n  isomorphism onto (Theorem 1 .4 ) a n d  th e  se ts  E (G ; e ) and e'(G ; e) are
identical. Now, for any topological linear space ,IC over C , le t  u s  denote by
B M  the totality of bounded subsets of ,IC. Then, evidently, one has B(.2n'`) (G))

.B (2)(G )). For each g3EB(2„,* ) (G)), define a  seminorm P 9  o n  D i (G) as P 9 (D)
=suP { 1 D f(e)1 ; f E  2 } (D E / (G ) ) .  Let g i (re sp . g 2) denote the locally convex
topology on p 1(G) determined by { P  ;  _BE B(2C ) (G)) (resp . {P 9  ; 2E B(2(G))}),
and g o th e  relativized g  to D t (G ) .  Then we have g o _>._ Note that g i
(resp . g 2)  is nothing but the im age of the relativized 2 . )  (resp, ,8(2' , 2))
to E;.,(G ; e) (=E'(G; e)) under the algebra isomorphism T=q3 7

, o f  8:.(G; e) onto
h i (G ) .  Here 13(2,;„ 2.) (resp. p(g', 2 )) coincides with 13(E, E .) (resp. 13(e' ,E))
on Ec;(G ; e) (=e(G; e )) (Remark 2.3). Therefore, to prove th e  theorem, it
suffices to show that g o=  -cr2 holds.

Lemma 2 .1 3 . g o and g, coincide with each other.

Pro o f . We have only to prove g i g o. Let D ( À )  be any net in p 1(G) con-
verging to 0  relative to g i . Our task is to show that this net converges to 0
relative to  g o. T a k e  a n y  _BEB(01,*)(G)). Then 2  i s  a  bounded snbset of
2V(G , N ; C),„ for some (N, C)EH(G i ) XCom (G), G, being a  pro-Lie open sub-
group o f  G .  Put ;  x e C ,  f E g l .  Then _ g ' is plainly bounded in
2V (G , N ; C 'C ),„  a n d  so  E B (2 r ) (G)). Since -.01(G ) equipped with g i is  a
topological algebra (isomorphic to K,(G; e)), th e  ne t DD(À) for each DED,(G)
converges to 0 in b 0 (G) relative to ET 1 . Hence P9 , (DD )--40, that is, D(D" )  f)(x)
(=DD ( 2 ) (xf)(e)) — >0 uniformly w. r. t. f E 2  and xE C. Here we see by Lemma
1.17 and Corollary 1 to Proposition 2.3 that D " ) f E2.(G, N; C), (f E  2 ).  There-
fore, in  view  o f  arbitrariness of DED / (G), D") f —4) in  .0V(G, N ; C),, (hence
in .0<

( *) (G)) uniformly w . r. t. fE  2 .  Since g9 is arbitrary, this shows that D( 2 )
—>0 relative to T o . q. e. d.

Lemma 2 .1 4 . 2 1 and g 2 coincide with each other.

Pro o f . We prove g . 2 0- 1. Let /3° ) be any net in D i (G ) converging to 0
relative to 9 - 2 (i. e., 9 (D)— )0 for all _g E B (2 (G ))) .  Take any g 0 ER.V0* ) (G)).
Our task here is to show that P a o (D " ) ) converges to 0.

(I) F irst assume th a t G  i s  Lie-projective and finite-dimensional. T h e n
there exists a  totally disconnected N E  Ho (G) and a local homomorphism 0 of G
into N  such that the map x,-->(7cgsr(x), 0 (x )) i s  a  lo c a l isomorphism o f  G  into
(G /N )X N  (Lemmas 0 .11  a n d  0 .1 3 ) .  F o r  each f E 2 0 w e can  choose hf

2 -((G /N )X N ) so  that f(x )= h 1 (r 2V x), 0 (x )) holds f o r  x  near e and the set
{h'f =h f (•, 0(e)); f E g o } is bounded in  2 (G / N ).  Put _C=Ih'f°77,7; fE -0 01.

(5) In  [ 5 ]  e , (G ;  ¢ ) is  d e n o te d  b y  U (G ) th o u g h , i n  o u r  n o ta tio n , U (G ) denotes the
universal enveloping algebra  o f  R (G )c w hich  corresponds w ith  D i (G).
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T h e n  ZEB(.0 (G )), and P a o (D ( 2 ) )= P g i ; (D " ) )  since D " ) f(e) ,-----(711(D" ) )h'f )(76,(e))
, D ( 2 ) (h/for%)(e) (f -Bo ). Hence P g 0 (D)—>0.

(II) N ex t m ere ly  assum e t h a t  G  i s  Lie-projective. Choose N o EH(G) so
th a t  2 0 g2).(G, N o ). For each A, choose DV ) ED /(G ) s. t. DV ) =D ( 2 )  h o ld s  on
2.,(G, N o )  (reca ll C oro lla ry  to  L em m a 2.6 and Proposition 2.3). P u t  /3" ) , ---

fdro (DV ) ) (EDI(G IN0)). For each  g  B G T ' r ) (G , o ) ) ,  le t g  denote the element
of B (2 r ) (G/N0)) corresponding to 2  under the  topological linear isomorphism
gE.Vo* ) (G/No) ,-4g.26 0 E.V.,*) (G, N o ). A s is easily checked, H0(G/N0)= {260(N );
N o N E  Ho (G)}. Hence B(2(G/N0)) =U{B(2,? ) (G/N0, 7670(N )); N 0 o (G )}  •
Here, each .V 0*) (G/N0, id o(N )) corresponds to  ffC ) (G , N ) under the  above iso-
m o rp h ism . S in c e  P2(D 2 ) ) -4 )  f o r  e v e ry  2 E B (2 (G )), it  th u s  fo llo w s  th a t
P ( ) -0D for every 2- GB(2(G/N0)), Since G/No i s  Lie-projective and finite-
dimensional, this implies by (I) t h a t  /3 2(15( 2 ) ) - -0  f o r  e v e ry  g  B O P  (G  No)).
Hence, in particular, P a o (D"))—+O.

(III) F ina lly  le t  G  b e  a rb itra ry . T a k e  a  pro-Lie open subgroup G, of G.
D eno te  by  X th e  indicating function o f  G,. T h e n  X_B0 EB(21* ) (G ; G,)) and
Pg o (D ( 2 ) )-- =-Pxg o (D " ) ). Here we can view X2 0 as an element of B(0C ) (G 1)) and
D(A) a s  a  n e t in  D1(G1) s. t. Pg (D 2 ))—>0 for every .BEB(0)(G 1)). Therefore, by
(II), P x g 0 (D ( 2 ) )—*O. T h a t  i s ,  P a 0 (D ) - 4 ) .  T h e  proof o f  th e  lemma is now
complete, q. e. d.

Through the above two lemmas Theorem 2.4 has now been proved.

Finally we touch on the differential operators u  o n  G  i n  Bruhat's sense.
T h ey  w ere  d e fin ed  a s  m aps on Z(G ) in  a  somewhat intricate manner in  [5],
n°12. But, by  the sketch g iv e n  th e re , it  c a n  b e  b e e n  th a t th e y  a re  in  corre-
spondence with the admissible elements (a,) / of e(G)i in  the  following way :

u(f )=-- E, E /avTD*f (f E 2(G))

(for TD  s e e  (1.18)). H ere the right side is equal to
(This reduces to a  finite sum  for each f ED(G) due to Corollary to Lemma 2.6.)
Since DB (G) is  stable under the m ap D -4 ) on D(G) a s  has been mentioned, this
afte r a ll shows th a t  the differential operators on G in Bruhat's sen se are no other
than the elements of D B (G), i. e . ,  the support-decreasing continuous linear maps
on 0(G) (or, w hat is the same, on e(G)).

2.8. The center o f th e  algebra D i (G). I n  t h is  section w e d esc rib e  the
cen te r  o f  D ,(G) b y  m e a n s  of the adjoint representation as in the case of Lie
groups.

Let 0 be a continuous homomorphism of G into another L C group G '.  Then
w e have a continuous linear map 0*  o f  e(G ') in to  e(G ) defined  by  0* (g )=g.0
(gEe(G ')) ([5], Proposition 8). Let 0, denote the adjoint of 0* :

(2.13) <g, 0:1,(T)>=<0 * (g), T> (gEe(G '), TEe '(G )).
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Since (1.10) holds f o r  S, Teet(G ) and wEe(G), it can  be  seen  tha t 04,(S*T)=--
O (S )*n (T ) (S , TE e '(G )) h o ld s . T h u s  0 ,  i s  a  continuous homomorphism of
e '(G ) into e '(G ') .  Besides, a s  is easily checked,

supp (0WT))g 0 (supp (T)) (T ee '(G )).

Hence in  particular 0 ,  induces a  continuous homomorphism o f  e (G ; e ) into
e'(G' ; 0(e)). L e t  u s  denote this homomorphism by 0. By Theorem  2.4 0 can
be viewed also a s  a  continuous homomorphism o f  D i (G ) in to  D i (G'). From
(2.13) we have 0(6,)=50 ( e )  a n d  0(T d v )= T d i,va  (a E R (G )) .  H e n c e  it  tu rn s  out
t h a t  0  extends the homomorphism o f D I (G ) into D I (G ') which was introduced at
the end of 2 .3 .  Since D i (G ) is  dense in D 1(G ) (C orollary 1 to  Proposition 2.3),
this is the unique if-continuous extension.

L em m a 2 .15 . Let 0 be as abov e . For any  DED 1(G ) and gEe—(G'),

(2.14) (0(D)g). 0 -= D(g. 0) .

P ro o f .  Evidently, go0 (gEe.(G ')) belongs to e (G )  and (2.14) holds if  D E
D I (G ) .  Since D i (G ) i s  d e n se  in  D I (G ) and O  is continuous, the assertion for
any  DED I (G) follow s at once. q .  e .  d .

It is obvious that i f  72.0 is  a  com position  o f group homomorphisms, then
(12.0)--=)7.0  holds.

N ow , for each xEG , le t  /G (x ) denote th e  inner automorphism y,—*.xyx - '  of
G .  T hen  I G (x) -  i s  an autom orphism  of the topological algebra D i (G ) leaving
D 1(G ) in v a r ia n t. Since it extends the Lie algebra automorphism Adc(x) o f  R(G)
(0 .5 ) , le t  u s  d e n o te  i t  a g a in  b y  A d c (x ). T h en  th e  map AdG : xEG.—*.A.dG (x)
gives a  representation o f  G  on  D t (G) in the algebraic s e n s e .  We have obviously
I G (x )(T )= 5 . r *T*5 .,_ , (xE G , T E e '(G )). Hence, in particular,

(2.15) AdG(x)T=3,*T*3.,_1 (xEG, TEe/(G; e)) •

A s is easily checked, we have D = R x  (xEG ), R x  deno ting  th e  right transla-
tion  f ,- -> f on e - (G ).  Therefore (2.15) is rewritten as

(2.15') AdG (x)D =Rx.D .R , (xEG, DEDI(G)) •

L et 0 be a  continuous homomorphism of G into G ' a s  a b o v e . T h e n  80/G(x)
/G , ( 0(x)). ( x E G ) .  Hence

(2.16) 0.AdG(x)=Acic,(0(x))00 (xEG ).

L em m a 2 .16 . Let J. , b e  the canonical injection of c(G) into G.
(i) j e  i s  a topological algebra isomorphism o f D t (c(G)) onto D i (G).

(ii) For each xEc(G),

le.Ad c(a )(x ) = A d G(x)o je
holds on D i (c(G)).
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P ro o f .  ( i ) :  N o te  t h a t  j o e x t e n d s  t h e  id e n t ity  m a p  dj o : R(c(G)) ,--q?(G)
(= R (c(G ))) and th a t the  algebra D i (G) is isomorphic to D i (c(G )) under Jo, ap a rt
from  the  topo logy . T h en , in  view  o f  Remark 2.3, it is  o b v io u s th a t  D 0(G ) is
isom orphic to D t ( c (G ))  under J o including the  to p o lo g y . (ii) : T h is  is m erely a
special case of (2.16). q .  e .  d.

Lemma 2.17. Suppose G is L ie-projectiv e. Let DED I (G). I f  ff.7v (D)-- --- 0  for
all N =H o (G ), then D=0.

P ro o f .  L e t  2(G / N ) (N EH 0 (G ) )  b e  id en tif ied  w ith  0 0(G , N ) canonically.
I f  w e  p u t  0=-.7r, in  (2.14), it  is  se e n  th a t itGi v  behaves as the  restric tion  map
DE D 1(G).-4)1 N ). Hence the assertion , q .  e .  d.

Theorem 2 .5 . Let Z (G ) denote the center of D t (G). Then

Z (G )= ID E D 1(G ); A d G (x )D = D  ( i.e ., R s oD =D oR s )  f o r all .■,- c(G)} •

In  particular, Z(G ) includes D I (G )n D r (G ), and coincides w ith it if  G is connected.

P ro o f .  Lemma 2.16 allows us to  assume that G is  co nn ec ted . A s a  special
case of (2.16) w e have , fo r each N EH 0(G ), x E G  and  DED/(G),

TrVAdG(x)D)=AdGIN(26(x))(7T(D)).

Hence, in  view  o f  Lemma 2.17, it follow s fo r each x E G  that

(2.17) AdG(x)D=D

Adonv(r,V x))(7-ev(D))==77- (D )  fo r all NE H o (G)

While, fo r each N EH o (G ), we have

(2.18) AdGiN(7.GAr(x))(fccAr(D))= Tc )V D )  fo r  a ll xE G

( D ) - -Z(G / N) ,

since G I N  is  a  connected L ie  g ro u p . From  (2.17) and  (2.18),

(2.19) A dG (x )D = D  fo r a ll xEG

" 'S f o r  a ll N EH 0 (G ).

S ince  each  fi- G
N  m a p s  D i (G ) (hence DAG)) onto D i (G / N ) = D i (G /X )), we see

again by Lemma 2.17 th a t th e  la tte r  co n d itio n  in  (2.19) is  eq u iv a len t to  th a t
DE Z (G ), which completes th e  proof. q. e. d.

Since D i (G ) is  a  topological algebra and D 0 (G ) is  d en se  in  it , w e  have the
following

Corollary. Let Z (G ) denote the center o f D i (G). Then
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Z(G)=---  Z (G)nD i (G)

={ D ED I (G); A d o (x )D=D fo r  all xEc(G)} .

The center of e'(G ; e) is given by {T Ee'(G; e); 3.,*T  =T *6, for all xEc(G)I
(see (2.15)). A s  against, the  center of e'(G ) (resp. 6',,(G)) is easily found and
given by {T e '( G )  (resp. eL,(G)); 6x*T-=- T*3 x  fo r  a ll x E G I (use (1.10)).

2 .9 . Order o f  differential operators. The order of each uEU(G) is defined

to be the smallest integer n ( 0) s. t. ue w(EL'=00R (G)c), where w denotes the

canonical homomorphism of the tensor algebra E7,'..0 6R (G)c onto 11(G). We de-
fine the order of each DED 1(G) to be the order of u U(G) which corresponds
to D  (Theorem 2.2). Therefore it equals the smallest integer n ( 0) such that
D  is expressed as

D=Ecigi...fikd;3ri •" d ( f i n i t e  sum) ,

where OS k 72, p i, ••• P R(G) and cp,...p, e C .  For each non-negative integer
n , le t  u s  denote by D ( G )  the linear subspace of D i (G) formed of all the ele-
ments of order

Remark 2.4 . (i) DI'(G) is contained in the El-closure o f the  linear span of
{1=4; vEl, <7/ 1 in  D i (G ) . (Use (i) and (iii) o f Remark 2 .2 .) (ii) If  11S1J, E 1 .
is an algebraic linear base of R (G), th en  D (r i , ,o p v ) ; E z E p v in }
is an algebraic linear base of D r(G ). Each D(11, 0 o p )  has order

Definition 2 .8 . L e t D eD (G ) a n d  n  be a  non-negative integer. Take a
pro-Lie open subgroup G1 o f  G .  We say that D  satisfies the condition (CO if,
for each NE Ho (G i ) , there can be chosen a  finite number o f a s E e co(G) and D ,E
D r(G ) so  that D f =E s a,D ,f  holds for all f  N ) . „ .  (Because of Lemma
0.16 this condition does not depend on the special choice of G1 .)

Lemma 2.18. An element D of D I (G) satisfies the condition (CO if and only
i f  it has order

Pro o f . Suppose that D  satisfies the condition ( C . ) .  For an N E H 0(G1 ) , let
us choose a , & (G ) and D ,EM (G) as in  Definition 2.8 . Then Df(x )=D( r f)(e)
, E,a,(e)D 8 f (x ) (f  Eg.(G , N ) e ,  x E G ) .  In particular, D =E s a,(e)D , holds on
0 (G , N ; N ) ) .  Each element of D 1(G) can be viewed as an  ele-
m en t o f  D1(G1). Therefore, from  t h e  la st eq u a lity , w e  h a v e  777,,,, (D )=
E s a s(e )A lv i( D s ) .  In view of (ii) of Remark 2.4 and Lemma 2.5, it is not difficult
to  see  th a t 777,,I(D) h as th e  same order as D  if  N  is taken to be sufficiently
sm all. On the other hand, whatever N  may be, EsaXe)ff- g l(D s ) has order
as well as each D , .  Hence it follows that D  has order S n .  This proves the
"only if" part of the lem m a. The "if" part is trivial ,q .  e .  d.



Differential operators on locally compact groups 499

W e now m ake the following definition, the consistency o f  w h ic h  w ith  the
orders of the elements of D I (G) previously mentioned is assured by Lemma 2.18.

Definition 2.9. Suppose th a t an  element D  o f  D(G) satisfies the condition
(CO for some n .  In th is  case w e say that D  has o rder <n , and call the mini-
m u m  o f  su c h  n's the order of D .  If  D  satisfies the condition (C .) for no n,
w e say  tha t D  has infinite order.

Proposition 2 .4 .  Let D=E„E la„D„, where i s  an admissible element
of e (G )Î, and n  be a non-negativ e integer. For D  to have order n (i.e., to
satisfy  the condition (Cs)), it is necessary and suff icient that a = - 0  unless

Pro o f . T he sufficiency of the condition is obvious from Corollary to Lemma
2.6. W e  n o w  p ro v e  its  n e c e ss ity . S o  assume th a t  D  has order 5 n .  For any
j(û) J w ith I v" )  I > n and x e e G , choose f  ED(G) s.t. DI(x 0)-=1 if  v=i)" ) , and
=0 otherwise (Corollary to Lemma 2.10). Since f  belongs to 2.(G , N ),, for
some N EH e (G,), G, being a  pro-Lie open subgroup of G, our assumption enables
u s  t o  h a v e  a  fin ite  num ber o f  a s e e .(G ) and D,EDr(G) s.t.
Here, each D, belongs to the  2-closure of the linear span of {D, ;
(Remark 2.4, (0). Hence, by the choice of f , D1f(x0)=0 ("s), and so, Df(x 0)-=0.
Therefore, again by the choice of f , a i,( ,) (x e )= 0 .  Since po)  and  x e  a re  arbitrary,
the proof is complete, q. e. d.

A s an easy consequence of Proposition 2.4 together with Corollary to Lemma
2.10 w e have the following

Corollary 1. L e t n  b e  a  non-negativ e integer. A ll elem ents o f  D(G) of
order n  f o r m  a closed linear subspace o f D(G).

Corollary 2. A ll elements o f D(G) of f inite order constitute a subalgebra of
D(G).

Pro o f . Suppose th a t  D,ED(G) (j=1, 2) has o rder - n) . T o  p ro v e  the as-
sertion, it suffices to show th a t  D,D, has order 5 n1 ± n 2 . By assumption D, is
expressed as Di =E , E iaP ) D , w ith  an admissible element (ap)),0 of e..(G) 1 s .t.
aP ) =0 unless I vi I t  i s  e v i d e n t  t h a t  e a c h  aP ) D,,.a,!?)  ( D(G)) satisfies the
condition (C1, ) a n d  s o  h a s  o r d e r  < 1 v 1 . H ence, by C orollary  1 ,  Di . aP
(=E , E 1(aV ) D0 ag ) )) has order .< )21 . Since D. leaves each  . .(G, N)p (NEHo(Gi.),
G, a  pro-Lie open subgroup of G ) invariant (Lemma 1.17), it then  fo llow s tha t
D,oag)D„, h a s  o rd e r  < n i + I V I. H ence, again by C orollary 1, D i D , has order

q. e. d.

Corollary 3. Let D E D (G ). D and have the same order (finite or infinite).

Pro o f . It suffices to show, for each integer n 0 , th a t  if  D  has order < n,
then so does /). Take the admissible element (a„)„E l of e.(G )/ s. t.
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T hen  b = E , E i d , b , .  H e re , by assumption, a,=0 unless 11,1<n. Meanwhile,
each cl,‘' )  (aE R (G )) has order <1 because it is a derivation (recall Lemma 2.11).
Therefore, a s  we see from the  proof of Corollary 2, each 6,26, has order <
Hence, by Corollary 1, t has order _<n. q. e. d.

Corollary 4 .  F o r  each non-negative integer n, let D (G )  denote the linear
subspace o f D I (G) form ed o f all elements o f  order._<n. T hen D (G) inheriting
g  i s  a minimal locally convex space with the topological linear base {D,;

Pro o f . P u t  I n = { v E I; I n }  a n d  consider th e  m in im a l locally convex
sp a c e  C 's . B y  Propositions 2.3 and 2.4 th e  map (c„) ln ,—>E,E i n c,D, is  a  linear
bijec tion  o f C ln  o n to  -.0'(G). I n  v iew  of P roposition 1 .1 , Lemma 1.17 and
Corollary to Lemma 2.6 we see easily that this bijection is topological, q .  e .  d.

A s promised in  2 .6 , le t u s see here that i f  G  is infinite-dimensional, then
D i (G )#D ,(G ). Indeed , w e can  take in  this case an  infinite sequence r ,k ( k =
1, 2, 3, .••) of m utually d istinc t elements o f  th e  b a s e  fril ze i . Then th e  ele-
m ent ÈL°=1(c/ ) "  o f  D- 1(G ) (Proposition 2 .3 ), fo r  in s ta n c e , has infinite order
(Proposition 2.4) and  so does not belong to D i (G).

Proposition 2 .5 .  Let n  be a positive integer. Each D D(G) of order
can be extended uniquely to a continuous linear map of e ( G )  into e o (G ). T his
extension decreases the supports of all f  G e(G ).

Pro o f . Since eoo(G) is  dense in EV ) (G), th e  uniqueness is obvious. L e t us
se e  th a t th e  ex ten sio n  i s  possible. By assumption D  is expressed a s  D =

(a,Ee„.>(G)), where I n = {1., I; .  It is  ev iden t th at each  D,
s. t. I v !  <_ n can act a s  a  continuous linear map o f 22 ' ) (G) into e o( G ) . Now
consider the  formal sum E , I n a,D J ( f  E g ii(G )) . T ak e  a  pro-Lie o p e n  sub-
group G , o f  G .  From Lemmas 1.17 and 2.6 it can be seen that this sum reduces
to a  finite sum on  each 0)„(G, N )„, (N cH(G,)). Therefore it makes sense and
w e can  defin e  a  continuous linear map f i  o f  .g);,*) (G ) into e 0(G ) b y  h i =
E , E in a ,D ,f  ( f c g , i (G)). F o r  a  CeCom (G ), take  a O (G )  s .t . a(X )1  on a
neighbourhood o f  C .  T h e n , s in ce  t d ecreases  supports, w e  have Pc (r)yo) ,

Pa(b(ayo)) fo r  yDE .0 ( G ) .  Hence we see that f i  is continuous also a s  a  map of
ZP)(G) into e o (G ) . Since 0„(G) is  dense in eP)(G) and e 0(G) is complete, this
show s th a t  t  e x te n d s  to  a  continuous linear map o f e;,P)(G) into Go( G ) . By
construction of D, this extension coincides with D  o n  0 .(G ) , hence o n  e co(G).
Furthermore, since it decreases the support of each f c 0 „( G ) , we can show in
p ara lle l to  t h e  proof o f  Lem m a 2.3, (ii) that it decreases the supports of all
f  c e n (G). q. e. d.

N o te . L e t  D(G) denote th e  subalgebra o f D(G) generated by  D 1(G )JD (G )
v e oc(G) algebraically . In  [6 ] , where G  is  compact, we defined th e  differential
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operators o n  G  a s  t h e  elem ents o f  D (G ). F o r  our purpose there to discuss
U(G), such a  defin ition  w as enough . B u t  D (G ) d o e s  n o t  i n  general coincide
w ith  D (G ). I n  f a c t ,  D(G ) contains no element o f infinite order (Corollaries 2
and 3 to  Proposition 2.4). I f  G  is finite-dimensional, D (G ) coincides w ith  the
se t o f all elements o f D(G) w ith  fin ite  order. In general, however, this is false.
For instance, in case G  is  abelian and  infinite-dimensional, it can be seen with-
out difficulty that 8(G)\D(G)# 0 .  F or D(G) to coincide with D(G), it is neces-
sary  and sufficient that one  o f the  following two conditions is fulfilled :  (a )  G
is totally disconnected ; o r  (b) G  is  compact and finite-dimensional.

2 .1 0 . On derivable distributions in B ruhat's se n se . L e t  n  b e  a  non-
n eg a tiv e  in teg e r. I n  [5], n°12 a distribution TE0 '(G ) w as sa id  to  be  n-times
derivable i f  T D *T  is  a  continuous function o n  G  f o r  every  D A ( G ) . " )  B u t ,
i f  G  is not locally connected, the substance of such a T V (G ) has been  le ft
unknow n. W e now  show tha t such  a  T  is  no  o th e r  th an  a  function in  e n (G)
no m atter G  is locally connected or not.

Lemma 2 .1 9 . L et n be a positive integer. For each f c e n (G) and DEM(G),
there holds

TD* f  f j f (as distribution),

where i5 is viewed as a continuous linear map of  e ( G )  into e 0(G ) (recall Pro-
position 2.5 and Corollary 3 to Proposition 2.4).

Pro o f . It is evident that the map f Ee o (G)—> f Egv(G) is continuous. Hence
so  is  th e  m ap f ce;,P ) (G) ,---4 e .V (G ).  Since  <yo, j*TD>=<ço*TD, .t> ((1.15)) and
ço*TD E2(G) (Lemma 1.24 and  (1.13)) for cc (G) an d  fE e n (G), it then follows
th a t the  m ap f EeV ) (G),—>T v*f (=-- (141DY)E.V(G) is continuous (recall that the
m ap T—d'' is continuous). S ince ..0(G) is  dense in 67 ) (G) a n d  T D *P=bf  holds
fo r fE.D(G), it is  n o w  c lea r tha t T D *f=f )f  holds fo r  fE e n (G). q. e. d.

Lemma 2 .2 0 . L e t f ceo (G ). I f  T f  belongs to e 0(G ) f o r  every
R(G), then f Ee t (G).

P ro o f . F or each aER(G), put f T d v * f (E S 0(G)). T h e n , fo r  goE0(G),

G ço(x)f a (a(—t)x)d G x

-= - 0 49 (a(t)x)f .(x)dax=<acogo, f>

= 0 .
G Y9 (a(t)Y x)f (x)cicx, (T d

(6) By Theorem 2.4  and Corollary 4 to Proposition 2.4 it is seen that { TD ;  D E f f i ( G ) }
is identical w ith  (In (G ) appearing in  [51.
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d c
-=

o

go(a(t)x)f(x)d G x

d c
= ïlt.V ( x ) f  (a(— t)x)d G x .

Hence

G ço(x)d a i :  f ( a ( — t)x )d t=L40(x)If(a (— s)x)— f(x)} ci c x.

Since ço is arbitrary, this implies that

f(a (— s )x )—  f(x )=T  f a (a(—t)x)dt (x G).

Thus d P  f  exists and equals f .  S in c e  a  is arbitrary, this shows that f Ee,(G ).
q. e. d.

Lemma 2 .2 1 . Let n be a non-negative integer and TEgY(G ). I f  T D ( a p ,..., „, ) *T
belongs to  e a(G) f o r  all D(a p , , a1)=c1P,:p' ••• n j ) (0 5 .P 5 n , al, ••• , apER(G)),
then T e e „ (G ).

P ro o f .  Since T i = 3 „  the assumption of the lemma implies in  particular that
T E e o (G ) .  So le t u s w rite f  for T .  We now show by finite induction th a t f
belongs to e k (c) fo r k = 1 , • • ,  n .  To do so, assum e for a k < n  that f E e k (G).
T h e n , b y  L em m a 2 .1 9  a n d  t h e  assum ption of t h e  present le m m a ,
T d ,v)*(D(a k , ••• , air f )= T d v * (T D (a k . - , . , )* f )= --- TD(a.. k . - . , « , )* fE e o (G ) f o r  any
a 1 , •'•, a k ,  a E R (G ).  Since D(ak, •••, a ir f  E  eo(G ), th is shows by Lemma 2.20
that D (a ),, ••• , air f  Ee i (G ). Hence f  E e k  +1 (G), which completes the induction.
q. e. d.

Lemmas 2.19 and 2.21 establish the following

Theorem 2 .6 .  L et n be a non-negative integer and T e g '(G ) .  T  D * T  belongs
to e 0 (G ) f o r every D E I (G ) of  order n  if  and only if  T  is a function in e n (G).
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