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Differentiable vectors and analytic vectors
in completions of certain representation
spaces of a Kac-Moody algebra

By

Kiyokazu Suto

Introduction.

Let g be a Kac-Moody algebra over the real number field R with a symmetriz-
able generalized Cartan matrix (GCM), and §, the Cartan subalgebra of gp. Then,
the Kac-Moody algebra g over C corresponding to the same GCM and its Cartan
subalgebra Y are given by

g=CQprgr and §= CQpzbp,

respectively.  We denote by I the unitary form of g, and put t,=2Ngg (for the
precise definition, see [8] and [7]).

In [8] and [7], we constructed and studied groups K4 and K% consisting of
unitary operators on a Hilbert space H(A) which is a completion of the integrable
highest weight module L(A) for g¢ with dominant integral highest weight 4&¥§}.
These groups are generated by naturally defined exponentials of elements in ¥ and
¥, respectively. In this paper, we show that the exponential map exp: :— U(H(A))
can be extended to a certain completion H{(ad) of £. We show, in prallel, that
taking the adjoint representation of g on itself in place of the highest weight represen-
tation on L(4), and completing the representation space g to a Hilbert space H(ad),
the exaponintial map exp: Hi(ad)—B(H(ad)) can be defined naturally. Here
U(H) is the group of unitary operators and B(H) is the algebra of bounded operators
on a Hilbert space H. Note that the adjoint representation is quite different from
L(A) at the point that the set of its weights is unbounded both in positive and
negative directions when g is of infinite-dimension. For these exponentials, we
define the differentiable vectors and the analytic vectors, and prove some properties
of them, which we expect to utilize for studying fine structures of K4 and K.

Let us explain in more detail. We denote by § the infinite direct products of
g°=5h and the root spaces g* over a, and by L(A) that of all the weight spaces L(A4),
over u, respectively. @ acts on § and L(4) naturally. Let H(ad) and H(A) be the
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completions of (g, (-]+),) and (L(A), (-] -),), respectively, where (- |-), and (- |+),
are standard inner products on (g, ad) and L(4). We may consider H(ad) as a
subspace of § and H(A) of L(A).

The spaces of vectors of class C™ for g-action (m=0, 1, 2, .--) are defined
naturally by

Hyad) = H(ad),
H,(ad) = {yEeH,_\(ad); [x, yIEH,_(ad)  forany x&g};
Hy(4) = H(4),
H,(A) = {veH,,_[(A); xveH,_(A) for any xeg},
for 0<m<+oo.

As for spaces of infinitely differentiable vectors, we put
H.(ad) = Nz Hilad), Ho(4) = NizoHi(4),

and for spaces of analytic vectors,
H (ad) = { ye H(ad); for any xeg, there exists e >0

such that Tz e"l(ad "yl < +o0 )
m.

H,(4) = {veH.,,(A); for any xeg, there exists e>0

such that Syz0——e”lx" v||A<+oo} .
mi

We call an element h &Yy, strictly dominant if
a(hy)>0 for any positive root a,

and fix such an element in the follwing.

As the first main result, we show that the differentiability and the analyticity
are characterized by means of one element 4, In other words, we may replace
xEgin the above definitions of spaces with only one element 4, any strictly dominant
element in h, (Theorem 2.6). Based on this result, we can define certain topologies
on the above spaces. Then with such topologies, H.(ad) and H,(ad) become topo-
logical Lie algebras, which we denote by g.. and g, (see § 3).

Let H%(ad) be the closure of the unitary form $Cg in the Hilbert space H,(ad)
of class C! vectors. We see that each element in Hj(ad) acts on H(ad) and H(A)
as a closable operator (cf. §4). The second goal is to prove the exponentiability of
elements in H %(ad) as operators on the Hilbert spaces H(ad) or H(A). On H(A),
the exponentiability is considered also in [3]. However, on H(ad), there exists
much more difficulty firstly because the inner product on H(ad) is not contravariant
and so the action of elements of H{(ad) on H(ad) is not anti-symmetric, and secondly
because the weights of H(ad) are unbounded in both positive and negative directions.
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- Let I, be the closure of Ein g,. The last goal is to show the invariance of the
spaces H,(ad) and H,(A) of vectors of class C™ (m=0, 1, 2, -+, oo, @) under the
exponentials of elements in ¥,. This result will be a useful tool for the study of the
fine structure of the group K4

This paper is organized as follows. In §1, we prepare notations and basic
results about Kac-Moody algebras. In §2, we define the notion of differentiable
vectors and analytic vectors. And then, it is proved that the differentiability and
the analyticity are characterized by only one element 4, In §3, topologies on the
spaces of differentiable vectors and of analytic vectors are studied. In § 4, we extend
the exponential map on t to its closure Hi(ad) in H,(ad). And then, in §5, we
prove invariance of the spaces of differentiable vectors and of analytic vectors under
exponentials of elements of the closure £, of £ in g,. In §6, we investigate con-
vergence of Campbell-Hausdorff formula for exponentials defined in § 4.

Notations. We denote by C the complex number field, R the real number field,
Z the ring of rational integers. For an ordered set (S, <) and s S, we define
subsets S5, and Sy, of S by

Ss, = {teS; t>s},
Sz, = {teS; t=s}.

The author is grateful to Professor H. Omori. In his letter to the author, he
kindly advised, among others, to study the chain of spaces of differentiable vectors
and their invariability under exponentials of elements of the unitary form . And
the author expresses his hearty thanks to Professor T. Hirai for his constant en-
couragement and advice.

§1. Some basic results for Kac-Moody algebras.

In this section, we prepare notations and fundamental results about Kac-Moody
algebras which will be needed in the succeeding sections. For detailed accounts,
see [4] for example.

1.1. Kac-Moody algebras. Let n€Z,,and 4=(a;;)] ;-1 be an integral matrix

which satisfies
i) a;=2 for all i=1, «+, n,

i) a;=0 if i%j,

iii) a;;=0 if and only if a;=0
Such a matrix is called a generalized Cartan matrix (GCM).

For a field k with characteristic 0, we denote by g,=g,(4) the Kac-Moody
algebra over k associated with the GCM A4, and §,=0,(4) its Cartan subalgebra
(cf. [4, Chap. I)).

Let 4=4(A) be the root system of (g, §,), 4,=4,(A4) the set of positive roots,
IT the simple roots, I~ the simple coroots, and g,=B,+>1.c,8% the root space
decomposition.
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Put n, =1y (A)=,es, gi”. Thenn,, are both subalgebras of g, and g,=
n_,+h+n,, Let P, and Py, be the projections from g, onto n, and b, res-
pectively with respect to this decomposition.

If the GCM A is symmetrizable, that is, there is a non-degenerate diagonal
matrix D such that DA is symmetric, then there exists a symmetric, non-degenerate,
invariant bilinear form (- | +), on g, called the standard invariant form, which plays
an important role in the theory of Kac-Moody algebras (loc. cit. Chap. II).

By the invariance of (|« |);, we have
1.2) @rlgs=0 if at+p+0,
1.3) BelgDe =0  (a€4).

In paticular, the restriction of (- | ), to B, is non-degenerate. Hence, there exists a
linear bijection v, from §, onto its dual h§ such that

(b = vih)(h) (b, B, EDy)

and it holds that
(1.4) [x, y] = (x| yhi'(@)  (eE€4, xEQ}, yEG") -

Throughout this paper, we assume A to be a symmetrizable GCM, and hence
we have the standard invariant form (- |+), on g,.

1.2. Unitary form. In the following, we concentrate on the case where k=R
or C. If k=C, then the subscript C should be ommitted. Clearly g=CQprgzr
and )=CQ@rbp.

There exists a canonically defined anti-linear anti-automorphism gex—x*eg,
such that

(1.5) @)=g" (2€4),
(1.6) *=h (h€hy).

We define a real subalgebra ¥, called the unitary form, of g by
(1.7) t = {xesgq; x+x* =0} .

If g is finite-dimensional, ¥ is nothing but a compact real form of g.
Define a sesquilinear form (- | +), on g by

(1.3 1y} =Gy  .y€9).

(+]-), is Hermitian and positive definite on each root space g” (cf. [5, Th.1]). By
invariance of (+|-) and orthgonality (1.2) and (1.3), it holds that

(19) ([x’ y] Iz)l):(y | [X*’ Z])O (x’ y’ ZEQ) ’
(1.10) @ 1gP)p =0 for a==£; (h|g*),=0 for a=4.

In paticular, (-] -), is E-invariant and positive definite on the space n_-+n,. We
call the property (1.9) the contravariance.
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1.3, Irreducible highest weight modules. Let 2€9)*. We denote by L(2)
the irreducible highest weight module for g with highest weight 2, P(2) the set of
weights of L(2), and L(A)=2pepe) L(A)n the weight space decomposition of L(2).

If 2 is in B, then there exists a non-degenerate Hermitian form (- |-), (see
[8, § 2] for example), unique up to scalar multiples, which is contravariant:

(1.11) (xv|u), = (v|x*u), (xeq, v, usL(l).

Moreover, if 2 is dominant integral, that is, A(a”) is a non-negative integer for any
simple coroot @, then (- |+), is definite ([5, Th.1]).

In the following, we denote by 4 a dominant integral element of §} and fix a
contravariant inner product (- | <), on L(A4).

1.4. Inner product on g. Take a basis Ay, -, h,,_,;, I=rank 4, of §g such that

((h; |hi)o)i,j = (eiai})l,j

where ¢; is 41 for each 1 <i<2n—1.
We define an inner product (- | <), on § by

(h|h), = 2 c;¢ for h=3%ch;, W =3cihEY,
and extend it to g by

*1 Y1 = P Po(o+(Po(x) | P H(PL(X) | Pr(1))e (%, yEQ).

where P, and P, are projections from g onto n, and § respectively defined in 1.1.
Let T be an operator on g given as follows. On jCg,

(Thy, +++, Thyy_y) = (hv ) hzu-l)(eiaij)i,j

and on n_+1n, Cgq, itis equal to the identity. T'is a unitary and selfadjoint operator
with respect to (+|-),. In particular, T is involutive: T2=id. Moreover, there
hold that

(1.12) 1y =T, (xyeg),
(1.13) id— T = 2 (the orthogonal projection onto
the — 1-eigenspace of T)
<2P,

1.5. Completions of g and L(4). Put g°=Y), and define infinite products § and
L(4) by

(1.14) 8= Ilicaww8”: L(4) = IuercnL()n

Each element x of g acts on §O4d and on L(A4)D L(4) naturally. And (-] -),
and (- | -), are exended to the pairings of §x 8 and of L(A)x L(A) respectively so
that (1.9) and (1.11) hold with x, zeg, ue L(4), yE8, ve L(A4).

Let H(ad) and H(A) be the completions of (g, (+|+)) and (L(A4), (-]|-),)
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respectively. We may regard them as subspaces of § and L(A) respectively:

H(ad) = {(x’),EQ; 5‘_,,”x,||¥<+oo} s
H(A) = {0 EL(4); Jullvalli<+oo},
Since T is identical on each root space, it is extended to a linear bijection from

8 onto g itself, which is denoted again by the same symbol. Similarly, *-operation
is extended to 8, and again we use the same notation for the extension.

§2. Differentiable vectors and analytic vectors.

In this section, we define differentiable vectors and analytic vectors for g-
action on the Hilbert spaces H(ad) and H(A), which are obtained by completing
g-modules (g, ad) and L(A) respectively. Then, we shall prove that the differenti-
ability and the analyticity are charcterized by means of a strictly dominant element

of hp.
2.1. Estimate of norms of g-action. Take and fix an element 4, of §5 such that
2.1 a(hy)>0 forall aed,.

We call such an element strictly dominant.

For our purpose described above, we need to improve the estimates of g-
action on g-modules (g, ad) and L(4) in [8]. And, modifying slightly the method in
[5, Prop. 3.1], we obtain the following evaluations.

Proposition 2.1.  There exist positive numbers C,, C,, Cy 4 and C, 4 such that
i) for (g, ad),

[1P-(Lx, yDIl= Cillx[],l[The, P2, (xen,, ye9),
[1x, Y1 CllIxITe YL+ R, XL 1Y) (x yEQ@),

ii) for L(A),

[1xvIL4= Co, all X1 ( A Y]] 471 o V1 ].0) (xen,, vel(4)),
Vi< Coallxl LI+ e, LI+ IxILA VLD (xE8, vEL(4)) .

Here, P_ is the projection from g onto n_ defined in 1.1, and ||-||,, ||+||4 are norms
defined by the inner products (- | +), and (- | -), respectively.

Proof is essentially the same as in [5, Prop. 3.1].

From these estimates, we have the following proposition, which gives rather
exact estimates of norms of iterations of g-actions. The order of increasing of
these norms according to m are very important in the following, for instance, when
we wish to define exponential maps.

Proposition 2.2. For any x,, X,, +**, X, €8 and vE L(A), we have the following
evaluations.
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i) In case of (g, ad),

”[xp [xza RS [xm-p xm]"']]”lé
SCr B CE, IT7-0ll(ad R xjly

639

where the sum is taken over non-negative integers p,, -**, p,, such that p,++++py=

m—1, and C ﬁ,’l") »,, are defined inductively as follows:

C4.. bbb = (for m>1)
(Pm-1tPm)!
Pm—1'Pm!
= l.‘f Pm—1+pm = 0 £

cP =1, (for m=1).

il) In case of L(A)

gn=D
= Co i ozt b1

if puytp->0,

[, %, o+ XpVll4=
SCT A CP.cps (1 7-1ll(ad Ao xl1)IAGVII4

where the sum is taken over non-negative integers P1» *** Dy q SUch that py~+++++py—+

g=<mand C§"..,,;, is given by

Cgm.)---.p,,_l.p,,,:q = (for m>1)
= (C)m-l)P’ﬁ 1’ P,,.+q+ C(m-"'l')l’m-l Pta- 1)(pm—|;-q')
Pm-q:
if py+++PpoytPutq<mand p,+q>0,
e mtq)!
= O, piens (1;”'!:!)
if py+++Pm-1+Pntq=m and p,+q>0,
= C(p’:‘.:.l,)p,,._l:o if pite P <m,
=0 otherwise,
Cy=CPN,=CHo=1, (for m=1).

Proof is carried out by induction on m.
i) If m=1, then the assertion is clear.
Assume that the assertion is valid until m. Then, we have

“[xv % [xm -1 [xm’ xm+1]] ]”1—
SCrt 3 OO (TI7=1I(ad o) xjlIDII(ad oY ™[ X, Xmaallly

Pyyrabm

§.Ci”‘ P2y Com...s (TL727 [I(ad Fip)?351,) X

x 33tz (£)liad ho¥=tx, (ad sl -
By Proposition 2.1,
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E C('”) 2 T1751(ad Ag)?s x 1) X

Pyb
zk:o(k")c,(u(ad B ad Al

+11(ad A)*m~* x,|l,ll(ad hp)** xp4,1,)
Cr 3 CHln (172 IGad A)ix;ll) x

Py

x St (Pt )lad hopetioAxlad Al

€t B O (PP )M @ 1)
Py s Py mm=1 DPm
Pt Py

Hence, the assertion is valid also for m-+1.
ii) is proved in a similar way. Q.E.D.

Corollary 2.3. For any x,, X, ++, X, &8 and vE L(A), we have
1) in case of (g, ad),

”[xla e [xm -1 m]"']”l
S(m—l)'C"‘“ 2 H;—Il(ad ho)i x|, s

l’ *» ”l
ii) in case of L(A),
[y« Xp¥|[ 4=

ser+nicr,, 3 {T-ied ki) Ll
i- .

10" Py

Proof. By induction on m, we see that

! !
Cci™...» gL, o ng

Prl e P! S p!epalq!
Then, the assertions are obvious. Q.E.D.

2.2. Differentiability and analyticity of elements of H(ad) and H(A)

Now, we introduce the notion of differentiable vectors and of analytic vectors,
from the point of view that an element of a Lie algebra can be regaraded as a differen-
tiable operator of degree 1 in the finite dimensional case. In this sense, our definition
is quite natural, or rather necessary in studying Kac-Moody algebras.

Definition 2.4. We define the subspaces H,(ad) and H,(4) of H(ad) and H(A)
inductively as follows:
Hy(ad) = H(ad),
H,(ad) = {y€H,_,(ad); [x, yYJEH,_,(ad)  for all x&g};
Hy(4) = H(4),
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H,(A4) = {veH,,_(4); xvEH,,_(A) forall xeg};
Hw(ad) = n ;-0 Hm(ad) H Hw(A) = n ;=0 Hm(A) ’

We call elements of H..(ad) and H.(A) differentiable vectors in H(ad) and H(A)
respectively.

Definition 2.5. We define the spaces of analytic vectors H,(ad) and H,(4) as
follows:

H, (ad) = { y€E€ H(ad); for any x&g, there exists € >0
such that 3., —I—'e'"ll(ad x)"'y||1<+°°} )
m!

H, (A) = {vE H_(A); for any xEg, there exists >0
such that 335, L'e"'Hx"' v|[4< —I—OO} .
m!

We call elements of H,(ad) and H,(A) analytic vectors in H(ad) and in H(A)
respectively.

Roughly speaking, using the estimates of norms of g-actions on H(ad) and
H(A) given in Proposition 2.2, we can prove the following theorem, one of our main
results. Thanks to this theorem, one may concentrate on only one element Ay,
instead of all the elements in @, for the implication of the differentiability or the
analyticity of an element of H(ad) or H(A).

Theorem 2.6. Let hy&%y strictly dominant. The spaces H,(ad) and H,(A)
(m=0, 1, 2, ---, o0, @) are characterized by means of one element h, as follows:
i) in case of (g, ad),

1 H,(ad) = {yeg; (ad h)"yEH@d)} (mEZy),
) H,(ad) = {yE H.(ad); there exist >0 such that

LR CYNSIRSROR
ii) in case of L(A),

€) Hy(A) = {vEL(A); hfveEH(A)}  (MEZy),
) H(A) = {ve H.(A); there exist ¢ >0 such that

oo e IAE Vlla< + o0} .
m:
Proof. It is clear that

min,e 4| a(hy) | = mingen|a(hy)| >0,
MiNpepedy, mcrgyo | #4(A0) | >0,
#{uc P(4); 1lh) = 0} <—+oo,
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Then, we have, for any yeg and any ve L(4),

[hy, yY1E H(ad) = y€ H(ad) ,
hyveE H(A) = v H(A) .

These implications together with Proposition 2.2 imply (1) and (3) respectively.
Now, let y be an arbitrary element of the right-hand side of (2). By definition,
there is a positive number ¢ such that
1 " m "
2mzo Pk [I(ad Ao)"yll;<+oo .

By Corollary 2.3, we see that for any x&g and 6§ >0,
- a(ad %y,
<C7(Sizo - 0'lad A'sll)” Shizo —-0'Iad byl
Take 6, 6'>0 so that
8'(2120%—6‘H(ad ho)‘x||1)<C1“ and d<e.
Then, it holds that
Sz — - (0)(ad 9IS

= 1‘
1-C,¢’ Emzomam”(ad ho)"'XIh

|
220 —l*!"a’”(ad ho)’)’”1< +oo.

Hence, ye H,(ad) and (2) is proved.
The equality (4) is proved in a similar way as (2). Q.E.D.

§3. Topologies on the spaces of differentiable vectors or of analytic vectors.

Now, we consider natural topologies on the spaces of differentiable vectors
H.(ad), H(A) and those of analytic vectors H,(ad), H,(A4). With respect to
these topologies, the spaces H.(ad) and H,(ad) become topological Lie algebras.
Particularly, we obtain the Lie algebra g,= H,(ad) on which the adjoint action can
be exponentiated locally as shown in Corollary 3.8.

3.1. Topologies on the spaces of differentiable vectors.

Definition 3.1. For meZ,, x, yeH,(ad), u, v H,(A), define inner pro-
ducts on H,(ad) and H,(A) respectively as

(x| P)aam = 2720 ((ad hy)' x| (ad h)'y), ,
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@] V) am = 2P0 (hou| )4 .

Clearly, (H,(ad), (¢ | *)aq,m) and (H,(A), (| *)4,) are both Hilbert spaces. On
H.(ad) and H.(A), consider projective limit topologies of these Hilbert spaces.

Using Proposition 2.2, we can prove the following proposition, which gives a
topological Lie algebra structure to H.(ad) and its continuous representation on
H(A).

Proposition 3.2. i) The bracket product of g: gxXg>(x, y)—[x, y]Eg, is
extended to a continuous bilinear map from H,(ad) x H,(ad) into H,,_,(ad) for m>0.
In particular, H.(ad) is a Lie algebra and its bracket product is continuous.

i) The map gx L(A)D(x, v)t»>xvEL(A) is extended to a continuous bilinear
map from H,(ad)Xx H,(A) into H,_(A4) for m>0. In paticular, H.(ad)Dg acts
continuously on H(A).

We denote by g.. the topological Lie algebra H.(ad).
Proof. i) By Proposition 2.2, we have, for any x, y€ H,(ad),
lIGad /i)™ ~"[x, y]IIéCI”MZ:.m CE™..0.5.0ll(ad fig)?x|l;-1I(ad Ao)'yll, -

This implies i).
ii) is similarly proved. Q.E.D.

3.2. Topologies on the spaces of analytic vectors.

Definition 3.3. For 6>0, x& H (ad), and ve H,(4), we define norms on
H,(ad) and on H(A) which may take the value + oo as

o 1 om »
”x”ad.w.& = Em-ﬁ"’n—'a ”(ad ho) x”l )

oo 1 m m
1l 4yms = S50 0" [1E Wl
m!
Definition 3.4. We define the series of subspaces of H (ad) and H,(A4) which

are parametrized in 0<<e < -+ oo, using norms defined above, by

HJ(ad; ¢) = {xe H,(ad): ||x||.q,.,s<+ oo for all 0<<d<e} ,
H(4; e) = {veH,(A): |[V||4,0,s<+ oo for all 0<d<e} .

The subspaces H,(ad; ¢) with a family of norms {||-||.4,.,s(0<0<€)} are Fréchet
spaces. Similarly, {H (4; €), ||*||4,.,s (0<<d<<e)} are Fréchet spaces.

We see that
H,(ad) = U Ho(ad; €) and H(A4) = U, H(4; €).

So, we consider inductive limit topologies on H,(ad) and on H,(A) associated with
these family of Fréchet spaces.
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Then, we get the following proposition on the continuity of g-action.
Proposition 3.5. Fix 0<e=<+ oo, and let 0<o<d'<e.
i) For x, ye H (ad; ¢), it holds that

”[x’ y]”ad o, GS Cl “x”ad,u,8'||y”ad.m.8' .

C 3)’

In paticular, H,(ad; €)Dgq is a subalgebra of H.(ad) and its bracket product is con-
tinuous.
ii) For xe H,(ad; ¢€) and ve H,(4; ¢), it holds that

HXVIIA u.8SC1 A(”x“ad o, SHVHA ,8 +( 6)2” ”ad,u,&’”v”A,u.B') .

In paticular, H (ad; €)@ acts on H,(A; €) continuously.
We denote by g,,, the topological Lie algebra H,(ad; ¢).
Proof. By Corollary 2.3, it holds that

iad ", 211 520 7 e A, (ad ™= 1l

<€, 30"} )i A+ xliad Byl o+
+ll(ad 'l I@d h)=~ 1+ 1)
<¢,33 (" lad A slliad ho =4yl

Summing up this estimation over m, we get

%, Ylagions = e %a"u(ad ho)"Lx, Y,

m+1
SC37 Do (m4+1) () 28 —-0"ad ho'xl, X

1
(+1 —N!

- é\"
< €O a1 et Sz ()

8171 (ad k)™,

The proof for H(4; ¢) is similar as for H,(ad; ¢). Q.E.D.

Corollary 3.6. i) H,(ad)Dg, with the inductive limit topology, is a subalgebra
of H.(ad), with the projective limit topology. Moreover, Lie algebra operation on
H,(ad) is continuous. Thus, H,(ad) is a topological Lie algebra.

ii) The topological Lie algebra H,(ad) acts continuously on H,(A) with the in-
ductive limit topology.
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We denote by g, the topological Lie algebra H, (ad).

3.3. Exponentiation of g,-action. The next lemma and its corollary are
concerned with the exponentiation of g -action, and will be needed in the next
section.

Lemma 3.7. Fix 0<e=< 4 oo, and let 6, 6' >0, 64-0'<e.
i) Letxeg,,.,yEH,(ad; e)Dg. If C,0"Y|x|lag,0.84+v<1, then it holds that

1
Ek.mzo k'm'

=(1-¢ 0" |x]| Iad,u,&-l-&')-l”yl Iad.o,8+8’ .

ii) Let x4, and v&H(4; ). If Cy\(1+0" )Xl s0-<1, then it holds
that

[|6%(ad ho)* (ad x)™y||, <

Shmzo S Xl
kim!

S —Cp A0+ DIxllad,w,5+87) 2NV 40,848 -

Proof. i) Forany k, mneZ,and x&g,,, y= H,(ad; €), we have, by Corol-
lary 2.3,

||(ad Ag)t(ad x)™y||,=

<sv— k' |lad h)ax, -, [(ad ) x, (ad hgoy]-+-]ll,
'RETN/ MY
<crsVsy kim!

X
Prl o Pm!Poldy! o ! !
X A{II7-1 ll(ad Ao)?i*ix||} -

where 33’ means the sum running over all the non-negative integers q,, ***, ¢, 9o
such that ¢,++--+g,+¢y=k and 3} the sum running over all the non-negative
integers p,, ***, P, Do such that p,+«--+4p,+p,=m.

Hence, it holds that
Shmzo 700 [I(ad At (ad )" pl1, S Szo CFE™ 53—
klm! Pl!"'Pm!Po!

{71 B 0lad hoPr ot} (o 180t o)

I(ad Aoy, ,

1
Iq!

1
X(Emzo plq!

= (l_Cl”'x”ad,w,a+8’)_l“y”ad,w,3+8’ .

Replacing x in this inequality with 6'~!x, we get the assertion i).
ii) is proved similarly as i). Q.E.D.

m
S Shuzo{ G Spezo 070w el

808lI@ad hP*yll, )=
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Corollary 3.8. Fix 0<e'<e<+oo, and let 0<d0<e—e¢'. Let xEg,,, and
{eC.
i) If [<1<O(C\l|Xllag,0,er+8) 7", then

(1) the series 33,20 L'(ad {x)"y is absolutely convergent in H(ad) and the
m!
sum (exp ad {x)y=>],20 —1—'(ad ¢x)"y belongs to H,(ad; €') for any ye H (ad; ¢),
m!
(2) the map
exp(ad {x): H,(ad; &)y >, -—1—'(ad {x)"yeH,(ad; €)
m!

is continuous.
i) If |<]<(1407")"UCy4,|Xlag,0,e+8) " then

(1) the series Zmzo%(Cx)"'v is absolutely convergent in H(A) and the sum
(exp {xX)v=>>320 L'(( x)" v belongs to H,(A; €') for any vE H,(A4; €),
(2) the map "
exp Cx: Hy(4; )3 - Sz %((x)’” ve Hy(4; ¢)
is continuous.

Remark 3.9. Let x&g,. In Corollary 3.8, the range of {&C, in which the
exponentials €*4¢*y (y e H,(ad)) or e¢*v (v& H,(A)) can be defined, depends heavily
on yor v. In this sense, the definition of exponentials on g, by means of absolutely
convergent series is local in ye H,(ad) or v& H,(4). But, restricting ourselves to
the closure Hi(ad) of the unitary form t in H(ad), we get globally defined ex-
ponentials as shown in the next section.

3.4. Relations between the spaces defined above. Here, for convinience of
readers, we illustrate the relations between the spaces introduced in § 2.

3.4.1. Continuous inclusions.
Lg} = H¢e4uco) Q“
H(ad) = Hyad)D H(ad)D H,y(ad)D+:-Dg.. = H.(ad) = Qo H,(ad)
U m,
8, = HjJad)= U H,(ad;e)
U 0LES + o0
8C 8y +.C CQ,,. = H(ad; ) C - Cg,;=H,(ad; §) (0<d<ex+o0).
L(Lf) = Huep(A)L(A)fb
H(A) = H(A)DH(A)DHY(A)D++DH.(4) = Q H,(4)
U m_O
H,(4)= U H,(4;¢)
0>+

U
LA CH(A4; +0)C+CH/(A; e)C--CH,(4;0) (0<0<eX+00).
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3.4.2. Continuous actions of subspaces of H(ad).

[H,(ad), H,(ad)]C H,_,(ad), H,(ad)- H (A)CH,_(4) O<m<+o0).

[, 8] C Q. s Qe Ho(A)T H(A) .
[8or 81T G0 s Qo H(A)CTH(A).
[Bu,es Bl T Bue s B H(4; )CTH(4;6) (0<ex=+o0).

§ 4. 1-parameter groups exp #(ad x) and exp ¢x.

In this section, we construct the exponentials of each element x in the closure
H(ad) of unitary form f in H,(ad) as an operator on H(ad) and on H(4).

4.1. Completions of the unitary form. Since the *-operation on g is isometric
with respect to (- | +), and A, is *-invariant, all the spaces H,(ad)C H(ad) defined in
§2 are s-invariant and %-operation is isometric for meZ,, and bicontinuous for
m=co or w. And so, we can define the completions of unitary form as follows.

Definitions 4.1. We define real subspaces of H(ad) as

Hj(ad) = {xeH,(ad); x+x* = 0} (m=0,1, .-, 0, @),
Hy(ad; &) = {x€H,(ad; ¢); x+x* =0}  (0<ex-+o0);

and define real Lie subalgebras E.., ?, of g.=H..(ad), g,=H,(ad) respectively as
f.= Hi(ad), I, = Hiad).

Our goal of this section is to prove the following theorem. We denote by
B(H) the set of all bounded linear operators on a Hilbert space H and by U(H)
the group of all the unitary operators on H.

Theorem 4.2. Take an arbitrary element Xx=723,c 4u (o) X, = H {(ad).
i) There exists a unique 1-parameter group of operators exp t(ad x)=e*24* in
B(H(ad)) whose infinitesimal generator contains ad x:

57 {(exp t(ad x))y} = (exp t(ad x))[x, y] for all yeH(ad).

Moreover, the operator norm of exp t(ad x) is evaluated as

ll(exp #(ad x)|l,y=exp(2|t|(Saes llalli x| forall teR.

il) There exists a unique 1-parameter group exp tx=e'* in U(H(A))=U(A)
whose infinitesimal generator contains x:

di; {(exp tx)v} = (exp tx)xv for all veH(4).

4.2. Resolvents of the closures of operators ad x on H(ad) with x in Hi(ad).
For the proof of Theorem 4.2, we need several lemmas.
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Recall the operator T on § defined in 1.4. For any x, y, z€ H,(ad)Cg, we
have

((To(ad x))y|2), = ([x, 11 2)o = (| [x*, z]) = (¥ [(To(ad x*))z),.
Hence,

4.1 (To(ad x))* = To(ad x*) for all xeH,(ad).

where * means the adjoint with respect to («|+),. Therefore, To(ad x) has the
densely defined adjoint, and so To(ad x) is closable. Hence, ad x is also closable
for any x&€ Hy(ad) because T is unitary. We denote the closure of ad x again by
the same symbol ad x and its domain by H(ad; x).

Let x&Hi(ad). Because of (4.1) and x+x*=0, To(ad x) is anti-symmetric.
Hence, it holds that for ye H(ad; x)

[[(1—ad x)pll} = lI¥lli+1llx, y1IIi—2 Re (¥ |[x, y]),
= Iyl +Ilx, y)lIi—2 Re (| (1= T)[x, y]), .
By (1.13), we see that

Re (y|(1—D)x, yDy =20l yILIIPollx, ¥DII; »

where P, is the projection from g onto § defined in 1.1. Further, using the equality
(1.4), we have

1Po(lx, ¥DIl = aes ll[xas ¥-allly
=aes [l y-I (@I,
=3 veq lIxallilly-allillell;
S Caes llel 11X (SCaes 1 yallH¥2.
= Saes I 2Ipll, -

Thus, we obtain the following estimate.

Lemma 4.3. For any x& Hi(ad) and any y € H(ad; x), it holds that
I(1—ad )yl = {1—4 (Saey llallf [1xDHIPIE+HIx, 211 -

Remark 4.4. By the same argument as in the proof of Theorem 2.6, we see
that xeg belongs to H,(ad) if and only if

Saes llel lIxalli<+oo,
whence the above inequality has a sense for x& H¥(ad).

We see that if x& Hi(ad), and e€ R is sufficiently small, then (1—ad ex)H,(ad)
is dense in H(ad), which is proved in another paper [10, § 4], and hence we have
the following.

Lemma 4.5. Ler x& H3(ad). If e€ R is sufficiently small, then there holds that
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H(ad) = (1—ad ex)H(ad; x) .

Corollary 4.6. Let x& H%(ad). For any sufficiently small e€ R, the inverse
(1—ad ex)™! exists and belongs to B(H(ad)). Further, we have

lI(1—ad ex) 7|,y = {1 —4 €| (Saes llell x5}~

4.3. Proof of Theorem 4.2. We apply to the closed operator ad x on H(ad)
the criterions in [9, Chap. IX] for exponentiability of a closed operator on a Banach
space.

i) For 0=s<1, it holds that

1 __1_ s
(1—921— s(l +4(]—s))

Take 0<0<1. If 4|e|(Dues |lallil|xll})2<d, then, by the above formula, we
have

{1-4] e |(Baes el x|} <

2 2 g -
§{1—2|5|(E¢e4 ”a”l“xaul)m{l +4(1 —8) } )

Hence, by [9, Chap. IX §9, Cor. 1] and Corollary 4.6, there exists a unique
continuous l-parameter group exp #(ad x) in B(H(ad)) such that its infinitesimal
generator is equal to ad x, the closed one, and

llexp #(ad x)||,,<exp {2|: | (Zaes llell} IIx.Ilf)"z(1+ 4(1‘.3_5))} :

Since & may be arbitrarily small, i) is proved.
ii) is proved in a similar way but much more easily than i), because any element
x in H%(ad) acts as an anti-symmetric operator on H(A). Q.E.D.

4.4. A consequence of Theorem 4.2. By Theorem 4.2, we see that differen-
tiable vectors in H(ad) or H(A) defined in 2.1 are really defferentiable as expected.

Proposition 4.7. For meZ 5, every vector y < H,(ad) or ve H,,(A) is m-times
differentiable in the sense that for any x& Hy(ad), it holds that

E:? {(exp #(ad X))y} = (exp t(ad x)) (ad X)"y ,

‘;Td:{(exp tx)v} = (exp tx)x" v .

§ 5. Properties of exponentials exp ad f, and exp £,.

In this section, we prove some properties of the exponentials exp ad £, and
exp .. The first one, one of our main results, says that the spaces of differentiable
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vectors and of analytic vectors are invariant under the action of the exponentials.
The others concern the natural relations of actions of the exponentials.

5.1. Invariance of the spaces of differentiable vectors and of analytic vectors
under exp ad ¥, or expf,. At first, we show that the analytic vectors y & H, (ad)
and ve H,(4) are really analytic, similarly as differentiable vectors in Proposition
4.7.

Proposition 5.1. Ler x<t,.
i) For any yE€H,(ad), there exists ¢>0 such that if |t|<e, the series

Slezo —th’”(ad x)"y is absolutely convergent in H(ad) and equals to (exp t(ad x))y.
m!

iiy For any vEH,(A), there exists ¢ >0 such that if |t|<e, the series
1
Emzo

— t" x™ v is absolutely convergent in H(A) and is equal to (exp tx)v.
m!

Proof. i) Absolutely convergence is already proved in Corollary 3.8.
According to [9, Chap. IX], the 1-parameter group exp #(ad x) is defined by

(*)  (exp t(ad x))z =laifg 2»:20% t"(ad x)"(1—6(ad x)) "z, (zeH(ad)).

Here, we have
(1—68(ad x))™™—1 = &(ad x) )7, (1—d(ad x))~7 .
Let ¢,, &, be positive numbers such that ||x]|,a,u,e,» [|7]lag,w,e, <+ oo and that
{1—4e)(Zaes llallfIxal1}) #7122 .
For this ¢,, take ¢ >0 so that
e<&,/2C, ||x|laa,w,5,) -

Then, by Corollaries 3.8 and 4.6, for any 0<d=<¢, and |¢| e, it holds that,
Shwza o [1(ad %)"(1—(ad )8~y —1"(ad "]
1 ” Sy m m
S3m gy [|6(ad x) (X37-1 (1—a(ad x)) /)" (ad x)"y||,

<0 [I(ad x)2t(ad %)™y,
(m—1)!

Since & may be arbitrarily small, the sum ngo%t"‘(ad x)"y is equal to ef@d®
by (%). m:
Proof of ii) is similar as for i). Q.E.D.

Lemma 5.2. Let 0<d0<e=x+oco, xEH(ad; ¢) and yEg. Let C, and C, 4 be
the constants in Proposition 2.1.
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i) If C|l|x|lag,0,6<<0, then there holds the equality
[y, e4%z] = e**[e™24%y, z]  forall z€ H,(ad).
ii) If max (Cy, Cy )||X|laa,0,s<(14+07Y)7", then there holds the equality
ye'v=e“(e®*y)y  forall veH(4).

Proof. We begin with ii). For any ve H\(4), there exists a sequence {v;}
in L(A) which converges to v in Hy(A).
Let uL(A). By Proposition 5.1 and Corollary 3.8, it holds that

(€5 1)1 = ((Swao--(—ad 0% )i v)| o 1-(—)')

Ao

Since e™24#y=>31, -, L' (—ad x)"ye H,(ad)C H,(ad) by Corollary 3.8, and each
m!

element in H(ad) defines a continuous linear map from H,(4) into H(A4) by Pro-
position 3.2, we have

(¢ e*y)v ) = lim 3 120 —— (x((—ad X))y, )4
j m!l!
= lim a0 %(yx* v lu)a
= lim S0 01 (=1
= lim (v;|e™*y*u),
j

= (ye'v|u),.
+)4 gives a non-degenerate pairing of L(A)XL(A) as

This implies ii), because (-«
noted in 1.5.
i) is proved quite similarly as ii), using («|+) (not (+ | +),). Q.E.D.

Now, we prove another main result which advances our study on fine structures
of our group K in [8, § 3] associated with the unitary form %.

Theorem 5.3. Let x&t, and m=0, 1, 2, «-+, o0, w.

i) €2 leaves invariant each H,(ad), and the restriction of e*** to H,(ad) is
continuous with respect to its topology defined in § 3.

ii) e* leaves invariant each H,(A), and the restriction of e* to H,(A) is con-
tinous with respect to its topology defined in § 3.

Proof. i) Take 6>0 so that
1] |ad, 0,8 < +-00
Clearly, we may assume that

C16_1||x”ad,u,s< 1.
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(I) The Case 0=m<+oo. For any ye H,(ad), we have by Lemma 5.2

12T €% plly=1le**(e™ < ho)" Il
é ”ead ‘”opl I(e-Ad’ho)myl Il ’

and e~***h,e H,,(ad) by Corollary 3.8. Hence, the assertion is clear from Proposi-
tion 2.2 i).

(I) The case m= co is immediate from the definition of H.(ad) and the
Case ().

(Il) The Case m=w. Since e~***h,& H,(ad), by Corollary 3.8, there exists,
for any ye H, (ad), e >0 such that

Szo #e"'ll(da €345 hoY" y||, < +-o00 .

Hence, by Lemma 5.2, we have the evaluation

1 m m _ad x ad x
2lnzo ;n—re lI(ad g)"e* yllélle“ l

1 »m —adzl \m
op'zmzowe [I(ad e72# o)™ |||, <+oo .

Here, ||e*?#||,, denotes the operator norm of €*** as an operator on H(ad).
Therefore, e***y & H,(ad), whence H,(ad) is left invariant under e**,

The continuity follows from the above inequality and Proposition 3.7.

ii) is proved in a quite similar way as i). Q.E.D.

5.2. Mutual relations of actions of exponentials. Finally, we complete the
assertions in Lemma 5.2, taking off many restrictive assumptions in it, as follows.

Proposition 5.4. Let x1, and y = H,(ad).
i) For any ze< H\(ad), there holds the equality

[y’ eadxz] — eadx[e-ad xy’ Z] .
ii) For any ve H\(A), there holds the equality
ye'v = ée*(e™**y).

Proof is immediate from continuity of ¢*?* and e* as operators on H,(ad) and
H () respectively.

Proposition 5.5. For any x&t, and y = H{(ad), it holds that

l) edsgady—adxs _ oad (ead xy) R

ii) eferes = eI

Proof. Both sides of i) are continuous 1-parameter groups in B(H(ad)) with
the same infinitesimal generator ad(e®***y), by Proposition 5.4. Hence, they are

the same thing.
i) is valid by the same reason as i). Q.E.D.
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Let K4 be the subgroup of U(A), the unirary group on H(A), generated by
exp t,, and flet K2 be the subgroup of B(H(ad))*, the group of all the invertible
elements in B(H(ad)), generated by expad £,. If 4 is strictly dominant, the last
two propositions enable us to define a group homomorphism Ad from K4 into K2¢
such that

gex-g v = ((ad g)x)v for any geK4, xeH,(ad), v H(4)).

Thus we get the adjoint representation of KZ through the homomorphism Ad.
Furthermore, Proposition 5.4 connects the group structure of KZ and of K2 with
the Lie algebra structure of I,

§ 6. Remarks about the Campbell-Hausdorff formula.

This section is devoted to analyse the posibility to apply the Campbell-Hausdorff
formula for our study of groups. In that case, the central problem is the convergence
of Campbell-Hausdorff formula for the Lie algebra g,. Since g, is not a normed
Lie algebra, this is a very delicate and hard problem.

6.1. Dynkin-Cartier’s formula. Let a be a Lie algebra freely generated by two
elements x and y. In [1], it was proved the following equality in the algebra of
non-comutative formal power series:

(6.1) log ((exp x) (exp »))
_ E (___ l)lx—l %
k+(pytq,+-+pta)pila,! - pilqy!
X (ad x)*1(ad y)% --- (ad x)?s(ad y)»~'y,

where log and exp are defined by means of formal power series, and the sum is
taken over the set Q of sequences Q=(k; p,, ¢,, ***, Py, q,) for which

kez 5 5 5 **% ) EZ
62) { >05 Py 41 P GrE Lz

pi+q;>0  forall j=1,- k.
Here, if g,=0, we understand as

(ad Xyl (ad y)ql .o (ad x)’k(ad y)qk-ly —
= (ad x)*1(ad y)% -+ (ad x)?+'x .

Note that in cace ¢,>1 or in case ¢,=0 and p,>1, the corresponding term is
understood as 0. We put |Q|=p,+q,++-++ps+q, for Q.

Notice that in the right-hand side of (6.1), there appear plural terms which
differ only in their coefficients. For example, there appear three terms

(=1
2-(140+1+1)-110! 111!

[x,[x,}’]] (k=2’pl=p2=q2=l’ql=0)’
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=y k= —2 g —
1.(2+1).2!1![x5 [x9y]] ( lspl 3q1 1):

(=D* 65l (k=2,p,=d,=p,=1,4,=0).
2.(141+1+0)-1111110! oA 2

The absolute convergence proved in [1] concerns the reduced series whose terms
are the sums of such terms in the original series (6.1), with x, y in a Banach Lie
algebra. However, in Banach Lie algebra case, we can prove that the right-hand
side of (6.1) is already term-by-term absolutely convergent as shown in Corollary
6.2 below.

We denote by c,,(x, y) the sum of terms of degree m in the right-hand side of (6.1):

(6.2) (X, y) =
_ (_ l)lc—l
QeR,[Q|=mk-m-p,lq,! - plg;!
X (ad x)?1(ad y)% «-- (ad x)?+(ad y)%~ly

X

The following lemma gives the key evaluation for the convergence of the
Campbell-Hausdorff formula in its original fom in (6.1).

Lemma 6.1. Let 0<a=<b. We denote by f,(a, b) the sum of terms of degree
m in the series

E 1 apl+m+pk.bq‘+...+qk ,
genk-(p+aq,+-+rta0)p'q,! -+ pi'lqs!
that is,
f,,,(a, b) = 2 1 ap1+...+,k bql+"'+qk .

Qen, [Ql=mk-m-plq,! - pylg,!

Then, we have the evaluations

m—2, m myp,m=2_ hm
T fula, by ST
m! m!

Proof. Clearly, it holds that

@bz 3 : a"

oen, [Ql=mk-m-plq,! - p,lq,!

1y 2 lm, s L
m k>0 k pitai+r pilg;)

fl+-"+r*=m

1 m 1 m

=—3a —————2 .
m 2k-rl! eee 1!

1
Put c,= E 0 Kor e p!
Ty e T > r: g
'1+"'+'h="'

Then, there holds that
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Sek(FPa= om0

i rm@Orytebrm=m Pl ese p | m!

and that
m\_,.  m! o (m—1 Lam-1
Hr) = i = (i) sz

Hence, we have

l m m l »m ] —m4+1 m m 2m"'-z'am

Ju(a, b)=—Qa)" 3i.2c, =2—(a)"-—2 i1k k CGp = ———.

m m m m!

By a similar calculation as above, it holds the inequality
ful@, B)S-L B -1 ¢

Since k(';:)gm, we have

my,m=2, LM
fula =L vy Losp k(e = 0 Q.ED.
m m m.

Corollary 6.2. Take a normalized norm ||+|| on a Banach Lie algebra such that
e YHI VI forany x, y.
If max({|x||. ||y =(2e)~", then we have

> I X
geb k+(pi+q,+ - +pet g 4, - il !
X |I(ad x)?1(ad p)*1 +++ (ad x)?#(ad y)@~'y|| <400 .

In other words, the right-hand side of (6.1) is term-by-term absolutely convergent for
sufficiently small x, y, in the case of a Banach Lie algebra.

6.2. Analytic scale of Goodman-Wallach [3]. Now, let us consider the case
of an analytic scale introduced in [3,84]. By definition an analytic scale is a
filtration {g,, ||-||;}+2o of Banach spaces, which are subspaces of a Lie algebra,
parametrized by non-negative numbers t € R5,, and has the following properties:
let 0<<s<t, then g, is a dense subspace of g, and it holds that

Clxll =1l forany xeg,,
(6.3) [a:, a]g,
1
[[x, y]llé:llxllfllyllf forany x,yeg,.

As seen in Proposition 3.5, the series of Lie algebras g, ,=H,(ad;¢)Dg,
€>0, are very like the analytic scale, where each g, ., is not a Banach space but a
Fréchet space in general.
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Let us return to the Goodman-Wallach’s case. We see from [loc. cit. § 4] that
for any 0 >0 and ¢>0, there holds

(6.4) 1%y, [xg <+, [Xm—15 xm]"']]”tg(_’:“)“”xl”l+6”x2”t+8 oo [Xmlless »

for any x;, X,, ***, X1y X E@rys-
Hence, for x, yEg,,5, when we estimate the norm of each term of the right
hand side of (6.1) by using the evaluation (6.4), we have to multiply f, (a, b) in

Lemma 6.1 by the above factor (%’—) in (6.4). Therefore, we arrived the series

1
(6.5) S X
gen k(py+g,+-+ptq)-play! - pila,!

Q1
x(L2L) " ity iyl

- 2(3) Hten

with a=min (||x|l;+s, | ¥|li+s), and b= max (||x|l;4s, [|¥ll;+s)- Then, by the first
inequality in Lemma 6.1, this series is evaluated from below as

m-2 L
EZ ’ (%) "= +oo  if a>0,
1 m.

contrary to the proot of [3, Th. 4.2]. In fact, the key inequality in their proof of
Theorem 4.2 in [3]

(O NYAL | R AYL

does not hold, for instance when r,=--+=r,=r&Zs,, whereas, as in [2, p. 234],
there holds the inequality for any fixed k>0

(ke r)¥iS Dy Tlhor rile
with a positive constant D, depending on k.

6.3. Naimark-Stern’s induction formula. Let cm(X, ¥) be as before the sum
of terms of degree m in the equality (6.1) for m=1, 2, ---.

For the case where x, y are taken from a finite dimensional Lie algebra b,
Naimark-Stern [6, Chap. XI, §1] proved the following induction formula for
cu(x, ¥), m>0:

(66) (m+1)cm+1(x’ y) =
= ’%‘[x_ya C,,,(x, y)]+

+2p21.2p$m kZﬁ'E [cﬂll(x’ y)7 ['", [cmzp(x’ y)a x+}’]'"]]
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for m=2, and

a(x, y) = x+y,

where k,, are Bernoulli numbers defined by

(6.7 z_—

z
l—e+: 2 143521 kpp 2™,

and the last sum in (6.6) is taken over the non-negative integers m, *-+, m,, such
that m,+---+4-m,,=m. Note that the convergence radius of the right hand side in
(6.7) is 2.

They proved that the so called Campbell-Hausdorff series F(x, y)=33,,2;Cu(X, ¥)
is absolutely convergent if x and iy are in a small neighbourhood of 0 in the Lie
algebra b, that is,

Dmzillem(e, YII< oo
Thus, they gave a formula
(exp x)-(exp y) = exp F(x, y)

in a small neighbourhood of the identity element, for any Lie group associated
with b.

We explain their proof briefly. Consider the differentiable equation

dw w
6.8 - = _+ w
( ) Iz ) q( )’

where g(w)=1433,;, k,,+w?. Since g(w) has the convergence radius 2z by defini-
tion of k,,, (6.8) has an analytic solution

(6.9 W(z) = Shay o4+ 2*

in a neighbourhood of 0. Substituting (6.9) into (6.8), we have an induction formula
for {pm} m21+

(6.10) MAD oy =224 N kyy S oyt Py

2,
2 2=1,2p5m pm!+---+mz’=m

formz1, and p,=1.
On the other hand, by (6.6), it holds that

(6.11) (m+Dllennlx, PII=
Srlleae MIH2r 3 kyy 3 TTillenx
rP21,2p5m my ke tmg p=m

where r=max(||x||, ||»|), and ||+]| is a norm on b such that

G YNI=IXI-1I21 (%, yED).
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From (6.10) and (6.11), we have

(6°12) Ilc,,,(x, y)“é(zr)mpm s = max(||x||, ”y”) >

for any m=1, 2, 3, --.. Hence the series 33,5, ¢,(x, ») is absolutely convergent if r
is sufficiently small.

Let us return to the case of infinite-dimensional Lie algebra, and try to apply
their method to the analytic scale {g,} together with the evaluation (6.4), coming
from definition of analytic scale. We look for an evaluation such as

(6.13) llem(es Me=(@2r)" 0, r = max(llxlle+s, 1| ¥lle+s)

with a series {0,} of positive numbers such that 3}, 0,,-z" has a positive con-
vergent radius. Then we have to find a differential equation which has an analytic
solution w(z)=3],,3, 0,,*z" such that the following inequality follows directly from
the power series expression of the equation on w(z):

. 29\
619 o=t 5 k() R oo,

"'l+"'+"'2p=m

However we see that such an equation does not exist because the convergent radius

2
of (6.9) is finite, in which the factors (%”) do not appear.

Similarly as for the Goodman-Wallach’s case, we can see also that the method

of Naimark-Stern can not be applied to our system {g, .} >0 and so the posibility
of applying the Campbell-Hausdorff formula to our study of groups still remains
in doubt.

Thus, in reality, Lie algebras with analytic scales have not yet been able to be
treated in their full generality, except the case where the Lie algebra in question is
itself Banach from the beginning.
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