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C’-sufficiency of jets via blowing-up
Dedicated to Professor Hirosi Toda on his 60th birthday

By

Satoshi KOIKE

Let &a(n, 1) denote the set of C? function germs: (R", 0)—(R, 0). For a
function f €E(n, 1), j*f denotes the s-jet of f at 0&R" (¢=s). J*(n, 1) is the set
of s-jets of function germs in E(n, 1). An s-jet z&J°(n, 1) is called C’-sufficient
in Ep,i(n, 1), if for any functions f, g in E,i(n, 1) such that j°f=j’g=2z, there exists a
local homeomorphism a: (R", 0)—(R", 0) such that foo=g. Thus C"sufficiency of
jets amounts to saying that all terms of degree>s can be omitted without changing
the local topological behavior of the realizations. Concerning a characterization
of C%sufficiency in E(n, 1) or Ey(n, 1), the “Kuiper-Kuo theorem” is well-
known (see § 3).

In this note, we shall give another characterization of C°sufficiency of jets by
using the “after blowing-up functions”. In practice, this criteria is often easier to
check than the above one. Here we describe the results about C°sufficiency in
Era(n, 1) only. Of course, similar results hold also for C%sufficiency in &,y 3(n, 1).

The author would like to thank Professor T.C. Kuo for useful discussions.

1. Observation.

First consider the case n=2. Then, due to Lu Theorems ([8]), we can assume
the given jet is in Weierstrass form:

™) w(x, ) = x*+Hyp (%, )+ +H X, 3) 5

where H(x, y) is a homogeneous polynomial of degree j (k+1=< j=k-+r). Then
w(XY, Y)= Y*H(X, Y),

where H(X, Y)=X*+YH, (X, D+-+Y"H, (X, 1).

Observation. Consider the level surfaces of the following three functions
around 0= R?:
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S, M)=x2, Silx, Y)=x2—)3, Folx, Y)=x2+)A,

Notice that although the paterns of their level surfaces are different from one another,
they are almost (intrinsically) the same outside the sector of R? containing the singular
part of their “‘tangent cone (the variety of the initial form)” {x=0}. Thatis to say,
the initial form controls the behavior of a function outside the sector of R® containing
the singular part of its tangent cone.

Let us consider the blowing-up of R? at 0, n: M,— R%. The sector of R?
containing {x=0} is the image by = of an open set containing the intersection of
the exceptional variety and the strict transform of {x=0} in H,.

Thus the above observation gives rise to the following problem naturally:

Can we find certain conditions on H which control the behavior of w in the sector
of R? containing the singular part of the tangent cone?

We shall formulate such conditions for more general cases in § 2.

2. Results.

Let w: (R", 0)—(R, 0) be a polynomial of degree <k--r, and w be written as
follows:

w(x) = Z(x)+G(x) with Z,%£0 and j*G=0.
II: S*"'>RP*! is a projection, and put /I(a)=d for acS*"!. We define 4=
HI(EZ70)NS* ™) where ZZ;’(O)={pER"Ig—xZ-k([’)="‘=g—f—"(p)=0} and B[d]=
1 n

{o€0(n)|o(a)=e, or o(—a)=e, (e,=(0, :+-, 0, 1))} for d€A. For o,€B[a], we
write wo,y=woo;!. Here we put

Wa'(a)(Xle ) Xn—le Xn) = XnkHa'(a)(Xl’ R Xn) .

Then Z,o0;' is a homogeneous polynomial of degree k and Z,o07'(e,)=0.
Therefore Z,00; ! does not contain the term ax,* (@=0). Thus H,, is a polynomial
with H,,(0)=0. Then we have the following characterization of C’sufficiency of
(k4-r)-jets by using the “after blowing-up functions” Hg,).

Theorem 2.1. For weJ**"(n, 1), the following conditions are equivalent.
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1) wis Cosufficient in Eppy(n, 1).
2) For any A€ A, there exist o,& B[a], C,>0, and a neighborhood W, of 0 in
R* such that

(**) ‘(aHo'(a)’ aHo‘(n), X"aHv(a)) gCaIanr

’

8X, oxX,_, ax,

in W,.

Remark. If for some o,& B[d], there exists C,>0 such that (**) holds, then for
any o, & B[d], there exists C,>0 such that (**) holds. In other words, the property
(**) does not depend on g,; We merely use o, for the formulation.

Concerning the proof of the theorem, we have the following inequality on
analytic functions.

Proposition 2.2. Let f: (R", 0)—(R, 0) be an analytic function. For ;=0 or
1 (i=1,+-, n), we put k=#{i|e;=1}. If 0<0<#, then there exists a neighbor-
hood U of 0 in R" such that

(s (55 2 e e 2L
Yex, 7" ax,

>0]/(X)]

in U.
As corollaries of the theorem, we have

Corollary 2.3. If for any A< A, there exists o,& B[d] such that j"H,y is C*-
sufficient in E(n, 1), then we J**(n, 1) is Cl-sufficient in Egyya(n, 1).

Corollary 2.4. For the Weierstrass jet (*) weJ**"(2, 1) in § 1, the following
conditions are equivalent.

1) wis Csufficient in Epr a2, 1).

2) There exist C>0 and a neighborhood U of 0 in R? such that

(a—H,Y—ai’)gcer in U.
ox’ = oY

Corollary 2.5. Let w be in the Weierstrass form (*). If j"H is C®-sufficient in
Ea2, 1), then weJ¥"(2, 1) is Csufficient in Epea(2, 1).
3. Proof of the theorem and corollaries.

We start by recalling the Kuiper-Kuo theorem:

Kuiper-Kuo theorem ([1]-[3]). For z&J'(n, 1), the following conditions are
equivalent.
1) zis C%sufficient in Erg(n, 1).
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(resp. z is C%sufficient in Eygpy(n, 1).)
2) There exist C>0 (resp. 6 >0) and a neighborhood U of 0 in R" such that

|grad z(x)| = C | x[*~!
(resp.|grad z(x)| =C | x|*7%) in U.

We shall give the proof of the theorem. Therefore we consider a (k+r)-jet
weJ*¥(n, 1). For >0, we put S3(@)={x& 5" !|d(x, +a)<0} and V= U S;(d).
acA

We denote by Cy(D) a cone of D with 0& R" as a vertex for a subset D of S*~,
Lemma 3.1. For any 0>0, there exists b>0 such that
|grad Z,(x)| =b|x|*? in C(S"'—Vy)NBO),
where B(0)={xeR"| | x| Z1}.

Proof. Put b=  min |grad Z,(x)| >0. Then it is easy to see the state-
x5 1-V;s
ment of this lemma.

By Lemma 3.1 and the Kuiper-Kuo theorem, we have the following:

(1) j¥rw is Csufficient in Epya(n, 1), if and only if there exist C, >0 and a
neighborhood U of 0 in R" such that |grad w(x)| =C |x|**"~ in Cy(Vs) N U, where
Cy(Vy) denotes a closure of C(Vy) in R".

Let H,,.,(w; €) (¢>0) denote a horn-neighborhood {x&R"| |w(x)| Le|x|**}
(see [4]).

Lemma 3.2, For weJ**'(n, 1), the following conditions are equivalent.
1) There exist C, 8 >0 and a neighborhood U of 0 in R" such that

lgrad w(x)| ZC|x|*™ in C(VoNU.

2) For any € A, there exist C,, ¢,>0 and a neighborhood U, of 0 in R" such
that

|grad w(x)| =C,|x|**""! in CyS,@)NU,.

3) For any GE A, there exist o, B[a] and C,, ¢,, 6,>0 and a neighborhood
U’ of 0 in R" such that

lgrad wfr(a)(x)l gcalx]k-*-r—l in CO(Sta(én)) n‘ﬂk-&r(wa'(a); 611) n Utlt .

Proof. As A is compact, conditions 1) and 2) are equivalent. It is easy to see
that conditions 2) and 3) are equivalent, by using Bochnak-Lojasiewicz inequality
([1] Lemma 2) and the fact ¢, B[a].

Here we consider the mapping (blowing-up) z: (R", 0)— (R", 0) defined by
(xp A x,,)=7Z(X1, "ty Xn):
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x1 = Xan, ey x,,_! = X,,_lX,, y Xy = X” .

For ¢ >0, put D!={(X1’ R Xn)ER”I IXJI Se (l é]én)}' Let gz?(Hcr(a); ea)
denote the set {X ER"| | Hy(y(X)| =¢,|X,|'} for rEN and ¢,>0.

Lemma 3.3. For o, B[d] (€ A), the following conditions are equivalent.
1) There exist C,, &,, 8,>0 and a neighborhood U, of 0 in R" such that

lgrad wa(a)(x)l g Ca I X l k=l in Co(S!a(én)) n ‘-4{&+r(wa-(a); 84) N Ul,l .
2) There exist Cl, €,>0 and a neighborhood W', of 0 in R" such that

aHo’(a) oo aHa‘(a) kH X aI{o'(a) aHa‘(a)).ZC X
‘( ox, ax, et X Ty ?31 X

in RYHyw: e)NW,.

Proof. For an arbitarily small e,>0 (resp. &,>>0), there exists 1 >0 (resp. ¢,>0)
and a neighborhood U of 0 in R" such that

( 2) { ”(Dz{) c Co(Ss,(én))
(resp. C_},(—S,F:)_)Cn(D,o)) in U.

For xen(D,), lx|2=(l—|—ﬂ§—‘_,1 X%XZE. Therefore we have
i=1
(3) | X, 2= | x|2S2( X, )2 for x&n(D,) near 0ER".

By an easy calculation, we have

(4) grad wa(a)(XIXm ory X le Xn)
_1{9H oH, oH,
— X”k l( cr(a)’ . o’(a)’ kHG . X 91 4(a) o‘(a))
ax, ox, Heat X5y ,21 ox,

On the other hand,
wo‘(a)(Xle ) Xn-le Xu) = XnkHcr(a)(X) .

Thus it follows from (2) and (3) that for &,>0, there exist ¢,, 6,>0 (resp. for ¢,,
8,>0, there exists €;,>0) and a neighborhood U’ of 0 in R’ such that

{ CO(S!,(én)) n quk+r(wa'(a) 5 aa) c E(Q:(Hd(a) 5 6,/,))
(resp. n(R’}(H,(,) 5 6';)) c Co(Se,,(én)) n j[k+r(wc(a) 5 Ba))

in U'. Lemma 3.3 follows immediately from (2), (3), (4), and (5).

(5)

Lemma 3.4. For o,€ Bld] (GE A), the following conditions are equivalent.
1) There exist Cl, ¢,>0 and a neighborhood W of 0 in R" such that

’(aHo'(a) vee chr gC{,IX,,I'

dH oH,
, (a) , kHa . X Mg X a’(a))
ax, ox,_, ARy 2

in R¥Hyw; eDNWE.

J
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2) There exist C}/, e/ >0 and a neighborhood W' of 0 in R" such that

‘(aHa(a)’ e, aHo’(a) X a1’0(11))
ox,  ox,._, ox,

=CYlX, |7 in RUHy; eYNWY.

Proof. We show the implication 2)=>1), by separating a neighborhood of
0€ R" into the following two domains:

(]) ‘(aﬂv(a), wee, aHv(a)) >\ X aHa.(a)
X, ax,_, /117" ax,

(i) l(aHG(ﬂ), e, ch(a)) S' X 0H, 015 (a)
X, ox,_, /117" ox,

In the case (i), for X € R}(H,,y; €a’)N W4/, we have

2CY| X"

2 '(aHa(a)’ e, 6Ho(a)>
ax, = ax,._

2‘(6[16(“) oo, aHo'(a)‘ X aHo(a))
ax,., " oax,

Thus we have

PAE

‘(aHo'(a), e, chr(a), kHo-(a)+ X” aHo(a) _"21 Xi aHa(a)) ggi/
ax, " ax,., ox, =7 ex, =22

In the case (ii), 'X 6H"“’) laH"“’) (1< j<n—1). Similarly as (i), we have
o5 Cdf | X, | for Xe_CR"(H,(,), YN W' Thus, for X € R} (Hew; €2)
""ax, ¢

17
N W’ where W,’,’D W; sufficiently small and 0< ef,gmin{g;

, e,’,'}, we have

(a), kHa.(a)—}-XnaH—‘(“)_”jl X. aHﬂ(a)

‘ (aHa(a) vee aHo’

ax,  ox,., ox, i1 ' ax;
oH
Z‘X 94(a) EI | o(a) k'Ho(a)l
'1 j
1 ‘X aH‘,(a) _lea(a)l

'l

C//
= ¢ | Xu " —kea| X, |" 2= X, |
4 8

We can show the implication 1)=>2) similarly as the above, by separating a
neighborhood of 0& R" into the following two domains:

3 chr(a) oo afl«v(a) S‘kH X aHa(a)__”VlX~aHo'(a)
(') |( ax,  ox,,/I= ARG e ox, |’
s aHo(a) vee af[a'(a) ZlkH X aHfr(a) = X. aHu(a)

W ]( ox, ) [Z ety S R Xy
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By (1) and Lemmas 3.2, 3.3, 3.4, it suffices to show Proposition 2.2 (in particular,
the case k=1). Here we consider the case k=n only. The other cases follow
similarly.

Assume that the inequality (***) fails. Then, by the curve selection lemma
([7)), there exists an analytic curve 4: [0, p)— R" (0 >0) with 2(0)=0 such that

(002

along 2—{0}. Let 2 be written as follows:
Xi(t) = k1O k§r D 4 eee |

where 1 Ze,(i)<ey ()< -+

and [ KP%0 if Xi(t)=0

Le@)=oco if X()=0, (1<i<n).
Define
(7) P(1) = f(X(1))=a,t*1+ayt "2+ -+,

where 1=, <a,<---. Then P is analytic. Furthermore, by (6), we can assume
that ¢,#+0. By (7), we have

oP

N a—(t) = a,a, 1" a,a 4
On the other hand,

opP of OX,
I —(n = X t
(m o 0= B oy KO
We write

o (K(O) = B L0 o
where

; oo
b0 it X0
pliy=o0  if %(X(r»zo, (=i<n).

Then it follows from (6) that
a, < ¢,(i)+B,(i) (Isi=sn).
Without loss of generality, we may assume that

{ @ = e()+A0)  (ISisiy)
a, < (D)4 8,0) (p+1=ign),
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where 0= i, <n.

Remark. For 1=<i=<i, the following facts hold.
1) Since a,#0, we have 1<a,<co. Tt follows that e,(i), By(/)<oo, k,(/)+0 and
b,(i)=0.
2) g()=e;.

By (6), we have

(8) SYIKBO 2S04, .

Finally we compare the absolute value C; of the coefficient of t*1™! in (I) with the
absolute value Cy; of that in (II).

Ca = | 3 Ke,0847|

<V A SO 0b01
=V la| x/;f‘:lki"bﬂ”l’ (by Remark 2))

sVvnlalf|a] (by (8))
<l|aa,|=C;.
This is a contradiction.
This completes the proof of Theorem 2.1.
It is easy to see Corollary 2.3 by using the Kuiper-Kuo theorem and Theorem
2.1. Corollary 2.4 (resp. Corollary 2.5) follows immediately from Theorem 2.1
(resp. Corollary 2.3).

4. Examples.

We shall give first examples to show that it is easier to check the hypothesis of
corollaries than that of the Kuiper-Kuo theorem. Example 5.3. (which will be
stated in § 5) is one of such examples too.

Example 4.1. Let w(x, y)=x—10xy". Then we have k=210 and H(X, Y)=
X®_10XY2 1tis easy to see that the condition 2) in Corollary 2.4 is satisfied for
r=3. Thus it follows that weJ®¥_2, 1) is C%sufficient in &2, 1).

Example 4.2. Let w(x, y)=x*—2xy%. We put
w(XY, Y) = Y’H(X, Y),
H(XY, Y) = Y*H, (X, Y) (1Sk<48).

Then j2H,,=X*—2XY &J?%2, 1) is C'sufficient in &2, 1). By applying Corol-
lary 2.5 49 times, we can see that weJ'®(2, 1) is C’sufficient in Epge(2, 1).
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Next we give an example which is related to results in this note and some other
facts in “Singularity Theory”.

Example 4.3. Let P,(x, y)=x>+3xy*+1"°. We put P,(XY, Y)=Y3H/(X, Y)
and H (XY, Y)=Y3%,X, Y). Then we have H,(X, Y)=X343XY®+:¢Y" and
G(X, Y)=X*+3XY441Y4

For ¢t %0, j*G(X, Y)=X3+tY*is C’-sufficient in &3(2, 1). Therefore X3+1Y*
is R-C° equivalent to X34-3XY*+41Y* for 0. Hence it follows from the proof
of the theorem in this note that x3+1y% is R-C° equivalent to 'x*+3xy%+1y" for
t%0. Thus we can omit the lower ordered term 3xy® from x3+3xy%+#y%, using the
notion of sufficiency of jets.

On the other hand, by the Kuiper-Kuo theorem, j°P,=x3+3xy® is C’-sufficient
in &2, 1). Thus x*43xy® is R-C° equivalent to x*+3xy®+ry? for any . (T.C.
Kuo has pointed out to me that x3+3x)® is not “blow-analytic equivalent” (in his
sense [5], [6]) to x*+3xy®+»™) Note that x*+3x)® is a weighted homogeneous

polynomial of type (—;—, 1—12> with an isolated singularity. The weight of y*® equals

%< 1. In this case, x*+3x)® controls the behavior of the lower weight term zy*

(Compare [9]).

5. The converse problem.

When we consider the problem of omitting lower ordered terms by using the
notion of sufficiency of jets, the converse problem of Corollary 2.5 is important too.
Consider a polynomial w(x, y)=x*+G(x, y) with an isolated singularity and j*G=0.
Then there exists r =1 such that j**"w is C’sufficient in &py,1(2, 1). Let k+-r(w)
denote “‘the degree of C%sufficiency of w”, namely the smallest integer having the
above property. Then we put w(XY, Y)=Y*H(X, Y). It follows that H also has
an isolated singularity at 0. Similarly there exists /=1 such that j*H is C%sufficient
in &(2, 1).  Let 4{(w) be the degree of C’sufficiency of H. Here we put

A, = {x"—}—G

G': polynomial of deg.<k-r, j*G =0 }
J¥H(x*4G): Cosufficient in Egypy2, 1) J 7

Then the following fact follows easily from Corollary 2.5.
{wy=r forany wed,—A4,_;.
We now make some remarks on the converse problem without proof.
Proposition 5.1. For we A,,
{w)<max {k, r+1, r(k—2)+1}.

Remark. In the above proposition,
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1) We can replace r by r(w);
2) If k<3, then {(w)<max {k, r(w)+1}.

Problem 5.2. More generally, is it true that
{(w)<max {k, r(w)+1}?
Example 5.3. Let w(x, y)=x3+x*5-+xy°. Then we have k=8 and r(w)=3.

On the other hand, H(X, Y)=X3+X*Y+XY% Then we have {(w)=7.
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