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C°-sufficiency of jets via blowing-up
Dedicated to Professor Hirosi Toda on his 60th birthday

By

Satoshi KOIKE

Let erg (n, 1) denote the set of  C function germs: (R a , 0)— (R, 0 ) .  For a
function f  ee[](n , 1), j sf  denotes the s-jet of f  at 0 e R" (q s). f s (n, 1) is the set
of s-jets of function germs in e[o(n, 1). An s-jet z Er(n, 1) is called 0 - sufficient
in e[o(n, 1), if for any functions f, g in Cro(n, 1) such that j sf = j sg=z, there exists a
local homeomorphism a: (R e , 0)— (R,, 0) such that fo a = g .  Thus 0-sufficiency of
jets amounts to saying that all terms of degree >s can be omitted without changing
the local topological behavior of the realizations. Concerning a  characterization
of C°-sufficiency in  e [ s ](n, 1) o r et5 + 1 1(n, 1), th e  "Kuiper-Kuo theorem" is well-
known (see § 3).

In this note, we shall give another characterization of C°-sufficiency of jets by
using the "after blowing-up functions". In practice, this criteria is often easier to
check than the  above o n e .  Here we describe the results about 0-sufficiency in
ers i(n, 1) o n ly . Of course, similar results hold also for 0-sufficiency in ers + i i(n, 1).

The author would like to thank Professor T.C. Kuo for useful discussions.

1. Observation.

First consider the case n = 2 . Then, due to Lu Theorems ([8]), we can assume
the given jet is in Weierstrass form:

(*) w(x, Y) xk +Hk+i(x, Y) - - F...+Hk+r(x, y ),

where i i i (x, y ) is  a homogeneous polynomial of degree j  (k + 1 5  j5 k + r ) .  Then

w(XY, Y) = YkH(X, Y) ,

where H(X, Y)= X* + YHk+AX, 1)-1- • •• Hk+AX, 1).

Observation. Consider th e  level surfaces of the following three functions
around CI E R 2 :
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f o(x, y )=x  , f i (x, y )=x 2 —y3 , fz(x, y )=x 2 +y 4 .

Notice that although the paterns of their level surfaces are different from one another,
they are almost (intrinsically) the same outside the sector of R 2 containing the singular
part of their "tangent cone (the variety of the initial form)" {x = 0 } .  That is to say,
the initial form controls the behavior of a function outside the sector of R 2 containing
the singular part of its tangent cone.

L et us consider the  blowing-up of R 2  a t  0, r: ± i 2 - R 2 . The sector o f R 2

containing { x=0} is the image by 7r of an open set containing the intersection of
the exceptional variety and the strict transform o f {x=0 } in  a 2•

Thus the above observation gives rise to the following problem naturally :

Can we find certain conditions on H which control the behavior of w in the sector
of R 2  containing the singular part of the tangent cone?

We shall formulate such conditions for more general cases in § 2.

2 .  Results.

Let w: (R", 0)---4R, 0) be a polynomial of degree S k - ! - r ,  and  w be written as
follows:

w(x) = Z k (x )+G (x )  w ith  Z k $  0 and jkG =  0 .

17 : S n ' . -4 1 P n ' 1 i s  a  projection, and put 17 (a)=ã for a E S n
-

1 . We define A -=
OZ p _17( Z '(0) n S" - ') where (0) = , ( )  . . . = 0Z ,ER" I ( p ) = 0 }  and B M --
8x, ax„

E 0(n) I a(a)= e n o r  a(— a)= en (e,,= ( 0 , •.., 0, I))} for ãE A. F o r  a„GB[ei], we
write wa.( 0 =w0c7: i . Here we put

w..( a ) ( X„, • • • , X„ _ X„, X n ) = X„k 11, ( a ) (X i , • • • , X„) .

Then Z k o rr,:' i s  a  homogeneous polynom ial of degree k  a n d  7,,,oc;1 (e„)= 0.
Therefore Z k oa: 1 does not contain the term ax ,k  (a* 0 ) . Thus I-10.( a ) is a polynomial
with HOE(o)(0)=0. Then we have the following characterization of C°-sufficiency of
(k+r)-jets by using the "after blowing-up functions" 14 ( 8 ) .

Theorem 2 .1 .  For w EJk + r(n, 1), the following conditions are equivalent.
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1) w is 0-sufficient in erk .f r j(n, 1).
2) For any aE A , there exist a,, E B P], C,, >0, and a neighborhood Wa of  0  in

R 0 such that

aHea, x  a f i e,.( 0 ) \
1 ax, " ax„_,' " ax„

in Wa .

Remark. If for some a, E B[ã], there exists Ca >0 such that (**) holds, then for
any a a E B[ii], there exists C,,>0 such that (**) holds. In other words, the property
(**) does not depend on a a ; We merely use a a for the formulation.

Concerning the  proof o f the  theorem, we have the following inequality on
analytic functions.

Proposition 2.2. Let f: (R", 0)—*(R, 0) be an  analy tic function. For ei =0 or
1 

'
1 (i=1,—. , n), we put k = { i le i = 1 )-. I f  O<O<

N /

th e n  th e re  e x is ts  a neighbor-
Tc

in U.

As corollaries of the theorem, we have

Corollary 2.3. If  for any  (TE A , there exists cra EB[a] such that j r 110.( a ) is C 0-
sufficient in e[,](n, 1), then wEik + r(n, 1) is 0-suff icient in e[ k + ,.](n, 1).

Corollary 2.4. For the W eierstrass jet (*) wOEPH- r(2, 1) in  §1, the following
conditions are equivalent.

1) w is 0-sufficient in erk + ,42, 1).
2) There exist C >0 and a neighborhood U of 0 in R 2 such that

(8H
a\OX Y  al ly) I Y lr in U .

   

Corollary 2.5. L et w be in the Weierstrass form  ( * ) .  If i r  H is 0-suf f icient in

4 ) ( 2 , 1), then weJk+ r(2, 1) is 0-suf f icient in e[k+r](2 , 1).

3 .  Proof of the theorem and corollaries.

We start by recalling the Kuiper - Kuo theorem:

Kuiper-Kuo theorem ([1]— [3]). For z e r (n , 1 ), the follow ing conditions are
equivalent.

1 ) z  is 0-sufficient in e[o(n, 1).
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(resp. z is 0-sufficient in e[5 + o(n,1).)
2 )  There exist C > 0 (resp. 6>0) and a neighborhood U of 0 in R" such that

I grad z(x) I C lx l s

(resp. I grad z(x)I C lx  I  s - 8 ) in U .

We shall give the proof of the theorem. Therefore we consider a (k+r)-jet
w e  jk+ro l ,  ,‘.j For 8 >0, we put S8 (c1)= { xeS " --1 1 d(x , +a)<8}  and V 8 =  U  SBA .

aEA
We denote by Co (D) a cone of D with 0 E Rn as a vertex for a subset D of S n '.

Lemma 3.1. For any  6 > 0 , there ex ists b>0 such that

I grad Z 8 (x)I blx I 8 - 1 i n  C o (Sn - l— V8 ) n B1(0),

where B1 (0)— {xelel IxI

Pro o f . Put b= min I grad Z k(x)I >0. T hen  it is easy  to  see  the state-
xeSn - l — Vs

ment of this lemma.

By Lemma 3.1 and the Kuiper-Kuo theorem, we have the following:

( 1  )  jk+ rw is 0-suf f icient in EL ,,,l(n, 1), if  and only  if  there ex ist C, 8>0 and a
neighborhood U of  0 in R" such that I grad w(x) I C 1 x 1  k + r - 1  in  C 0 (V8 )nU, w here
C0 (V8 ) denotes a closure of C0 (V8) in R 8 .

Let Ak+r(W; e) (e >0) denote a horn-neighborhood -(xER 8 I I w(x)I k+r)-
(see [4]).

Lemma 3.2. For w E.P÷r(n, 1), the following conditions are equivalent.
1) There exist C, 8 > 0  and a neighborhood U of 0 in R" such that

I grad w(x) I c I x lk+r - 1 in C o (V8 )f l

2) For any ti A , there exist C., e 0 >0  and a neighborhood U. of  0 in Ir such
that

I grad w ( x ) C a l  x 1k + r - 1 C o ( S e g O )  n U 8 .

3 )  For any ei- e A ,  there ex ist a a EB[d] and C., 6 0 , 8 k > 0  an d  a neighborhood
of 0 in R" such that

I grad wk.( k )(x) Ca x I k + r - 1
 

in Co(S .„(e.)) n sik+ ,(w ..(a); ()a) n .
P ro o f  As A  is compact, conditions 1) and 2) are equivalent. It is easy to see

that conditions 2) and 3) are equivalent, by using Bochnak-Lojasiewicz inequality
([1] Lemma 2) and the fact a. e B[8].

Here we consider the mapping (blowing-up) r: (R 8 ,( R 8 ,  0 )  d e f in e d  b y
(x1 , •••, x 8 )=74X1 , •••, X .):
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x i X i X„, •••, x„_, X „ _ ,X „  , x „  =  X„ .

F or e  >0 , p u t  D, — {(X1, ••• X ,,)e ir  I I X 1I 5_e (1 j  n ) }  .  L et R ;(11e,); ea)
denote the set -(XeRnI 11-/Ø.(0)(x)1 ea  I X „I'l for r e N  and e, >0.

Lemma 3 .3 . For a. e B [a] (ilEA ), the following conditions are equivalent.
1) There exist Ca , e a , 8 ,> 0  and a neighborhood U; of 0 in R" such that

I grad wOE(a)(x) I C a  I xi k ÷ r  - 1  i n  C O (S egn )) n  cq i k + r(W er(a ); 0) fl U ; .

2) There exist C;, e; > 0  and a neighborhood W ; of 0 in R" such that

(ax..( a )a x e .), +X,  Ha ,  a )  E 81-10 .( 0 \
OX " ax„_, ax„ J=1 ax;

 

C; I X„

  

in -RA116.(o); eD n W ;

P ro o f  For an arbitarily small e, >0 (resp. e0 >0), there exists ef >0 (resp. e 1 >0)
and a neighborhood U of 0 in R" such that

( 2 )
r(D 4 ) c  Co (S,ye„))
(resp. CaS e g„))c  r(D e .)) in U.

- 1

For xE 41),), 2= (1 ± E  X )X !.  Therefore we have
J.1

( 3 ) IX .12 ix1221X n12 f o r  x e  7r(D e ) near Oe .

By an easy calculation, we have

( 4) grad we „) (X,X„, «•, X „_,X „, x.)
ax8 H  ( )k -1 ( 8 Ha(a) .  

a I I
 o(a) k H Xa 4 3.— E X ;   a  a  ) .ff aa x . Y=1 O X ,

On the other hand,

wo.(a )(Xi  X„, • • , X„ X„, X „)= X „k H, ( a )(X) .

Thus it follows from (2) and (3) that for ef,>0, there exist ea , 6„>0 (resp. for ea,
8a> 0 , there exists e; >0) and a neighborhood U' of 0 in R" such that

co(s.avo) n A k + ,(w o ( a ) ;  aa)c 70 w, ( a ) ; eD)
( 5 ) (resp. r(R;(1 -4(0); e )) CCo(S ea VD) n  k+r(w u(a); a ) )

in  U '.  Lemma 3.3 follows immediately from (2), (3), (4), and (5).

Lemma 3 .4 . For aa e  B[ii] (as e A), the following conditions are equivalent.
1) T here ex ist C;, e; > 0  and a neighborhood W ; of 0 in R" such that

(

8  H a(a) l i a ( a )  k H
6 '"
„ + x t i a H a(a)  n 'S- 4.

- ..91 -4 ,-(0 )
ax, ax. ax;

in 2 '( 1 1 , ( a ); e;)n W .
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2 )  There exist C', e;'>0 and a neighborhood IY ' of 0 in R " such that

(a fr o.( „)O H 0 ,, x  al-4 u ) )
ax, ' ' a x , , '  " ax„

Proo f . W e show the implication 2) l), by separating a  neighborhood of
0 E R N into the following two domains:

(i) Xt a x „ ) • a fr o.( 0 )a  Ha ( a)

ax, " ax„„ " ax„
a( r i „ )a f i cr,a ) )(ii)  5 ,aX, ax„

In the case (i), for X E . (H ( 0 ); e /)(1 we have

x„ Ir in R ; ( 11c,(0; O f - 1W:

 

(aHa.(a) a ll -a(0))
ax, " ax„„

 

(OH (,,)a r 4 ( a ) ,  x
ax, ' ' ax„ , ax„ )

 

2

 

c';' I x„Ir .

   

Thus we have

  

fa x „,a )af ro .(a)  k H  + X „ a H a(a)x .  a l l -(a))ax, ' ax„ ' ax ;
CT IX.I r .2

 

I n  the  case  (ii), x  aH°(a) al-4w5 . / . 1 1 - 1 ) .  S i m i l a r l y  a s  (i), w e  haveax„ ax;
x     ix  r  for X e g2,;(1 47(a); e'z')

n ax ,, —  2
c  n W  where C 'D ; sufficiently small and 0<e minf ' ,a el  we have
8 k   a

Thus, for X E R : (Hcr(a); eô)

(a fi c c o a ( a ) kH
o . ( a )

+ X
n

a I I -cox i
a l l a(a))1 ax, ' ' ax„„ ax„ j=i ax;

> x n aki 0 )i x . I  °Haw  klx„(01ax„ 1=1 ax;
a ly ()x„ a  —k1H ( 0 )1

— 2 ax„
C , ,a I X„I —keo lX„I IX„I .

— 4 — 8

W e can show the implication 1) 2) similarly as the above, by separating a
neighborhood of OE / i n  into the following two domains:

( &Haw a H a (a))
ax, " ax ,,„

1(a all .
; ( „) , . . . , ae xH,( ) )1

 

ak H ( a ) ± Xn G
 ( a ) x . a ,(„)

ax„ ax;
kHG  ( 0 + X.  H. 9  0.( a )x

' ax;
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By (1) and Lemmas 3.2, 3.3, 3.4, it suffices to show Proposition 2.2 (in particular,
the case k = 1 ) .  Here we consider the case k = n  o n ly . T he other cases follow
similarly.

Assume tha t the inequality (***) fails. Then, by the curve selection lemma
([7]), there exists an analytic curve A: [0, p)—> R" (p>0) with 2(0)=0 such that

( 6 ) a f a f X  •••, X„lax,' axn
< 01 f (X ) I

  

along 2— {0}. Let 2 be written as follows:

X i ( t)  =  W te i(o + W e 2 ( 0 + . . .

where 1 . 6 1(0<e2(i)< • ••

and k * 0 if X i(t)S 0
e ( i )  =  0 ° if X 1(t)=-0 ,

Define

( P ( t)= f (X ( t) )=a 1 t ° 1-ko2
t"2-4-..•

where 1 _ cei <ce,.< •••. Then P  is analytic. Furthermore, by (6), we can assume
that a i * O .  By (7), we have

OP ,(t) -= a, tè i - i+ a 2 a 2 t r 2̀- 1 + • • • .

On the other hand,

(II) 8P 
 ( t ) —  E

" 8f 
 ( X ( t ) )

8X i
( t ) .at at

We write
a f

 (x(t))= b 1 )tPi(o+w)02(0+...
ax,

. bçi)*o if 
a
f  (x(r))*oax,

191(i) = co if 
a
f  (x(t)) a-  0 , (l i n) .

8X ;

Then it follows from (6) that

a l  ei(i)+ fii(i) n) •

Without loss of generality, we may assume that

a l=  61(0 -1- fi1(i) (1 S i S i o )

< e1(i)+ P1(i) (i0+ 1 5 i S n ) ,

(I) at

where
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where OS i, S n .

Remark. For 1Si S i°, the following facts hold.
1) Since a1 *0 , we have 1 a1< 0 0 . It follows that e,(i), 191(0<co, k 1(i) # 0  and
b1(i) #O.
2) e1(i) 5 a 1 .

By (6), we have

( 8 ) ElkY'bY ) 12 _ 81ail.

Finally we compare the absolute value C, of the coefficient of t e ' - ' in (I) with the
absolute value C,I of that in (11).

io

1E kÇ 1 e 1(i)b' ) 1i =1
io

VV) ) 1(0 M"1 2
i=1

Nri-
o
-  I al I ■A lIc Y ) 1À ) 12( b y  R e m a r k  2 ))

(by (8))

< =C I

This is a contradiction.
This completes the proof of Theorem 2.1.
It is easy to see Corollary 2.3 by using the Kuiper-Kuo theorem and Theorem

2.1. Corollary 2.4 (resp. Corollary 2.5) follows immediately from Theorem 2.1
(resp. Corollary 2.3).

4 . Examples.

We shall give first examples to show that it is easier to check the hypothesis of
corollaries than that o f the  Kuiper-Kuo theorem . Exam ple 5.3. (which will be
stated in § 5) is one of such examples too.

Example 4.1. L et iv(x, y)—xw—lOxyl l . Then we have k - 10 and H(X, Y)=
r ° -10XY 2 . It is easy to see that the condition 2) in Corollary 2.4 is satisfied for
r= 3 . Thus it follows that we P 3(2, 1) is 0-sufficient in e[ 10(2, 1).

Example 4.2. Let w(x, y)=x 2 -2xy 5 0 . We put

w(X Y , Y) = Y 2H 1(X , Y) ,
H k (X Y , Y) = Y 2 14+1(X , Y ) (1 S k S 4 8 ) .

Then i 2 H 4 9 =  X2 -2XY e J 2 (2, 1) is 0-sufficient in 8[2)(2, 1). By applying Corol-
lary 2.5 49 times, we can see that wEP 0 0(2, 1) is 0-sufficient in 4 001 (2, 1).
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Next we give an example which is related to results in this note and some other
facts in "Singularity Theory".

Example 4.3. Let P i (x , y )=x 3 +3x y 8 + ty1°. We put P,(X Y , Y )=Y 311,(X, Y )
and 11,(XY, Y 3 G 1 ( X ,  Y ) . Then we have H,(X , Y )= X3+3XY 6+tY 7 and
Gi (X , Y )=X 3 -F-3 X V + t r4 .

For t *0 ,PG ,(X , Y )=X 3 +t Y4 is 0-sufficient in e [ 4 ] (2, 1). Therefore X3+ tY4

is 2Z-C° equivalent to X3-1-3XY4-1-1 Y4 for t *O. Hence it follows from the proof
of the theorem in this note that x 3 +ty "  is R -C° equivalent to Tx3+ 3x y 8+ ty 10 for
t * 0 .  Thus we can omit the lower ordered term 3xy8 from x3+3xy 8-1-ty", using the
notion of sufficiency of jets.

On the other hand, by the Kuiper-Kuo theorem, P P ,=x 3 +3x y 3 is 0-sufficient
in e[ 9](2, 1). Thus A.-3+3xy 8 is ..R - 0  equivalent to x3+3xy 8±tyi °  for any t. (T.C.
Kuo has pointed out to me that .x3+3xy 8 is not "blow-analytic equivalent" (in his
sense [5], [6]) to x3±3xy 8-Fyi

.o
.) Note that x 3 +3x y 8 is  a  weighted homogeneous

polynomial of type (1  - 1- )  with an isolated singularity. The weight of y '  equals
3 1 2

—
5

< 1 .  In this case, x3+3xy 8 controls the behavior of the lower weight term t y '
6
(Compare [9]).

5. The converse problem.

When we consider the problem of omitting lower ordered terms by using the
notion of sufficiency of jets, the converse problem of Corollary 2.5 is important too.
Consider a polynomial w(x, y )=x k +G(x , y) with an isolated singularity and jkG=0.
Then there exists s u c h  t h a t  jk+rw is C°-sufficient in et k + ,42, 1). Let k+r(w )
denote "the degree of C°-sufficiency of w", namely the smallest integer having the
above property. Then we put w (X Y , Y )=Y k H(X , Y ). It follows that H  also has
an isolated singularity at 0. Similarly there exists 1 1 such that j ` l-/  is C°-sufficient
in e[1](2, 1). Let /(w) be the degree of 0-sufficiency of H .  Here we put

A r = ix k +G
G: polynomial of deg. jk G  = 0
ik fr(x k+ G) C

°
-sufficient in e u +ro , 1) •

 

Then the following fact follows easily from Corollary 2.5.

/(w) r for a n y  w

We now make some remarks on the converse problem without proof.

Proposition 5.1. For w e A r ,

/M S max fk, r+1, r(k - 2)+11 .

Remark. In the above proposition,
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1) W e can replace r by r(w);
2) If k_.<_ 3, then /(w) max {k, r(w)+1}.

Problem 5.2. More generally, is it true that

/(w)<max r(w)+11?

Example 5 .3 .  Let w(x, y)=x 8
- 1--x4y 5

- {- xy 9 . T hen w e have k= 8 and r(w)=3.
On the other hand, H(X, Y)=X 8 H-X4 Y+ X I I ' .  Then we have 1(0=7.
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