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A fine microlocalization and hypoellipticity
By

Yoshitsugu TAKEI

§0. Introduction

In the present article, we shall consider microhypoellipticity of the pseudo-
differential operator P = p(x, D) in R%. Recall that P is called microhypoelliptic if

(0-1) WF(Pu) = WF(u) for ued&'(RY).

(See Hormander [7], Definition 13.4.3). Microhypoellipticity of P implies hypo-
ellipticity of P. In particular, we are mainly concerned with microhypoellipticity
of P at a point (xo, %) of R? x §9!, which means that (0-1) holds at (x,, £°).
(For the precise meaning, see Definition 3 in §1 below). As is well known, if an
operator is elliptic at (x,, £°), then it is microhypoelliptic at the same point. This
important theorem is based on the fact that ellipticity at (x,, £°) implies ellipticity
on a conic neighborhood of (x,, £°). To study an operator on a conic neighbor-
hood of a given point is a key idea of the so-called microlocal analysis. On the
other hand, there are cases where an operator P is not elliptic on any conic
neighborhood of a point (x,, &%), but if we divide a conic neighborhood into finer
pieces, P can be regarded as ‘elliptic’ on each of them. Such finer pieces will
be named “I-parabolic neighborhoods” of (xo, £°). And we would like to call
this subdivision a “fine microlocalization”. In this paper we discuss microhypo-
ellipticity from the viewpoint of the fine microlocalization.

Let us explain our idea briefly by giving an example. We take up the heat
operator P = 92/0x? — d/0x,, which is not elliptic but microhypoelliptic at (x,, £%) =
(0, (0, 1)). We consider this operator on the following subset of R? x R2.

Wop={(x,E)eR? x R2|EE< |18, &,>0, Ix|< 1} (O<a<b<),
or
Wopp={(x,E)eR*x R?||&] <&, &,>0, |x|<1} (0<b<).

We call such a subset a I'-parabolic neighborhood of (0, (0, 1)). In our terminol-
ogy, P is elliptic on W_,, ,,, because P can be regarded as an operator of the first
order on W_, ;,, and the term §/0x, guarantees the ellipticity of P there. On the
other hand, P can also be called elliptic on W, , if we choose 1 > b>1/2 and a
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(< b) close enough to b. On W, ,, the term 0?/0x} dominates 0/0x,. The union
of W_g. 1, and two of W, ;s fills a conic neighborhood of (0, (0, 1)). Therefore we
can conclude, by our Thecem 1, that P is microhypoelliptic at (0, (0, 1)). (See for
details §1 and §5).

Concerning the anisotropic wave front set, there are some works, for example
Lascar [9], Parenti-Rodino [13], Rodino [14], etc. They considered such wave
front sets in the study of quasi-homogeneous or, more generally, spatially inhomo-
geneous pseudo-differential operators. In particular, in [13] Parenti and Rodino
investigated the relations between the usual microhypoellipticity and the micro-
hypoellipticity with respect to such wave front sets. Our idea is to consider
I-parabolic neighborhoods which are similar to such wave front sets, and to
divide a conic neighborhood by making use of them.

Now it is the microlocal energy method of Mizohata that we use practically
in considering the fine microlocalization. Mizohata initiated it for the study of
the Caucy problem, the characterizations of the analytic and the Gevrey wave
front sets, and so on. (See Mizohata [10], [11], [12]). We believe that his
method is quite elementary and straight-forward. In this article we use this
method in a little modified manner, which is more suitable in some examples for
discussing the regularity in the C* class and in Sobolev spaces.

The fine microlocalization seems to be very useful in the study of microhypo-
ellipticity. As a matter of fact, we can show the microhypoellipticity of the
operator which is more degenerate than the elliptic-like operator as the heat
operator. As an example we are going to deal with a differential operator
P, = (0/0x)*™ + x(0/dy) where m is a positive integer. When m = 1, this is the
simplest one that satisfies the criterion of Hérmander [4] on the commutator of
vector fields. In §6 we shall prove the hypoellipticity of P, by full use of
I-parabolic neighborhoods. We expect that in future the method studied here
will produce plenty of results, say the hypoellipticity of a class of operators
including P,,.

The plan of this paper is as follows: In §1, we define the I-parabolic
neighborhood and state our main result (Theorem 1). In §2 and §3, we explain
the basic calculus of the fine microlocalization, making use of the microlocal
energy method. The proof of the main result will be given in §4, and some
examples will be studied in §5 and §6. Finally in §7, we will prove the funda-
mental propositions stated in §2.

Acknowledgment. The author is deeply indebted to Professors S. Mizohata
and N. Shimakura for invaluable suggestion and encouragement.

§1. Main Result

Let x = (x,,"", x,) and & = (&,,-**, &) be the independent variables running
over R? respectively. Fix a point (xo, %) € R? x (R?\0), |£°| = 1. We shall define
the notion of the I'-parabolic neighborhoods around (x,, £°) in general.
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For simplicity we assume x, =0 and £°=(0,---,0,1). If it is not so, we
take an orthogonal matrix T such that (0,:-+,0,1)= T¢° and introduce new
coordinates y and # as follows:

y=T(x_x0)s n=TE.

Then (x,, £°) corresponds to (y,, #°) = (0, (0, -, 0, 1)) in the new coordinates. So
the argument is reduced to the case (0, (0, - -, 0, 1)) by using (y, n) instead of (x, £).

In accordance with the operators (or the distributions) and (x,, £°) we want
to treat later, we associate some weights K and L to & = (&, -, ¢,_;) and
x. Thatis, let K =(K,, -, K,-;)and L = (L, -, L,) be vectors whose elements
are non-negative integers, and set

[ér]K — (Z/ éjZl(j)l/(Z max K;) ,
[x]L — (Zu XjZLj)I/(Z min Lj) .

Here )" (resp. }.") denotes the summation which runs over j satisfying K; # 0
(resp. L; #0). With this notation, the Euclidean norm |x| in R? is equal to
[x]i..1)- We fix K and L as well as x, and &° until we deal with examples.

Definition 1. A subset W (or W, ., )of R* x R? given by
(1-1) Wr={(x,{)e R x R*| AL} < [¢']x < BE,
G < X)L < HEGM E >0, (&) < ey, |x] <&}
is called a I'-parabolic neighborhood of (x,, £°) = (0, (0, -+, 0, 1)).

Here I stands for the set of parameters x,, &% K, L, a, A, b, B, g, G, h, H and
e As x4, £% K and L are fixed, we denote it abbreviatedly in the following

manner:
a b g h
r_<A B G H 8)

where 0 <a<b<1,0<h<g<1and A4, B, G, H, ¢ are positive.

Remark 1. In the above definition of W, we admit a = —oo. In this case
we replace the condition A& < [&']x < BEL in (1-1) by [£']x < BEL and write

b g h
r={- .
< ® B G H 8)
We also admit g = +o0 in the similar way, denoting
Ir= a b +0o0 h
“\4 B H °)

Remark 2. When K =(0,---, 0), the subset we consider is only the following:
Wr={(x,{)e R x RY|G&? < [x], S HE", &> 0, || < ey, x| <e}.



130 Yoshitsugu Takei

In this case we write

r— g h
_<¢ ¢ G H 8>'
We do the same when L = (0,---, 0).

Remark 3. A I'-parabolic neighborhood is not a neighborhood of (x,, £°) in
the proper sense of the word. But it is really a neighborhood when a = —co (or
K=(,...,0) and g = +0 (or L =(0,---, 0)). Particularly, if I" is one of the

followings:
1 0 0
<—oo B +o0 H s), <¢ ¢ +oo H e>,

(<0 56 0c) waoso0

then a I-parabolic neighborhood is nothing but a conic neighborhood of (x,, &°).
In the sequel, such a I" will be denoted by I'°. (When all of Kjs and Lj’s are
equal to zero, we consider only I"°).

Remark 4. In [9] and [13], Lascar and Parenti-Rodino also deal with such
subsets of R x R% The subsets they consider are the following [I-parabolic
neighborhoods in our terminology.

oo (=aee)

Definition 1’. For a I'-parabolic neighborhood W we put
pr=a and or=g.

In case a = —oo (resp. g = +0), we define pr = b (resp. = h). When all of K;’s
(resp. L;’s) are equal to zero, we define pr = 1 (resp. 6 = 0).

pr and O are often abbreviated to p and 6 when no confusion arises. In order to
make calculations meaningful, we impose the essential restriction pr > d,.

For a I-parabolic neighborhood Wy we often call another Wy, given by
substituting A —rq, B+ry, G—ry, H+ry, e +1ry (rg>0) for A, B, G, H, ¢
respectively, a neighborhood of Wy. 1t is obvious that Wy > Wp.

Hereafter we are going to study the pseudo-differential operators by full use
of I'-parabolic neighborhoods. So the behavior of a given operator on W comes
into question. Let S)'; (0 < J < p < 1) be the class of symbols of order m defined
by Hormander [3]. That is, p(x,¢)e C*(R? x RY) belongs to Sy, if for every
multi-index y, v there exists a constant C, , such that

IpW(x, &) < C,, ((EYmPMIFM - (x E)e RY x RY,
where pl)(x, &) = 0f(—i8,) p(x, &), <&Y = (1 + |£]*)2. We say that p(x, &) e ST,
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is a symbol of order m’ on Wy or p(x, &) belongs to SP if there exists a neighbor-
hood W of Wy such that for any multi-index , v we have with a constant C, ,

Ip(x, &) < €, Y™ P (x, &) e Wr.
Furthermore let us define the ellipticity of an operator on W;.
Definition 2. We say that p(x,{)e ST, is [I-elliptic if there exists a

neighborhood W of W;- and positive constants Co, R such that on Wr-N{|¢| > R}
one of the following estimates holds.

(1-2) Re(zp(x, £)) = Co<E>™ ™7
for some ze C\0 and 0,0 < 0 < pr — O, Or
(1-3) Ip(x, &) = Cod&X™™°

for some o, 0 < o <(pr— 0r)/2. Here z and o are independent of (x, ) and we
are assuming that p(x, £) is a symbol of order m’ on Wj.

Properly speaking, we may as well say “I-subelliptic” ifistead of “I-elliptic”. But
we use the above terminology for the sake of simplicity.

Now we consider microhypoellipticity of a given operator P = p(x, D) (p(x, &) €
ST o) at a given point (xo, £°). We define the microhypoellipticity of P at (x,, &%)
as follows:

Definition 3. Let p(x, £) e ST'y. We say that P = p(x, D) is microhypoelliptic
at a point (x,, £%) of R? x S?°! when P satisfies the following condition:

(xo, °) € WF(Pu) if and only if (x,, £°) € WF(u) for ue&'(RY.

Here WF(u) denotes the wave front set of a distribution u defined in Hormander
[5], I1. §5. For ue 2'(RY) and (x,, %) € R? x $971, (x4, £°) ¢ WF(u) if there exists
a function {(x) e C2(R?) which is equal to 1 in a neighborhood of x, and a conic
neighborhood V of £° such that for every positive M we have with a constant Cy,

W) () < Cu<EH™,  LeV.

Here and in what follows, ¢ denotes the Fourier transform of v e &#'. Note that, if
P is microhypoelliptic at every point of R? x §¢7!, then P is (micro)hypoelliptic.
The main theorem of the present article is:

Theorem 1. Let p(x,¢) € ST,. Suppose that there exists a family
{Wr,}1<j<ys of I-parabolic neighborhoods of (x,, &%) satisfying
(@) p(x, &) is T-elliptic for every j,
J
(b) {J W, contains a conic neighborhood of (x,, £°),
j=1

(c) max or, < m?n Pr; -

J J
Then P = p(x, D) is microhypoelliptic at (x,, £°).
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The proof of this theorem will be given in §4.

Example. Let us consider the heat operator P = §2/0x% — 8/0x, at (0, (0, 1)).
We define I and W, (j = 1, 2, 3) as follows:

1/2
ﬂ=<—00 { ¢ ¢ 1>, Wi ={(x O1& 1 <& & >0, Ix[ <1},

I

(112 aw 1>, Wy = {(x, &) | &2 <& < &8 & >0, x| < 1},

13

(‘1) i ¢ ¢ 1>, Wy ={(x I <& <&, &>0, x| <1},

where p is a real number satisfying 2/3 < p < 3/4. Then P is I}-elliptic for each j
with

m=1, g=0 on W,
=2p, =2p—1 on W,
=2, =2—2p OnW3.

It is also clear that this {I}};-, , 5 satisfies the conditions (b) and (c). So Theorem
1 implies that P is microhypoelliptic at (0, (0, 1)). Again in §5, we are going to
consider a class of operators including this operator P and to show its (micro)
hypoellipticity.

§2. Preliminaries

In this section we explain some terminologies which will be used throughout
this paper. First we construct cut-off functions. Let ¢(t) be an element of
C*(R?) satisfying 0 < @(t) < 1, ¢(t) =1 on (—o0, ry/2] and ¢(t) = 0 on [ry, +o0).
Moreover, given positive numbers S,, S,, 8 and real numbers s,, s,, we put

051t %2t
52534 ) = 1 — —1)—1.
Verisi:0) <p< S ) " ¢< Sz )

Using this function, we define cut-off functions as follows:

of() = 2T (S 1 v,

BI(x) = Yl ([x]L: n)w(% - l>,

where n is a large parameter. Therefore, our cut-off functions depend on n, r, and
. In case a = —oo we define simply

st = o5 1) (Bl )uticin.
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We define B/ (x) in the similar way when g = +00.
Definition 4. A pseudo-differential operator A7(x, D) defined by
AL(x, Dyu = oI (D)(B] (x)u)  for ue 2'(RY)

is said to be a microlocalizer attached to Wr. We call r, in the definition of of
and B! the size of microlocalizer. (Usually we choose it small).

Notice that Af(x, D)e S™® for each n, and so A(x, D)u e ¥ (R%) for every ue
2'(RY).

By definition there exist positive constants C, and C, independent of £, n and
I' such that we have

2-1) Cin<{&><Cn onsuppo,(8).

Furthermore we see that for every u, v there exist constants C, ,, C, , independent
of n such that

2-2) |0 e () < Cy,un ™M,
10287 ()] < Cy, 0.

From these estimates we can derive some fundamental properties of microlocal-
izers. Before stating them, let us introduce a few of notations.

Definition 5. 1) I'c I'" (or Wy ¢ W) means that WH(R) = Wr.(R) when R
is large, where WpR)= WrN{&; =R}. Similarly I'cc I (or Wrcc Wr)
means that Wr(R) is relatively compact in Wr.(R) when R is large.

2) ol(¢) =< al"(¢) means that ol '(¢) = 1 in a neighborhood of the support
of al(¢) when n is large. It is the same for g/ (x) c < B (x).

3) Al(x, D) c<= Al'(x, D) means that of, B and «f", B!, corresponding to
AF and A" respectively, satisfy «f cc o« and B =< pI". When Af(x,D) cc
A (x, D), we say that A%(x, D) is subordinate to A%'(x, D).

Remark. It may happen that a microlocalizer is subordinate to another even
if they are both attached to the same I-parabolic neighborhood, because of the
difference in the size of them. If it is so, we are going to use the notation
A cc A in the sequel.

Definition 6. 1) We say that a sequence of real numbers {a,} depending on
parameter n is rapidly decreasing or negligible if n™|a,| >0 for any positive
number M when n tends to infinity.

2) We say that a sequence of functions {u,} depending on n is negligible if
the sequence of numbers {||u,|} is rapidly decreasing when n — co.

3) We say that a sequence of pseudo-differential operators {p,(x, D)}
depending on n is negligible if p,(x, D) e S™® for every n and {|p,|{™} is rapidly
decreasing for any m and [ when n— co. In this case we write {p,(x, D)} € S,,.
Moreover for two sequences of operators {p,(x, D)} and {q,(x, D)} we use the
following notation:
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pa(x, D) = q,(x, D)  (mod S,,,)
when {p,(x, D) — g,(X, D)} € S,
Here |p|™ = max sup{|p®(x, &)[<E)y~™ W)} and | || stands for the L*-norm in

lu+v| <1 (x,8)
the x-space RY. We should remark that, as is easily seen, for any ue &'(R?)

{p.(x, D)u} is negligible when {p,(x, D)} € S,,,.
Now one of the most important properties of microlocalizers is the following:

Proposition 1. 1) {Al(x, D)} is a bounded subset of SO, when n tends to
infinity.

2) Suppose that {p,(x, &)} is a bounded subset of STo. If AL cc Al and
max (6p, 6r.) < min (pr, pr-), then

{AF(x, D)p,(x, D)(1 — A7 (x, D))} € Syeq
{(l - A[’(X, D))Pn(x» D)A,f(x, D)} € Sneg .

The same conclusions hold if AT < AT and {Pa(x, &)} is a bounded subset of S}, ;
where max (or, ér-. 6;) < min (pr, pr, p1)-

As is seen below, this proposition is very useful in applications. We will prove it
in §7.
Next we consider the microlocalization of symbols.

Definition 7. For p(x, {)e Sy, we define the microlocalized symbol to
Wr by

Pl ioe(x, €) = BY(x)P(x, &)l (&) .

Remark. Because the microlocalized symbol is defined by using cut-off func-
tions, the microlocalized symbol depends on r, as well as n and I, though it is not
explicitly written in the above notation. We often call r, the size of microlocal-
ization (or the size of {p; ,.(x, &)}).

Under this notation we say also that p(x, &) e S if and only if {p] ,.(x, &)} is a
bounded subset of S)'s when n tends to infinity.

Proposition 2. For p(x, &) € ST, we have
p(x, D)AT = plioelx, D) A7 (mod S,,) .,
Arp(x, D) = A;py 1o, D) (mod S,e,)
if the size of AL is smaller than a half of the size of {pl..(x, &)}

We will prove this proposition in §7 together with Proposition 1. This propo-
sition shows the importance of the microlocalized symbol. For example we
obtain the following estimates from above.

Proposition 3. Suppose that p(x,E)e SP and ue &'(RY). Then there exist
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positive constants Cy, C,, ¢ and negligible sequences {a,}, {b,} such that, if the size
of AL is smaller than e, we have for all n

(2-3) Ip(x, DYAfull < C;n™ || Afull + a,,
(2-4) 147 p(x, D)ull < Con™ (| Ayull + b, ,
where AT =< AT, The constants C,, C, and ¢ are independent of u.
Proof. By assumption we can take the microlocalized symbol p,f c(X, &) so
that {p[,c(x, &)} is a bounded subset of S™;. In other words {n™™p[ ,.(x, &)} is a

bounded subset of S?,, because (2-1) holds. So by the theorem of L*-bounded-
ness of Calderon-Vaillancourt [1] there exists a constant C such that

(2-5) n" proex, D)oll < Cllo]l  for ve F(RY).
On the other hand, Proposition 2 says that
(2-6) Ip(x, D) Afull < |Ipaioc(x, D) Arull + a,

with a negligible sequence {a,}. By (2-5) and (2-6) we obtain (2-3).
By the way, Proposition 1 implies that with a constant C independent of n we
have

| 47p(x, D)ull < | 47p(x, D) A7ull + &,
< Cllp(x, D) Ayull + 4, .

where {a,} is a negligible sequence. Hence (2-4) follows from (2-3). Q.E.D.

§3. Finely microlocal smoothness

Let us consider the smoothness of a distribution on a I'-parabolic neighbor-
hood. First, we deal with the smoothness on a conic neighborhood Wr.. As
stated in Mizohata [12], the wave front set is closely connected with the micro-
local energy [ A1 °ul. (See also [10], [11]). That is, we can prove the following
proposition.

Proposition 4. Let u be a distribution in R%. In order that (x4, £°) ¢ WF(u), it
is necessary and sufficient that there exist a conic neighborhood Wro of (x,, £°) and
a microlocalizer AL® attached to Wro such that {|AL°ul|} is rapidly decreasing as
n— .

Proof. Let us notice that the cut-off function B/ °(x) doesn’t depend on
n. So we denote ! °(¢) and B °(x) by a,(£) and f(x) for short. Now if (x,, £°) ¢
WF(u), then there exist f(x) e CP(R?) which is equal to 1 in a neighborhood of x,
and a conic neighborhood V of £° in R? such that

(Bu) < Cy<E™, M=12-, el
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Hence, if the support of «,(£) is small enough to be contained in V for all n, we

have

loty(D)Bull* = 2m)™* Ja"(é)l (Bu)” (&)1 d&

<Cy f &M ds
nf2<|E<2n

< Cpn~2MHe M=1,2--.

Conversely let us assume that (A7 °u| = ||a,(D)Bu| is rapidly decreasing.

Take «i(¢) and B’(x) (j =1,2) in such a way that a! cc a2 cca, and f' cc

p? =< B. We consider a}(£)(B'u)"(¢). Observe that
sup lota (E)(B'w)* (E)] < llow(D)B ull L1 gy
< Goll(1 + |x[?)'an (D) B ul|

where | =[d/2]+1 and C, is a constant independent of n. Furthermore,
(1 + |x|?)'-a}(D)B u is the image of the inverse Fourier transformation of

(1 = 49 e, () (B'u)"(£)

— " )
= éz’%ai‘ (O)Fiae{((—i0,)'(1 + |x|?)) B u} .

(%~ stands for the Fourier transformation). Therefore

(1 + |x|*Yan (D)B'u

- 3 E o+ )

= L, a o).
Here we set

Bu(x) = vI7 (= DM(T + [x12)y 81 (0) -
So we have

Slép loa (E)(B'u)" (&)l < Co lvéz[ lloea ™" (D) B, (x)u]| -

Now
(3-1) o, "(D)B,(x)u = a,"(D)az(D)B*(x)B,(x)u

= a,"'(D)(o7(D)B*(x)) B, (x) (otn(D) f(x)u)
+ o, (D) (o7 (D)B*(x)) B (x) (1 — o, (D)B(x))u .
1

Because {a!”(£)} and {B,(x)} are bounded subsets of S;!§l and S? , respectively,
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the right-hand side of (3-1) is negligible by assumption and Proposition 1.
Therefore for every positive M there exists a constant Cy, such that

sup lon (E)(B'w)"(§) < Cpyn™

holds for all n. In other words there exists a conic neighborhood V of £° in R?
such that

(B'u) @) <Cu<&O™, M=1,2-, (EeV.
This shows that (x,, £°) ¢ WF(u). Q.E.D.

Taking this proposition into account, it is plausible to define the “smoothness of a
distribution on a I'-parabolic neighborhood” as follows.

Definition 8. A distribution 4 in R? is said to be smooth on W if there exists
a microlocalizer A/ attached to Wi such that {||AL ul|} is rapidly decreasing as
n— oo. In this case we write u € Cf (or u e C so,r1))

Once this notion is established, we can also express Proposition 4 in the following
way.

(xo, €°) ¢ WF(u) if and only if there exists a conic
neighborhood Wro such that u e C3, o, 1o, .

We should also remark that, if {|A]u|} is rapidly decreasing and AL cc Al
{1 4Tu]} is rapidly decreasing, too. In fact

Afu = ATATu + AT — AD)u.

Applying Proposition 1, the assumption implies that the right-hand side is neglig-
ible. In the same way we can prove

Proposition 5. C¥® < C®. provided that I'' = I" and max(6r, 6;.) <min(pr, pr).

Proposition 6. Suppose that p(x,&) € ST, and ue &'(R?). Then ue C¥ implies
p(x, Dyue CF. The same conclusion holds when p(x, ()€ S}, 5 and max(dr, 6,) <

min(Pr, P1 )

Proof. Assume that {||Alu|} is rapidly decreasing. Take ! so. that
A =< AL, Then we have

Alp(x, Dyu = ALp(x, D)ALu + ALp(x, D)(1 — AD)u.

The second term is negligible by Proposition 1. As for the first term, there exists
a constant C, such that for all n

147 p(x, D) Ayull < Con™|| Ay u]
by Proposition 3, so it is negligible, too. Q.E.D.

The following theorem is fundamental.
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Theorem 2. Let u be a distribution in R
1) If (x, &%) ¢ WF(u), there exists a I'° such that ue C3 ., for any
rcre.
2) Assume that ueCy po,r, (1<j<J) for some {I}} <j<; satisfying
J

max 6; <min p;. If | Wr, contains a conic neighborhood of (x, °), then
=1
(xo, £%) ¢ WF(u).

Proof. ) follows from Propositions 4 and 5. Let us prove 2). We assume
xo =0, &% = (0, , 1) and

C~

Wr, 2 {(x, &) e RT x RY[&; > 0, |8 S &y, X < &0} -

.
Il
—

Put

a; b g. h;
F = " J ] ] 3 f 1 S j < J 9
! <Al Bj Gj Hj 8l> or !

€= min ¢g;.
1<i<J
First we arrange A4;¢y and Béd (1 <j < J) together in the increasing order of
magnitude and number them as follows:

$, <8, <8< <8p.

Note that this order is independent of &, when &, is large. Doing the same
procedure as to G;&;% and H;&;", we get Ty, T,, --+, T,. Then define

WP = {(x, &) e R x R"IS,, <[k < Sp,

T, <[x].<T, {>0 &1 <6y, |xI< &}

for ISp<P, 1<qg<Q Here weregard S, = T, =0. Each W} is nothing but
a I'-parabolic neighborhood. It is easy to see that

1°)  {W}} is a refinement of {Wr.}, that is for any
(p, q) there exists a j such that WP < W,
2°) max ¢} = max §;, min p} = min p;,
3 U W"D{x &)1& >0, [&] <eoly x| < g}
p.q
The properties 1°) and 2°) imply that u is smooth on every W[ due to
the assumption and Proposition 5. Let 429 = oaf(D)Bi(x) be a microlocalizer
attached to WP such that {|a?(D)fi(x)ull} is rapidly decreasing. Now we will
show that the smoothness of u on WP and W}, implies the smoothness of u on

W= (S, S[E1k<S,, Ty < [xIL < Tpir} -
Take a7, B2, B*! so that 47 c < af, B2 =< B2, fi*! =< Ba*!, and put

B(x) = min (Ba(x) + BTt (x) , 1).
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Then 4, = &2(D)B,(x) is a microlocalizer attached to W. Now A,(x, D)u is decom-
posed into three terms:

(3-2) A, (x, D)u = &2(D)Biu + aE(D)Bi* u + aP(D)f,u

where

Jnx) = Bu(x) = (Bi(0) + Bt (%)

The first two terms on the right-hand side of (3-2) are negligible. Taking {? in
such a way that ¢ c < (¢ cc f4, we obtain

&R (D) fou = a7(D)L fou
= @AD) NS (D)Bu + (@ (D)N (1 — a2 (D)Bu

since supp f, = supp B2 So the third term on the right-hand side of (3-2) is also
negligible. Hence u is smooth on W.

Repeating this procedure, we see that u is smooth on WP ={S,_, < [&]x <
S,, x| <&} from the property 3°). In the similar way we can prove that the

smoothness of u on W” and W?*' implies the smoothness of u on {S,_; < [&']Jx <
Sp+15 1x] < &}. Therefore u is smooth on {&, >0, || <&, |x] < 80} Then
the theorem follows from Proposition 4. Q.E.D.

Here let us consider the smoothness on Wy in the sense of Sobolev space.

Definition 9. We say that ue 9'(R%) belongs to H} (or H} ..r) if there
exists a microlocalizer A7 attached to W; such that ||ALu| = O(n™*) as n - .

We note that a, = O(n~™) means that there exists a constant C such that |a,| <
Cn™M for large n. For H} we have the analogous results to C® case studied so
far. For example,

1) + < Hy provided that I < I" and max (0r, 6y) < min (pr, pr).
2) Suppose that p(x, &) e SF and u e &(R?). Then u e Hf implies p(x, D)u €
H™.
However, to state the analogy of Proposition 4, we need a slight modification as

shown in Mizohata [12]. Let us recall here the definition of the wave front set in
the sense of H*.

Definition 10. For u e 2'(R?) and (x,, £°) € R? x (R%\0) we say that (x,, £°) ¢
WE(u) (or u € Hi, ), i there exists a function {(x) e C2(R?) which is equal to 1
in a neighborhood of x, and a conic neighborhood V of &° such that

j <P (QE)1? de < +o0 .
Vv

(See Hormander [6], p. 11).

Proposition 7. The following two conditions for a distribution u in RY are
equivalent.
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(@) (xo, &%) ¢ WFy(u).
(b) There exist a conic neighborhood Wro of (xo, £°) and a microlocalizer AL°
attached to Wro such that

(3-3) S 1A ul?n? 7 < +oo.

Corollary. Let u be a distribution in R

1) (xq, &°) ¢ WF(u) implies u e H,, e, roy for some conic neighborhood Wro.
2) (xq, £°) ¢ WF(u) if u€ Hi w0, roy for some I'° and an ¢ > 0.

Proof of Proposition 7 and Corollary. As in the proof of Proposition 4, we
denote the cut-off functions ol °(£) and B°(x) attached to a conic neighborhood
by «,(¢) and B(x) respectively. Also in this proof we denote by C constants
independent of n in general.

First we assume (xo, £°) ¢ WF(u). By definition, there exist B(x) e C§(R?)
which is equal to 1 near x, and a conic neighborhood V of £° in R such that

(3-4) L (Bu) " (€)IP<EH> dE < +o0 .

Take a cut-off function a,(£) so that supp a,(£) = V. Then we have by (2-1)

(3-3) loty(D)Bul|*n = 2m)~* J 0,(&)*1(Bw) *() 1> d& - n?
14

< CJ 2, (&) 1(Bu) (&)< EH* dE .

Corollary 1) is an immediate consequence of (3-4) and (3-5). On the other hand,
(2-1) also tells us that for any &

Y %, (&)?/n < y 1/n < C,/C, .
n (EXIC2sn<(EHIC,

Hence

2 e (D)Bul?n®7t < C ) L (@a(€)*/m)I(Bu)"(£)12<E > dE

< CJ 1(Bu)"(E)IP<E>* d&
Vv

< +00.

Therefore (a) implies (b).

Conversely let us assume (b), that is (3-3) holds for some microlocalizer
A = 4, (D)B(x). We can choose positive constants C;, C; and a conic neighbor-
hood V of £° such that

() =1 on {LeV|Cin< &) <Cynj.
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Then, when || is large, we have

Sa@n= Y 1n>C>0
n {EICT<n<{&H/Ch

where C, is independent of £. Therefore

v =R (] 2
< Z J\C!n(i) [(ﬂu) (é)lz dé . nzs—l

=CY [A%u]2n® ™! < 400,
n

when R is large enough. Therefore (a) holds.
Finally Corollary 2) follows easily from Proposition 7, because u e Hj
implies
YA ul2n T < Y (ne 2

=Y < oo, QED.

The next theorem is the analogy of Theorem 2 for Hf. The proof is the same as
Theorem 2, so we omit it.

Theorem 2'. Let u be a distribution in R4
1) If (xo, &%) ¢ WF(u), there exists a I'° such that ue H .r, for any
rcre.
2) Assume that ue€ Hi, co,r, (1<j<J) for some {I;}1<j<s satisfying
J
max §; < min p;. If | Wr, contains a conic neighborhood W, o, o), then ue

j=1
S
H(xo,éo;r")'

At the end of this section we give some examples.
Example 1. Let us consider a function u,(x) = exp (ix™*) on R!, where k is a -
positive integer. u, has a singularity at x = 0. Observing this singularity from
the viewpoint of I'-parabolic neighborhoods, we see that u, is smooth on the

following W. Here we are considering at (x,, €°) = (0, 1). (The same conclusion
holds at (x,, %) = (0, —1)).

5, 0
(a) r1=<¢ b 1), 8 < 1)tk + 1).

(b) r2=<¢ ¢ +oo ‘512 1), 1k +1)<d, <1.

In fact, if we put



142 Yoshitsugu Takei

vi(é) = j —ix¢ BLi(x)u,(x) dx for j=1,2,

we get the following estimates for v}(&):
IGEM vy (&) < Cpyn® O™ M =1,2, -,

where C,, denotes a constant independent of n. Hence we have with another
constant C,

loe, (E)vL(E)] < Ciy {6,(k+1)~1}M

for all M, showing the smoothness of u, on Wy .
Let us now observe u, on Wr,. u, is a solution of the differential equation:

x**1(0u/ox) + kiu =0.
So we have for all M

on(&) = l/k)Mj (x)p(x, D)M(e™"** B, 2(x)) dx .

Here
p(x, D)u = (8/0x)(x***u) = (k + 1)x*u + x**(0u/0x) .

By this formula we get
|, (E)VR(€)] < Cgntt 72+

for all M with a constant C,, independent of n. Therefore ux is smooth also on
Wr,.

2

Example 2. Next we take up a function u(x) = f(x,/x?) on R?*(f(t) e Z(R)).
It is easily seen that u is infinitely differentiable except at x = 0. Furthermore the
wave front set of u consists of two points in R2 x S!, that is (0,(0, 1)) and
(0, (0, —1)). Considering (0, (0, 1)), ge'we get the following results.

o1

(a) ueCp whercl’=<l 1

o ¢ l), if p, > 1/2.

P2

(b) ue HP'?~" where I' = (—oo |

s ¢ 1), it o, <12

In order to show these results, we have to consider the Fourier transform of
B(x)u(x) where B(x) is a function of CP(R?) and equal to 1 near x = 0. However,
it suffices to look at (&), because the Fourier transform of (1 — f(x))u(x) is rapidly
decreasing with respect to £.  Now #(£) is easily calculated:

&34, /&) (&, >0)
) =< — f fleyde-8"E)  (£,=0)

_fz)_mgz(él/\/ =& (£, <0



A fine microlocalization and hypoellipticity 143

where §” denotes the second derivative of the d-function on R' and g, and g, are
the functions of single variable defined by

g:1(0) = f(3)2,  gy() = f(—*)e2.

The above results follow from this explicit form of 4(£). Moreover, if §,(7)
satisfies

§1(0) = (8.4,)(0) =--- = (8, '4,)(0) =0,
then we get a better result than (b):

(©) ue HpQR=pau+az)-34

where F=<—oo ﬂlz o ¢ 1) and p, <1/2.

We should remark that, if we estimate the order of singularity of u in a conic
neighborhood of (0, (0, 1)), we can assert merely that ue Hp3*. This value —3/4
is equal to the one we get by choosing p, = 1/2 in (b) or (c).

We can prove similar results for a function f(x,/x¥) on R? where k is a
positive integer and f(t) e #(R?).

§4. Proof of Theorem 1

First we remark that by Propositions 4 and 6 we have WF(p(x, D)u) ¢ WF(u)
for any p(x, ¢)e ST, and u e &'(RY). Therefore, in order to prove Theorem I, it
suffices to show that (x,, £°) ¢ WF(p(x, D)u) implies (x,, £°) ¢ WF(u) for u € &'(R?).
This follows from Theorem 2 and

Theorem 3. Let (x,, £°) be a point of R? x $%' and Wy be a I-parabolic
neighborhood of (xo, £°). If p(x, &) e ST, is I-elliptic, then p(x, D)ue C§¥ implies
ueC® for ue &' RY.

Admitting this theorem for the moment, let us prove Theorem 1.

Proof of Theorem 1. Let p(x, &) be a symbol satisfying the conditions in the
theorem. Assume that (x,, %) ¢ WF(p(x, D)u). Then there exists a conic neigh-
borhood Wy such that p(x, D)ue CF for any I'c I'°. We put W, = Wr,N Wro
forj=1,--, J. Then p(x, D)u is smooth on W for every j and {W/} <<, is a
family of I'-parabolic neighborhoods of (x,, £°) satisfying the conditions (a), (b)
and (c) in the assumption of Theorem 1. Hence u is smooth on W, for every j by
Theorem 3, and so we have (x,, )¢ WF(u) by Theorem 2. Thus we have
proved Theorem 1. Q.E.D.

The rest of this section is devoted to the proof of Theorem 3. We need an
estimate from below.

Proposition 8. Let (x,, %) € R? x 7 and Wy be a I'-parabolic neighborhood
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of (xo, °). Suppose that p(x, &) e SF is Ielliptic. (See (1-2) and (1-3)). Then
there exist positive constants ¢, N and a negligible sequence {a,} such that, if the
size of AL is smaller than & and n is larger than N, we have

IpCx, D) A7 ull = (Co/((1 — )™~ || ALull + a,
for any u e &(RY).

Proof. First we assume (1-2). If we choose ¢ so small and the size of A] =
o7 (D)BI(x) is smaller than e, then we can take cut-off functions «/(¢) and Bi(x)
(j=1,2) in such a way that a!(§) cc «2(¢) cc o} (&), Bl(x) =< B2(x) =< BL(x)
and supp (B} (x)a!(£)) € Wr. In this case we have

(4-1) supp &/ (¢) = {(1 — n < | < (1 + en} .
Now let us define
an(x, &) = zp(x, &) By ()oy () + Co<EX™ (1 — B (x)aa (£)) -
By assumption {q,} is a bounded subset of S;;. Hence we have by Proposition 1
(zp(x, D) — gu(x, D)) 4;(x, D)
= 07 (D)B} (x)(zp(x, D) — q,(x, D)) A, (x, D) (mod S,,).
The right-hand side is equal to zero, because
B (Ep(x, &) = qu(x, £ty (£)
= (zp(x, &) = Cod &)™ )1 — Bl (X)an () B2 (x)y (€)
=0.

So we have only to consider |[g,(x, D)A%u| instead of |p(x, D)Alu|. As men-
tioned above, g, € SJ's. Furthermore by (1-2)

Re g,(x, &) = Re (zp(x, &) By (x)otn (&) + Co<EX™ (1 — Br(x)ar (£))
= CoEO™ Bl (x)on (&) + Co<EX™ (1 — BL(x)on (E))
=Co&>™° on {|¢|=R}.

Therefore, by the sharp form of Garding’s inequality (See Kumano-go [8], Chap.
3, §4), there exists a constant C such that

(4-2) Re (gu(x. D)Ayu, Ayu) = Coll Ay uldw oz — ClAN Ul sz »

where || ||, stands for the norm in the Sobolev space of order s. Here we can
easily see that by (4-1)

(1 + (1= e?n?PP | Afu)) < 1 A47ulls < (1 + (1 + &2n?)%2 | ALy .
Hence (4-2) implies, for sufficiently large n,

Re (g,(x, D) A u, A7u) > (Co/2)((1 — e)n)™ 7 || Af ul?
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due to the assumption 0 < o < p — 4.
Next we assume (1-3). Observe that

(4-3) lp(x, D) A7 ull® = (p(x, D)Ayu, p(x, D) Ay u)
= (p*(x, D)p(x, D) Ay u, Ay u)

where p*(x, D) is the formal adjoint of p(x, D). The calculus of pseudo-differential
operators tells us that p*(x, D)p(x, D) has the following decomposition:

(4'4) P*(x» D)p(x9 D) = ql(xv D)+ qz(x> D)’
{ql(x, &) =Ip(x, &)I* e SF™,

dx(x, &) e ST

Since Re q,(x, &) = C2{&EY2™ =) holds by assumption, we can apply the above
argument to q,(x, &), where (1-2) is satisfied in this case, and obtain that

(4-5) Re (q,(x, D)ALu, ATu) = (C2/2)((1 — &)n)*™ 2| AT u||? + negligible terms .
On the other hand, Proposition 3 says that there exists a constant C such that
(4-6) (g5 (x, D) AL u, AFu)| < Cn®™=@=9| Ay||? + negligible terms .
In view of (4-3) ~ (4-6) and the assumption 0 < ¢ < (p — 9)/2, we have

Ip(x, D)ATu| > = (CZ/4)((1 — e)n)*™ = | AT u||? + negligible terms
when n is large, which completes the proof. Q.E.D.

Proof of Theorem 3. Let us assume that p(x, &) e Sf* and {|| AL p(x, D)ul} is
rapidly decreasing. We take another microlocalizer AT = 5I(D)Br(x) and a neigh-
borhood Wy of Wy satisfying

1) supp (B (0@ (€) =< W, .
2°) there exists a microlocalizer which is attached to W and subordinate to
AL

We shall show that | A%u| is rapidly decreasing.

First notice that there exists a real number s such that | A u| = O(n™*), since
ue & (RY. Given a positive integer k arbitrarily, we take microlocalizers A}, -+,
A* attached to Wi in such a way that

AMccAcca " cc -ccalcc Al
Let us observe that for 0 <I<k

@7 4,7 p(x, Dyu = p(x, D)4, " u + [4,", p(x, D)]u

= p(x, D) A u + [A47, p(x, D)] ALu + negligible terms .

Here we set A% = A and A% = AL, Since [A, p(x,D)]eSF~*"2, (4-7)
implies that there exist positive constants C and C’ such that
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A5 p(x, D)u|| = Cn™ | AL ul| — C'n™ =9 ALu| + negligible terms

due to Proposition 3 and Proposition 8. Using this formula for 0 <<k, we
easily see that

@-8) [ ATu| < Con™ ™= AL p(x, D)ul| + C,n* == A"y 4 negligible terms

holds with constants C, and C,, since ¢ — (p — 8) <0. Now {[| 4L p(x, D)ull} is
rapidly decreasing by assumption, so we have

||Zru|| — O(n—s+(k+l)(a—(p—6)))
n .

This means that {||A7u|} is rapidly decreasing, because ¢ — (p — &) < 0 and k is
arbitrary. Thus we have proved Theorem 3. Q.E.D.

§5. Applications to known examples

In this section we apply Theorem 1 to some operators which are well-known
to be hypoelliptic.

Application 1. First let us consider a differential operator
P = p(x, D) = |x*'(=4)" + (=)™
with a symbol

p(x, &) = [x[X &> + &P

Here 4 denotes Laplacian 8%/0x? + -+ + 02/0x? and I, m and m’ are non-negative
integers. This operator was studied by Grushin [2]. By applying Theorem I, we
shall show the (micro)hypoellipticity of P when the condition [ >m —m’' >0 is
satisfied.

It is clear that P is microhypoelliptic at (x, &) € (R9\0) x $%7!, because P is
elliptic at such a point. (cf. Theorem 3). So we have only to consider at
(0, &). Without loss of generality we may assume & = (0,---,0, 1). We define

K=©0-,0, L=(-1),

[x]L = [x](l.-“.lj =|x]|.

The I-parabolic neighborhoods we treat here are as follows:

I,

h
gh:<¢ ¢ ? l 1>.
W= {0 OIE < IxI <& IxI <L 81 <8y, &> 0},

1°) P is Iy p-elliptic if m —Ih < m’, that is (m — m')/l < h. In fact, such a
h (0 < h < 1) exists due to the assumption of | > m — m’.

2°) When we consider P on W,, where 0<h<g<1 and m—Ilh>=m’, we
have
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PeSH™™™,  Rep(x,&)> gm0
Hence P is I ,-elliptic if
2ig—2lh<1—g,
that is
't —h<1-yg (' =@h2i+1)).

Putting the above results together, we easily see that we can take up a finite family
{W,,.n,} of I'-parabolic neighborhoods satisfying

(@) Pis I, ,-elliptic for every j.
(b) U W,,.», contains a conic neighborhood of (0, (0,---, 0, 1)).

So we have proved the microhypoellipticity of P at(0, (0,---, 0,1)) because of
Theorem 1.

Application 2. Let m = (my,-++, m,) be a vector whose components are posi-
tive integers and we set |o: m| = (o, /m,) + - + (¢y/m,) for a multi-index a. Let
us consider a differential operator

P =p(x, D)= Zeimi<1 da(X) D% .
Here a,(x) € C*(R?), D, = (—id,,--*, —id,) (§; = 9/0x;) and we define
P(x, &) = Yiaimi<1 aa(X)E%,
Po(%, &) = Y jacmy=1 da(X)C* .

If the condition pgy(x,, &) # 0 holds for all £ # 0, we say that P is semi-elliptic at
xo. For example, the heat operator 0%/0x? — 8/0x, is semi-elliptic in this sense
with m = (2, 1). We are going to show that P is microhypoelliptic at (x,, £°) for
all €9 e §471, when P is semi-elliptic at x,.

For simplicity we assume that m; > m, > --- > m,. First we remark that, if
we define

d 1/2
RE) = (z c,?'"f> ,
=1

the condition py(x,, &) # 0 (¢ # 0) implies that there exist positive constants C,
and C, such that

(5-1) Cr'R(&) < Ipo(x, &)< CiR(Z),
C3'R(&) < Iplx, )l < CR(E)

in a neighborhood of x, when |&| is large. Also for all multi-indices « and f there
exists a constant C, ; such that

2 IpEx, E) < Gy gR(E) =
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Now we put
m =max {m;|1 <j<d} (=m),
m, = max {m;| j such that & # 0} .

In case m=m,, P is elliptic at (xo, &) by (5-1), so P is microhypoelliptic
there. Hence we suppose m > m, from now on. Let {m, -+, m} be the set of
{m;lm; > m,}. Note that e, =(1,0,-:-,0), e, =(0,1,0,--,0), -+, ¢ =(0,"", 1,
.-+, 0) (only the [-th component is equal to 1) and £° form an orthonormal system,
since & =0 for 1 <j<I. We take an orthonormal basis of R{ including this
system and consider the following I-parabolic neighborhoods of (x,, &°).

VVa.b: {(X, é)'rasRO(é)Srb}mWro.

Here r denotes a £°-component of &, that is r = £°- ¢, and

I 1/(2m)
Ro(&) = <; Cf’"’) :

We choose a conic neighborhood Wy of (xq, £°) so small that (5-1) and (5-2)
hold in a neighborhood of Wr.. We study the differential operator P on these /-
parabolic neighborhoods.

1°) P is I-elliptic on W__ , if bm < mgy. In fact (5-1) and (5-2) tell us that,
if bm < my,

Pe S, [p(x, &)l = C[E|me

where C is a constant independent of (x, &).
2°)  When we consider P on W, , where 0 <a < b <1 and bm = m,, we have
with a constant C’

Pesy,  Ip(x Ol = ClElm,
by (5-1) and (5-2). Hence P is I-elliptic on W, , if
bm — am < a/2 ,

that is
mb <a (m' = (2m)/2m + 1)) .

Therefore P is microhypoelliptic at (x,, %) as in the case of Application 1.

o e s 2m
§6. Hypoellipticity of 0;™ + x0,
In this section we deal with a differential operator
P, = (9/0x)*™ + x(6/0y)

where m is a positive integer. Because there is a point where the symbol of
P, vanishes, Theorem 1 is no more applicable to this case. However the /-
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parabolic neighborhoods are very useful to this operator. We shall show that P,
is (micro) hypoelliptic for all m > 1. As mentioned in the Introduction, the hypo-
ellipticity of P, is derived from the well-known theorem of Hormander [4].

According to the notations used in §1 ~ §4, we write x, and x, instead of x
and y below. So the operator P, and the symbol p,(x, &) of P, are

P, = (0/6x,)*™ + x,(0/0x,)
Pm(x, &) = (= 1™ +ix, &, .
Theorem 4. 1) The operator P, is (micro)hypoelliptic in R
2) Let t be any positive number satisfying © < (2m)/(2m + 1). Then any solu-

tion of the equation P,u = f gains t derivative at every point (x,, °) in R? x S!.
More precisely, u € Hf, o, and P,u € H, o, imply u € Hi, o, for u € &' (R?).

(X0,

Proof of Theorem 4. We shall prove only 2). 1) can be shown in the similar
way. We denote (2m)/(2m + 1) simply by 4 in this proof. Note that P, is elliptic
at (xo, €°) provided that £° # (0, +1). Hence we have only to show 2) at (x,, (0,
+1)). As the situation is the same, we are going to treat only (x,, (0, 1)). Sup-
pose that u € H{, 0,1y and f = P,u€ H{;, 0,1, Let us consider P, on the follow-
ing I-parabolic neighborhoods of (x,, (0, 1)).

b
r.,.,,=(‘l‘ [P e s),

Woo = {0, O1&5 <181 <83, 1&11< ey, £,>0, [x — xol <&}
Here ¢ is chosen so small that u and f belong to H¥o if Wi is defined by

Wro = {(x’ f)|éz >0, |61| < 2862, |x — Xol < 28} .

Case 1. Suppose that the first component of x, is not zero, that is x, #
(0, xo,5). In this case P, is semi-elliptic. (cf. §5. Application 2.)
1°) Assume that 0 <a < b <1andb > 1/2m). Then we have

P,eSt™,  Re((—=1)"p(x, &) = Cl¢PP™
with a constant C. Therefore P, is I, ,-elliptic if
2mb — 2ma < a, thatis Ab<a.
Moreover, in view of (4-8) in the proof of Theorem 3,
we HY2™ if 1/2m)<b and Ab<a.

Note that u € Hf! if a = 1/(2m).
2°) P, is I-elliptic on W__,, if b <1/(2m). This time we have with a
constant C’

P,eSr, Imp(x &) =CEl.
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Hence, in view of (4-8), u € H¥' on W_,, 1 ,am) -

From the assertions 1°) and 2°), we have u e H}%! for some conic neighbor-
hood Wyo. This implies u € H{, %, for any o <1 by Proposition 7 and its
Corollary.

Case II. Suppose that x4 = (0, xo ,). Without loss of generality we may
assume x, = 0.

1°) Assume that 0 <a<b <1 and b > 1/(2m). In this case, the same con-
clusion holds as in Case I, 1°). Hence

ue HF* if 1/2m)<b and Ab<a.

2°) Now let us consider P, on W__ ,. In the following argument we use p
instead of b and denote I ,, W_ ., AL ol B simply by I, W,, A, , %, ,, B.
That is,

W, ={(x, OIIEI < 18] <edy, & >0, x| <é}.

Also we denote several constants independent of n by C,, C,, --* and sometimes
omit negligible terms in estimates.

Taking the result of 1°) into account, we may assume p > 1/2m + 1). Let us
estimate |4, ,ul = |, ,(D)B(x)ul. Because

supp o, ,(&) = {&|1€,] < 28, nj2 < &, < 2n},

we have, by Poincaré’s inequality,

45, pull = Nl ,(E)(Bu)™ ()]
< Cin?((9/08 ) {an, p(E) (Bu)“(E)}II -

Hence

(6-1) 145, pull < CanP™HIE,(0/08,) {on, (&) (Bu)"(E)}
= Can_l”xl(a/ax2)(An,pu)” .

Observe that

(6-2) [x1(9/0x,), Ay, ,]u = i(0a,, ,/0&,)(D)(9B/0x,) (x)u
+ i(0a,, /01 ) (D) B(x)(0u/0x,)
+ a, ,(D)(8B/0x,)(x)x,u .
Here
Supp de, /08, < {£]E8 < |€, < 268, n/2 < &, < 2n)

from the definition of «, ,(£). So, owing to the result of 1°), the norm of the first
two terms on the right-hand side of (6-2) is smaller than a constant times of
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—s—A+1-p

n Hence we have

(6-3) 10x1(0/0x2), AnpJull < Csll A, ull + O(n™"4*177)
where 4, , cc /7,,' ,- Putting (6-1) and (6-3) together, we obtain
(6-4) 45, pull < Can? {14, ,(x, 0u/0x,)I| + |4, ,ull} + O(n™*74).
On the other hand,
(6-5) 145, p(x1 0u/0x,) | = | Ay p (P — (8/0x)*™)ul]
< 4, fIl + 1 45,,(0/0x1)* ™l .
Here we claim that
(6-6) 14,,p(0/0x,)*"ull < Csn™ {n*™" | A, ,f1| + n™ || 4, ull}
+ O(n~s"2*17ptey

where ¢ is any positive number satisfying 0 < ¢ < 1/(4m + 2). We admit (6-6) for
the moment. Then, in view of (6-4), (6-5) and (6-6), we obtain

(6-7) 14, pull < Co{n?1* |14, ,fIl + n®m* 0=t | 4, ul}
+ O(n—s—l+c) .

From this estimate and the result of 1°), we can prove the assertion 2) of the
Theorem as follows. First we set ¢'=e¢+1—(2m+1)p. Choosing p closely enough
to 1/2m + 1), we may assume ¢ > 0. On the other hand, we have ||Z,,',,f|| =
O(n*) and ||Z,,,pu|| = O0(n"°) by assumption. Hence |4, ,ul = 0O(n™"*) holds
due to (6-7). Putting this and the result of 1°) together, we obtain u e Hj%* for
some conic neighborhood Wro by Theorem 2'. Then, replacing ||/~1',,,pu|| =0(n™)
by ||Z,,,pu|| = 0(n™*"%), we can do the same argument and see that A4, ull =
O(n™*"2%). As is easily seen, we can repeat this procedure until we obtain u e
H3%8'7P7¢, (See the first term on the right-hand side of (6-7)). Because we are
able to choose p—1/(2m+1) and ¢ as closely to zero as possible, this shows 2)
at (0, (0, 1)). Q.E.D.

Proof of (6-6). Assume that A4, ,cc A4, ,c< A2, =< 4, ,. Because
1 45,5(8/0x 1 )*™ull < 11 4,,,(8/0x,)" A5 ,(3/0x, )" A7 ull
< Con™ |(0/0x )" A7 pull
we have only to show that
(6-8) (0/0x,)" A% ull < Ce{n* ™| A, . f 1| + n™ %\ 4, ,ull}
4 O(ns A+ -pmotey

for any ¢ satisfying 0 < & < 1/(4m + 2). Observe that
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16/0xyY" A% ,ull*< ((9/0x,)" A7 ,u, (9/0x )" A7, u)
= (—1)"Re (P, A% u, A% u)
=(—1)"Re (42 ,P,u, A2 u)
+ (=)™ Re ([(6/0x,)*™, A7 ,Ju, A3 ,u)
+ (= 1)" Re ([x,(8/0x,), A% ,]u, AZ ,u).

Here [(9/0x,)*™, A% ,] is of order (2m — 1)p on W, since (9/0x,)*™ is of order 2mp.
Hence, noting (6-3), we have

“(a/axl)mAr%,pu”z S ”;in,pf“ ”Zn,pu” + an(2m-l)p||;f"’pu”2
+ Cro{l 4, ull + O™ 172} || 4, ull
< C {n*m| 4, , f 11> + n?™e79| 4, ul*}
+ O(n—25—2).+2(1—p)—2mp+28) .

This implies (6-8). Q.E.D.

Remark 1. The value (2m)/(2m + 1) appearing in Theorem 4, 2) is best-
possible. In fact, let ¢(t) be an element of C*(R!) satisfying

0<o) <1, @t)=10on(—o0,1], =0on[2, +x),
and put
ML €)= GUE ™ EN( — pENEG ™ IEm

u(x) = F 'l =(2n)"? J‘e""éi(é) da¢ .

Then we see easily that
ue H5(R?) for s>0 and
P,ue H5(R?) for s> (2m)/2m + 1),
but
u¢ L2(U) in any neighborhood U of x = (0, 0) .

For the present we cannot prove that any solution of P,u = f gains (2m)/2m + 1)
derivative by our method. However, we suppose that the derivative gain of P, is
exactly (2m)/(2m + 1).

When m = 1, this value equals to 2/3, as Rothschild-Stein obtained in [15].

Remark 2. By making full use of I'-parabolic neighborhoods, we can also
prove the hypoellipticity of

(0/0x,*™ % ix§(—i 8/ox,)
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in the similar way. But the situation is a little more complicated. As for such
operators, we shall discuss in the forthcoming paper.

§7. Proofs of Propositions 1 and 2

First we remark that by (2-1) there exist functions x,(£) and y, .(£) which are
elements of C*(R?), depend only on |¢| and satisfy the following conditions.

OSan Xn,islv Xn+Xn.—+Xn,+=19
supp x, = {Cin < |¢] < Cyn},
%» = 1 in a neighborhood of supp o/ (¢),

-1 supp x,- < {I¢l < Cin},

supp x,,- [ supp & (€)= ¢,

SUpp xa,+ < {Con < &I},

SUPP Xn,+ () SUPP % (£) = ¢,

|0 Xuls 108 n, +| < Cun™™ for any p.
(Inthis section we denote several constants independent of n and & by C,, C,, ***.)

Lemma. Suppose that {p,(x, &)} is a bounded subset of SY',, then
{] (D)Pa(X, D), + (D)} € Spey
{a (D)BY (x)Pu(x. D), +(D)} € Spey -

The same conclusion holds if {p,(x.&)} is a bounded subset of S ; where
max (Or, 6;) < min (pr, py).

Proof. We shall show that {&] (D)B}(x)p,(x, D)xn, +(D)} € S,ey When {p,(x, &)}
is a bounded subset of S}’ ; and max (65, 6,) < min (pr, p;). We can do the same
in the other cases.

We denote anew max (dr, 4,) and min (pr, p;) by d and p respectively. We
put

Sn. + (X, D) = o (D)) (x)Pu(x, D)y, +(D) .

From the calculus of pseudo-differential operators, we have

S+ (x, ) = 05 — Jje_iy"’anr(é + B (X + YPu(x + P, &)t +(£) dy dn/2n)".

Here O,- means the oscillatory integral. Now let | be a positive integer satisfying
I > d/2. We take such an integer |/ and fix it. On the other hand, let k be an
arbitrary positive integer. Using

e—iy~n — <y>—21(1 _ A'I)l<r’>—2(k+1)(l _ Ay)k+le—iy-n’
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we obtain by integration by parts
(7-2) S, +0(x, &) = Jje_”"’<ﬂ>‘2“‘+”5é‘[(l — A, (€ + M)ta, £ (E)(1 — 4,

x DY{<y> 2 BI(x + y)pa(x + y, £)}] dy dn/Q2m)*.

Because of Leibniz’ formula, (2-2) and (7-1), the integrand of (7-2) is estimated from
above by the sum of a finite number of terms of the following form:

C(n>_2”‘+ l)n-Plﬂ1|<y>‘21n6171|<§>m+5|)’z|—0|#2|

where |u; + u,| = |pu| and |y, + y,| < v + 2(k + I). Let us notice that the integral
(7-2) is absolutely convergent owing to {n>~ 2'{y>~2.

1°) (S, _(x, &) Since & €supp x.- and ¢ + 5 e supp «,, there exist positive
constants C and C’ such that |£| < Cn < C'|n|. Therefore, when k is large, we

=2k, —pln 8 m+d|y,|— 2 C m, — +o|v|+26l— -0
<"> n | IIn |71|<6> | z| plu I < 3" I’Illll vl 2k(1 )

< C4<é>m+—plul|+¢§|v|+26l—2k(1 —-9) .

(m, =max (0, m)). Since k is arbitrary, we have S, _(x,&)e S for every n.
Furthermore it is easily seen that this implies {S, _(x, D)} € S,,,.

2°) (S, +(x,¢)) Since & esupp x, + and & + n € supp a,, there exist positive
constants C and C’ such that n < C|¢| < C’'|n|. Therefore

<’7>_2kn_P|M1|n5|)'1|<¢>M+J|Y2|‘P|Mz| < C5<£>m—P|Il2|+5|V|+25l—2k(1 )

< C6nm—p|u2|+6|vl+26l—2k(l —0) ,

when k is large. The rest is the same as in the case of 1°). Q.E.D.

Proof of Proposition 1.
1) We devide A7(x, D) = o/ (D)p!(x) into three terms:

(7-3)  A7(x, D) = & (D)B (X)Xa(D) + 2 (D)B (X)X, - (D) + 0ty (D) By (x) %y, +(D) -

Here {a/(D)B(x)1,. (D)} and {of(D)Bl(x)x,+(D)} belong to S, because of
Lemma. Concerning the first term on the right- hand side of (7-3), we see that
{al (&)} and { Bl (x)xa(€)} are bounded subsets of SO, by (2-2) and (7-1). Hence
{al(D)B](x)x,(D)} is a bounded subset of S? ,;, and {A,,r(x, D)} is so, too.

2) Let us prove that {Al(x, D)p,(x, D)(1 — A" (x, D))} € Sneg When {p,(x, &)}
is a bounded subset of S}’ ; and max (o, 6y, 6;) < min (pr, pr-, p;). We can do
the same in the other cases.

We denote anew max (o, 6r., 8,) and min (pr, pr., p;) by 6 and p respectively.
Owing to Lemma and 1) proved above, we have only to show that
{Al(x, D)p,(x, D)(1 — AL (x, D))y,(D)} € S,e- Let us decompose it as follows:

(7-4) Arpall = A7) 2w = % (D)Bu(X)Pa(x, D)(1 — 2,(D)) 1(D)
+ 0,(D)B(X)Pa(x, D)at,(D)(1 — B,(x))xa(D) -
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Here and in what follows, we write a,, ), f, and B, instead of &/, a!", p7" and B
for short.
1°) We put

Sn1(x, D) = a,(D)B,(x)p(x, D)(1 — 03(D)) (D) .
Let us show that {S, ,(x, D)} € §,.,. Note that

Sn1(x,8) =0, — ff ™ Mo, (& + m)B,(x + Y)pux + y, (1 — 0,(8))xa(&) dy dn/2m)" .
Since ¢ esuppy, ()supp (1 —oa,) and & + 7 €supp a,, there exist positive con-
stants C and C’ such that

C'n<|éI<Cn, Inl=Cn’.
If we do the same as in the proof of Lemma, we obtain
|Sn, l?:))| < C7nm—p!nl+6lv|+26l—2k(p—6)

< C8<é>m—plul+.§|v|+26l-—2k(p—6)

where k is an arbitrary positive integer. Hence {S, ,(x, D)} € S,,-
2°) We put

Sn,2(xs D) = ﬁn(x)pn(x’ D)arlr(D)(l - ﬂr:(x))Xn(D) .

Let us show that {S, ,(x, D)} €S,.,. If we can prove it, we find that the second
term on the right-hand side of (7-4) is also an element of §,,,, because {«,(¢)} is a
bounded subset of S?,. Note that

Sp,2(x, &) = O, — jfe_"y"’l?n(X)Pn(x, $+Mog(& + (1 — Bix + Y)xa(&) dy dn/2m)*.

Since x € supp f, and x + y € supp (I — f,), there exists a positive constant C such
that |y| = Cn™%.  On the other hand, we have with constants C' and C”
C'n<|él<Chn, C'"'n<|E+n<Cn,

since £ esupp x, and & + nesuppa,. Now let | be a positive integer satisfying
[ > d/2 and k be an arbitrary positive integer. Using

e = YT = A= Ay — 47,

we obtain by intgration by parts
(7-3) S, 20(x, &) = J Je"'y'"<n>'2'1);[ag(1 — 4, (—4,)

X {pn(xa é + ’7)“;’-(5 + n)Xn(é)}Bn(x)(l - Ay)l
x {(<y>7HyI72*( = Bax + y)}] dy dn/2m)* .

So the integrand of (7-5) is estimated from above by the sum of a finite number of
terms of the following form:
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C(n)™2ipm=plul+ovi=2kp ( )\ =21 )| =(2k+ Iy Dy ol
where |y, + y,| < 2I. Therefore
1S, 28] < Conm=Plul*alvi+281-2k(0=0)
< Cl0<é>m—plul+6lvl+261—2k(p—&) .
Since k is arbitrary, this implies {S, ,(x, D)} € S,.,- Q.E.D.
Proof of Proposition 2. We put
Protos(, €) = B (x)p(x, )3, (8) .
A5 (x, D) = oy (D)B, (x).
By assumption we have af(€) =< a@/(¢) and B/(x) =< B/ (x). Because
Protoc(%, D) A7 (x, D) = B (x)p(x, D) A7 (x. D),
AL(x, D)py 1oc(x, D) = A7 (x, D)p(x, D), (x, D),
it is sufficient to show that
{(1 = Bl (x)p(x. DYt (D)B(X)} € Spey -
{05 (D)BL (x)p(x, D)(1 — &y (D))} € Seq -

These follow from the same argument as in the proof of Proposition 1, 2). (See 1°)
and 2°) in the proof of Proposition 1, 2)). Q.E.D.
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