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On bounds for Castelnuovo’s index of regularity
By

Riidiger ACHILLES and Peter SCHENZEL

1. Introduction

For coherent sheaves on a projective space Castelnuovo’s index of regularity
was first defined by D. Mumford [11], who attributes the idea to G. Castelnuovo.
In fact, he used it to show that certain twists of a coherent sheaf are generated by
its global sections. In a more algebraic setting Castelnuovo’s regularity was
defined by D. Eisenbud and S. Goto [2] and A. Ooishi [12], see (2.2). It comes
out that Castelnuovo’s index of regularity gives an upper bound for the maximal
degree of the syzygies in a minimal free resolution, see (2.8) for the precise
statement. This fact is very important for the complexity of a program for a
numerical computation of syzygies. As shown by examples of D. Bayer and M.
Stillman, see [1], Castelnuovo’s regularity can be of exponential growth with
respect to the Krull dimension. While these examples have rather “wild” singu-
larities, one might hope to get better bounds in the case of “tame” singularities.
This point of view is pursued further in the papers [2], [10], [12], [16], [17], [18].

One of our main results, see (3.5), supplies an upper bound for regR,
Castelnuovo’s regularity, of a graded k-algebra R that is Cohen-Macaulay or
locally Cohen-Macaulay and unmixed. In a geometric context, we get a satis-
factory bound in the case of a Cohen-Macaulay projective variety. In particular,
with (3.5) a) we solve a problem posed in [10] in the affirmative. The same result
was  shown independently and by a different argument by J. Stiickrad and
W. Vogel in [18].

In the case of a Cohen-Macaulay ring R it follows, see [2], that

reg R<e(R)—c,

where e(R) denotes the multiplicity and ¢ (:= dim, R; — dim R) the codimension
of R. For R a domain over k, an algebraically closed field, D. Eisenbud and
S. Goto conjectured that

reg R <e(R)—c,

see [2]. If R is the coordinate ring of a reduced, irreducible curve in projective
space, this is true as shown by L. Gruson, R. Lazarsfeld, and C. Peskine in
[7]. In our situation of a locally Cohen-Macaulay domain R, i.e., Proj(R) is a
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Cohen-Macaulay integral scheme, over an algebraically closed field of character-
istic zero there are several results in this direction shown by J. Stiickrad and
W. Vogel, see [16], [17], and [18]. In particular they have proved that

reg R <(e(R) — )/c+ 1 + A(R),

where A(R) is defined in terms of the annihilators of local cohomology. See
Section 3 for the definition of A(R). In Section 4 we will give a straightforward
proof of the above bound. In the more particular case of an arithmetically
Buchsbaum variety, i.e., R is a Buchsbaum domain, J. Stiickrad and W. Vogel
obtained

reg R <(e(R) — /e + 1,

see [17]. In (4.3) we enclose a simplified proof.

In Section 2 we give several characterizations of Castelnuovo’s regularity in
terms of Koszul cohomology and certain quotient modules. It turns out that for
an unmixed locally Cohen-Macaulay ring R, the reduction exponent of a standard
system of parameters x < R; does not depend on x and equals reg R. In Section
3 we investigate bounds for Castelnuovo’s index of regularity in the case when R is
unmixed and locally Cohen-Macaulay. In Section 4 we demand in addition R to
be a domain over an algebraically closed field of characteristic zero.

2. The Castelnuovo index of regularity

First of all let us fix some notation. By R= @® R, we denote a graded
n=>0

k-algebra such that R, =k is a field, R is generated by R,, and dim, R; < oo.
Then there is a natural isomorphism R =~ S/I, where S = k[X,,..., X,] is the
polynomial ring in e = dim, R, indeterminates over k and I = S is a homogeneous

ideal, which contains no linear forms. We put P = (X,, ..., X,)S, the irrelevant

ideal of S. For a graded R-module M = @ M,, we introduce the following
neZ

notations.

(2.1) Definition. (1) s(M)=sup{neZ:M, #0}.
(2 iM)=inf{neZ: M, #0}.
(3) AM)=inf{neZ:P"M =0}.

Note that s(M) < oo (resp. i(M)> —oo, A(M) < o) if M is an artinian R-
module (resp. a finitely generated R-module, an R-module of finite length). See
[16] for the basic facts about these integers. In the following we will use the local
cohomology modules Hi(M), i € Z, and the Koszul cohomology modules H(Q; M),
i e Z, with respect to a fixed (minimal) generating set of a homogeneous ideal Q.
Note that changing a basis of Q yields isomorphic Koszul cohomology modules.
For further basic results about local cohomology and Koszul cohomology we refer
to A. Grothendieck [6].
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(2.2) Definition. Set reg M = max {s(H;(M)) + i:i€ Z}, the Castelnuovo
index of regularity of a finitely generated graded R-module M.

The Castelnuovo index of regularity was studied by D. Mumford [11]. For
further investigations see also [12], [2], [1], and [16]. Because Hp(M), i€ Z, are
artinian R-modules, see [6], (2.1) yields that (2.2) is well-defined. In the sequel we
shall need the notion of a filter-regular sequence for M.

(2.3) Definition. Let {x,,..., x,} be a system of homogeneous elements of R
that is a part of a system of parameters for M. It is called a filter-regular
sequence for M if

Mqs oo Xis )M i X (X0, o0y Xi— )M) < 00

or equivalently,
S((ys v X )M i X /(X4 oy X ) M) < 00

fori=1,...,r

In the case of a local ring the notion of a filter-regular sequence was intro-
duced in [15]. See [15] for basic facts. If x = {x,,...,x,} denotes a homo-
geneous system of parameters consisting of a filter-regular sequence for M, we put

Fo (x5 M) = s((xy, .o, X )M X /(x4 o, X1 ) M)
fori=1,...,d. In addition we set
r(x; M) = s(M/xM),

which we call the reduction exponent of x with respect to M. For ie Z\{0,...,d},
we define ri(x; M) to be —oo.

(2.4) Proposition. Let M be a finitely generated graded R-module and {x,,
..., X, } a system of forms of R with d;=degx;, j=1,...,r. For all i and j, there
is the following short exact sequence of homomorphisms of degree 0:

0 (H ™ (xy, ..., xjo s MY/ HI T (xy, ., X203 M))(d))
b Hi(xl, ceey XJ; M) qOH‘(Xi..A..Xj_l:M) . XJ g O .

The proof is well-known.
Now we are ready to prove several characterizations of the Castelnuovo index
of regularity.

(2.5) Theorem. For a finitely generated graded R-module M, the following
integers are equal:

a) reg M.

b) max {s(H'(Q; M)) + i:ie Z} for any P-primary ideal Q generated by forms
of degree 1.

c) max {s(H(x; M)) + i:i e Z} for any system of parameters x = {xy,..., X}
for M consisting of forms of degree 1.
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d) max {r(x; M):ieZ}, where x={x,,...,x;}, d=dim M, is any filter-
regular sequence for M consisting of forms of degree 1.

In particular, the integers defined in b), c), d) are independent of the choice of Q
and x respectively.

Proof. Denote by A4, B, C, D the integers defined in a), b), c), d) respectively.
A = B: Consider the following spectral sequence

HP(Q; HY(M)) = H”*4(Q; M),
see e.g. [6]. By the definition of A, we have
Hp(M); =0 forall i+j>A.
Therefore
[H?(Q; HA(M))], =0 whenever p+g+n> 4
because it is a subquotient of
[(®@H}M)(p)], =0.

From the spectral sequence, it follows that [H'(Q; M)], =0 for all i, n with
i+ n> A. This yields the inequality.

B = C holds trivially.

C>D: We have H'(x; M), =0 whenever i+ n> C by the definition of
C. 1t follows easily from (2.4) that [H'(x,, ..., x;; M)], = 0 forall i, n withi+n>
Candallj=1,....,d. Again by (2.4), we get epimorphisms

CHIT(x, e X M) o ((xy, o Xo M i x/(X g, - x5 )M)(j— 1) >0

for j=1, ..., d and H%x; M)= (M/xM)(d). These conclusions imply the
inequality.

D> A: For the proof we use induction on dim M. The case of
dim M =0 is obvious. Let dim M > 0. By the induction hypothesis, it follows
from the definition of D that

[Hi(M/x,M)],=0 assoonas i+n>D.

Furthermore we have [0, :x,], =0 for all n > D. Because x, is a filter-regular
element, we get an exact sequence

[HE (M/x, M), — [HA(M)1,, — [Hi(M)],

for all i > 0, see [14], (2.5). By the induction hypothesis, f; is injective whenever
i—1+n>D. Because s(Hy,(M)) < o, it follows

[HiM)],=0 for all i, nwithi+n>Dandi>0.
Now let us consider the case i = 0. By [14], (2.5), we have an injection

0- [Hg(M)]n—l/[oM : xl]n—l - [H(P?(M)]n .
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Because [0y :x,],; =0 for all n — 1 > D, we get [H3(M)], =0 for all n> D as
required.

In the case of a Cohen-Macaulay module, (2.5) yields the well-known fact that
ry(x; M) =reg M .

That is, the reduction exponent of x with respect to M is independent of x, an
arbitrary system of parameters consisting of forms of degree 1.

(2.6) Corollary. Let M be as above, and let x € R, be a filter-regular element.
Then

reg M = max {reg (M/xM), s(0p;: x)} .

This is clear by view of (2.5). We will apply it to the case where x =
{xy,.... x4} is a filter-regular d-sequence, see [9] for the definition. It follows
easily that there is an injection

004 :x, 2 x,M:x,/x, M,
see [9]. That is, 5(0p: x,) < s(x, M : x,/x,M).

(2.7) Corollary. Let x ={x,,...,x;}, d=dim M, be a (filter-regular d-
sequence of forms of degree 1. Then

reg M = ry(x; M).

In particular, in the case of a Buchsbaum module M, the reduction exponent ry(x; M)
of a system of parameters x of forms of degree 1 is independent of x and equal to
reg M.

Proof. By the previous remark, we have
reg M = reg (M/x, M)

and induction proves the first part. Then the second claim follows because any
system of parameters for a Buchsbaum module is a d-sequence.

(2.8) Corollary. We have
reg M = max {s(Tor{ (k, M)) —i:ieZ}.
Proof. First Torf (k, M) = H,(P; M) for all i. Secondly, note that
[H{(P; M)], = [H*'(P; M)],_. for all i, n
as follows from properties of the Koszul (co-)complex. Then
S(H'(P; M) + i = s(H,_{P; M)) — (e — i)

and the desired formula follows by (2.5).
The previous corollary shows that the Castelnuovo index of regularity of M is
determined as a degree bound of the syzygies occuring in a minimal free resolution
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of M as an S-module. Thus reasonable estimates of reg M lead to estimates for
the degree of syzygies. This is an important note related to computational prob-
lems as done by D. Bayer and M. Stillman [1], where one can find also the
equivalence of a) and d) of (2.5) shown by a different argument.

(2.9) Definition. A finitely generated graded R-module M has a t-linear
resolution if t := i(M) = reg M.

If M #0 and p = proj.dim M (< dim S = e by Hilbert’s syzygy theorem), one
has immediately the inequalities

reg M > s(H"(P; M)) + n > i(H"(P; M)) + n > i(M)
for all n = p, ..., e and hence in the case of t-linear resolution
Tor’ (k, M) = k%(—t — i) foralli=0,...,p.
That is, M has a minimal free resolution as an S-module of the type
0> S (—t—p)>- -8 (—t—1)>S(—t)>M->0.
Finally note that
reg (S/I) + 1 =reg (I)

as easily seen.

3. Rings with finitely generated local cohomology

As before let R= @ R, be a k-algebra of finite type such that R, =k and
n20
R is generated by R, over k. As above we consider the local cohomology

modules Hi(R), ie Z. With L we denote the length of an R-module, e(x; R)
denotes the multiplicity of a system of parameters x of R.

(3.1) Definition and Theorem. The k-algebra R is called a ring with finitely
generated local cohomology if R satisfies one of the following equivalent conditions:

(i) HL(R) is a finitely generated R-module for all i < dim R.

(ii) There is an invariant I1(R) and an integer m such that

L(R/xR) — e(x; R) < I(R)

for all systems of parameters x = {x,, ..., x4} with equality for all x < P™.
(iii) R is equidimensional and R, is a Cohen-Macaulay ring for all relevant
homogeneous prime ideals p of R.

The proof of (3.1) is given in [15], where the study of these generalized
Cohen-Macaulay rings was started. Recall that

d-1

IR =Y (dj 1>L(H,';(R)), d=dimR.

i=0
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In accordance with [10] and [16] we put

-l fd —1 .
A(R) = l;)( i >/1(H1‘»(R))
for rings R with finitely generated local cohomology. In [14] a system of parame-
ters x for which the equality in (3.1) (ii) holds is called a standard system of
parameters. On the other side, every system of parameters of a ring with finitely
generated local cohomology is a filter-regular sequence. This follows easily
from (iii) of (3.1). In particular, a Buchsbaum ring has finitely generated local
cohomology.

Next we show several results concerning the behaviour of reg R by passing to
R/xR.

(3.2) Lemma. Let R denote a graded k-algebra and x € R, a filter-regular
element. Then it follows

a) reg R <reg R/xR + A(HR(R/0: X)),

b) reg R < reg R/xR + A(H3(R)), and

c) reg R <reg R/xR + L(H3(R)) — L(0:x).

Proof. By the definition of A, it is enough to show the first inequality.
Because x € R, is filter-regular, there are exact sequences

Hp '(R/xR); > Hp(R);-; 5 Hp(R);  fori>1 and
0 HY(R);_1/[0: x];—, > HR(R); > H(R/xR);
see [14], (2.5). Let r = reg R/xR. Then the first sequence shows
Hp(R);=0  forallijwithi+j>randi>1.

Now suppose reg R >r + 1, where [ = A(H3(R/0:x))=>0. Then reg R =s(H3(R))=:
s taking into account the conclusion from the first sequence. Thus, there is an
element O # me HP(R),. Because s>r + I, the second sequence provides an
element m; € H3(R),_, such that

m=x(m; +[0:x],_;) = xm, .

Iterating this argument [ + 1 times, we obtain an element m,,, € H3(R),_,_, such
that

0#m=x""my, exP'([Hp(R)]y—-1/[0:x]5_1-;) = 0.

But this is a contradiction. Therefore, the desired inequality holds.
Another inequality concerning reg R is given in the following lemma. To this
end we put R = R/HS(R). Note that

reg R = max {reg R, s(H3(R))} .

(3.3) Lemma. There is the following bound
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reg R <reg R + A(H(R)).
Proof. Assume the contrary. Then
s>r+ A(H3(R)),

where s = s(H3(R)) and r = reg R. That means P*~""' HP(R) = 0 by the definition
of .. Now we present R = S/I and R = S/J for a homogeneous ideal J, ie.,

HO(R) = J/I .

Because r = reg R we have reg J = r + 1. By (2.8) this means that J is minimally
generated by forms of degree <r+ 1. Thus P,_,_,J,,; =J,. On the other side
Pi_y_1J,4y € I as follows from s —r — 1 = A(HS(R)). Combining both results, we
have

Js = Ps—r—lJr+1 S Is ’
ie., there is no non-zero form of degree s in HP(R), a contradiction to s =
S(Hp(R)).
(3.4) Theorem. Let R be a graded k-algebra with finitely generated local
cohomology and d = dim R. For a system of parameters x = R, of R it yields
rq(x; R) <reg R <ry(x; R) + I(R) — L(R/xR) + e(x; R) .
In particular, for a standard system of parameters x < R, we have r,(x; R) = reg R.

Proof. First note that ry(x; R) < reg R follows by (2.5). We show the second
claim by induction on d. In the case d = 1, (3.2) ¢) shows

reg R < ry(x; R) + I(R) — L(R/xR) + e(x; R)

because L(0:x) = L(R/xR) — e(x; R), where x =x,. Now let d>1. By the
induction hypothes:s we get

reg R/x; R < ryx; R) + I(R/x,R) — L(R/xR) + e(x; R) .
By (3.2) ¢), it follows
reg R < reg R/x, R + L(H3(R/0: x,)).
Now the inductive step is complete because
I(R/x,R) + L(H3(R/O: x,)) < I(R)

as follows from the long local cohomology sequence of

0-(R/0:x,)(-1) -5 R—>R/x,R—>0
and the fact that x, is a filter-regular element.

Now we are going to prove one of our main results in this section. Part a)
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of (3.5) gives an affirmative answer to a problem posed by W. Vogel during his
talk at the 5th National School in Algebra, Varna 1986, see also [10].

(3.5) Theorem. Let k be an infinite field, let R =S/I denote a graded k-
algebra with finitely generated local cohomology, and let ¢ = height I (= dim, R; —
dim R) and t + 1 = i(I). Then it holds:

c+t

a) t<regR<e(R)—< c >+t+I(R).

b) If R is in addition a Gorenstein ring with ¢ > 1, then

2t + 1 <regR, and
t
regRSe(R)—Z(c: >+2(t+1)

provided reg R > 2t + 1. In the case 2t + 1 = reg R, it yields

e(R)=<c-:t>+<c+Z_l)'

Proof. First let us treat the case a). Because
t+1=i(l)<regl=regR +1

we get the lower bound. In order to prove the upper bound choose in R, a
system of parameters x = {x,,..., x,} such that e(R) = e(x; R). Put r =r,x; R).
Then R/xR = k[Y,,..., Y.]/J for an ideal J in the polynomial ring k[Y;,..., ¥,] in
¢ indeterminates. With t' := i(J) — 1, there is the following bound for the length

t/
L(R/;R)?(C-Z >+r—t'.

Note that r = s(R/xR). Now it is easy to see that t' > ¢ and

c+t c+t
c c

Thus L(R/xR) = (C _: t) + r —t. Therefore, the claim follows by (3.4).

In order to prove b), choose a regular sequence x = {x,,..., x,} of degree 1
such that e(R) = e(x; R) = L(R/xR). By (3.4) we get r:=reg R = ry(x; R). Since
x is a regular sequenc, it follows easily t = t’, where t’ is defined as in the proof of
a). Because R is a Gorenstein ring the same holds for B := R/xR. Then there is
a perfect pairing

B;x B,_;—»B >k, i=0,..,r.

Therefore it follows dim B; = dim B,_; for i =0, ..., r. Because of the self-duality
of the finite free resolution of R over S we get the lower bound. Now let
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r> 2t + 1. Then
L(R/xR) >2<c : t) Fr—20+1),

which proves the upper bound for r. The case r =2t + 1 is done by the same
argument.

In [13] a Cohen-Macaulay (resp. Gorenstein) ring R is called extremal if
reg R =t (resp. reg R = 2t + 1). In this case R has a “simple” resolution over S.

(3.6) Corollary. Let R be a Cohen-Macaulay ring. Then the following condi-
tions are fulfilled:

t
a) t<regR<e(R)—<c_: >+t.

b) e(R) = <C z_ l) and equality holds if and only if 1 has a (t + 1)-linear
resolution.

Proof. a) is clear by (3.5) a) because I(R) = 0 for a Cohen-Macaulay ring R.
The bound in b) is obvious by a). If equality holds, it follows from a) that
regl = t+ 1 =i(I) and I has a (t + 1)-linear resolution. The converse comes
from the fact that

reg R/xR =ryx; R) =t and
i(f) = i((I, xR)/xR) .

One may ask for the sharpening of (3.5) a) with A(R) instead of I(R). But
this does not hold as follows from an example given by D. Lazard, see [16],
Section 6, ex. 1.

4. Integral domains over an algebraically closed field of characteristic zero

In this section we want to discuss bounds for the Castelnuovo index of
regularity for particular cases of rings. As an application of our ideas, we are
able to simplify the proofs of some of the main results of the papers [16], [17],
and [18]. First let us assume that R is an integral domain with Ry =k an
algebraically closed field. These assumptions are necessary in order to apply
H. Flenner’s Bertini theorems, see [3], Satz 5.5. More concrete, if dim R = 3,
then there is a generic form x € R, such that

R = R/xR: (P>

is again an integral domain. (For a submodule N of an S-module M, N:{P) =
{meM|3ieZ: Pm< N}.) Note that

R = S/I, xS): (P>,
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where I is the defining prime ideal of R. That is, (I, xS): {P) is again a prime
ideal. As before, let
¢ =dim, R, —dim R.

(4.1) Proposition. With the above notation,
dim, R, — dim R = dim, R} —dim R’".

For the proof of (4.1) see Lemma 3 of [16] or [4], p. 174. Note that (4.1)
does not remain true without additional assumptions on k and R. As in Section
3, we define t = i(I) — 1. Now we are going to sharpen part of (3.5) a) in the case
of R a domain over an algebraically closed field k. In order to dispose the
General Position Lemma, we assume k to be of characteristic zero.

(4.2) Theorem (see [16], Theorem 1). Let R = S/I denote a graded k-algebra
with finitely generated local cohomology. If R is an integral domain with ¢ =
dim, R, —dim R > 1 and k is an algebraically closed field of characteristic zero,
then

t<regR<(e(R)—1)c+ 1+ AR)(<e(R)—c+ 1+ A(R)).

Proof. First note that the lower bound follows from (2.8). Since we have
excluded the trivial case ¢ = 0 (in which R is isomorphic to a polynomial ring over
k), we have d :=dim R > 2. We induct on d. Let d =2. Then, by the General
Position Lemma [5], (2.13)—(2.16), there is a generic form x € R, such that R’ =
R/xR: {(P) is the homogeneous coordinate ring of e(R) = ¢ + 1 points in general
position and [H}(R')], = O for all integers n with e(R) < cn + 1. Neote that R’ is
a one-dimensional Cohen-Macaulay ring (reduced but not a domain). Hence

reg R <(e(R)— 1)/c+ 1.

Doing the inductive step, we shall see that reg R < reg R’ + A(R). This shows the
case d = 2.

Let d > 3. Then, by Flenner’s Bertini theorem [3], Satz 5.5, we can choose
an appropriate x, see beginning of Section 4, and apply the induction hypothesis
to R'. Thus

reg R" < (e(R')—1)/c' + 1 + A(R').

Now e(R’) = e(R) as follows from the choice of x. By (4.1) we have ¢’ =c. By
virtue of (3.3), it follows

reg R = reg R/xR < reg R’ + A(HP(R/xR)) .
Putting this together, it yields
reg R < (e(R) — 1)/c + 1 + A(R') + A(HR(R/xR)) .
By the definition of 4 we have
A(R) + A(HP(R/xR)) = A(R/xR) .
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The short exact sequence
0> R(—1)3R—->R/xR—-0

yields A(R/xR) < A(R) as follows easily from the corresponding long exact
sequence for the local cohomology modules. This finishes the proof.

In the case of a Buchsbaum ring R, clearly A(R) < 2°"!, where d = dim R.
So there is the bound

reg R <(e(R) — 1)Jc+1+42¢71,
However, a sharper bound is true:

(4.3) Theorem (see [17], Theorem 1). Let R be as above an integral domain
over an algebraically closed field k of characteristic zero, and assume that ¢ =
dim, R, —dim R > 1. If R is a Buchsbaum ring, then

regR<(@eR)—l)jc+1 (<eR)—c+1).

Proof. If R has the lowest possible dimension d = 2, as in the proof of (4.2),
the General Position Lemma yields an element xe R, such that for R =
R/xR : (P it holds

reg R" <(e(R) — l)/c+ 1.
Clearly reg R = reg R/xR = max {reg R’, s(HP(R/xR))}, and further
s(H(R/xR)) = s(HA(R)) + 1 < s(HA(R/xR)) + 1 < reg R’
as follows from the local cohomology sequence
0 — HR(R/xR) - Hp(R)(—1) > H3(R) > H}(R/xR)

using the fact that x is the zero map for a Buchsbaum ring R. Thus reg R’ =
reg R and the case d = 2 is shown.

We proceed by induction on d. Let d > 3. Applying H. Flenner’s Bertini
theorem, see [3], Satz 5.5, we can choose an element x e R, such that R =
R/xR: {P) is a domain with e(R') = e(R). By (4.1) we have ¢ = ¢’ :=dim, R —
dim R". Now R’ is a Buchsbaum ring of dimension d — 1. Thus, by the induction
hypotbhesis,

Ypotliesis reg R’ < (e(R) — 1)fc + 1.
As above, reg R’ = reg R and the inductive step is complete.

By virtue of (4.2) and (3.5) one should ask for
t
regRse(R)—<c:' >+I+A(R),
where R is a graded integral domain over an algebraically closed field k of

characteristic zero. Here t = i(I) — 1, where I is the homogeneous prime ideal
given by R = S/I. The following example shows that this does not hold.
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(4.4) Example. In [8] L. Gruson and C. Peskine have shown that there is a
reduced, irreducible curve C = P& =: P of degree 10 and genus 6 with the follow-
ing resolution

0 O(=T)> O*(=6) > Op'(—=5) > Op > Oc > 0.

For the homogeneous coordinate ring R, it follows that reg R =4, use (2.8).
Therefore [H}(R)], =0 for all n >4 and all n <0, ie, A(R) <3. Because t =4
the requested bound does not hold.

t
Moreover, the example shows also that the lower bound <cj ) for the

multiplicity of R in the Cohen-Macaulay case is no longer true for R an integral
domain over an algebraically closed field k of characteristic zero and t > 1.
Recall that the case t = 1, i.e,, e(R) = ¢ + 1, is true for R an integral domain over
an algebraically closed field k, see e.g. [2] or [4], p. 173.

In their paper [2], D. Eisenbud and S. Goto conjectured that

regR<e(R)—c¢

for a graded domain over an algebraically closed field k. This is shown to be true
for R a Cohen-Macaulay domain. The Theorems (4.2) and (4.3) of J. Stiickrad
and W. Vogel contain results in this direction. In particular the Buchsbaum case
is a good support for this conjecture.
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