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On bounds for Castelnuovo's index of regularity

By

Riidiger ACHILLES and Peter SCHENZEL

I. Introduction

For coherent sheaves on a projective space Castelnuovo's index of regularity
was first defined by D. Mumford [11], who attributes the idea to G. Castelnuovo.
In fact, he used it to show that certain twists of a coherent sheaf are generated by
its  g lo b a l sec tio n s . In  a  m o re  algebraic setting Castelnuovo's regularity was
defined by D. Eisenbud and S. Goto [2] and A. Ooishi [12], see (2.2). I t  c o m e s
out that Castelnuovo's index of regularity gives an  upper bound for the maximal
degree of the  syzygies in  a  m inim al free  resolution, see (2.8) fo r  th e  precise
statem ent. This fact is very im portant for the complexity o f  a  program for a
numerical computation of syzygies. As shown by examples of D . Bayer and M.
Stillm an, see [1], Castelnuovo's regularity can be o f  exponential growth with
respect to  the K rull dim ension. While these examples have rather "wild" singu-
larities, one might hope to get better bounds in the case of "tame" singularities.
This point of view is pursued further in the papers [2], [10], [12], [16], [17], [18].

O n e  o f  o u r  m a in  results, see (3.5), supplies an  upper bound  for reg R,
Castelnuovo's regularity, o f  a  graded k-algebra R  th a t  is  Cohen-Macaulay or
locally Cohen-Macaulay and unm ixed . I n  a  geometric context, w e get a  satis-
factory bound in the case of a Cohen-Macaulay projective v a rie ty . In particular,
with (3.5) a) we solve a problem posed in [10] in the affirmative. The same result
was shown independently a n d  b y  a  different argum ent b y  J .  Stückrad and
W. Vogel in [18].

In the case of a Cohen-Macaulay ring R it follows, see [2], that

reg R  e(R ) —  C ,

where e(R) denotes the multiplicity and c (:= dim, R, —  dim R )  the codimension
of R .  F o r  R  a  dom ain over k , a n  algebraically closed field, D . Eisenbud and
S. Goto conjectured that

reg R  e(R ) —  C ,

s e e  [2 ] . If R  is  the coordinate ring of a reduced, irreducible curve in projective
space , th is is true  a s  show n by  L . G ruson , R . Lazarsfeld, and C. Peskine in
[7]. I n  our situation of a locally Cohen-Macaulay domain R , i.e., Proj (R ) is  a
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Cohen-Macaulay integral scheme, over an  algebraically closed field of character-
istic zero there a re  several results in  th is direction show n by J. Stiickrad and
W. Vogel, see [16], [17], an d  [1 8 ]. In  particular they have proved that

reg R < (e(R) —  1)Ic + 1 + A (R),

where A (R ) is defined in  term s o f  th e  annihilators of local cohom ology. See
Section 3 for the definition of A (R ). In Section 4 we will give a straightforward
proof o f  th e  ab o v e  b o u n d . In  th e  m o re  particular c a se  o f  a n  arithmetically
Buchsbaum variety, i.e., R  is  a  Buchsbaum domain, J. Stiickrad and  W . Vogel
obtained

reg R < (e(R) — 1)Ic + 1

see  [1 7 ]. In (4.3) we enclose a simplified proof.
In Section 2 we give several characterizations of Castelnuovo's regularity in

terms of Koszul cohomology and certain quotient modules. It turns out that for
an unmixed locally Cohen-Macaulay ring R , the reduction exponent of a standard
system of parameters x R 1 does not depend on x and equals reg R .  In Section
3 we investigate bounds for Castelnuovo's index of regularity in the case when R  is
unmixed and locally Cohen-Macaulay. In Section 4 we demand in addition R  to
be a domain over an algebraically closed field of characteristic zero.

2. The Castelnuovo index of regularity

First o f a ll le t u s  fix som e n o ta tio n . B y R  = R „ we denote a  graded

k-algebra such that R o =  k  is  a field, R  is generated by R 1 ,  and  dim, R ,< co .
T hen there  is a  natural isomorphism R where S  = k [X ,,..., X e ]  is  the
polynomial ring in e = dim k  R , indeterminates over k  and I  S is a  homogeneous
ideal, which contains n o  linear form s. W e pu t P = (X 1 , ..., X ,)S , the  irrelevant
ideal o f  S. F o r  a  graded R-module M = M „ ,  w e  in t r o d u c e  th e  following

n E Z

notations.

(2.1) Definition. (1) s(M) = sup In e Z:  M „  01 .
(2) i(M) = inf In e Z : M O}.
(3) ),(M) = inf In e Z : Pn M = 0} .

N ote th a t s(M) < co (resp. i(M) >  —co, 2(M) < co) if M  is  an artinian R-
module (resp. a  finitely generated R-module, an R-module of finite length). See
[16] for the basic facts about these integers. In the following we will use the local
cohomology modules H (M ), i e Z, and the Koszul cohomology modules 111(Q; M),

e Z, with respect to  a  fixed (minimal) generating set of a homogeneous ideal Q.
Note that changing a  basis of Q  yields isomorphic Koszul cohomology modules.
For further basic results about local cohomology and Koszul cohomology we refer
to A. Grothendieck [6].
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(2.2) Definition. S e t re g  M = max {s(1-4(M)) + iE Z 1 ,  t h e  Castelnuovo
index of regularity of a finitely generated graded R-module M.

The Castelnuovo index of regularity was studied by D . M umford [11]. For
further investigations see also [12], [2], [1], and [1 6 ] . Because 1-11,(M), i e Z, are
artinian R-modules, see [6], (2.1) yields that (2.2) is well-defined. In the sequel we
shall need the notion of a filter-regular sequence for M.

(2.3) Definition. Let Ix 1 , , x,.1 be a  system of homogeneous elements of R
th a t  is  a  p a r t  o f  a  system o f  parameters f o r  M .  I t  is  c a lle d  a  filter-regular
sequence for M if

2((x1, x i _i )M : x i /(x ,, x i _i )M) < co

or equivalently,
s((x i , x,_,)M : x i /(x„, x,_,)M) < cc

for i = 1, r.

In the case of a local ring the notion of a filter-regular sequence was intro-
duced in  [1 5 ] .  See [15] for basic facts. I f  x = {x 1 , x d }  denotes a  homo-
geneous system of parameters consisting of a filter-regular sequence for M, we put

r1_1 (x; M) = s((x,, x i _JM : x i /(x, , x i _, )M)

for i = 1, d. In addition we set

rd (x; M) = s(M/xM) ,

which we call the reduction exponent of x with respect to  M . F o r  i e Z\{0, d},
we define ri (x; M) to be —co.

(2.4) Proposition. L et M  be a  f initely  generated graded R-module and  {x,,
x r }  a system of forms of  R  with di  = deg xi , j  = 1, r. For all i and j ,  there

is the following short exact sequence of  homomorphisms of  degree 0:

0 — > ..., x ; _1 ; M)/x i FP- 1 (x ,, x i _i ; M))(di )

--0 Hi (x i , ..., xi ; M)—>OH q x ,,.... x .i _i ; ,,,n : x;  —■ 0 .

The proof is well-known.
Now we are ready to prove several characterizations of the Castelnuovo index

of regularity.

(2.5) Theorem. F o r a f initely  generated graded R -m odule M , the following
integers are equal:

a) reg M.
b) max { s(I-F(Q; M )) + i e Z1 f or any P-primary ideal Q generated by forms

of  degree 1.
c) max {s(1-11 (x ; M )) +  i e Z1 f or any system of  parameters x  = { x 1 , x d }

f or M  consisting of forms of  degree 1.
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d )  max fri (x; M): i e Z1, w here x = {x 1 , ..., x d } , d = dim  M , is any  f ilter-
regular sequence for M  consisting of forms of  degree 1.

In particular, the integers defined in b), c), d) are independent of  the choice of  Q
and x respectively.

P ro o f  Denote by A, B, C, D the integers defined in a), b), c), d) respectively.
A_.>.• B :  Consider the following spectral sequence

HP(Q; H(M )) HP + q(Q; M),

see e.g. [6]. B y  the definition of A, we have

H ( M ) = O for all i + j  >  A  .

Therefore

[HP(Q; H(M))], = 0 w henever p + q + n > A

because it is a subquotient of

[C'HA M)IP/L =

F rom  the spectral sequence, it follow s that [111(Q; = 0  fo r  a ll  i, n  with
i + n > A .  This yields the inequality.

B C  holds trivially.
C  D :  W e  have H i (x; M)„ = 0  whenever i + n >  C  b y  th e  definition of

C .  It follows easily from (2.4) that [H i (x i , xi ; M )], = 0 for all i, n  with i+ n>
C and all j  = 1, d. Again by (2.4), we get epimorphisms

H i ' (x , xi ; M ) ( (x 1 , xi _,)M : x i /(x i , , xi _i )M)(j — 1) — O

fo r  j  = I. .... d a n d  H d (x; (M /x M )(d). T h ese  conclusions im p ly  the
inequality.

D  A :  F o r  t h e  p r o o f  w e  u s e  in d u c t io n  o n  d im  M . T h e  c a s e  o f
dim  M  = 0 is obvious. Let dim  M  > O . By the induction hypothesis, it follows
from the definition of D that

[111,(M/x 1 M )], = 0 as soon a s  i + n > D .

Furthermore we have [Om : x =  0  for all n > D .  Because x, is a  filter-regular
element, we get an exact sequence

U P »  x [Hip(M)].-1

for all i > 0, see [14], (2.5). By the induction hypothesis, f i is  injective whenever
i — 1 + n > D .  Because s(111,(M)) < oo, it follows

[H ip(M)], = 0 for all n  w i th  i +  n > D and i > 0 .

Now let us consider the case i = O. By [14], (2.5), we have an injection

—> [M(M)]„-i/[Om x 1]„-1 [MOIR. •
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Because [0,: x,]„_, = 0 for all n — 1 > D, we get [1-/AM)]„ = 0 for all n > D  as
required.

In the case of a Cohen-Macaulay module, (2.5) yields the well-known fact that

rd (x; M) = reg M .

That is, the reduction exponent o f  x  with respect to M  is independent of x, an
arbitrary system of parameters consisting of forms of degree 1.

(2.6) Corollary. L et M  be as above, and let x  E R , be a filter-regular element.
Then

reg M = max {reg (M/xM), s(0, : x)} .

T his is  c lear by  v iew  o f (2 .5 ). W e  w ill a p p ly  it  to  the  case  where x =
{x1 , x d }  is  a  filter-regular d-sequence, see [9] fo r the  definition. It follows
easily that there is an injection

0 —■ Om  : x 1 x 2 M : x 1 /x 2 M ,

see  [9 ]. T hat is, s(Om  : x 1) s ( x 2 M : x /x, M) .

(2.7) Corollary. L e t  x = {x 1 , x d }, d  =  d im  M , b e  a  f ilter-regular d-
sequence of forms of  degree 1. T hen

reg M = rd (x; M).

In particular, in the case of  a Buchsbaum module M, the reduction exponent rd (x; M)
o f  a system of  parameters x  of  forms of  degree 1 is independent of  x  and equal to
reg M.

P ro o f . By the previous remark, we have

reg M = reg (Mix, M)

and induction proves the first p a r t .  Then the second claim follows because any
system of parameters for a Buchsbaum module is a d-sequence.

(2.8) Corollary. We have

reg M  = max {s(Toil (k , M )) —  i E Z1 .

Pro o f . First Toil (k, M) IM P ; M )  for all i. Secondly, note that

[I-11(P; [11 (P; M)]„_, for all i, n

as follows from properties of the Koszul (co-)complex. Then

s(1-1(P; M )) + i = s(H e _i (P; M)) — (e — i)

and the desired formula follows by (2.5).
The previous corollary shows that the Castelnuovo index of regularity of M  is

determined as a degree bound of the syzygies occuring in a minimal free resolution
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of M  as an S-m odule. Thus reasonable estimates of reg M lead to estimates for
the degree of syzygies. This is an important note related to computational prob-
lems a s  done  by  D . B ayer and M . Stillm an [1], where one can find also  the
equivalence of a) and d) of (2.5) shown by a different argument.

(2.9) Definition. A  finitely generated graded R-m odule M  has a t-linear
resolution if t := i(M ) = reg M.

I f  M  0  a n d  p = proj.dim M dim S  = e by Hilbert's syzygy theorem), one
has immediately the inequalities

r e g  M  s(H"(P; M)) + n i( H " ( P ; M ) ) + n  i( M )

for all n = p. . . . .e  and hence in the case of t - linear resolution

T o r  (k, M) — i) for all i = 0, p .

That is, M has a minimal free resolution as an S - module of the type

0 — > Sb , ( —  t —  p) —> • • • —> (— t — 1) —> t) —> M  —> 0 .

Finally note that

reg (S/I) + 1 = reg (/)

as easily seen.

3. Rings with finitely generated local cohomology

As before let R  = C ) R „ be a k-algebra of finite type such that R o =  k  and
n?-'0

R  is generated  by R ,  over k. A s above w e consider the local cohomology
modules HAR), j  c  Z . W ith  L  w e denote th e  length of an R-m odule, e(x; R)
denotes the multiplicity of a system of parameters x of R.

(3.1) Definition and Theorem. The k -algebra R  is called a ring  with finitely
generated local cohomology if R satisfies one of the following equivalent conditions:

(i) H i,,(R) is a finitely generated R-module for all i < dim R.
(ii) There is an invariant l(R) and an integer m such that

L(R/xR) — e(x; R) l ( R )

for all systems of  parameters x  = { x ,, x d }  with equality f or all x  P m .
(iii) R  is equidimensional and R p  i s  a Cohen-M acaulay  ring for all relevant

homogeneous prime ideals p of  R.

T he  proof of (3.1) is g iven in  [1 5 ], where th e  study o f  these generalized
Cohen-Macaulay rings was started. Recall that

d -1 (di )
l(R )= E . L (H(R )), d = dim R .

i=o
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In accordance with [10] and [16] we put

d - 1 1 )

A (R) = E . A(1-1̀ ,(R))
i= 0

for rings R  with finitely generated local cohomology. In  [14] a  system of parame-
ters x  fo r which th e  equality in  (3.1) (ii) holds is called a  standard  system of
param eters. On the other side, every system of parameters of a ring with finitely
generated loca l cohomology i s  a  filter-regular sequence. T h is  follows easily
from (iii) of (3.1). In  particular, a  Buchsbaum ring has finitely generated local
cohomology.

Next we show several results concerning the behaviour of reg R by passing to
R/xR.

(3.2) L em m a. L e t R  denote a  graded k-algebra and x e R , a  filter-regular
element. Then it follows

a) reg R  reg R/xR + A(HAR/O: x)),
b) reg R  reg R /xR  + A (HA R )), and
c) reg R ..<„ reg R/xR + L(HAR)) — L(0 : x).

Pro o f . B y th e  definition o f  A , it  is  e n o u g h  to  show  the  first inequality.
Because x e R , is filter-regular, there are exact sequences

H (R /x R ) i  1 -1(R); _1 H ( R ) if o r  i 1  and

0 —*1-11,) (R)i _i /[0 : x] i _1
 2 +̀ H

°
(R)i  —1

-
g(R /x R ) i

see [14], (2.5). Let r = reg R /x R . Then the first sequence shows

1-1(R);  = 0 for all i, j with i + j >  r and i 1 .

Now suppose reg R > r +1, where 1= A(HAR/O: 0. Then reg R = s(HAR))=:
s taking into account the conclusion from the first sequence. Thus, there is an
element 0 m e 1-4(R) s . Because s > r + 1 ,  th e  second sequence provides an
element m1 e H i9(R)s _1 such that

m = x(m, + [0 : x],_ 1 ) = xm, .

Iterating this argument 1 + 1 times, we obtain an  element m1 + 1  e HAR)s _i _ , such
that

= X1+1"1/+1 E XP I ([11 (p) (R )] s _i_ 1 /[0 .X] s _1_1) = 0 .

But this is a  contradiction. Therefore, the desired inequality holds.
Another inequality concerning reg R is given in the following lemma. To this

end we put R  = R /HA R ). Note that

reg R  = max {reg R, s(HAR))} .

(3.3) L em m a . There is the following bound
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reg R reg R + 2(Flii,) (R)).

P roo f. Assume the contrary. Then

s > r + A(HAR)),

where s = s(HAR)) and r = reg R .  That means Ps'  H ( R )  =  0 by the definition
of A. N ow  w e present R = S/I and k = S/J for a homogeneous ideal J, i.e.,

H (R ) J / I .

Because r = reg R we have reg J = r + 1. By (2.8) this means that J is minimally
generated by forms of degree r  +  1 .  T h u s  P s -r-1 J r+ 1  =  J. O n  t h e  other side
P s -r - lJ r+ 1

 L as follows from s — r — 1 2 ( H ( R ) ) .  Combining both results, we
have

=  P s - r -1 .4 + 1  g

i.e ., there  is no non-zero form  o f  degree s  in H (R ) ,  a contradiction t o  s =
s(H,c.'(R)).

(3.4) Theorem. L e t R  be a  graded k-algebra with finitely generated local
cohomology and d -= dim R .  For a system of  parameters x R ,  of  R it yields

rd (x; reg R  r d (x; R) + l(R) — L(R/xR) + e(x; R).

In particular, for a standard system of  parameters x  g  R, we have rd (x; R)= reg R.

P r o o f  First note that rd (x; reg R follows by (2.5). We show the second
claim by induction on d. In the case d =  1, (3.2) c) shows

reg R r,(x; R) + l(R) — L(R/xR) + e(x; R)

because L(0 : x) = L(R/xR) — e(x; R), w h e re  x  =  x ,.  N o w  let d >  1. B y  the
induction hypothesis we get

reg R / x ,R  r d (x; R) + l(R/x,R) — L(R/xR) + e(x; R).

By (3.2) c), it follows

reg R  reg R/ x R + L(HAR/0 : x 1 )) .

Now the inductive step is complete because

I (R/ x R) + L(HAR/0 x ,)) 1 (R )

as follows from the long local cohomology sequence of

0 —> (R/O : x, )( — 1 ) > R —> R/x,R—> 0

and the fact that x, is a filter-regular element.

Now we are going to prove one of our main results in  this section. Part a)



Castelnuovo's index of regularity 99

of (3.5) gives an affirmative answer to a  problem posed by W . Vogel during his
talk at the 5th National School in Algebra, Varna 1986, see also [10].

(3.5) Theorem. L e t  k  be an  infinite field, le t R  = S /I  denote a  graded k-
algebra with finitely generated local cohomology, and let c = height I  (= dim, R , —
dim R) and  t + 1  = 41). Then it holds:

+ t )
a )  t reg R  e(R ) — + t + l(R ).

b )  If  R  is in addition a Gorenstein ring with c> 1, then

2t + 1 reg R , and

r e g  R  e ( R ) —
± t ) + 2(t + 1)

provided reg R  > 2 t  + 1 . In the case 2t + 1 = reg R, it yields

+ t) + t —  1) .
e(R )=t

P roo f. First let us treat the case a). Because

t + 1 = i(I) reg =  reg R  + 1

w e get the  low er bound . In  order to  prove the  upper bound choose in  R ,  a
system of parameters x = {x 1 , xd } such that e(R ) = e(x ; R ). P ut r = rd (x; R).
Then R / x R  k[Y,, 1,]/J for an ideal J  in the polynomial ring k[Yi , IA  in
c indeterminates. With t' := i(J) —  1, there is the following bound for the length

(c  + t ')
L(R/xR) + r —  t' .

Note that r = s(R Ix R ). Now it is easy to see that t' t  and

Thus L (R /x R )  (c  
+

+ r —  t. Therefore, the claim follows by (3.4).

In  order to prove b), choose a  regular sequence x = {x 1 , xd } of degree 1
such that e(R )= e(x ; R ) = L (R /x R ). By (3.4) we get r := reg R  = rd (x; R). Since
X is a  regular sequenc, it follows easily t = t', where t ' is defined as in the proof of
a). Because R  is a  Gorenstein ring the same holds for B  := R /x R . Then there is
a perfect pairing

B i x  B r _ iB rk  , i = 0, r .

Therefore it follows dim Bi =  dim Br _, for i = 0, r. Because of the self-duality
o f  th e  finite free resolution o f  R  over S  w e g e t th e  low er bound . N ow  let
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r > 2t + 1. Then

L (R /x R )  2 (c  t )  +  r — 2(t + 1) ,

which proves the upper bound for r. The case r = 2t + 1 is done by the same
argument.

In [13] a Cohen-M acaulay (resp. Gorenstein) ring R  is called extremal if
reg R  = t (resp. reg R  = 2t + 1). In this case R has a "simple" resolution over S.

(3.6) Corollary. Let R  be a Cohen-Macaulay ring. Then the following condi-
tions are fulfilled:

+ t )
a )  t reg R  e(R ) — + t .

b )  e ( R )  
( c  + t )  

and equality  holds if and only  i f  I  h as  a  (t + 1)-linear

resolution.

Pro o f . a) is clear by (3.5) a) because I(R) = 0 for a Cohen-Macaulay ring R.
T h e  b o u n d  in  b) is obvious by a). I f  equality holds, it follows from a ) that
reg I -=  t +  1  =  i(I) a n d  I  h as a  (t + 1)-linear resolution. The converse comes
from the fact that

reg R/xR = rd(x; R) = t and

i(/) =  i((I, xR)/xR).

One m ay ask for the sharpening of (3.5) a) with A (R) instead of I(R). But
this does not hold  a s  follows from a n  example given by D . Lazard, see [16],
Section 6, ex. 1.

4. Integral domains over an algebraically closed field of characteristic zero

I n  th is  section w e w ant to  d iscuss bounds for the Castelnuovo index of
regularity for particular cases of rings. A s an application of our ideas, we are
able to simplify the proofs of some of the main results of the papers [16], [17],
a n d  [1 8 ] .  F irst le t us assum e th a t R  is  a n  integral dom ain w ith R , = k  an
algebraically closed field. These assumptions a re  necessary in  order to apply
H . Flenner's Bertini theorem s, see [3], Satz 5.5. M ore concrete, if  dim R  3,
then there is a generic form X  E  R , such that

R' = R/xR : <P>

is again an integral dom ain. (For a subm odule N  of an S-module M, N :<P> :=
{in e M 3i E Z: Pm g  N } .)  Note that

R' = S1(1, xS): <P> ,
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where I  is the defining prime ideal of R .  That is, (I, xS): <P> is again a prime
ideal. As before, let

c = dim k  R, — dim R .

(4.1) Proposition. With the above notation,

dim k  R, — dim R = dim k  R', — dim R'

For the proof of (4.1) see Lemma 3 of [16] o r  [4], p . 174 . Note that (4.1)
does not remain true without additional assumptions on k  and R .  As in Section
3, we define t = i(I) — 1. Now we are going to sharpen part of (3.5) a) in the case
o f  R  a  dom ain over a n  algebraically closed field k. I n  o rd e r  to  dispose the
General Position Lemma, we assume k to be of characteristic zero.

(4.2) Theorem (see [16], Theorem 1). L et R  = S II denote a graded k -algebra
with finitely generated local cohom ology . If  R  is  an  integral domain with c =
dim k  R, — dim R ?.- 1 and k  is an algebraically closed field o f  characteristic zero,
then

t < reg R < (e(R) — 1)Ic + 1 + A(R) (< e(R) — c + 1 + A(R)) .

Pro o f . First note th a t the lower bound follows from (2.8). Since we have
excluded the trivial case e = 0 (in which R is isomorphic to a polynomial ring over
k), we have d := dim R ,.. 2. We induct on d. Let d = 2. Then, by the General
Position Lemma [5], (2.13)—(2.16), there is a  generic form x E R , such that R' =
RIxR: <P> is the homogeneous coordinate ring of e(R) ?.:- c + 1 points in general
position and [H,1,- (R')]„ = 0 for all integers n with e(R ) < en + 1. Note that R ' is
a  one-dimensional Cohen-Macaulay ring (reduced but not a  dom ain). Hence

reg R' < (e(R) — 1)Ic + 1 .

Doing the inductive step, we shall see that reg R  < reg R ' + A (R ). This shows the
case d 2.

Let d....- 3. Then, by  Flenner's Bertini theorem [3], Satz 5.5, we can choose
an  appropriate x, see beginning of Section 4, and apply the induction hypothesis
to R'. Thus

reg R' < (e(R') — 1)Ie' + 1 + A (R').

Now e(R') = e(R) as follows from the choice of x. By (4.1) we have c' = c. By
virtue of (3.3), it follows

reg R  = reg RIxR < reg R' + A (H(RIxR)).

Putting this together, it yields

reg R < (e(R) — 1)Ic + 1 + A(R') + 2(HARIxR)) .

By the definition of A we have

A(R') + A(I-1,c1(RIxR)) = A(RIxR).
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The short exact sequence

0 -> R(- 1) R  -> R Ix R  -+ 0

yields A (R Ix R ) A (R ) a s  follow s easily from  th e  corresponding long exact
sequence for the local cohomology modules. This finishes the proof.

In  the  case  o f a  Buchsbaum ring R , clearly A ( R )  2 ,  where d = dim R.
So there is the bound

reg R  < (e(R ) - 1)Ic + 1 + 2 '  .

However, a sharper bound is true:

(4.3) Theorem (see [17], Theorem 1). L et R  be as above an integral domain
over an  algebraically  closed f ie ld  k  o f  characteristic zero, and assum e that c =
dim, R , -  dim R  1 .  If  R  is a Buchsbaum ring, then

reg R < (e(R) - 1)Ic + 1 e(R ) - c + 1).

Pro o f . If R  has the lowest possible dimension d = 2, as in the proof of (4.2),
th e  G eneral Position Lem m a yields a n  element x e / 21  su c h  th a t  f o r  R ' =
RIxR: <P> it holds

reg R' < (e(R) - 1)Ic + 1 .

Clearly reg R  = reg R IxR  = max {reg R', s(I -M RIxR))1, and further

s(T IA R IxR ))= s(11(R ))+ 1 e s(H(R IxR )) + 1 reg R'

as follows from the local cohomology sequence

0 HA R IxR )-> 14(R )(-1) HA R )-> I-1,1(R IxR )

using the fac t tha t x  is  the zero m ap fo r  a  Buchsbaum ring R .  Thus reg R ' -
reg R and the case d = 2 is shown.

W e proceed by induction on d. L et d 3 . Applying H . Flenner's Bertini
theorem , see [3], Satz 5.5, w e can choose a n  element x e  R ,  such  tha t R ' =
R IxR : <P> is a  domain with e(R ') = e(R ). By (4.1) we have c = c' := dim, R', -
dim R '. Now R ' is a  Buchsbaum ring of dimension d  -  1 . Thus, by the induction
hypothesis,

reg R' < (e(R) - 1)Ic + 1 .

As above, reg R ' = reg R  and the inductive step is complete.

By virtue of (4.2) and (3.5) one should ask for

reg R  e ( R ) - + t) + t + A (R ),

where R  i s  a  graded integral dom ain over a n  algebraically closed field k  of
characteristic z e r o .  H ere t =  i(/) - 1 , w here  I  is  the  homogeneous prime ideal
given by R  = S II . The following example shows that this does not hold.
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( 4 .4 )  E x a m p le . In  [8 ] L. Gruson and C. Peskine have shown that there is a
reduced, irreducible curve C P  = :  P of degree 10 and genus 6 with the follow-
ing resolution

0 —) (4( 7) —> V 5 ( -6 )-- — 5) —) Op ( .9 c  --) 0 .

F o r  th e  homogeneous coordinate ring  R , it follow s that reg R  = 4 , use (2.8).
Therefore [1-1(R )], = 0  for all n 4  and all n 0 ,  i . e . ,  A ( R )  3. B e c a u se  t = 4
the requested bound does not hold.

Moreover, th e  example shows a lso  th a t th e  low er bound 
( c  +

for the

multiplicity of R  in the Cohen-Macaulay case is no longer true for R  an integral
dom ain over a n  algebraically closed field k  o f  characteristic z e ro  a n d  t > 1.
Recall that the case t = 1, i.e., e(R) c  +  1 ,  is true for R  an integral domain over
an algebraically closed field k, see e.g. [2] or [4], p. 173.

In their paper [2], D. Eisenbud and S. Goto conjectured that

reg R  e (R )  — c

for a graded domain over an algebraically closed field k. This is shown to be true
for R  a Cohen-M acaulay dom ain. The Theorems (4.2) and (4.3) of J. Stiickrad
and W. Vogel contain results in this d irec tion . In  particular the Buchsbaum case
is a good support for this conjecture.
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