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Some Numerical invariants of hyperelliptic fibrations

By

Shigeru MATSUSAKA

O. Introduction

I n  this paper w e shall define certain num erical invariants of hyperelliptic
fibrations and study their properties. A proper surjective morphism H: X —> C is
called a  hyperelliptic fibration of genus g if X  is a  smooth surface, C  is a  smooth
curve and the general fiber of H  is  a hyperelliptic curve of genus g.

H yperellip tic  fib ra tions o f  g e n u s  2  h a v e  b e e n  s tu d ie d  b y  se v e ra l
mathematicians. Ueno [ I I ]  and Xiao [X ]  proved that the topological index i 0 (x)

= —
1
(c 1 (X )2 — 2c 2 (X )) is non-positive if X  has a hyperelliptic fibration of genus 2

3
over a  smooth compact curve.

I n  th is paper w e  w ill show  the  following inequalities fo r  every relatively
minimal hyperelliptic fibration H: X —> C over a  smooth compact curve:

—g — 1 n2 2 g  1
•  E  et (X )  i t o p (X )  • l e  (X ) • • • (0 .  . 0
2g + 1 tec 2 g  +  1 EEC

if g  is even,

—g — g2 — 2g
 E e t(X )  i 0 (X )   E e(X ) —(0.1.2)

2 g  +  1  EEC 2 g  +  1  E E C

if  g  is odd.

where et (X )= (Euler number of  H -1 (t)) — (2 — 2g). (See Theorem 4.0.1 below).
To prove these inequalities, we need a section D  of / 7

* (ox1er 4 (2 g  + 1 ) .
For every hyperelliptic fibration H : X  C ,  there exist a  P '-bundle  p: Y—> C

and  a  double covering fi:  — >  Y such that je is birational to X  over C .  There
exists an open set C° i n  C  which satisfies the following:

i) p - 1 (C° )  is isomorphic to 131 x  C°:
ii) l l '( C °)  can be identified with the closure of {(x, t, y)EC x C x  C; y 2

= yo(x, t)}, where x is an inhomogeneous coodinate of 13 ' and  go is a polynomial of
x of degree 2g + 1 or 2g + 2 with coefficients in the rational function field of C° .

The section D  of ( 11 l l * cox1c)®412g  4 . I )  is defined to be
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• 

( dx dxd x 4 (2 g+ 1 )

D  =  ( 9 ) g  A  x  A ••• A  x g ' —
Y Y Y

G r rat (C
°
 , H *W X /C ).4(2" n)

= r r a i (c, 17,,a) xi c r 4 ( 2 g + 1 ' )

where L(yo) is the discriminant of cp as a polynomial of x (cf. [ U ] ) .  The definition
of D  is independent o f the  choice of Y, C ° ,  x , y  and  go (see Proposition 3.1.2
below). Moreover we shall show that D is a  regular section of (4 /7 * rox i c )" (2 8 + 1 )

o n  C  (see Corollary 4.0.8 below).
The numerical invariant d (X ) of a hyperelliptic fibratinon H : X —> C is defined

to be

1 
d (X )= o rd  D.

4(2g + 1)

Then we have the following:

Theorem 4 .0 .4 . L et H: X  C  be a relatively minimal hyperelliptic .f ibration of
genus g. F o r  every closed point t  in C , we have

n 2

4 ( 2 g +  1 )

e,(X ) d ( X )  <
4(2g+  1 )

ei (X ) ••• (O. 1.3)

if  g  is even,
g 2 +  1

4 ( 2 g +  1 )  
e f(X ) d(X )

4 ( 2 g  +  1 )  
et(X ) ••• (0. 1.4)

if  g  is odd.

To prove the Main Theorem we shall use the theory of cananical resolutions
of double coverings studied by Horikawa and other mathematicians (see [H1], for
example).

I n  chapter 1  w e shall sum m erize th e  definitions a n d  fundamental facts
concerning with canonical resolutuions and hyperelliptic fibration. In (1.3), we
shall prove that, for every hyperelliptic fibration H: X —> C, the re  is  a double
covering o v e r  a P '-bundle Y  such that the covering space i s  b i r a t io n a l  t o
X .  Using this double covering, we can express the invariants d 1(X )  and et (X )  in
the language of canonical resolutuions (see Chapter 3 below). And this expression
and some calculation in Chapter 4 lead to the inequalities (0.1.3) and (0.1.4). In
the course of the calculation in Chapter 4, the double covering n e e d s  to  sa tis fy
some conditions (see Proposition 2.0.1). We devote Chapter 2 to construct such a
double covering. In the construction of such a double covering, the auther is
inspired by Debarre's paper [D ] and Tokunaga's suggestions.

H e  w o u ld  lik e  to  express h is  th an k s to  H irô  T o k u n ag s fo r  his useful
suggestions. He would also like to express his thanks to Professor Kenji Ueno
and Kazuhiko Kurano for many stimulating discussions.
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Notation and Convention. All algebraic schemes are defined over the complex
number field C . A  surface is an algebraic scheme of dim ension 2. A  curve is an
algebraic scheme of dimension 1.

A blowing-up means a  blowing-up at a point if a  center of the blowing-up is
not mentioned. While f :  Y' —> Y is called a blowing-down if f  - 1  is  a  blowing-up of

In  the  following we shall use the following notation freely.

: dual sheaf of ;
[F ] : spectrum of the symmetric algebra on the dual sheaf of a locally

free sheaf ;
f 1 [ B ]  :  union of all the irreducible divisors on a smooth surface X  whose

images of a proper surjective morphism f : X  Y are components
o f  a  reduced effective divisor B  o n  a  smooth surface Y

For simplicity, we call f  - 1 [B ] the proper transform  of B  by f  1  (This coincides
with the usual notation when f  is  a  proper surjective birational morphism.)

A curve C on a smooth surface is called a (— i)-curve if C is isomorphic to P'
and C 2  = —

Let H: X —> C be a  proper surjective morphism from a  smooth surface X  to  a
smooth curve C .  The surface X  is called relatively minimal if each fiber of H: X
—> Y contains no (— 1)-curves.

Let H: X —>C be a surjective morphism from a  smooth surface X  to a  smooth
curve C  and let B = 13 + V  be a  reduced effective divisor on  X  where F3 > 0  and
V> 0, /71/3 is finite and V is contained in fibers of H .  Then f l is called a horizontal
part of B  a n d  V is called a  vertical part of B.

1. Preliminary

In  this chapter we shall state definitions and  fundamental facts concerning
with double coverings, canonical resolutions and hyperelliptic fibrations.

(1.1) Let X  be a normal surface and Y a smooth surface. The morphism  f : X
—> Y is called a double covering if f  is a  finite surjective morphism of degree 2. By
purity of branch loci, the branch locus B  of f  is a  divisor on Y

For every line bundle L and a  reduced effective divisor B  on a  smooth surface
Y satisfying t9(L)® 2 C y (B), we obtain a double covering Spec(0, C) Cy (L)") over
Y whose branch locus is  B .  In  this paper this double covering is denoted by
X(Y , L, B).

Conversely, for every double covering f : X  —■ Y, there exist a line bundle L and
a  reduced  effective d iv iso r B  o n  Y  such  tha t & (L )® 2  e y (B )  a n d  X

X(Y, L , B )(cf . [T ] or [12, n. 2. 24]).
L et g': Y' —> Y b e  a  proper surjective birational morphism between smooth

surfaces, B  a  reduced effective divisor on Y  and L a  line bundle on Y  such that

e y (L r 2 e y (B). We define integers ai 's by g'*(B) = 1 [B ] + E ai E i where E i 's
1= 1
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are the exceptional curves of g'.

Definition 1.1.1. Under the above notation, a divisor B y , and a  line bundle
L y ,  on Y ' are  defined as

"
B y , g'*B — 2

[a, E -
,= 1  2

"
G

a .
AO  = g'* ( y(L)

[y,(—E E.
= 2 `)'

[6 .1
a,

where is an  greatest integer not exceeding .
2

N ote tha t the divisor B y , is reduced and  effecive, Cy ,(B y ,) is isomorphic to
(91 ,(L ,) ® 2  a n d  X(Y', L y „ B y ,) is t h e  norm alization o f  X(Y, L, B) x Y ' (see

[H 1 ]) . Moreover, for every proper surjective birational morphisms g': Y' —> Y and
g": Y" Y ' between smooth surfaces we have B,„ = (131,)1„ and L y „ = (4)1„.

The following fact is well-known.

Proposition 1.1.2 [H1, Chap. 2 ] .  L et X  be  a double covering of  a  smooth
surface Y . T hen X  is sm ooth ff and only  if  the branch locus of  X —> Y is smooth.

Proposition 1.1.3 (Canonical resolution and  its universality).
L et Y be a smooth surface, X a double covering over Y, L  a line bundle on Y and

a  reduced  e f f ec tiv e  d iv iso r on  Y  s u c h  t h a t  (91 (L)® 2  e y (B )  a n d  X'
X (Y , L , B ). Then there exist a unique smooth surface Y cR and a proper surjective

birational morphism a  : Y,C R  -C R - 4

i) the double covering X c R  = X (Y c R , L y , R ,  By , R )  ov er l i c R  is smooth;
ii) if  g ': Y' —> Y  is  a  proper surjective birational morphism between smooth

surfaces and the divisor B y , is smooth, then there is a unique morphism 9": YCR
such that g' gc R o g".

P ro o f  L et i  be  an involution on X (Y, L, B) such that X(Y, L, 
B ) / < i >  Y

and hre s : X r e s —* X (Y, L, B) the minimal resolution of X(Y, L, B ) .  There exists a
unique involution i' o n  X re s such  that L .  i hres• W e define Y cR  to  be  the
minimal resolution o f  X res / < 0 .  Then there exist proper birational surjective
morphisms a  : Yc.C R  -C R — * Y and h: X(Yc R , L y , R , Byc,R) — >  X r e s •  

Since the singularities
of X , , / < i ' >  are of A 1 -type, the rational map h - 1 : X,.„ • • X (Y CR , L Y cR ` By c R ) is a
blowing-up at isolated fixed points of i'.

I f  g' Y' —> Y  i s  a  proper surjective birational morphism between smooth
surfaces and the divisor B y , is smooth, then X(Y', L y „ B y ,) is smooth and there
exists a unique morphism h': X(Y', L y „ By ,) — >  X  r e s •  

Let i" be an involution on
X(Y', L i ,, B O  such that Y' X(Y', L y „ By ,)/< i"> . Then we have i'-h ' =  ho
Since Y' is smooth, the involution i" on X(Y', L y „ B y ,) does not have any isolated
fixed points. Since h- 1  i s  a  blow ing-up at th e  isolated fixed points of the
involution i' o n  Xr e s ,  universality o f blowing-ups induces th e  proper surjective

Y  which satisfy that:
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birational morphism h": X (Y ' , L y „ X(Y cR, Ly c R • B y, R )  such that h' = ho h".
Therefore we have a  desired morphism g": Y ' Yc ,  (see Proposition 1.1.2). 0

In  the following we shall often use X cR  instead of X(Yc „, L y c . ,  B y c N ). The
resolution X c , -> X(Y, L , B ) is called a  canonical resolution of a double covering
X(Y, L , B ) over Y(see [H1]).

Remark 1.1.4. Let (Y, L, B ) be a triple such that & 1 (L)®2C y (B). Put Yo

= Y and le t y  be a blowing-up o f  y _ , at a singular point of By _ If By „ is non-
singular and for every i < n  -  1  B y , has some sinularities, then y, is isomorphic to
l i cit (see EH 1] ).

(1.2) L et Y  and  Y ' be sm ooth surfaces and g': Y ' -> Y  a  proper surjective
birational morphism. In the section (1.1) we constructed a double covering over
Y' from a double covering over Y  I n  this section we will make a double covering
over Y from  that over Y ' and prove that this process is the converse process of
(1. 1).

Let L ' be a line bundle on Y' and B' a reduced effective divisor on Y' such that
e y ,(B ) .  T h e n  L = g ',11  i s  a  line bundle o n  Y  a n d  B  = g',13' i s  a

effective reduced divisor on  Y  such that (9 1 (L)®2 C  y (B) . H ence w e obtain a
double covering X(Y, L , B ) over Y from a double covering X(Y', L ', B ') over Y'.

Lemma 1.2.1. Under the above notation, L ' and L y „ B ' an d  By ,  are  both
isomorphic. That is, we can identify X (Y ', L ', B ') with X (Y ', L y „ B y ,).

P ro o f  On a dence open set, the morphism g': Y ' Y  is an isomorphism and
L' (or B') is isomorphic to L(or B, resp.). H ence there  is a  natural birational map
h': X ' • • X .  Put X  = X(Y, L, B), X ' =  X ( Y ',  L ',  B ')  and X "
= X(Y', L y „ B y ,). Moreover, le t  go": X" -* Y ', h": X " -■  X  a n d  9' : X 'Y '  be
natural morphisms.

Then the homomorphism (9")": R(X ") between rational function fields
can be identified with (cp')# : R(Y ')-* R(X ') under the identification
(h' - 1 0h")#: R(X") R ( X ' ) .  Therefore th e  universality o f normalization implies
that we can identify X ' with X " .  Under this identification, the equalities 9' = 9"
and h' = h" holds. Consequently, the branch locus B ' of X ' -> Y' coincides with
the branch locus B y , o f  X "  Y'. Since (.9 1 ,(L 1 ,) C y ,(E  E1) (E i 's  are curves
contracted by g'), the  equality B ' = B y , induces L' = L y ,. i

(1.3)
Definition 1.3.1. For every hyperelliptic fibration H: X  -> C, a triple (Y , L, B)

is called a triple associated with H  if p : Y  C  is a  P 1 -bundle over C, L is a  line
bundle on  Y  and  B  is  a  reduced effective divisor on  Y  such that X(Y, L. B ) is
birational to X.

Lem m a 1.3.2. Fo r every hyperelliptic fibration .11:X  C ,  there is a triple
(Y , L, B) associated with H.

P ro o f  If  1: x  ••• Proj(17,,co x1c ) i s  a  ra tiona l m ap  assoc ia ted  w ith  the
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relative linear system over C  of the relative dualizing sheaf cox I c  o f  H , then the
general fiber over Im(f) is 13 ' and f: x • • • Im(1) is of degree 2. Therefore, there
exists a donimant rational map f:X ••• —> Y of degree 2 from X  to  a P '-bundle Y
over C .  If denotes the normalization of Yin the rational function field R(X ),
is the double covering over Y which is birational to X .  By the argument of (1.1),
there exist a  line bundle L on Y and a reduced effective divisor B  on Y such that
X (Y , L, B) is birational to X.

Since, for every hyperelliptic fibration, the fibers d o  not contain any (— 1)-
curves which intersect other (— 1)-curves, we obtain the following lemma.

Lemma 1.3.3. Let H: X  —> C and H ': X' —> C be hyperelliptic fibrations such
that there is a birational m ap f ': X' ••• —> X over C .  I f  H  is relatively minimal, f '
can be ex tended to a unique regular morphism.

2. Triples associated with relatively minimal hyperelliptic fibrations

(2.0) The purpose of this chapter is to prove the following proposition.

Proposition 2.0.1. I f  II: X  —> C is a relatively minimal hyperelliptic fibration,
then there is a  triple (Y , L, B) associated with H  satisfying the following conditions.

L e t  X  cR  = X (Yc R , L Y C R , B y , „ )  b e  th e  canonical resolution of  the double
covering X(Y, L, B) over Y, X res the minimal resolution of X (Y , L, B), and let p, nrCR ,

H CR, H r e s ,  h, h res ,  fcR re s , and g c ,  in  th e  follow ing diagram  2.0.2 be natural
morphisms ( c f  Proposition 1.1.3 an d  L em m a 1 .3 .3 ). T hen the surfaces and
morphisms satisfy that:

(A) the horizontal part r3 of B  has multipicity  g  + 1  at every  point in t i;
(B) every curve F' X  cR  contructed by h: X cR —■ X is a (— 1)-curve on X cR

and the im age of  the curv e F' to  Y CR is a (—  2)-curve contained in By c R ;
( C )  if  11,7e s

i (t) contains a  curve F contructed by h,.„, then following conditons
are satisfied:

(Cl) t h e  curv e F is the proper transform  of p -  1 (0  to  X „s ;
(C 2 )  H - 1 ( t )  i s  a  f ib e r o f  multiplicity  2 ,  th at  is, i f  1 1 - '(t)

F  I s  are  irreducible components o f  H - 1 (t)), all

ci.'s are even numbers.
h

Diagram 2.0.2.
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In the following sections of this chapter we are devoted to construct a triple
(Y, L, B ) satisfying above conditions.

( 2 .1 )  L e t H: X —> C b e  a  relatively minimal hyperelliptic fibration. Since
every hyperelliptic fibration has a triple associated with it (see Lemma 1.3.2), there
is a birational m ap i: X ••• —> X such that ioi = id. By the minimality of H  and
Lemma 1.3.3 we may regard the rational map i  as a morphism.

Let k be a quotient space of X  by a group generated by this involution i and
Y„ the minimal resolution of k .  The normal surface k has singularities of A'-type
a t  the image of isolated fixed points of i. L e t  X „  be  a  blowing-up at isolated
fixed points of i. By the universality of blowing-ups, there is a morphism f „ :  X „

Y C R • Since f c ,  is a  quasi-finite projective morphism of degree 2, it is finite of
degree 2. That is, X c R  is  a double covering of Y c R .  Let L cR  be a line bundle on
YcR and B cR  a  reduced effective divisor o n  YcR such that X cR  =  X (Y cR , L cR , B cR )

(see (1.1)). Note that, since X cR  is smooth, BcR is smooth (see Proposition 1.1.2).
F or convenience we summarize the properties of X „  a n d  YcR.

Lemma 2.1.1.

( i)  h: X"—> X is  a contraction of  all (—  1)-curves on X " .
(11) f c R :  XCR —> YCR maps every curve contracted by h  onto a (—  2)-curve contained
in BCR•

P ro o f  The assertions are clear by the construction of X c R  and Y . 0

Since the general fiber of n YrCR : -CR C  is isomorphic to after applying a
succession of blowing-downs, we obtain a P '-bundle Y ' over C .  We may assume
tha t the sequence of blowing-downs

YCR 37,!, Yt - 317;- 2 Yf =  Y'

• • • (2. 1. 2)

satisfies the following condition (cf.[H2]).

Condition 2.1.3. Let E; be the (— 1)-curve contracted by g ;  and Fri the
horizontal part of B; = (g; + 1 .  g : , 2 . •  g ) , ( B " ) .  Then for every i(1 i n )  we
have Ei• <  g +  1.

In fact, the general fiber of the structure morphism nCR :  Yr -C R  C is isomorphic
to  P 1 . H ence  every  irreduc ib le  com ponen t E l o f  a  singular fiber p (t) is
iso m o rp h ic  to  P ' a n d  th e  invertible sheaf w y c R i c  E l h a s  d eg ree  >  —  1 . The
equality of this inequality holds if and only if E ; is a (— 1)-curve. Therefore, since
p c

- , ( t ) • w y c i ,  = — 2, the  singular fiber pc- (t)  contains either a (— 1)-curve along
which p c7,1(t) has (geometric) multiplicity 2  o r  two ( — 1)-curves. O n the other
hand, the intersection number of p c

-
i (t) against the horizontal part r 3 „  of B c ,  is

2g +  2. T h e r e  e x is t s  a (— 1)-curve E,',  Y ,  c o n t a in e d  i n  pc- P t )  such that
En' • /3 ,, <  g  +  1 . I f YCR = 1 i s  a  blowing-down contracting E to a point in
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the condition 2.1.4 holds when i = n.
After applying a succession of above processes, we obtain a  sequence of

blowing-downs satisfying the condition 2.1.4 for a ll i. 111

In the following we assume that the sequence of blowing-downs (2.1.2) satisfies
the condition 2.1.3.

Lem m a 2.1.4. The horizontal part 13- ' of  B  = (g R ),13c R  has m ultiplicity  < g
+ 1 at every  point in 13'.

P ro o f  W e will inductively show  tha t, fo r  each i(0 < i < n), th e  reduced
effective divisor E = (ai +1 ° g i+2 " — °  g n ) * - g C R  has multiplicity g + 1  at every
point in E . S in c e  B' = .b", it is sufficient to prove this assertion.

If i = n, t h e  a s s e r t i o n  follows f r o m  the sm o o th n e ss  of B,Ç
= Bc R (see Proposition 1.1.2).

Assume th a t  Ei satisfies the  a sse rtion . Since g'; ' [ E i _ i ]  =  k , w e  have
mu/ta . (Bi_ i ) = f3; • Ei where ai_ , = gi(E i). Hence the condition 2.1.3 implies
that imidta , (B ) < g + 1. O n  t h e  other hand, by the assumption of induction,
13'i _ , has' 'multiplicity g + 1 a t  e v e r y  p o i n t  i n  Ei_ e x c e p t the  po in t
ai_ 1 . Therefore 13_1 satisfies the assertion.

Consequently, for every i(0 i n ) ,  13; has multiplicity < g + 1 at every point
in  k.

Let L ' be a  line bundle (a;-. on  Y ' and  B ' a  reduced effective divisor
(geR)*BCR o n  Y '.  By Lemma 1.2.1, Lc'? and (L '),, R ,  B c R  and a r e  both
isomorphic to each other.

Diagram 2.1.5.

Let X ;„ be a minimal resolution of X(Y', L', B'), X ;„ —> C its structure
morphism and  f.'„: res Yr'es a  com posite  m orph ism  of the  resolution X; e s

X(Y', L ', B ') and the covering X(Y', L', B ') —> Y'. By the minimality of X;„ we
have k R  : X  cR  X 're s  ,  and by Lemma 1.3.3, there is a morphism h;„: X ;e s —> X.

Lem m a 2.1.6. Under the above notation, we have the following:
( i )  (Y ', L ', B ') is a triple associated with H;
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(ii) X c R  i s  the canonical resolution of  the double covering X(Y', L', B') over
Y'

(iii) (f.'„) - 1 [p' - 1 ( t)] is  a  unique curve which is contained in (17,.'„) - 1 (t) and
contructed by h r'e s .

P ro o f . (i) By the construction of Y ', the assertion is  c lea r . ( ii)  L e t g c ,
— X (tR , L ic . , B i c . )  b e  a  canonica l reso lu tion  o f  t h e  d o u b le  covering
X(Y', L', B ') over Y'. By the universality of canonical resolutions (see Proposition
1.1.2), there exist morphisms 0: Y ea - 4  iT C R  and h: X c R  1 ^ C R •  By lemma 1.3.3
w e  o b ta in  a morhism  cR x  s u c h  th a t  h = h'. h. T here fo re , iî is  a
morphism contructiong some (— 1)-curves on X c R  (see Lemma 2.1.1 (i)). Assume
tha t F  is  a (— 1)-curve contructed b y  h. Then f c R (F) is contructed by 4: Y-C R

-- 1.7‘CR• By Lemma 2.1.1 (ii), f eR (F) i s  a (—  2)-curve, and hence  f c R  h a s  a
singularity at the  im age  o f F .  T his is  a contradiction t o  th e  smoothness of
f 7CR• Therefore X c R  contains no curve which is contructed by h. Consequently,
we have X c R  =  X-  cR  and  Y cR = fTCR• ( i i i )  Assume that 1'1;e s  contructs a  curve F in
/7,.',V ( t)  other than f r'ers

- 1 [p - 1 (t)]. By Lem m a 2.1.1 (i), F  is  a (— 1)-curve in
/7,.'„ 1 (t). T h i s  is a contruction to  the minimality of X,.„.

(2.2) By Lemma 2.1.1, Lemma 2.1.4 and Lemma 2.1.6, the triple (Y', L', B')
constructed in  (2 .1 )  satisfies the conditions (A ), (B) and (C l) in  P roposition
2.0.1. B ut the condition (C 2) is not a lw ays satisfed . I n  th is  section we shall
construct a triple (Y, L, B) satisfying (C2) as well as (A), (B) and (Cl) by changing
th e  sequence o f  blowing-downs (2.1.2) partially. Throughout this section we
continue using the same notation in (2.1).

Let p,' be the structure morphism of 1'7, < j) the proper transform of the
exceptional curve Ei t o  r  and (p' - 1 (t)) (i ) the  proper transform of the fiber p - 1 (t)
t o  r .  Moreover we put
{/4„ 1 (ti )}i e , = { fibers o f  / /„ : C which contain some curves contructed by
kes } —(2.2.1)

Lemma 2.2.2. Under the above notation we have the following f o r every t i

(.] e
(i) is a (—  2)-curve contained in BCR•
(ii) Two of the blowing-ups are the blowing-ups at points

in the proper transf orm s of  p ''(t i ).
(iii) Let g;, i

- 1  and g', -
i

1 (ki > ;)  be the two blowing-ups in (ii) abov e. T hen the
f iber p 1 (ti ) has a  configuration in  Figure 2.2.3 o r 2.2.4.

(iv) If  p 1 (t) has a configuration in 2.2.3, we have E',(jki) c# X i  and
(p ' 1 (t i ))ki) 137,i O.

A n d  i f  K : 1 (ti ) h as  a c o n f ig u ratio n  in 2 .2 .4 , w e  have E . ,t  X i  a n d
(p 1 (ti ) )(kin(ki) = 0.
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Figure 2.2.3. Figure 2.2.4.

(— 2)

E' (k i )

( -  2)

p 1 (t i
)

ki)

P ro o f .  ( i )  By Lemma 2.1.6 (iii), - 1 ( 0 ]  is the unique curve which is
contained in  //,.'eV (t .,) and contructed b y  h „ .  Since h = It; es . h c' R ,  h  contructs
19eR cfcR) -  [ p ' - 1 (t i ) ] .  Hence Lemma 2.1.1 (ii) implies the assertion.
(ii) B y  ( i)  a b o v e  w e  h a v e  g c' -

R
1 [p ' - 1 (t .,)] 2 — p' - 1 (t i )2 =  — 2. T h e re fo re  the

assertion follows from the fact that each blowing-up at a point on a curve reduces
the self-intersection of the curve by one.
(iii) I f  g 1.,

- 1  i s  a  blow ing-up at (p '-1 (0 ) (k i-  i )  n E g ( ik , - 1 ) , the configuration of
p 1 ( t )  is  tha t in  F igure  2 .2 .4 . Otherwise, it is in Figure 2.2.3.
(iv) By (i) above, (p 1  ( t i ) )k,) is contained in Bk'

=  (g ki + 1 . g kl + 2 . • •• o g „ ) , B „ .  O n  t h e  o t h e r  h a n d ,  B „  is s m o o t h  and
g e + 1 . A i +  2  °  •  •  •  °  g n is  is o m o rp h ic  in  a  n e ib o r h o o d  o f  g c

- , [p ' - 1 (t .i)] (see (ii)
above). Therefore we obtain the assertion (cf. Figures 2.2.3 and 2.2.4).

We shall inductively construct a  sequence of blowing-downs

YCR = - 1 -  2 171 YO =g”-i gi
—(2.2.5)

Assume tha t w e  construc ted  Y . T hen  w e  define  the m orphism  g i : Y1 —
—> Yi - 1 t o  b e  a contraction of the following curve E. OE Y, to a point.

Definition of E .  If ié  for all je J  (for the definition of e i  and J ,  see (2.2.1)
and Lemma 2.2.2 (iii)), then we define E. to  be  a direct image of Ei (") t o  y .  If i
= é i  fo r  some j e J ,  we define E, to be a direct image of g [p - 1 (t i ) ]  o n  y .

By the following Lemma 2.2.6 (i), the sequence (2.2.5) is well-defined.

Lemma 2.2.6.

(i) E ach  E . is  a  ( —  1)-curve.
(ii) Y is  a  P 1 -b u n d le  ov er C.

P ro o f .  Considering fiberwise, we have the assertions (cf. Figure 2.2.3 and
2.2.4).

L e t E;i ) (i < j )  b e  th e  proper transform o f  E1 t o  1 7
i ,  (p (t)) ( ) t h e  proper

transform of p ( t)  to Y,, p i the structure morphism of / 1,  B i the direct image of

(  —

(— 2) (  —  1)

(  —  
1 )
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Bc ,  to Yi and  13, the horizontal part of Bi . Then we have the following Lemmas.

Lemma 2 .2 .7 . A ssume that 1 -1,.-„l  (t) contains a curve contracted by h r „. T h e n
t equals t i  f o r so m e  je  J. A nd we have the followning.

(i) gc
- ,(p - 1 (t)) is a (—  2)-curve contained in B C , .

(ii)) In a neiborhood of pk
-, 1 (ti )(f or the definition of k J , see Lemma 2.2.2 (iii)),

Yk,  is naturally  isom orphic to Y .  Under this isom orphism , E (,k,
„

) (E k , o r p - 1 (ti )( k 3))
corresponds to p' - 1 (ti )(" ( E k  or E 'e(

riko, resp.).
(iii) p' - 1 (t) has a configuration in Figure 2.2.4. A nd we have (p - 1 (ti ))( k 3) •

=  0  and E (
Q?  B k „.

(iv) The intersection number of (p -  1 (ti ))( k i) and  B .

P ro o f .  By the definition of the sequence (2.2.5) and ti , if H  ( t )  contains a
curve contructed by h r e s , then w e have t =  ti  fo r  some jeJ .

(i) W e have the assertion in the same way in  Lemma 2.2.2 (i).
(ii)) By the definition of the sequence (2.2.5) we can show the assertion easily.
(iii) By (i) and (ii) above, B . the curve E (,k )) . H e n c e  pi,' j- 1 (ti ) has a

configuration in Figure 2.2.4 (see Lem m a 2.2.2 (iv)). Therefore a n  equality
1 O k i ) 0 follows from Lemma 2.2.2 (iv) and the correspondence in (ii)

a b o v e . And by the correspondence and Lemma 2.2.2 (i) we have an inclusion P e?

(iv) In  the  same way in  Lemma 2.2.2 (iv) we ave a  desired equality. D

Lemma 2 .2 .8 . For every  i(1 < i < n) w e have E• B i < g + 1.

P ro o f .  By the definition of the  sequence (2.2.5) and the condition 2.1.3, a
desired inequality holds if i is not equal to any t i ( j e J ) .  Hence it it sufficient to
prove the inequality when i =

Since g k
-:  i s  a  blowing-up at point on E(,k r  1 ) , we have

Euèr 1 ) ' E(-1,-"•(19k,),4:13k,)
= + E k „ )•13„, .

By the correspondence in  Lemma 2.2.7 (ii) we have

(EQ», ) + = {P- 1 10" + '

Therefore, when i  =  »  a  desired inequality follows from Lemma 2.2.2 (iv) and the
condition 2.1.3.

Proof  of  Proposition 2.0.1. We will show that the triple (Y, L, B) constructed
above satisfies the conditions in Proposition 2.0.1.

Since the double covering X (Y, L, B) is birational to X , the triple (Y, L, B) is
associated w ith H .  I n  L em m a 2.1 .6  (iv) w e show ed  X ,„ i s  th e  canonical
resolution of the double covering X (Y , L , B). Note that, by Lemma 1.2.1 and the
definitions of L  and B , we have the equalities Lck = L y , „  and  Bc R = B y c .R .

(A) In the same way in Lemma 2.1.4, the divisor 13-  satisfies the condition (A).
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(B) W e have aleady shown the assertion in Lemma 2.1.1.
(Cl) W e can  show  (C l) in the same way in  Lemma 2.1.6 (iii).
(C2) By Lemma 2.2.7, if 17,;s 1 (t) contains a curve contructed by hr e s , then there

is a  number j e J  such that t = t i . Hence it is sufficient to prove the assertion
when t = t i .

B y L em m a 2 .2 .7  (ii) and  (iii) , gky  i s  a  b low ing-up at the intersection
P e' np -1 (ti )(ki -1) (see F igure 2 .2 .4). Hence we have a equality

(t =  P- 1 ((;)(k.1) + 2 • Ek, E(1»j)

B y L em m a 2 .2 .7  (iii) a n d  ( iv ) , both ,Ei,k,
j

) a n d  p Y  (t i ) '
)
 does no t in te rsec t

11„,. Hence we obtain

(ti) = P-  1 (t) 2 ' (9k, + ° 9k, + 2 ° • • • ° g.)* E

B y L em m a 2 .2 .7  (i) and  (iii) , E(;),) a n d  p - 1 (ti )(") (= g jl (ti ) )  a r e  contained in
BCR • Hence we obtain fA (P - 1 (t) ( )  = 2 ' f c-R1 [1) -  '( ti)(n ) ] a n d  ftki ,(P,")

, )
= 2 .fER

1[ E ] .  Therefore we have

H '  (t) =  2 ' VCR1 CP - +  (9k, + ° _kJ + 2 ° • • • ° gn jC/2) * Elc, JCR
'
 (E (enn ) •

That is, 17c
-
R

1 (t1) is a  fiber of multiplicity 2. Therefore /7 -1 (ti ) =  h* (,/7c
-
R

1(t1)) is a
fiber of multiplicity 2.

3. Local canonical degrees and local Euler numbers

(3.1) First we will introduce a local canonical degree d 1(X ) and a local Euler
number e 1(X ) for every hyperelliptic fibration H : X —0 C and point t e C.

L e t H : X —0 C b e  a hyperelliptic fibration of genus g, (Y , L , B ) a triple
associated with H  and  p: C  the structure m orphism . Then there exists an
open set C ° i n  C  such that:

I) X
°
 is isom orphic to a double covering X (  Oy LO B

°
) and

the structure morphism H ° : X
°
 —0 C°  is smooth;

II) Y° is isom orphic to P1 x C° o v e r  C )̀ ;
III) (9,0 (/.») ,  p t( i(g + 1)) where p i i s  the first projection of P1 x  C ° .

H e r e  X
°
 = H  - i(co) , H o  _  H Ix o, y 0  =  p 1 (CO ) LO y 0  a n d  B °

Bn Y° . And we denote the isomorphism from Y ° t o  P 1 x C° b y  j ° .
Let x be an inhomogeneous coordinate of 13 1  and  W a n  open set {(x, 0E131

x c°; x o cc} in  P 1 x C° . Take trivializations L ° 1 1(x, t, y )eC x x  C1
and [C,°(B °) ]  W  1 (x , t, v)e C x x  CI such that y 2 =  v .  Let yo is  a  regular
section of 0,°(B ° )1W  such that div(cp) = B° n W  Then cp is a polynomial of x of
degree 2g + 2 or 2g + 1 with coefficients in the rational function field of C ° . We
regard X  a s  a  closure of {(x, t, y)e C x C x C ;

{
d

sections x i —
x

e F(17,cox °1 c»); i = 0,1,• • • , g — 1 s p a n s  the vector bundle /7.co x °e .
y

Definition 3.1.1. Under above notation, W e put

)22 = cp(x, t)}  in  L ° . Then the
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D =  A g •(— A x A •••A  x(1 - 1  —dx dx d x  " ( 2 g+ 1 )

Y Y Y

e ( C
°,i i * w x 1 c ) ® 4 ( 2 g  + 1 ) )

Frat(C, H * coxicr 4 ( 2 g +  1 ) )

where A = A (cp) is the discriminant of q  as a polynomial of x and F r a t (C, ,F, ) is a
set of rational sections of a sheaf o n  C.

Proposition 3.1.2 (Ueno, s e e  [U 2 ]) . The rational section D is independent of
- —the choice of  (Y, L, B ), C °, v o ,  D 1 x  u o, x , y  and  cp.

P ro o f . W e can show the assertion in a similar way to [U].

Definition 3 .1 .3 .  For every point t  in C  we put

1
dr(X ) = ord D,

4(2g + 1)

et (X )= x i 0 p (17 ( t ) )  —  (2 — 2g).

W e call the numerical invariant d (X )  a local canonical degree of  the f ibration H : X
—0 C  at a point t  in  C  and et (X )  a  local Euler num ber of  H: X —0 C  at  t.

By Proposition 3.1.2, d (X ) is independent of the choice of triples associated
with the hyperelliptic fibration  H : X —0 C.

Proposition 3 .1 .4 .  Let H : X —> C  be a hyperelliptic f ibration of  genus g  where
C  is a  complete smooth curve of  genus b. T hen w e have

deg/7*w x1c =  E d t (X ),
tE c

x,o p (X ) = (2 — 2g)(2 — 2b) + E e i (X ).
teC

P ro o f . T h e  first equality follow s from  th e  definition o f  df(X ) .  For the
second one w e can refer to [B -P-V , Proposition 111.1 1.4].

(3.2) In  order to estimate local canonical degrees by local Euler numbers, we
need two numerical invariants determined by the singularities of the divisor B  of a
triple (Y, L , B ) associated with a hyperelliptic fibration.

Let p :  Z  D be a  smooth morphism from a  smooth surface Z  to  a  smooth
curve C  and le t H  be a  reduced effective divisor on  Z  such that p111 is a  finite
m orphism . W e define a homomorphism  

P*coD111 —> wit by

(p*(,,1) A  dlp

where U is an open set in Z , 9  is a  regular function whose zero locus is B n U. h  is
a section in F((U n H), C )  a n d  g  is a section in T (U , p*o .),) . Here p*(p.) is  the

( i m p  u n li)(h• h• Res„ —(3.2.1)



46 Shigeru M atsusaka

pull-back of it as a 1-form from p*S 2(U) to Q ( U )  and Res, is the residue map on
H (see [B-P-V , II. 4]).

Lemma 3.2.2. The homomorphisrn t H ID : p H  oh, is well defined and it is
injective.

P ro o f . T ake  ano ther regu la r func tion  cp ' o n  U  w hose z e ro  lo c u s  is
Bn U .  There exists a  un it element u  in  r(U, (9 z )  such that (p' = u • 9 .  Thus we
can make calculation a s  follows:

( 

9

p * (n )  n  d 9 ') h  • Res,
p*(p) d (u •  9 ))

9

= h  Res
H

( p * ( y ) A  d  
 )  •  

h 

9 u R e s ,
(p * (p )  A  d u )

9

= h  Res
H

( p * ( 1 )  A  C 4,9
 ) .

9

Hence /„/, is well-defined. For every closed point g in H  such that (plH) q is
étale, (/, /,)q an isom orphism . Therefore the injectivity of i f i x  follows from the fact
that, for every reduced curve K , the homomorphism q1: —> ,F between invertible
sheaves o n  K  is injective if 9  is isomorphic in  a  dence open set on K.

Remark 3.2.3. If n: Hn—> H  is the normalization of H , the homomorphism
(1* (4//n): (P ' 11)* (0a 11* (0 a  is the composite of natural homomorphisms (pog)*o),
—> o),,, and CO Hn

L e t H : X —> C b e  a hyperelliptic fibration of genus g, (Y , L , B ) a triple
associated with H  and /3 is a horizontal part of B .  By Lemma 3.2.2 we have an
exact sequence of sheaves

0 -- >  p 3 - - >  0.
rgID

—(3.2.4)

Note that the support of M  is empty or 0-dimensional.

Definition 3.2.5. F or every point t  in  C , we define a n  integer N B ) to be

6,(B ) = length,,(p v /11), if p '( t ) B,

le n g th ,(p * .11)1 + (4g  + 2) if p - 1 (t) cf B,

where (p* .A ) , is  the stalk of the sheaf p * ./11 a t  t.

L e t  X „  be a  canonical resolution of the double covering X (Y , L , B ) over Y
and g : YC R  - C R  Y a morphism between the base spaces of X "  and X (Y , L, B)(see
Proposition 1.1.2). Since g : YC R  - C R Y is a  proper surjective birational morphism,
gc R  is decomposed into a succession of blowing-downs

h•R es H

ri*co„ (cf. [B-P-V , II. 1]).

Y
C R  =  

Y
n Yn - 1 Y.

‘1,■ g - i 92 91
—(3.2.6)
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Definition 3.2.7. For the seqence of blowing-downs (3.2.6), the divisor E, is
the proper transform of the exceptional curve of g, to Yc ,  and the positive integer
m, is the multiplicity of B y , _ at the point q, where Y is obtained from y_ 1 blown-
u p  a t qi .

(3.3) Let H: X -4 C  be a hyperelliptic fibration of genus g. Then / / ,„: X c ,
C  is a hyperelliptic fibration of genus g  and we can define the local canonical

degree d ,(X „) and  the  loca l E u ler num ber et(X " ) .  T h e  numerical invariants
d,(X „) and et(X c R )  can be expressed by 413) and mi in  th e  following forms.

Proposition 3.3.1 (cf. [Fil, L em m a 6]). L et H: X  — > C b e  a hyperelliptic
f ibration of  genus g, (Y , L , B ) a triple associated w ith H  an d  X  „ th e  canonical
resolution of the double covering X  (Y , L, B) over Y . Then, for every point t in C we
have

d,(XeR) 6,(B) — p c  E
•
([---1 — 1)},

= 4(2g + 1) • 2L RtE,)=t 
{ [  

z

e,(X „)= ô(B ) —  2 . E  (2
pci,(E.)=, [ m i

]
21 ) ,2 2

w here  p„ is the structure m orphism  of  Y „ and
m1exceeding 
2

.
1 is  the greatest integer not

(3.4) Proof  of  the f irst equality  of  Proposition 3.3.1.
Throughout this proof we use the notation in (3.1) freely. Let C

°
 be  an open

set defined in (3.1). Since H
°

: X
°
 —> C

°
 is smooth, B

°
 = B n Y° is smooth (see the

condition (I) in (3.1) and Proposition 1.1.2). Hence, in  the  sequence (3.2.6), no
ra tio n a l m a p  g,- 1  (1  < i < n ) is a  b low ing -up  a t a  p o i n t  i n  t h e  f ib e r  on
t E C° . Therefore, if t e C

°
,  the right side of the first equation vanishes. On the

other hand, since the section D in Definition 3.1.1 is regular at t e ,  the left hand
of the equation also vanishes for every te C

°
. Thus w e have the first equality

when t E C° . In  the  following we will prove the first equality when t*C ° .
Assume that t is not contained in C

°
. Since d(X ) equals d,(11 - 1 (V)) for every

neiborhood V of t in C, we may replace C by any neiborhood of t in C .  Therefore
we may assume the following conditions (a) — (f) (cf. (3.1)).

(a) C
°
C {t}.

(b) There is a n  isomorphism j: 1P1 x C  such that j  y 0  j 0 .

In  the  following we identify Y with P 1 x  C.

(c) L  p i *Op i(g + 1) where p i  i s  the first projection of P 1 x  C.
(d) {(x, OE x C: x  00} nr3 =  0  where x is an inhomogeneous coodinate

of 13 1  a n d  13
-
 i s  a horizontal part of B.

( e )  T h e  dualizing sheaf (pc  is generated by a  sec tion  fig.
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( f )  There is a  function t o n  C  such that div(t) = {t}.

The proof is separated into two parts (for the definitions of 9  and y, see (3.1)).

Part I .  o r d ,A  (9) = 6,.

P a r t  2 . o rd ,(—d x  A x
Y Y

dx • • • A x9 - 1  d x

Y
1 v r  m i  . 1)  .
2 „ R i'o L 2

Since X „  is birational to X , a triple (Y, L, B ) is associated w'th 17c „: X  c ,
—> C a s  well a s  //: X  C .  Hence we have cl,(X c ,) = d i(X ) .  Therefore, if  we
show  Part 1 and Part 2 above, we have a desired equality (see Definitions 3.1.1
and 3.1.3).

Proof  of  Part 1. Let 0" be a function on U = { (x , t)EC  x  C l c P 1 x  C whose
zero locus is /3. W e defined the homomorphism ecoc I - +

=  h  •  R e s g  

p*Gt) A d0
 fo r  every he F(F1 , (9s) a n d  p. E F(C, we ). I f  ito  i s  a

generator of wc  (see the condition (e) above), then the section Resii
( p * ( 1 1 0 ) A  d x

generates cog. Since ti,-/ c (u0 ) = — • ResK 
p * ( 1 1 0 )  A  d x )

, w e  have
Ox CP

= o rd ,(r( ± 313 ,  (p))
Ox

= ord, A (0) —(3.4.1)

where r( f , g) is  a  resultant of f  and g  as polynomials of x.
O n the  other hand, if we put

= 0 if p - 1 (t) ,t B ,

1 if p -  ( t) B,

then we have 9 = u• T6  • ep for some unit element u of T(C, Cc ) (for the definition T,

see the consition (f ) above). Therefore the assertion follows from Definiton 3.2.5
and the equation (3.4.1).

Proof of  Part 2. Let .EY ) b e  the proper transform of the exceptional curve of
g i t o  y i fo r i  <j  (see Definition 3.2.7). And let F  be a  divisor o n  Y „  satisfying

wyc R ic ey,„ (Ly,.) gtR lw ric 0 (9 IL)) 0 Cy c n I— F).

Then the divisor F  is expressed in  the form

F = -Eli) •

2 ..• (3.4.2)

B y  th e  m in im a lity  o f  Y „ , m i is  g r e a te r  th a n  1 ,  h e n c e  F  i s  effective or
empty. Therefore we have an exact sequence

to be th-/ c (h • tt)

CP

0 wycHic C) (Ly,R) —4 gt. R  (u)y ic  C) (9y(L)) 9F O. (3.4.3)
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L em m a 3 .4 .4 . Under the above notation, we have
R i

PCR* (W YCRIC 0  (9
 YCR(LYCR)) R i  P C R * ( g h ( CDY IC 0  Y ( L ) ) )  =  O.

P ro o f . By the relative duality we have isomorphisms

R 1PcR*(gta (coric ey(L))) R 1/9 *(wr1c Cy(L))

=  (P *(0  r(L) v  )) v

pcR(coy cRtc ® Or c R (Ly c R )) ( P c R * ( e r c ,,(Ly c R )"

0 *(( r(L ) v  )) v

where the last isomorphism is given by the fact that

M i
y c R ( L y c R )  gt•R (Cy(L)) 0  eyc R ( (g 1+ 1 ° °  g  ( ( — Ey1) • 

E
i " )) •

S in c e  the in t e r s e c t io n  number p ( t ) L >  0, w e  h a v e  p* (6 y(1,  ) v
O. T herefore  w e obta in  the assertion.

By Lemma 3,4.4 and the exact sequence (3.4.3) we have 111 ( F ,  F ) = 0 and an
exact sequence

P C R *( W YcRIC 0  (9 1'cR(
L YcR )) P C R *(g tR (W Y  IC 0  ( 9 Y( L ) ) )

PCR* F — 4 O.

O n the  other hand, we have

/engthe,,,(Pca*OF)t = dim  H ° (F, OF)

=  x(e

where the  last equality follows from the equation (3.4.2) and  the  following two
equalities:

W YcR =  gtR W Y  0  6 1'ciz ( ( gt+ 1 ° • • • ° .)*i=
F • (F + w y c .R )

XV 9 = •2

Let (6 be  the cokernel of the injection

PCR*(W YcRIC 0  
(9 Yc R(

L YcR) )  ----)' P * ( W Y/C 0 (9 )4 ) ) •

Since length e c  ,(pc ." (  F ), = length ((e), by [Ful. Lemma A.2.6], the proof of Part
2  will be completed  i f  we shall show the following equation:

Lemma 3.4.5.



50 Shigeru Matsusaka

length ( ), = —  ord,(—
d x  

A  x—
d x  

A • • • A xg-  —
d x

) .
Y Y Y

P ro o f .  The composite morphism of

* C° X IC  =  
11

CR*W XcRIC 1 1 C R * (fR (6  4 c R (L Y  c R )  0  WY c R IC ))

PC R *(LYeR  0  W YcR I(')

and

P C R * (L Y c R  0  W Y cRIC) P*1(9y(L) 0 coric)

•P maps the rational section to p • for every rational sections p in  e y (L)1 Y° and
Y

in wricl Y
° . S in c e  the regular sections {x id x  r(p * (e y (L)C)co y i c )); i = 0,1,• • • ,g

— 1} span the locally free sheaf p* ((9y (L)C) co y i c )  o n  C , we have

length, c ,,(W), = length, Coker(11* cox i c p * ( e y ( L ) C )  t o y i c )),

= —  orcl,( —
d x

A  x—
d x  

A • • • A xg - l d x ) .
Y Y Y

(3.5) Proof of  the second equality in Proposition 3.3.1. We shall use the same
nota tion  in  (3 .4). Since et (X )  is  a local invariant, in the following we assume
p - 1 (X )  conta ins a ll the  singulalities of the  divisor B .  F o r  th e  sequence of
blowing-downs (3.2.6) we put G. = g l o g2 o . . . .  g i. L et Vi b e  a vertical part of B y ,
and d i ,  the cokernel of 1

G r trill i c  (see the exact sequence below).

O (p ° G i )* 0
1G . '[g ]/C

If we put

= length e c , ,((poG i)* X  i), + degw v , + 2Gi 1 [13] .

then we have the following lemma.

L em m a 3.5.1. For every  i (1 < i < n), we have

pi = pi_ —  2[—
mi

]•  (2 [ 
m i

1 ) .
2 2

P ro o f .  Put ni = mult q ,((G,_ i )-1 [B]) and et qi be the point on , such that
Y, is obtained from a  blowing-up of Y,_, at qt . By straightforward calculation we
obtain the following equalities:

deg wv , — deg wv , = ( n i  —  iii)(nii — ni — 1) + 2(m i — 2[ 7 ]) ( mi _ ni)

— (m i —  2[n .1) (m  i — 2 r 1 ' 1 + 1)
2 2
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Gï [13] • V' — (G1-1) - 1  Ciln • vi = ni (n i — 2 [ ] ) ,

length ((p i), — lengthe , ( ( p  ° G1 _ 1Liel t 1 ) t

= —  On ; —  1).

By these three equations above we have a desired equality.

Considering the cell decomposition of / / c
-
R

1 (t), we have

Zt0p(Hc7R1 (0) = 2 Xtop(PjR1 (0) — Xtop(Brc i , n PjiZ(t)).

Since B y c i,  intersects p '  (t) a t  Vi, U (G» [13-] n Pcil (0), we obtain the following:

et (X c R ) Xto p(IU (0) —  (2 — 2g)

= 2 . (2 + n)—  {z io p (V „)+ (2g + 2— length (pc , * ./#„),)} — (2 — 2g)

= 2n + /engthac (PcR *  din)r) — Ztap(K)
=  u,, + 2n

m .2
=  —  2 jE (2[- ]  - [- ]

2
n i  2

= 6 0 ) —  2  ( 2 [ H  —  [ —Lin

= 2 2

Therefore a  desired equality is proved.

4. Main theorems

( 4 .0 )  The purpose of this chapter is to prove the following two theorems.

Theorem 4.0.1. L et H : X  C  be a  hyperelliptic f ibration of  genus g  over a

smooth compact curve C .  Then we have

—2 gg  i
t • tEc c e ,(X )._ i to p(X) g 2 2g- 1  E e1(X)

2g +1 tEc ••• (4.0.2)

if  g  is even,
—  g  —

• Eet(X ) i,,(X ) ._  
g22 g  

E ef(X )• . . (403)3)2 g  +  1  t.c 2g  +  1  tec
if  g  is odd.

Theorem 4.0.4. L et H : X —>C be a hyperelliptic f ibration of  genus g. T h e n ,
f o r every point t  in  C , we have

a2

4 ( 2 g  +  1 )  
• et(X )< cL (X )<

— 4(2g + 1) et(X ) ••• (4.0.5)

if  g  is even,
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g 2 + 1

4 ( 2 g +  1 )

•et (X )  d ( X )  
4(2g + 1) 

et(X)

if  g  is odd.

If 17: X -> C is  a hyperelliptic fibration of genus 2 over a  smooth compact
curve C , then the coefficient of E e(X ) in  the  left term of (4.0.2) is

(EC
negative. Hence we have the following collorary.

Collorary 4.0.7. If  a sm ooth compact surface X  is a fam ily  of  genus 2 curves
ov er a sm ooth compact curv e, then the topological index  of  X  is  non-positive.

P ro o f .  If H: X -> C is  a  fib ra tion  of genus 2 , then  H  i s  a hyperelliptic
fibration of g e n u s  2 . And it is well known that the integer et (X ) is non-negative
fo r every (hyperelliptic) fibration H: X -> C  a n d  p o in t  t  i n  C .  Therefore the
assertion follows from the inequality (4.0.2) in  Theorem 4.0.1.

Since the in teger e1(X ) is non-negative for every (hyperelliptic) fibration H: X -> C
and point t  in  C, the second inequalities of (4.0.5) and (4.0.6) in Theorem 4.0.4
imply that:

Collotrary 4.0.8. f o r every  t  in C , the integer d (X )  is non-negative.

By this collorary, the section D in  Definition 3.1.1 is a  regular section (see
Definition 3.1.3).

(4 .1 )  Theorem  4.0 .1  fo llow s from  Theorem  4.0 .4 . In  f a c t ,  by Leray's
spectral sequence we have x(0 x ) =  (1  - g)(1 - b) + degcox i c  where b is the genus of
C .  Hence we obtain

1
i10 (X ) =  -

3
. (c 1 (X ) 2 -  2 . c2 (X ))

= 4 • degcox i c  -  {c2 (X ) -(2 - 2g) (2 - 2b)}

= E 14. 4 X )  -  e t(X)}
(EC

where the last equality follows from Proposition 3.1.4. Apply Theorem 4.0.4 to
the last equation. W e obtain inequalities in  Theorem 4.0.1.

In the following sections we will prove Theorem 4.0.4.

(4.2) In order to prove Theorem 4.0.4, we need some lemmas. In this section
we state notation used in  these lemmas.

Let H : X -> C  be a  relatively minimal hyperelliptic fibration and (Y, L, B) a
triple mentioned in  P roposition  2 .0 .1 . W e use the notations in Diagram 2.0.3
freely. M oreover we define

fit : the  number o f irreducible curves which is contained in  a
fiber pc- i (t) and contructed by g " .

F o r  every  proper surjective birational morphism  p :  Z  -> W between smooth

-(4.0.6)
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surfaces over C , an  integer i6,(cia) is defined as
,3,(9) = (Euler number of the fiber of Z  -> C o n  t)

-  (E u le r  number of the fiber o f  W-> C  o n  t).
Let

YCR = Y n , Y n -  1 g2 ' l g i o -(4 .2 .1 )

b e  a  decomposition o f  gc R  i n t o  a  su c c e s s io n  o f  blowing-downs a n d  le t
's (1 < i  < j  < n )  be curves defined in  Definition 3 .2 .7  a n d  mi 's  (1  <  i < n)

integers defined in Definition 3.2.7. Moreover we denote B 1  definition 1.1.1)
by B .

(4.3)
Lem m a 4.3.1. Under notation in (4.2), the following equality  holds at every

point t  in  C:

4(2g+ 1)•d t (X ) -g •e ,(X  " )= -2 .  E [ - )  •  (  [  -m2  -  g) .
pc.0”))=t 2

P ro o f . Since (Y, L , B ) is  a  trip le  associated with ./7„: X C R  -> C  a s  well as
X  -> C, we have d 1(X ) = d ,(X ")(see  Definition 3.1.1 and  3 .1 .3 ) .  Therefore a

desired equality follows from Proposition 3.3.1.

Lem m a 4.3.2. For every point t  in  C  we have A (h" )  -n2 t .

P ro o f . ,6,(h„ )  a n d  n, d e p e n d s  o n ly  o n  E u l e r  n u m b e r  o f  / / c7, (t),

r s i  (t) Hence, if necessary, replacing C  by  a  neiborhood o f  t  in  C , we may
assume that the reduced effective divisor B  in  Y (see (4.2)) has singuralities only in
the fiber p ' ( t ) .  N ote that, under this assumption, the integer n , agrees with n
=  (the number of blowing-downs of the sequence (4.2.1)).

L e t  /3„  b e  th e  h o r iz o n ta l p a r t  o f  B " =  B y c H  a n d  p u t  p '  n BCR

=  {a1 ,  a 2 , •••, am } . I f  necessary, changing th e  order o f  blowing-downs, we may
assum e t h a t  t h e  sequence o f  blowing-downs (4 .2 .1 )  satisfies t h e  following
conditions (cf. Remark 1.1.4).

There are  integers n o ,  n i ,• • • , n „, , ,  such that

( 1 )  O = n o  n i n 2 . = n i =  n;
(II) For every  i ,  j  such that 1 < i < m  and n i _ 1 +  1  <j < n i ,

g7 1 i s  a  blowing-up at the im age of  ai on
(III) For every i(1, i g„1+ 1 0g„,, 2 °  •  •  •  ° ,  is isomorphic

in  a neiborhood of  a i .

By the conditions (B) and (Cl) in Proposition 2.0.1, an irreducible component
F ,  of /7-

c- R ' (t) is contracted by h „  if and only if the direct image of F ,  to  Y „  is
contained in

D = { Ey' )  ; j =  1, 2, - ,  n, c  B o? and  (4 0 ) 2  =  -  21.
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Since the inverse image of PPG D  is irreducible, th e  number of curves in
/ / c

-, 1 (t) which is contructed by h "  coincides with the number of the element of
D . T h a t  is , w e have ,6,(h" ) =  (the number o f  elements o f  D ) .  Therefore the
assertion follows from the following Lemma 4.3.3. In fact, Lemma 4.3.3 implies
that the number of elements of D  is smaller than or equal to a  half of = nt .

Lemma 4.3.3.

(i) F or every i = 1, 2, • • • , m, we h a v e  EL",) Et D.

(ii) For every i, j such that i = 1,2,•••,m and ni _ , + 1 < j <  n i — 1, P in) Et D  implies

E 1 e D.

(iii) I f  n„, + 1 j we h a v e Er Et D.

Proof . ( i )  Since B "  is non-singular and the curve E;',:) intersect 13c ,  a t a1,
E:;) is not contained in  B " .  Therefore the assertion follows.

(ii) Assume a contrary to Ey',1 1 Et D. T h e n  b o th  EY') and E , contained
in  B „=  B " .  Hence the  smoothmess of B "  implies that E(11) does not intersect
E n,.  T here fo re  one of the blowing-ups g,- 1 's  (j +  2  <  <  n) is a  blowing-up at
t h e  p o in t  ay - 1  =  (gi „.  g i + ,- • • • g  '(E 1 ) n Ey++11)). H ence  w e  ob ta in
( E n 2  <  ( E y+1) ) 2 1 =  —  3 . This is a contradiction with Ey') e D.

(iii) By the condition (II) above, the divisor B
(9.„,+ 1° gn,,,,+ 2  • g n , .  2)*

B
C R  is non-singular at the intersection points n p 1 (t)

w here 13,,n ,  i s  a  h o riz o n ta l p a r t o f a n d  p,,m : C  is the structure
m o rp h ism . Hence each singularity of is a  singularity of p, 1 (t) and it is not
contained in  13- „ .  Since no  three curves in  p 1 (t) m eet at one point and every
irreducible curve in p, 1 (t) is non-singular, B  multiplicity 2  a t  the point g,
w here  g,,-,n1 i s  a  blow ing-up o f  Y a t  gi . H e n c e  w e  have
= (g + 1 ) - 1 [B ,,,] + 2 Therefore th e  divisor =  B 1

n o t
contain E +  I (see  D efin ition  1.1.1). Consequently, E  n o t c o n ta in e d  in
D .  I n  a  sim ilar w ay, w e  c a n  a lso  show E .  D  fo r  every j  su c h  th a t  n„,
+ 2  n „ , ± 1 .  0

Lem m a 4.3.4. F or every t  in  C, we ha ve e,(X ") n, + (2g —  b 1 (I7 - 1 (t))).

Proof . Since Ho ,  is a  proper surjective morphism, H o , can be decomposed
into a succession of blowing-downs. Since the blowing-downs does not affect the
first B etti number o f fibers, we obtain b i(HcR 1 (0) =  b ,(1 1  1 (t)). O n  th e  other
hand, w e have b 2 (17 ' (0) b 2 (P c- ii10) = n, + 1. Therefore a  desired inequality
follows from the equality e,(X ") = x,0(Hc-R1 (0) — ( 2  — 2 9).

Lemma 4.3.5. F or every te C , we have e , ( X „ )  2. e,(X).

Proof . By Lemma 4. 3.2 a n d  Lemma 4.3 .4 , w e have fl,(hc R ) -
1
2  

te,(XcR)
— (2g — b 1 (11 - 1 (t))}. Since e,(X r , )  =  e,(X c R ) — N h c R ) , we obtain

e,(X ") 2 - ei (X r e s ) — (2g — b1( 1 7  - 1 (0 ). • • • (4. 3.6)
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Assume th a t  hr e s  c o n tru c ts  a  curve contained in  H r (t). T h e n ,  b y  the
cond ition  (C l) in  P roposition  2 .0 .1 , w e  o b ta in  et (X )= e i (X ,  ) —  1 . B y  the
condition (C2), there  ex ists a  divisor F  c  X  s u c h  th a t  H - 1 (0 = 2 . F .  The
dualizing sheaf co, is of degree g — 1. Since degco, is even, g is odd. H ence w e
have g > 3. O n  th e  other hand, since b 1 (H - 1 (t)) < (the arithmetic genus of F), we

obtain b1(11-1(t)) 
g + 1

._ . Thus we obtain 2g — b 1 (H - 1 (t)) > 2. T h e re fo re  a
2

desired inequality follows from (4.3.6).
Assume th a t hr „  contracts n o  curves contained in H res1 (t) • Then we have

ei(X c R ) = ec(X ) .  Since 2g b i (H - 1 (t)), (4.3.6) also lead u s  to  ob ta in  a  desired
inequality. 1=1

Lemma 4 .3 .7 . For ev ery  i (1 < i < n), we have 2 < in;  <  g + 1.

P ro o f .  By the mnimality of 17„  (c f. Remark 1.1.4) every gi
- 1  is  a  blowing-up

a t  a  singular point of B i . Therefore we obtain m i > 2.
B y  the  condition  (A ) in  P roposition  2 .0 .1 , 13 = (g 1 og 2 o...og 1) '[B ]  has

multiplicity < g + 1 at every point in B  Since no three curves meet at one point,
we have mult a (Bi) < mult a (r3i) + 2 for every po in t a  in  B i . Therefore the second
inequality follows.

(4.4) Proof  o f  Theorem 4.0 .2 . F irst w e w ill p rove the  first inequalities of
(4.0.5) and (4.0.6).

By Lemma 4.3.7, for every i (1 < i < n) w e otain 1 < [n] < g. Therefore
2

the first inequalities follows from Lemma 4.3.1.
Next we will prove the second inequalities of (4.0.5) and (4.0.6).

Since [ -Irn ' s  are integer, the theory of quadratic equation leads us to obtain
2

2. —  1)• [ 71 —  g )  2. n • [
g  1   i• (g 1  [

g  1  

pcR(Er) - f ( [  2 2 2 •

Hence Lemma 4.3.1 implies that

4.(2g + 1)•d i (X )—  g • ei(X c R ) 2. n t •

[ g  —2 1 ] ( g 1 [ g

 —2 1]).

O n  t h e  other hand, since 2 g  >  b 1 (H - 1 (t) , L e m m a  4 .3 .4  im p lie s
ei (X c R ) nr. T hus w e  ob ta in

4. (2g + 1)• c/t (X )  2. ( [ g
 2

 1  •  (g 1 [ g
 2

1 ]) +  g ) • e i(X ") .

Therefore desired inequalites follows from Lemma 4.3.5 and  some calculation.

(4.5) Examples and Problems. First we will construct an example such that g
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2

is even and the equality d(X) =
4(2g + 1) et(X) 

holds.

Exam ple 4.5.1. Let Y be 13 '  x  C  and g  an  even  num ber. Put
g+ 1 g+ 1 1

B = {(x, y)e13 1  x  C ;  y = 0} U( {(x, y ) ;  x = a iy2 })U(U 1(x, y); —
x  

= a iy2 1)
i =1 i =1

w here ai 's a r e  com plex num bers such that ai a i  i f  i j .  Then w e m ake

calculation and obtain S o =  4g(g + 1), e 0 (X ) =  2  and do (X ) = 
g 2

2(2g + I) .

If  g  is odd, I cannot find any exam ples w hich satisfy th e  equality cl,(X )
g 2 +  1

4 ( 2 g  +  1 )
e (X ) if g  is odd.

Problem  4.5.2. Find the upper bound of cl,(X)/e,(X) when g  is odd.

Miyaoka proved d ( X )  3c2(X ) if X  is a projective general type surface (see
[M]).

Problem 4.5.3 (cf. [C]). Are there any hyperelliptric fibrations which satisfy
(c1(X)) 2  = 3c 2(X ) and  x(X ) = 2?

T he  loca l E u ler num ber et (X )  can  be  defined  even  i f  17: X —> C is  no t
hyperelliptric.

Problem 4.5.4 (cf. [S1] and [H I). D efine  the local canonical degree cl,(X ) for
every fibration H : X —> C .  A n d  find  th e  u p p e r b o u n d  o f  cli (X )/e,(X ) when
et (X ) 0  O.

P roblem  4 .5 .5 . F ind  the relation between d (X )  a n d  th e  number o f  fixed
points in  a  fiber o n  t  of the relative canonical map.
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