Spectral and scattering theory for the Schrödinger operators with penetrable wall potentials

Dedicated to Professor Tosio Kato on his 70th birthday

By

Teruo Ikebe and Shin-ichi Shimada

§ 0. Introduction

In this paper we shall consider the Schrödinger operator with a penetrable wall potential in \mathbb{R}^3 formally of the form

$$H_{\text{formal}} = -\Delta + q(x)\delta(|x| - a),$$

where $q(x)$ is real and smooth on $S_a = \{x; |x| = a\}$ ($a > 0$) and δ denotes the one-dimensional delta function. This operator is said to provide a simple model for the α-decay (Petzold [15]). Other applications may be found in the references cited in Antoine-Gesztesy-Shabani [3]. Dolph-McLeod-Thoe [5] treated this operator ($q(x) \equiv \text{const.}$) with concern for the analytic continuation of the scattering matrix, yet at the formal level.

The first problem one meets is to define properly H_{formal} as a self-adjoint operator in $L^2(\mathbb{R}^3)$. For this purpose, let us consider the quadratic form h (which is associated with H_{formal})

$$h[u, v] = (H_{\text{formal}}u, v) = (Vu, Vv) + (q\gamma u, \gamma v)_a,$$

$$\text{Dom}[h] = H^1(\mathbb{R}^3).$$

Here γ is the trace operator from $H^1(\mathbb{R}^3)$ to $L^2(S_a)$, $\text{Dom}[h]$ denotes the form domain of h, (\cdot, \cdot) means the $L^2(\mathbb{R}^3)$ inner product, $(\cdot, \cdot)_a$ the $L^2(S_a)$ inner product, and $H^m(G)$ the Sobolev space of order m over G. h is shown to be a lower semibounded closed form, and thus determines a lower semibounded selfadjoint operator H. More precisely, H is seen to be the negative Laplacian with the boundary condition

$$q(x)(\gamma u)(x) - \left\{ \frac{\partial u}{\partial n_+}(x) + \frac{\partial u}{\partial n_-}(x) \right\}_{|S_a} = 0,$$

where n_+ (n_-) denotes the outward (inward) normal to S_a. We should note here that while h is a "small" perturbation of h_0, which is defined by

$$h_0[u, v] = (Vu, Vv), \quad \text{Dom}[h_0] = H^1(\mathbb{R}^3),$$

Received June 28, 1989
via an infinitesimally h_0-bounded form, $H - H_0$ is not H_0-bounded, where $H_0 = -\Delta$, $\text{Dom}(H_0) = H^2(\mathbb{R}^3)$, is the selfadjoint operator associated with h_0. We shall adopt this operator H as the rigorous selfadjoint realization of the formal expression H_{formal}. Antoine et al. [3] defined the Hamiltonians corresponding to H_{formal} as the selfadjoint extensions of $(-\Delta|_{\mathcal{C}_c^\infty(\mathbb{R}^3)\otimes\mathbb{R}^3})$ making use of the decomposition of $L_2(\mathbb{R}^3)$ with respect to angular momenta. Here $\mathcal{C}^\infty_p(G)$ denotes the set of all infinitely continuously differentiable functions with compact support in G and \sim means the closure.

After having determined the proper selfadjoint operator H corresponding to H_{formal}, we take interest in the spectral structure of H. It can be seen that the negative part of the spectrum of H consists of a finite number of eigenvalues of finite multiplicity (Theorem 6.5). Further, we can show the difference of the resolvents of H and H_0 is a compact operator, which implies that the essential spectrum of H coincides with the interval $[0, \infty)$. A most interesting problem in the spectral theory for H is that of absolute continuity. Namely, let $E(\cdot)$ be the spectral measure associated with H. Then the problem is: Is H restricted to $E((0, \infty))L_2(\mathbb{R}^3)$ an absolutely continuous operator? This problem is affirmatively answered by making use of the so-called limiting absorption principle. Our limiting absorption principle for H states that the resolvent $(H - z)^{-1}$ can be extended to a $\mathcal{B}(L_2^2(\mathbb{R}^3), L_2^{-2}(\mathbb{R}^3))$-valued continuous function of z on $\Pi\setminus(\sigma_p(H)\cup\{0\})$ when $s > 1/2$. Here Π is the complex plane with the upper and lower edges of $(0, \infty)$ distinguished such that the upper (lower) edge is the boundary points from above (below) (see Kuroda [11, Appendix to Chap. IV]), and $\sigma_p(H)$ denotes the point spectrum of H, $\mathcal{B}(X, Y)$ the Banach space of bounded linear operators on X to Y, and $L_2^2(\mathbb{R}^3)$ the weighted L_2 space defined by

$$L_2^2(\mathbb{R}^3) = \{u(x); (1 + |x|^2)^{1/2}u(x) \in L_2(\mathbb{R}^3)\}$$

with the norm $\|u\|_{0,2} = \|(1 + |\cdot|^2)^{1/2}u\|$ ($\|u\| = \|u\|_{0,0}$ is the usual L_2-norm).

Let us recall some notions from scattering theory. In the situation described above the wave operators W_\pm interwining the pair (H, H_0), defined as

$$W_\pm = \text{strong limit } e^{itH}e^{-itH_0},$$

are shown to exist and to be complete. Thus, let us define the generalized Fourier transform \mathcal{F}_\pm by

$$\mathcal{F}_\pm = \mathcal{F}W_\pm^*,$$

where \mathcal{F} is the ordinary Fourier Transform defined by

$$(\mathcal{F}u)(\xi) = (2\pi)^{-3/2}\int_{\mathbb{R}^3} e^{-ix\cdot\xi}u(x)dx,$$

and $*$ means adjoint. Then, with the aid of the limiting absorption principle for H we can construct the distorted plane waves $\varphi_\pm(x, \xi)$ which are the integral kernels of \mathcal{F}_\pm and satisfy the following Lippmann-Schwinger equation
\[\varphi_{\pm}(x, \xi) = e^{ix \cdot \xi} - \frac{1}{4\pi} \int_{S_a} \frac{e^{iy|\xi|}}{|x - y|} \varphi_{\pm}(y, \xi) dS_y. \]

On the other hand, let \(\lambda_1, \lambda_2, \ldots \) be the nonpositive eigenvalues of \(H \) (counting multiplicity) and \(\varphi_1(x), \varphi_2(x), \ldots \) the corresponding normalized eigenfunctions of \(H \). Then we have the following eigenfunction expansion formula

\[u(x) = \sum (u, \varphi_n) \varphi_n(x) + \text{l.i.m.}(2\pi)^{-3/2} \int_{\mathbb{R}^3} d\xi (\mathcal{F}_\pm u)(\xi) \varphi_{\pm}(x, \xi), \]

where l.i.m. means limit in the mean.

We shall outline here the contents of the present paper. In §1 we shall define the proper selfadjoint operator \(H \) corresponding to \(H_{\text{formal}} \) and characterize the domain of \(H \). §2 will be devoted to studying some integral operators connected with the resolvent of \(H \). The second resolvent equation for \(H \) and \(H_0 \) will be discussed in §3. The existense and completeness of the wave operators will be shown in §4. In §5 we shall investigate the spectrum of \(H \). An upper bound on the total number of the bound states of \(H \) will be given in §6. In §7 we shall show the limiting absorption principle for \(H \), and in §8 the eigenfunction expansion theorem concerning \(H \).

Part of the results obtained here has been announced in LNM 1285, 211–214 (ed. I. W. Knowles and Y. Saitō). Also, a detailed discussion of the scattering matrices will be given elsewhere by one of the authors (S.S.).

§1. The Schrödinger operator \(H \)

Throughout the paper we shall make the following assumption.

Assumption 1.1. \(q(x) \) is a real-valued, smooth function on \(S_a \).

For a rigorous definition of the Schrödinger operator \(H_{\text{formal}} \), we need some lemmas concerning the trace operators.

Lemma 1.2. Let \(\gamma_+ \) and \(\gamma_- \) be the trace operators from \(H^1(\{x;|x|<a\}) \) and \(H^1(\{x;|x|>a\}) \), respectively, to \(L_2(S_a) \). Let \(u \in H^1(\mathbb{R}^3) \). Then \(\gamma_+ u = \gamma_- u \).

Proof. Since \(u \in H^1(\mathbb{R}^3) \) and \(C_0^\infty(\mathbb{R}^3) \) is dense in \(H^1(\mathbb{R}^3) \) we can choose a sequence \(\{u_n\} \subset C_0^\infty(\mathbb{R}^3) \) such that \(u_n \to u \) in \(H^1(\mathbb{R}^3) \) as \(n \to \infty \). Since \(\gamma_\pm \) are bounded operators from \(H^1(\mathbb{R}^3) \) to \(L_2(S_a) \) (see, e.g. Mizohata [13, Chap. III]), respectively, there exists a constant \(C \) such that

\[\|\gamma_{\pm} f\|_a \leq C \|f\|_{H^1(\{x;|x| \geq a\})} \quad \text{for } f \in H^1(\{x;|x| \geq a\}), \]

where \(\|u\|_a = \sqrt{(u, u)_a} \). In view of \((\gamma_+ u_n)(x) = (\gamma_- u_n)(x) = (u_n|S_a)(x) \) for each \(n \), we have by (1.1)
Letting \(n \) tend to \(\infty \) in (1.2), we obtain that \(\gamma_+ u = \gamma_- u \). Q.E.D.

By the above lemma, we can define the trace operator \(\gamma \) from \(H^1(\mathbb{R}^3) \) to \(L_2(S_0) \) by \(\gamma u = \gamma_+ u(= \gamma_- u) \) for \(u \in H^1(\mathbb{R}^3) \).

Lemma 1.3. Let \(u \) belong to \(H^1(\mathbb{R}^3) \). Then we have for any \(\varepsilon > 0 \)

\[
\| \gamma u \|_a^2 \leq \varepsilon \| \mathcal{V} u \|_a^2 + \frac{1}{\varepsilon} \| u \|_a^2.
\]

Proof. Since \(C_0^\infty(\mathbb{R}^3) \) is dense in \(H^1(\mathbb{R}^3) \) and \(\gamma \) is a bounded operator from \(H^1(\mathbb{R}^3) \) to \(L_2(S_0) \), it suffices to prove the lemma for \(u \in C_0^\infty(\mathbb{R}^3) \) and \(\varepsilon > 0 \). Using the inequality \(2|p \cdot q| \leq \varepsilon |p|^2 + \varepsilon^{-1} |q|^2 \), we have for any \(\omega \in S^2 \) (the unit sphere of \(\mathbb{R}^3 \))

\[
|\gamma u(\omega)|^2 = -2 \text{Re} \int_a^\infty \frac{\partial u}{\partial r}(r\omega) \overline{u(r\omega)} \, dr
\]

\[
\leq \varepsilon \int_a^\infty \left| \frac{\partial u}{\partial r}(r\omega) \right|^2 \, dr + \varepsilon^{-1} \int_a^\infty |u(r\omega)|^2 \, dr
\]

\[
\leq \varepsilon \int_a^\infty \frac{r^2}{a^2} \left| \frac{\partial u}{\partial r}(r\omega) \right|^2 \, dr + \varepsilon^{-1} \int_a^\infty \frac{r^2}{a^2} |u(r\omega)|^2 \, dr.
\]

Multiplying both sides of (1.5) by \(a^2 \) and integrating with respect to \(\omega \) over the unit sphere \(S^2 \) yield

\[
\int_{S_0} |u(x)|^2 \, dS_x \leq \varepsilon \int_{|x| \geq a} \left| \frac{\partial u}{\partial r}(x) \right|^2 \, dx + \varepsilon^{-1} \int_{|x| \geq a} |u(x)|^2 \, dx
\]

\[
\leq \varepsilon \left\| \frac{\partial u}{\partial r} \right\|_a^2 + \varepsilon^{-1} \| u \|_a^2.
\]

(1.3) follows from (1.6) and \(\left| \frac{\partial u}{\partial r}(x) \right| \leq |\mathcal{V} u(x)| \). To prove (1.4), we have by Schwarz' inequality

\[
|u(a\omega)|^2 = \left| \int_a^\infty \frac{\partial u}{\partial r}(r\omega) \, dr \right|^2 \leq \int_a^\infty \int_a^\infty \frac{r^2}{r^2} \left| \frac{\partial u}{\partial r}(r\omega) \right|^2 \, dr \]

\[
= \frac{1}{a} \int_a^\infty r^2 \left| \frac{\partial u}{\partial r}(r\omega) \right|^2 \, dr.
\]

Thus we have
\[\int_{S_a} |u(x)|^2 dS_x \leq a \int_{|x| \leq a} \left| \frac{\partial u}{\partial r}(x) \right|^2 dx \leq a \| \nabla u \|^2. \]

Q.E.D.

Now we are in a position to define a selfadjoint operator corresponding to \(H_{\text{formal}} \) in a rigorous way. Consider the quadratic form

\[h[u, v] = (V u, V v) + (q u, \gamma v), \quad \text{Dom}[h] = H^1(R^3). \]

Since \(q \) is bounded on \(S_a \) by Assumption 1.1, it follows from Lemma 1.1 that \(h \) is a symmetric, lower semibounded, closed form. Therefore, by Kato [9, Chap. VI, Theorem 2.1] we have the following

Theorem 1.4. Let \(h \) be the quadratic form defined by (1.9). Then there exists a unique selfadjoint operator \(H \) such that

\[\text{Dom}(H) \subset \text{Dom}[h], \quad (Hu, v) = h[u, v] \text{ for } u \in \text{Dom}(H) \text{ and } v \in \text{Dom}[h]. \]

We adopt this operator \(H \) as the Schrödinger operator corresponding to \(H_{\text{formal}} \) stated in the Introduction.

Theorem 1.5. Let \(A = \min_{x \in S_a} q(x) \). Then

\[H \geq -A^2. \]

Moreover, we have

\[H \geq 0 \quad \text{for} \quad -\frac{1}{a} \leq A \]

and

\[H \geq \frac{4}{a^2} (A + 1) \quad \text{for} \quad -\frac{2}{a} \leq A \leq -\frac{1}{a}. \]

Proof. By Theorem 1.4 we have for any \(u \in \text{Dom}(H) \)

\[(Hu, u) = \| V u \|^2 + \int_{S_a} q(x) |u(x)|^2 dS_x \geq \| V u \|^2 + A \| \gamma u \|^2. \]

If \(A \geq -\frac{1}{a} \), (1.12) follows immediately from (1.14) and (1.4) of Lemma 1.3. Let us assume that \(-\frac{2}{a} \leq A \leq -\frac{1}{a} \). Rewriting (1.14), we have

\[(Hu, u) \geq \| V u \|^2 - A \left(\frac{2}{Aa} + 1 \right) \| \gamma u \|^2 + A \left(2 + \frac{2}{Aa} \right) \| \gamma u \|^2. \]
By Lemma 1.3 \((\text{putting } \varepsilon = \frac{a}{2} \text{ in (1.3)})\), we have

\[
(Hu, u) \geq \|Vu\|^2 - A\left(\frac{2}{Aa} + 1\right)a\|Vu\|^2 + A\left(2 + \frac{2}{Aa}\right)\left(\frac{a}{2}\|Vu\|^2 + \frac{2}{a}\|u\|^2\right)
\]

\[
= \frac{4}{a^2}(aA + 1)\|u\|^2.
\]

This implies (1.13). To complete the proof, we have only to show that (1.11) holds when \(A < 0\). In this case, (1.11) follows from (1.14) and Lemma 1.3 with \(\varepsilon = -\frac{1}{A}\).

Remark 1.6. The above theorem implies that \(H\) has no negative eigenvalues if \(A \geq \frac{1}{a}\). On the other hand, if \(A < \frac{1}{a}\), \(H\) can have negative eigenvalues. In fact, let \(q(x) = V_0\) (constant) such that \(V_0 < \frac{1}{a}\). Then it is seen that \(H\) has a negative eigenvalue \(-\lambda^2\) \((\lambda > 0)\), where \(\lambda\) is the unique solution of the equation

\[
\frac{1 - e^{-2a\lambda}}{\lambda} = -\frac{2}{V_0},
\]

and a corresponding eigenfunction is \(\frac{1}{|x|}(e^{-\lambda|x| - a} - e^{-\lambda|x| + a})\) (see Dolph et al. [5, pp. 326–327], and cf. Theorem 5.3 below).

Now, we shall characterize the domain of \(H\).

Theorem 1.7. \(u \in \text{Dom}(H)\) if and only if

\[
u \in H^1(\mathbb{R}^3), \quad \nu \in H^2(\{|x| < a\}), \quad \nu \in H^2(\{|x| > a\}) \quad \text{and}
\]

\[
q(x)(\nu u)(x) - \left\{\frac{\partial u}{\partial n_+}(x) + \frac{\partial u}{\partial n_-}(x)\right\} |_{s_n} = 0.
\]

In this case, \(Hu = -\Delta u\) in the distribution sense and \(u\) is continuous on \(\mathbb{R}^3\).

Remark 1.8. Strictly speaking, \(\frac{\partial u}{\partial n_\pm}\)|\(s_n(x)\) denotes \(\sum_{j=1}^3 \langle n_\pm, e_j \rangle y_\pm \left(\frac{\partial u}{\partial x_j}\right)(x)\), where \(e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1)\) and \(\langle x, y \rangle\) means the scalar product of the vectors \(x\) and \(y\).

Proof of the theorem. First let \(u \in \text{Dom}(H)\). \(u \in H^1(\mathbb{R}^3)\) is direct from Theorem 1.4. Now, by Theorem 1.4 we have for any \(v \in C^\infty(\{|x| < a\})\)

\[
\int_{|x| < a} (Hu)(x) \overline{v(x)} \, dx = h[u, v] = \int_{|x| < a} (Pu)(x) \overline{(Pv)(x)} \, dx
\]
where and in the sequel it is understood that all derivatives are taken in the distribution sense. (1.18) implies that $Hu = -\Delta u$ in $\{x ; |x| < a\}$ and $u \in H^2(\{x ; |x| < a\})$ (see the note added in proof). Similarly, $Hu = -\Delta u$ in $\{x ; |x| > a\}$ and $u \in H^2(\{x ; |x| > a\})$. Therefore, it makes sense to speak of $\frac{\partial u}{\partial n} |_{S_a}$. Thus, by Theorem 1.4 and Green's Theorem (see e.g. Mizohata [13, Chap. III, § 8]) we obtain for any $v \in C^\infty_0(\mathbb{R}^3)$

$$\begin{align*}
(1.19) \quad (Hu, v) &= h[u, v] = \int_{|x| < a} (\nabla u)(\nabla v)(x) dx \\
&\quad + \int_{|x| > a} (\nabla u)(\nabla v)(x) dx + (q u, v)_{a} \\
&= -\int_{|x| < a} (\Delta u)(x) \overline{v(x)} dx - \left(\frac{\partial u}{\partial n^-} |_{S_a}, \gamma v \right)_{a} \\
&\quad - \int_{|x| > a} (\Delta u)(x) \overline{v(x)} dx - \left(\frac{\partial u}{\partial n^+} |_{S_a}, \gamma v \right)_{a} + (q u, v)_{a} \\
&= (-\Delta u, v) + \left(q u - \left\{ \frac{\partial u}{\partial n^+} + \frac{\partial u}{\partial n^-} \right\} |_{S_a}, \gamma v \right)_{a},
\end{align*}$$

and, since $u \in H^2(\{x ; |x| \neq a\})$ and $Hu = -\Delta u$ as shown above,

$$\left(q u - \left\{ \frac{\partial u}{\partial n^+} + \frac{\partial u}{\partial n^-} \right\} |_{S_a}, \gamma v \right)_{a} = 0 \quad \text{for any } v \in C^\infty_0(\mathbb{R}^3).$$

Since $\{\gamma v = v|_{S_a} ; v \in C^\infty_0(\mathbb{R}^3)\}$ is dense in $L_2(S_a)$, we have

$$q u - \left\{ \frac{\partial u}{\partial n^+} + \frac{\partial u}{\partial n^-} \right\} |_{S_a} = 0.$$

We have thus shown (1.17).

Conversely, let u verify (1.17). Define $w \in L_2(\mathbb{R}^3)$ by $w = -\Delta u$ (except on S_a). Then, for any $v \in \text{Dom}(H)$, we have, as we got (1.19),

$$\begin{align*}
(1.20) \quad (Hv, u) &= h[v, u] = (\nabla v, \nabla u) + (q v, u)_{a} \\
&= (v, -\Delta u) + \left(\gamma v, q u - \left\{ \frac{\partial u}{\partial n^+} + \frac{\partial u}{\partial n^-} \right\} |_{S_a} \right)_{a} \\
&= (v, w)
\end{align*}$$

This implies that $u \in \text{Dom}(H^*) = \text{Dom}(H)$.

Finally, let $u \in \text{Dom}(H)$. By what has been shown above, we have $u \in H^2(\{x ; |x| < a\})$, $u \in H^2(\{x ; |x| > a\})$ and $u \in H^1(\mathbb{R}^3)$. Thus, according to
Calderón's extension theorem (e.g. Agmon [1, p.171, Theorem 11.12]), there exist $u_1, u_2 \in H^2(\mathbb{R}^3)$ such that

$$
(1.21) \quad (u_1 |_{|x| < a})(x) = u(x) \quad \text{for a.e. } x \text{ in } \{|x| < a\},
$$

$$
(1.22) \quad (u_2 |_{|x| > a})(x) = u(x) \quad \text{for a.e. } x \text{ in } \{|x| > a\}.
$$

Since $u \in H^1(\mathbb{R}^3)$, we have in view of Lemma 1.2

$$
(1.23) \quad \gamma_-(u_1 |_{|x| < a})(x) = \gamma u = \gamma_+(u_2 |_{|x| > a}).
$$

On the other hand, Sobolev's lemma (e.g. Reed-Simon [18, p.32, Theorem 3.9]) implies that u_1 and u_2 are continuous on \mathbb{R}^3. Hence we have by (1.22)

$$
(1.24) \quad (u_1 |_{|x| = a})(x) = \gamma_-(u_1 |_{|x| < a})(x) = \gamma_+(u_2 |_{|x| > a})(x) = (u_2 |_{|x| = a})(x) \text{ on } S_a.
$$

From (1.21) and (1.23), it follows that u is continuous on \mathbb{R}^3. Q.E.D.

§ 2. Preliminary lemmas

We shall introduce the following integral operators T_κ and \tilde{T}_κ depending on a complex parameter κ defined by

$$
(T_\kappa f)(x) = -\frac{1}{4\pi} \int_{S_a} e^{i\kappa |x - y|} |x - y| q(y) f(y) dS_y \quad (x \in \mathbb{R}^3)
$$

and

$$
(\tilde{T}_\kappa f)(x) = -\frac{1}{4\pi} \int_{S_a} e^{i\kappa |x - y|} |x - y| q(y) f(y) dS_y \quad (x \in S_a).
$$

Before studying the properties of T_κ and \tilde{T}_κ, we shall state some lemmas. First, by direct computation using polar coordinates, we have

Lemma 2.1. Let $\zeta \in \mathbb{C}$. Then we have for any $x \in \mathbb{R}^3$

$$
(2.1) \quad \int_{S_a} \frac{e^{i\zeta |x - y|}}{|x - y|} dS_y = \frac{2\pi a}{\zeta |x|} (e^{i(a + |x|)} - e^{i(a - |x|)}) \quad (\zeta \neq 0),
$$

$$
(2.2) \quad \int_{S_a} \frac{1}{|x - y|} dS_y = \frac{2\pi a}{|x|} (a + |x| - |a - |x||) \quad (\zeta = 0).
$$

Lemma 2.2. There exists a constant C such that for any $x, y \in S_a$,

$$
(2.3) \quad \int_{S_a} \frac{1}{|x - z||z - y|} dS_z \leq C(1 + |\log|x - y||),
$$

$$
(2.4) \quad \int_{S_a} \frac{1}{|x - z||\log|z - y||} dS_z \leq C,
$$
Schrödinger operators

and for any \(x \in \mathbb{R}^3 \), \(0 < r < 3 \) and \(r + s > 3 \)

\[
\int_{\mathbb{R}^3} \frac{dy}{|x - y|^r (1 + |y|^2)^{3/2}} \leq \begin{cases}
C & (s < 3) \\
\frac{C \log(1 + |x|)}{(1 + |x|)^r} & (s = 3) \\
C & (s > 3).
\end{cases}
\]

(2.4)

For the proof, see e.g. Kellogg [10, pp. 301–303] or Kuroda [12, p. 162].

Lemma 2.3. Let \(\operatorname{Im} \kappa > 0 \). Then \(T_\kappa \) is a Hilbert-Schmidt operator from \(L_2(S_a) \) to \(L_2(\mathbb{R}^3) \).

Proof. Put \(b = \operatorname{Im} \kappa \). We compute the Hilbert-Schmidt norm of \(T_\kappa \).

\[
\|4 \pi T_\kappa\|_{H.S.}^2 = \int_{S_a} dS_x \int_{\mathbb{R}^3} dx |q(y)|^2 \frac{e^{-2b|x-y|}}{|x-y|^2} = \frac{2\pi}{b} \|q\|_a^2 < +\infty,
\]

from which follows the assertion. Q.E.D.

Lemma 2.4. Let \(\kappa \in \mathbb{C} \). Then \(\tilde{T}_\kappa \) is a compact operator from \(L_2(S_a) \) to itself.

Proof. Define the integral operator \(G_\kappa^{(e)} \) by

\[
(G_\kappa^{(e)} f)(x) = -\int_{S_a} \chi_{\{y \in S_a; |x-y| > \varepsilon \}}(y) \frac{e^{i\kappa |x-y|}}{4\pi |x-y|} q(y) f(y) dS_y \quad (x \in S_a, \varepsilon > 0),
\]

where \(\chi_A(x) \) denotes the characteristic function of the set \(A \). Since we have

\[
\int_{S_a \times S_a} dS_x dS_y \chi_{\{y \in S_a; |x-y| > \varepsilon \}}(y) \frac{e^{i\kappa |x-y|}}{4\pi |x-y|} q(y) \left| \frac{e^{i\kappa |x-y|}}{4\pi |x-y|} \right|^2 \leq \left(\frac{e^{2|\operatorname{Im} \kappa|a}}{4\pi \varepsilon} \max_{y \in S_a} |q(y)| \right)^2 (4\pi a^2)^2 < +\infty,
\]

\(G_\kappa^{(e)} \) is a Hilbert-Schmidt, and a fortiori, compact operator from \(L_2(S_a) \) to itself for each \(\varepsilon > 0 \). To prove the lemma, we have only to show that \(G_\kappa^{(e)} \) converges to \(\tilde{T}_\kappa \) in the operator norm topology when \(\varepsilon \downarrow 0 \). In fact, using Schwarz' inequality we have for any \(f \in L_2(S_a) \) and \(x \in S_a \)

\[
|G_\kappa^{(e)} f)(x) - (\tilde{T}_\kappa f)(x)|^2 \leq \left(\int_{S_a \cap \{y; |x-y| \leq \varepsilon \}} \frac{e^{i|\operatorname{Im} \kappa||x-y|}}{4\pi |x-y|} |q(y)||f(y)| dS_y \right)^2 \\
\leq (\max_{y \in S_a} |q(y)|)^2 \left(\int_{S_a \cap \{y; |x-y| \leq \varepsilon \}} \frac{e^{i|\operatorname{Im} \kappa||x-y|}}{4\pi |x-y|} dS_y \right) \left(\int_{S_a} \frac{e^{i|\operatorname{Im} \kappa||x-y|}}{4\pi |x-y|} |f(y)|^2 dS_y \right) \\
\leq (\max_{y \in S_a} |q(y)|)^2 \frac{e^{i|\operatorname{Im} \kappa| \varepsilon}}{2} \int_{S_a} \frac{e^{i|\operatorname{Im} \kappa||x-y|}}{4\pi |x-y|} |f(y)|^2 dS_y \quad (\text{if} \ \varepsilon \leq a/2),
\]

(2.5)
where we have used the equality
\[
(2.6) \quad \int_{S_a \cap \{y:|x-y|<\varepsilon\}} \frac{1}{4\pi|x-y|} dS_y = \frac{a}{2|x|} (\varepsilon - |a - |x||)
\]
if \(x \in \mathbb{R}^3\), \(|a - |x|| < \varepsilon \leq a/2\). Integrating the both sides of (2.5) over \(S_a\) yields by Lemma 2.1 and Fubini’s theorem
\[
(2.7) \quad \|G_\kappa^{(0)} f - \tilde{T}_\kappa f\|_a^2 \leq (\max_{y \in S_a} |q(y)|)^2 e^{||\text{Im}\kappa||}\frac{\varepsilon}{2} e^{2\pi|\text{Im}\kappa|} a \|f\|_a^2.
\]
From (2.7), the claim follows immediately. Q.E.D.

Define the Fourier transform \(\mathcal{F}_{S_a}\) on \(L_2(S_a)\) by
\[
(2.8) \quad (\mathcal{F}_{S_a} f)(\xi) = (2\pi)^{-3/2} \int_{S_a} e^{-ix \cdot \xi} f(x) dS_x \quad (\xi \in \mathbb{R}^3).
\]
Then, as is well known (e.g. Mochizuki [14, p. 16]), we have

Proposition 2.5. Let \(s > 1/2\). Then \(\mathcal{F}_{S_a}\) is a bounded operator from \(L_2(S_a)\) to \(L_2^{-s}(\mathbb{R}^3)\), i.e. there exists a constant \(C\) such that
\[
(2.9) \quad \|\mathcal{F}_{S_a} f\|_{0,-s} \leq C \|f\|_a \quad \text{for any } f \in L_2(S_a).
\]

Lemma 2.6. Let \(\text{Im} \kappa > 0\). Then \(T_\kappa\) is a bounded operator from \(L_2(S_a)\) to \(H^1(\mathbb{R}^3)\).

Proof. For any \(f \in L_2(S_a)\) we have by Fubini’s theorem
\[
(2.10) \quad (\mathcal{F} T_\kappa f)(\xi) = -\int_{S_a} dS_q q(y) f(y) (2\pi)^{-3/2} \int_{\mathbb{R}^3} dx \frac{e^{-ix \cdot \xi} e^{i|\kappa| |x-y|}}{4\pi |x-y|} \\
= -(2\pi)^{-3/2} \int_{S_a} dS_q \frac{e^{-ix \cdot \xi} q(y) f(y)}{|\xi|^2 - \kappa^2} \\
= -\frac{1}{|\xi|^2 - \kappa^2} (\mathcal{F}_{S_a} (q f))(\xi),
\]
where we used (2.8) and the fact that
\[
(2.11) \quad \mathcal{F} \left(\frac{e^{i|\kappa| |y|}}{4\pi |\cdot - y|} \right)(\xi) = (2\pi)^{-3/2} \frac{e^{-i\xi \cdot y}}{|\xi|^2 - \kappa^2}.
\]
Take \(s\) such that \(1/2 < s < 1\). Then, by Proposition 2.5 we can estimate the \(H^1\) norm \(\|T_\kappa f\|_{H^1}\) of \(T_\kappa f\) as follows.
(2.12) \[\| T_\kappa f \|_{L^2}^2 = \int_{\mathbb{R}^3} d\xi (1 + |\xi|^2) (|\mathcal{F}T_\kappa f(\xi)|^2 \]
\[= \int_{\mathbb{R}^3} d\xi (1 + |\xi|^2) \left| \frac{-1}{|\xi|^2 - \kappa^2} (\mathcal{F}S_\alpha (qf))(\xi) \right|^2 \]
\[\leq \sup_{\xi \in \mathbb{R}^3} \left\{ \frac{(1 + |\xi|^2)^{1+s}}{|\xi|^2 - \kappa^2|^2} \right\} \int_{\mathbb{R}^3} d\xi (1 + |\xi|^2)^{-s} (|\mathcal{F}S_\alpha (qf))(\xi)|^2 \]
\[= \sup_{\xi \in \mathbb{R}^3} \left\{ \frac{(1 + |\xi|^2)^{1+s}}{|\xi|^2 - \kappa^2|^2} \right\} \| \mathcal{F}S_\alpha (qf) \|_{0,-s}^2 \]
\[\leq \sup_{\xi \in \mathbb{R}^3} \left\{ \frac{(1 + |\xi|^2)^{1+s}}{|\xi|^2 - \kappa^2|^2} \right\} C^2 \max_{x \in S_\alpha} |q(x)|^2 \| f \|_{H^s}^2, \]

which implies the required result. Q.E.D.

By the above lemma, \(\gamma T_\kappa (\text{Im} \kappa > 0) \) is a well-defined bounded operator from \(L_2(S_\alpha) \) to itself. Furthermore, we have

Lemma 2.7. Let \(\text{Im} \kappa > 0 \). Then \(\gamma T_\kappa = \tilde{T}_\kappa \).

Proof. Since \(\gamma T_\kappa \) and \(\tilde{T}_\kappa \) are bounded operators on \(L_2(S_\alpha) \) and the set of continuous functions on \(S_\alpha \) is dense in \(L_2(S_\alpha) \), it suffices to prove that \(\gamma T_\kappa = \tilde{T}_\kappa \) on this set. Assume that \(f \) is continuous on \(S_\alpha \). Then it follows in a standard way (e.g. Colton-Kress [4, p.47, Theorem 2.12]) that \((T_\kappa f)(x) \) is continuous on \(\mathbb{R}^3 \). On the other hand, we have for a.e. \(x \in S_\alpha \)

\[(\gamma T_\kappa f)(x) = \lim_{y \to x} (T_\kappa f)(y) \quad (y \text{ approaches } x \text{ along } n_x). \]

Therefore, \((\gamma T_\kappa f)(x) = (T_\kappa f)(x) = (\tilde{T}_\kappa f)(x) \) for a.e. \(x \in S_\alpha \). Thus the lemma has been proven. Q.E.D.

Lemma 2.8. Let \(\kappa \in C \). Then \((\tilde{T}_\kappa)^2 \) is a Hilbert-Schmidt operator from \(L_2(S_\alpha) \) to itself.

Proof. The kernel of \((\tilde{T}_\kappa)^2 \) is

\[\left(\frac{1}{4\pi} \right)^2 \int_{S_\alpha} dS_z \frac{e^{ik(|x-z| + |z-y|)}}{|x-z||z-y|} q(z) q(y). \]

Introducing polar coordinates, we have by Lemma 2.2

\[\int_{S_\alpha \times S_\alpha} dS_x dS_y \left| \int_{S_\alpha} dS_z \frac{e^{ik(|x-z| + |z-y|)}}{|x-z||z-y|} q(z) q(y) \right|^2 \]
\[\leq e^{8a|\text{max}|} (\max_{z \in S_\alpha} |q(z)|)^4 \int_{S_\alpha \times S_\alpha} dS_x dS_y \left(\int_{S_\alpha} dS_z \frac{1}{|x-z||z-y|} \right)^2 \]
\[\leq e^{\max_{z \in S_a} |q(z)|} \int_{S_a \times S_a} dS_x dS_y C^2 (1 + |\log |x - y||)^2 < + \infty, \]

which proves the lemma. Q.E.D.

Lemma 2.9. Let \(s > 1/2 \). Then \(T_\kappa \) is a \(B(L_2(S_a), L_2^s(R^3)) \)-valued continuous function of \(\kappa \) for \(\Im \kappa \geq 0 \).

Proof. For any \(f \in L_2(S_a) \), we consider the difference

\[(T_\kappa f)(x) - (T_\kappa f)(y) = \frac{1}{4\pi} \int_{S_a} \frac{e^{i\kappa |x - y|} - e^{i\kappa' |x - y|}}{|x - y|} q(y) f(y). \]

In view of the inequality

\[|e^{i\kappa |x - y|} - e^{i\kappa' |x - y|}| \leq |\kappa - \kappa'| \mu |x - y|^\mu e^{-\mu \max \{\Im \kappa, \Im \kappa\} |x - y|} \times \]

\[\times (e^{-\max \{\Im \kappa, \Im \kappa\} |x - y|} - e^{-\max \{\Im \kappa, \Im \kappa\} |x - y|})^{1 - \mu} \quad (0 \leq \mu \leq 1), \]

we have

\[|(T_\kappa f)(x) - (T_\kappa f)(y)| \leq \frac{2^{1 - \mu}}{4\pi} |\kappa - \kappa'| \mu \max_{y \in S_a} |q(y)| \int_{S_a} dS_y \frac{|f(y)|}{|x - y|^{1 - \mu}}. \]

Taking \(\mu \) such that \(0 < \mu < \min(s - 1/2, 1) \), we get by Schwarz' inequality and Fubini's theorem

\[\| T_\kappa f - T_\kappa' f \|_{0, -s}^2 \]

\[\leq \int_{R^3} dx (1 + |x|^2)^{-s} \left(\frac{2^{1 - \mu}}{4\pi} |\kappa - \kappa'| \mu \max_{y \in S_a} |q(y)| \right)^2 \int_{S_a} dS_y \frac{|f(y)|}{|x - y|^{1 - \mu}}^2 \times \]

\[\times \int_{S_a} dS_y \frac{1}{|x - y|^{2 - 2\mu}} \int_{S_a} dS_y |f(y)|^2 \]

\[= \left(\frac{2^{1 - \mu}}{4\pi} |\kappa - \kappa'| \mu \max_{y \in S_a} |q(y)| \right)^2 \times \]

\[\times \int_{S_a} dS_y \int_{R^3} dx \frac{1}{|x - y|^{2 - 2\mu}(1 + |x|^2)^s} \| f \|_a^2. \]

(2.16) together with Lemma 2.2, (2.4) yields the required result. Q.E.D.

Lemma 2.10. \(\tilde{T}_\kappa \) is a \(B(L_2(S_a)) \)-valued continuous function of \(\kappa \) in \(C \).

Proof. Using (2.15) \((\mu = 1) \), we have for \(f \in L_2(S_a) \) and \(x \in S_a \).
Integrating the both sides of (2.18) over \(S_a \) and making use of Schwarz' inequality, we obtain

\[
\| \tilde{T}_\kappa f - \tilde{T}_{\kappa'} f \|_a^2 \leq \left(\frac{|\kappa - \kappa'| e^{2a(|I_m| + |I_m'|)}}{4\pi} \max_{y \in \mathcal{S}_a} |q(y)| \right)^2 \left(\int_{S_a} |dS_y| \| f(y) \| \right)^2.
\]

which completes the proof. \(\text{Q.E.D.} \)

Lemma 2.11. Let \(\kappa \in \mathcal{C} \) and let \(u \in L_2(S_a) \). Then, for any \(w \in \mathcal{C}^\infty_0(R^3) \) we have

\[
(2.20) \quad \int_{R^3} (T_\kappa u)(x)(- \Delta - \kappa^2)w(x)dx = - \int_{S_a} q(x)u(x)w(x)ds_x.
\]

If \(\text{Im} \kappa \geq 0 \), (2.20) holds for any \(w \in \mathcal{S} \), where \(\mathcal{S} = \mathcal{S}(R^3) \) denotes the set of functions which together with all their derivatives fall off faster than the inverse of any polynomial.

Proof. By Fubini's theorem we have for \(w \in \mathcal{C}^\infty_0(R^3) \)

\[
(2.21) \quad \int_{R^3} (T_\kappa u)(x)(- \Delta - \kappa^2)w(x)dx = - \int_{S_a} q(x)u(x)w(x)ds_x.
\]

On the other hand, we have by Green's theorem

\[
(2.22) \quad \int_{R^3} dx \frac{e^{i|x-y|}}{|x-y|} (- \Delta - \kappa^2)w(x) = 4\pi w(y)
\]

for \(w \in \mathcal{C}^\infty_0(R^3) \). The first part of the lemma follows immediately from (2.21) and (2.22). The proof of the second half is similar. \(\text{Q.E.D.} \)

Lemma 2.12. Let \(\text{Im} \kappa > 0 \). Suppose that \(u \) is a non-trivial solution of the homogeneous equation \(u = \tilde{T}_\kappa u \) in \(L_2(S_a) \). Then \(v \equiv T_\kappa u \) is a non-trivial eigenvector of \(H \) corresponding to eigenvalue \(\kappa^2 \). Conversely, if \(\gamma \) is a non-zero eigenvector of \(H \) corresponding to eigenvalue \(\kappa^2 \), \(\gamma v \) is a non-zero vector in \(L_2(S_a) \) and satisfies the equation \(\gamma v = \tilde{T}_\kappa(\gamma v) \).

Proof. Assume that \(u \in L_2(S_a) \), \(u \neq 0 \) and \(u = \tilde{T}_\kappa u \). By Lemma 2.11, we have for any \(w \in \mathcal{C}^\infty_0(R^3) \)
Teruo Ikebe and Shin-ichi Shimada

(2.23) \[\int_{\mathbb{R}^3} (T_k u)(x)(-\Delta - \kappa^2) \bar{w(x)} \, dx = - \int_{S_n} q(x)u(x) \bar{w(x)} \, dS_x. \]

Since \(v = T_k u\) belongs to \(H^1(\mathbb{R}^3)\) by Lemma 2.6 and hence \(\gamma v = \gamma T_k u = \bar{T}_k u = u\) by Lemma 2.7, we have on integration by parts

(2.24) \[(V v, V w) - \kappa^2(v, w) + (q v, \gamma w)_n = 0 \quad \text{for any } w \in C_0^\infty(\mathbb{R}^3). \]

Since \(C_0^\infty(\mathbb{R}^3)\) is dense in \(H^1(\mathbb{R}^3)\), \(C_0^\infty(\mathbb{R}^3)\) is a form core of \(h\) by Kato [9, Chap. VI, Theorem 1.21] and Lemma 1.3. So we have by (2.24)

\[h[v, w] = \kappa^2(v, w) \quad \text{for any } w \in H^1(\mathbb{R}^3). \]

Therefore, we obtain by Theorem 1.4

\[(v, (H - \kappa^2)w) = 0 \quad \text{for any } w \in \text{Dom}(H). \]

which implies that \(v \in \text{Dom}(H)\) and \((H - \kappa^2)v = 0\). If \(v = 0\), we have by Lemma 2.7 \(u = \bar{T}_k u = \gamma T_k u = \gamma v = 0\), which is a contradiction. Thus \(v\) is non-trivial, and is an eigenvector with eigenvalue \(\kappa^2\).

Conversely, let \(v\) verify that \(v \in \text{Dom}(H)\), \(v \neq 0\) and \((H - \kappa^2)v = 0\). Since \(v \in H^1(\mathbb{R}^3)\) by Theorem 1.7 and hence \(\gamma v \in L_2(S_n)\), we have by Theorem 1.4.

(2.25) \[(V v, V w) - \kappa^2(v, w) + (q v, \gamma w)_n \]

\[= h[v, w] - \kappa^2(v, w) = ((H - \kappa^2)v, w) \]

\[= 0 \quad \text{for any } w \in H^1(\mathbb{R}^3). \]

On the other hand, as we got (2.24) from (2.23), we obtain by Lemma 2.11 and in view of \(\gamma v \in L_2(S_n)\) for any \(w \in \mathcal{F}\)

(2.26) \[(V(T_k \gamma v), V w) - \kappa^2(T_k \gamma v, w) + (q \gamma v, \gamma w)_n = 0, \]

(note that \(T_k (\gamma v) \in H^1(\mathbb{R}^3)\) by Lemma 2.6). Therefore, from (2.25) and (2.26) it follows that

(2.27) \[(V(T_k \gamma v - v), V w) - \kappa^2(T_k \gamma v - v, w) = 0 \quad \text{for any } w \in \mathcal{F}. \]

By Parseval’s identity we can rewrite (2.27) as

(2.28) \[(\mathcal{F}(T_k \gamma v - v), (|\cdot|^2 - \kappa^2)\mathcal{F} w) = 0 \quad \text{for any } w \in \mathcal{F}. \]

Put \(w(x) = \mathcal{F}^{-1} \left(\frac{h}{|\cdot|^2 - \kappa^2} \right)(x)\) for \(h \in \mathcal{F}\). Since \(w\) belongs to \(\mathcal{F}\), we obtain by (2.28)

\[(\mathcal{F}(T_k \gamma v - v), h) = 0 \quad \text{for any } h \in \mathcal{F}, \]

and hence

(2.29) \[T_k \gamma v - v = 0 \quad \text{in } L_2(\mathbb{R}^3). \]
If \(\gamma v = 0, v = 0 \) by (2.29), which is a contradiction. Thus \(\gamma v \) is a non-zero vector and \(\gamma v = \gamma T_\kappa(yv) = \tilde{T}_\kappa(yv) \) by (2.29). We have thus completed the proof of the lemma. Q.E.D.

Lemma 2.13. Let \(\text{Im} \, \kappa > 0 \). Then

\[
(2.30) \quad T_\kappa^* = -q\gamma R_0(\tilde{\kappa}^2),
\]

which maps from \(L_2(R^3) \) to \(L_2(S_a) \).

Proof. By Fubini’s theorem we have for \(u \in L_2(S_a) \) and \(v \in L_2(R^3) \)

\[
(2.31) \quad (T_\kappa u, v) = \int_{R^3} dx \left(-\frac{1}{4\pi} \int_{S_a} dS_y \frac{e^{i\kappa|x-y|}}{|x-y|} q(y)u(y) \right) \overline{v(x)}
\]

\[
= \int_{S_a} dS_y u(y) \left(-\frac{q(y)}{4\pi} \int_{R^3} \frac{e^{i(-\tilde{\kappa})|x-y|}}{|x-y|} v(x) \right)
\]

\[
= (u, -q\gamma R_0(\tilde{\kappa}^2)v),
\]

where we have used the reality and boundedness of \(q \) and \((\gamma R_0(z)v)(x) = (R_0(z)v)|_{S_a(x)} \in L_2(S_a) \) for \(z \in [0, \infty) \) as is seen by Sobolev’s lemma in view of \(\text{Ran}(R_0(z)) = H^2(R^3) \). The lemma follows from (2.31) immediately. Q.E.D.

Define the integral operators \(T^{(1)}_\kappa \) and \(\tilde{T}^{(1)}_\kappa \) with a complex parameter \(\kappa \) by

\[
(T^{(1)}_\kappa f)(x) = \frac{-1}{4\pi} \int_{S_a} dS_y \frac{e^{i\kappa|x-y|}}{|x-y|} f(y) \quad (x \in R^3)
\]

and

\[
(\tilde{T}^{(1)}_\kappa f)(x) = \frac{-1}{4\pi} \int_{S_a} dS_y \frac{e^{i\kappa|x-y|}}{|x-y|} f(y) \quad (x \in S_a).
\]

We remark that if \(q(x) \equiv 1 \), then \(T_\kappa = T^{(1)}_\kappa \) and \(\tilde{T}_\kappa = \tilde{T}^{(1)}_\kappa \), respectively.

Lemma 2.14. Let \(\kappa \in C \). Then

\[
(2.32) \quad (\tilde{T}_\kappa)^* = q \tilde{T}^{(1)}_\kappa,
\]

which maps from \(L_2(S_a) \) to itself.

Proof. By Fubini’s theorem we have for \(u, v \in L_2(S_a) \)

\[
(\tilde{T}_\kappa u, v)_a = \int_{S_a} dS_x \left(-\frac{1}{4\pi} \int_{S_a} dS_y \frac{e^{i\kappa|x-y|}}{|x-y|} q(y)u(y) \right) \overline{v(x)}
\]

\[
= \int_{S_a} dS_y u(y) \left(-\frac{q(y)}{4\pi} \int_{S_a} dS_x \frac{e^{i(-\tilde{\kappa})|x-y|}}{|x-y|} v(x) \right)
\]

\[
= (u, q \tilde{T}^{(1)}_\kappa v)_a,
\]
§ 3. The resolvent equation

In this section, we shall study the resolvent $R(z)$ of H. As remarked in the proof of Lemma 2.13, $\gamma R_0(z)$ is a bounded operator from $L_2(\mathbb{R}^3)$ to $L_2(S_0)$. More precisely, combining Lemmas 2.3 and 2.13 ($q(x) \equiv 1$), we have

Lemma 3.1. Let $z \in \mathbb{R} \cup [0, \infty)$. Then $\gamma R_0(z)$ is a Hilbert-Schmidt operator from $L_2(\mathbb{R}^3)$ to $L_2(S_0)$.

Theorem 3.2. Let $z \in \rho(H) \cap \rho(H_0)$, where ρ denotes the resolvent set. Then $\gamma R(z)$ is a bounded operator from $L_2(\mathbb{R}^3)$ to $L_2(S_0)$ and the following resolvent equation holds:

$$ (3.1) \quad R(z) - R_0(z) = T_{\sqrt{z}} \gamma R(z), $$

where and in the sequel, by \sqrt{z} is meant the branch of the square root of z with $\text{Im} \sqrt{z} \geq 0$.

Proof. To prove the first part of the theorem, we have only to show that $R(z)$ is a bounded operator from $L_2(\mathbb{R}^3)$ to $H^1(\mathbb{R}^3)$. From Theorem 1.4, it follows that $\text{Ran} R(z) = \text{Dom}(H) \subset H^1(\mathbb{R}^3)$ and $\text{Dom}(R(z)) = L_2(\mathbb{R}^3)$. Let $\{u_n\}$ be such that for some $u \in L_2(\mathbb{R}^3)$ and $v \in H^1(\mathbb{R}^3)$, $u_n \to u$ in $L_2(\mathbb{R}^3)$ and $R(z)u_n \to v$ in $H^1(\mathbb{R}^3)$ as $n \to \infty$. Then, since $R(z)$ is a bounded operator from $L_2(\mathbb{R}^3)$ to itself, we have

$$ R(z)u = \lim_{n \to \infty} R(z)u_n = v \quad \text{in} \quad L_2(\mathbb{R}^3), $$

and hence $R(z)$ is a closed operator from $L_2(\mathbb{R}^3)$ to $H^1(\mathbb{R}^3)$. Therefore, from the closed graph theorem it follows that $R(z)$ belongs to $\mathcal{B}(L_2(\mathbb{R}^3), H^1(\mathbb{R}^3))$.

Finally, let us show the resolvent equation. Let $u \in \text{Dom}(H)$ and $v \in \text{Dom}(H_0)$. In view of Theorem 1.4 and $\text{Dom}(H_0) = H^2(\mathbb{R}^3)$, we have

$$ (3.2) \quad ((H - z)u, v) = h[u, v] - (u, \bar{z}v) = (u, (H_0 - \bar{z})v) + (q \gamma u, \gamma v), $$

and hence, on putting $u = R(z)\varphi$ and $v = R_0(\bar{z})\psi = R_0(z)^*\psi$, we obtain

$$ (3.3) \quad (R_0(z)\varphi, \psi) = (R(z)\varphi, \psi) + (q \gamma R(z)\varphi, \gamma R_0(\bar{z})\psi), $$

$$ = (R(z)\varphi - T_{\sqrt{z}} \gamma R(z)\varphi, \psi), $$

where we have used Lemma 2.13. The required resolvent equation follows from (3.3) immediately.

Q.E.D.

§ 4. The wave operators

The wave operators W_{\pm} which intertwine H and H_0 are defined as
if they exist. In this section we shall prove the following

Theorem 4.1. W_\pm exist and are complete.

The proof of the above theorem will be given after proving the next

Lemma 4.2. $\gamma R(- b^2)$ is a Hilbert-Schmidt operator from $L_2(\mathbb{R}^3)$ to $L_2(S_a)$ for a sufficiently large $b > 0$.

Proof. On operating γ from left on the resolvent equation (3.1) ($z = - b^2$), we have, using Lemma 2.7,

\[(1 - \tilde{T}_b) \gamma R(- b^2) = \gamma R_0(- b^2). \]

If we show that $1 - \tilde{T}_b$ has a bounded inverse for a suitable $b > 0$, the the lemma follows, for $\gamma R_0(- b^2)$ is a Hilbert-Schmidt operator by Lemma 3.1. Using Schwarz’ inequality, Fubini’s theorem and Lemma 2.1, we have for any $u \in L_2(S_a)$

\[\| \tilde{T}_b u \|_a^2 = \int_{S_a} dS_x \int_{S_a} dS_y \frac{e^{-b|x-y|}}{-4\pi|x-y|} q(y)u(y) \]

\[\leq \left(\frac{1}{4\pi} \max_{y \in S_a} |q(y)| \right)^2 \int_{S_a} dS_x \int_{S_a} dS_y \frac{e^{-2b|x-y|}}{|x-y|} \|

\[= \left(\frac{1}{4\pi} \max_{y \in S_a} |q(y)| \right)^2 \int_{S_a} dS_x \frac{\pi}{b} (1 - e^{-4ab}) \int_{S_a} dS_y \frac{|u(y)|^2}{|x-y|} \]

\[= \left(\frac{1}{4\pi} \max_{y \in S_a} |q(y)| \right)^2 \frac{\pi}{b} (1 - e^{-4ab}) \int_{S_a} dS_y |u(y)|^2 \int_{S_a} dS_x \frac{1}{|x-y|} \]

\[= (\max_{y \in S_a} |q(y)|)^2 \frac{a}{4b} (1 - e^{-4ab}) \| u \|_a^2. \]

Therefore, we obtain

\[\| \tilde{T}_b u \| \leq (\max_{y \in S_a} |q(y)|) \left(\frac{a}{4b} (1 - e^{-4ab}) \right)^{1/2}, \]

and hence, the operator norm of \tilde{T}_b is less than unity for sufficiently large $b > 0$, which makes possible the Neumann series inversion of $1 - \tilde{T}_b$. Q.E.D.

Proof of Theorem 4.1. It is known that the wave operators exist and are complete if the difference of the resolvents is a trace-class operator (Kato [9, Chap.X, Theorem 4.8]). On the other hand, as is well known, an operator is in the trace-class if and only if it is a product of two Hilbert-Schmidt operators (e.g. Kato [9, p.521]). Thus, from Lemma 2.3, Theorem 3.2 and Lemma 4.2 it follows that $R(z) - R_0(z)$ is in the trace-class. The proof is now complete. Q.E.D.
§ 5. The spectrum of H

As is mentioned in the previous section, the difference of the resolvents of H and H_0 is a trace-class operator (see the proof of Theorem 4.1). Thus, concerning the essential spectrum $\sigma_{\text{ess}}(H)$ of H, we have by Weyl's theorem (e.g. Reed-Simon [19, p.112, Theorem XIII.14])

Theorem 5.1. $\sigma_{\text{ess}}(H) = \sigma_{\text{ess}}(H_0) = [0, \infty)$.

As to the point spectrum of H, we get the following result.

Theorem 5.2. $\sigma_p(H) \cap (0, \infty) = \emptyset$.

Proof. Assume that $\lambda > 0$, $(H - \lambda)u = 0$ and $u \in \text{Dom}(H)$. By Theorem 1.7 u satisfies

\((A + \lambda)u(x) = 0 \quad \text{in} \quad \{x; |x| < a\} \cup \{x; |x| > a\}. \)

In view of Mizohata [13, Chap. VIII, Lemma 8.4], we have

\(u(x) = 0 \quad \text{in} \quad \{x; |x| > a\}. \)

Thus it follows from (5.2) and Theorem 1.7 that

\(\frac{\partial u}{\partial n_-}|_{S_a}(x) = u|_{S_a}(x) = 0. \)

Now let us define $\tilde{u}(x)$ by

\(\tilde{u}(x) = \begin{cases} u(x) & \text{if} \quad |x| \leq a \\ 0 & \text{if} \quad |x| > a. \end{cases} \)

Then, for any $\varphi \in C_0^\infty(\mathbb{R}^3)$, we have by (5.1), (5.3) and Green’s theorem

\[
\int_{\mathbb{R}^3} \tilde{u}(x)(A + \lambda)\varphi(x)dx = \int_{|x| < a} u(x)A\varphi(x)dx + \lambda \int_{|x| < a} u(x)\varphi(x)dx
\]

\[
= \int_{|x| < a} (A + \lambda)u(x)\varphi(x)dx = 0,
\]

which implies

\((A + \lambda)\tilde{u}(x) = 0 \quad \text{in} \quad \mathbb{R}^3. \)

Operating the Fourier transform on the both sides of (5.5), we have

\((\lambda - |\xi|^2)(\mathcal{F}\tilde{u})(\xi) = 0. \)

Since $\mathcal{F}\tilde{u} \in L^2(\mathbb{R}^3)$, we obtain $\mathcal{F}\tilde{u} = 0$, and hence

\(\tilde{u}(x) = 0 \quad \text{for a.e.} \quad x \in \mathbb{R}^3. \)

Therefore, from (5.2), (5.4) and (5.6) it follows that
Schrödinger operators

\[u(x) = 0 \quad \text{in} \quad L_2(\mathbb{R}^3). \]

Q.E.D.

In contrast to the above theorem the point 0 may or may not belong to \(\sigma_p(H) \). If \(q \) is constant on \(S_a \), however, we get the following criterion.

Theorem 5.3. Let \(q(x) = V_0 \) (constant). Then \(0 \in \sigma_p(H) \) if and only if there exists a positive integer \(n \) such that \(aV_0 + 2n + 1 = 0 \). In this case, the corresponding eigenspace is spanned by the vectors \(v(|x|)Y_n^m(m = -n, -n + 1, \ldots, n) \), where

\[
v(r) = \begin{cases} r^n & r \leq a \\ a^{2n+1}r^{-n-1} & r \geq a. \end{cases}
\]

and \(Y_n^m(n = 0, 1, \ldots, m = -n, -n + 1, \ldots, n) \) denote the spherical harmonics which provide a basis for \(L_2(S^2) \) (\(S^2 \) the unit sphere in \(\mathbb{R}^3 \)).

Proof. (cf. Colton-Kress [4, pp. 78–79])

Suppose that \(Hu = 0 \) and \(u \in \text{Dom}(H) \). By Theorem 1.7 we have

\[
\Delta u(x) = 0 \quad \text{in} \quad \{ x; |x| < a \} \cup \{ x; |x| > a \}.
\]

Thus \(u(x) \) is a \(C^\infty \)-function in the above region by Weyl's lemma (e.g. Reed-Simon [18, p. 53]). Let \((r, \theta, \varphi) \) denote the spherical coordinates with \(r = |x| \). For each fixed \(r \) we can expand \(u \) in a uniformly convergent series

\[
u(x) = \sum_{k=0}^{\infty} \sum_{m=-k}^{k} v_{km}(r) Y_k^m(\theta, \varphi),
\]

where

\[
v_{km}(r) = \int_0^{2\pi} \int_0^{\pi} u(r, \theta, \varphi) \overline{Y_k^m(\theta, \varphi)} \sin \theta \, d\theta \, d\varphi.
\]

Since \(u \in C^\infty (\{ x; |x| \neq a \}) \), we can differentiate under the integral and integrate by parts using \(\Delta u = 0 \) to conclude that \(v_{km} \) is a solution of the following equation

\[
\frac{d^2}{dr^2} v_{km} + \frac{2}{r} \frac{d}{dr} v_{km} - \frac{k(k+1)}{r^2} v_{km} = 0,
\]

which has a fundamental system of solutions \(r^k \) and \(r^{-k-1} \). Since \(v_{km} \) is bounded near zero and belongs to \(L_2(0, \infty); r^2 \, dr \) by Theorem 1.7, \(v_{km} \) has the form

\[
v_{00}(r) = \alpha_{00} (r < a), = 0 \quad (r > a),
\]

\[
v_{km}(r) = \begin{cases} \alpha_{km} r^k & (r < a) \\ \beta_{km} r^{-k-1} & (r > a) \end{cases} \quad (k \geq 1),
\]

where \(\alpha_{km} \) and \(\beta_{km} \) are constants. In view of Theorem 1.7, \(v_{km} \) is continuous at \(r = a \) and satisfies the boundary condition

\[
V_0 v_{km}(a) + \left(\frac{d}{dr} v_{km} \right)(a - 0) - \left(\frac{d}{dr} v_{km} \right)(a + 0) = 0,
\]
where $f(a \pm 0)$ denotes $\lim_{\varepsilon \to 0} f(a \pm \varepsilon)$. Therefore, α_{km} and β_{km} satisfy the following equations

$$
\alpha_{00} = 0,
$$

$$
\alpha_{km}a^{2k+1} = \beta_{km}, \quad (aV_0 + 2k + 1)\alpha_{km} = 0 \quad (k \geq 1),
$$

from which the required result follows immediately. Q.E.D.

§ 6. Bound states of H

Let us define the quadratic form h_t depending on a real parameter t by

$$
h_t[u, v] = (Vu, Vv) + t(q_\gamma u, \gamma v),
$$

$$
\text{Dom}[h_t] = H^1(\mathbb{R}^3).
$$

The form h_t can be seen to be lower semibounded and closed in exactly the same way as for $h (t = 1)$. Therefore, Theorem 1.4 applies to h_t. We denote the corresponding unique selfadjoint operator by $H_t (H_1 = H$ (see §1)). Put for $n = 1, 2, \ldots$ and $t \in \mathbb{R}$,

$$
\mu_n(t) = \sup_{\phi_j \in L^2(\mathbb{R}^3)} \inf_{\|u\| = 1} \min(h_t[u], 0),
$$

where $h_t[u] = h_t[u, u]$ and $[\phi_1, \phi_2, \ldots, \phi_{n-1}]^\perp$ is short hand for \{u; \langle u, \phi_j \rangle = 0, j = 1, 2, \ldots, n - 1\}. Then our min-max principle will read as follows:

Lemma 6.1. Let n and $t \in \mathbb{R}$ be fixed. Then, either (a) $0 = \mu_n(t) = \mu_{n+1}(t) = \mu_{n+2}(t) = \cdots$ and there are at most $n - 1$ eigenvalues of H_t (counting multiplicity), or (b) there are n eigenvalues of H_t (counting multiplicity) and $\mu_n(t)$ is the n-th negative eigenvalue of H_t (counting multiplicity) from below.

Proof. (cf. Reed-Simon [19, p.76, Theorem XIII.1])

Let $E_\alpha(\cdot)$ be the spectral measure for H_t. First let us show

$$
\dim[\text{Ran}(E_\alpha([-\infty, \alpha]))] < n \quad \text{if } \alpha < \mu_n(t)
$$

$$
\dim[\text{Ran}(E_\alpha([-\infty, \alpha]))] \geq n \quad \text{if } \alpha > \mu_n(t)
$$

Here we remark that $\mu_n(t)$ is finite for each $t \in \mathbb{R}$ and

$$
\text{Ran}(E_\alpha([-\infty, \alpha])) \subset \text{Dom}(H_t) \quad (\subset H^1(\mathbb{R}^3)) \text{ if } \alpha < + \infty,
$$

because of the fact that H_t is bounded from below by Theorem 1.5.

Suppose that (6.3) is false. Then, for any $\varphi_1, \varphi_2, \ldots, \varphi_{n-1}$ we can find u such that $u \in \text{Ran}(E_\alpha([-\infty, \alpha])) \cap [\varphi_1, \varphi_2, \ldots, \varphi_{n-1}]^\perp$ and, by (6.5), $(H_t u, u) \leq \alpha \|u\|^2$. By Theorem 1.4, this implies that
for any \(\varphi_1, \varphi_2, \ldots, \varphi_{n-1} \in L^2(\mathbb{R}^3) \), and hence \(\mu_n(t) \leq \alpha \), which is a contradiction. This proves (6.3).

Since \(\mu_n(t) \leq 0 \) and Theorem 5.1 holds, we have only to prove (6.4) when \(\mu_n(t) < \alpha \leq 0 \). Thus, suppose that (6.4) is false when \(\mu_n(t) < \alpha \leq 0 \). Then we can find \(\varphi_1, \varphi_2, \ldots, \varphi_{n-1} \) such that \(\text{l.h.s.} \{ \varphi_1, \varphi_2, \ldots, \varphi_{n-1} \} = \text{Ran}(E_t((-\infty, \alpha))) \), where l.h.s. denotes the subspace spanned by \(\varphi \). Since any \(u \in [\varphi_1, \varphi_2, \ldots, \varphi_{n-1}]^\perp \cap \text{Dom}(H_t) \) is in \(\text{Ran}(E_t([\alpha, \infty))) \), we have by Theorem 1.4, \(h_t[u] = (H_t u, u) \geq \alpha \| u \|^2 \). Since \(\text{Dom}(H_t) \) is a form core for \(h_t \) (e.g. Reed-Simon [17, p.281]), it follows that

\[
0 < h_t[u] = \inf_{u \in [\varphi_1, \varphi_2, \ldots, \varphi_{n-1}]^\perp \cap H^1(\mathbb{R}^3)} \min_{|u| = 1} (h_t[u], 0) \leq \alpha
\]

and hence \(\mu_n(t) \geq \alpha \), which is a contradiction. This proves (6.4).

First, suppose that

\[
\text{dim} [\text{Ran}(E_t((-\infty, \mu_n(t) + \varepsilon))] = \infty \quad \text{for all } \varepsilon > 0.
\]

Then the situation (a) holds. In fact, by (6.3) we have

\[
\text{dim} [\text{Ran}(E_t((-\infty, \mu_n(t) - \varepsilon))] < n \quad \text{for all } \varepsilon > 0,
\]

and hence

\[
\text{dim} [\text{Ran}(E_t([\alpha, \infty)))] = \infty \quad \text{for all } \varepsilon > 0.
\]

This implies that

\[
\mu_n(t) \in \sigma_{\text{ess}}(H_t).
\]

Since \(\mu_n(t) \leq 0 \) and \(\sigma_{\text{ess}}(H_t) = [0, \infty) \) by Theorem 5.1, it follows that \(\mu_n(t) = 0 \). If \(\mu_{n+1}(t) > \mu_n(t) \), we have by putting \(\alpha = \frac{1}{2}(\mu_{n+1}(t) + \mu_n(t)) \) (\(\alpha < \mu_{n+1}(t) \)) in (6.3)

\[
\text{dim} [\text{Ran}(E_t((-\infty, \frac{1}{2}(\mu_{n+1}(t) + \mu_n(t))])] < n + 1,
\]

which contradicts (6.6). Thus, noting that \(\mu_{n+1}(t) \geq \mu_n(t) \), we obtain \(\mu_n(t) = \mu_{n+1}(t) \cdots \). Finally, if there are \(n \) eigenvalues strictly below \(\mu_n(t) \) and \(\lambda \) is the \(n \)-th eigenvalue, we have
\[
\dim \left[\text{Ran} \left(E_n \left(\left[-\infty, \frac{1}{2}(\mu_n(t) + \lambda) \right) \right) \right) \right] \geq n,
\]
which contradicts (6.3) \((\lambda = \frac{1}{2}(\mu_n(t) + \lambda) < \mu_n(t))\). Thus it is seen that there are at most \(n - 1\) eigenvalues of \(H_n\).

Next, assume that (6.6) fails, i.e., for some \(\varepsilon_0 > 0\)
\[
\dim \left[\text{Ran} \left(E_n \left(\left[-\infty, \mu_n(t) + \varepsilon_0 \right) \right) \right) \right] < +\infty.
\]
Then the situation (b) arises. In fact, we have by (6.3) an (6.4)
\[
\dim \left[\text{Ran} \left(E_n \left(\left[\mu_n(t) - \varepsilon, \mu_n(t) + \varepsilon \right) \right) \right) \right] \geq 1 \quad \text{for any } \varepsilon > 0.
\]
On the other hand, (6.8) implies
\[
\dim \left[\text{Ran} \left(E_n \left(\left[-\infty, \mu_n(t) - \varepsilon_0, \mu_n(t) + \varepsilon_0 \right) \right) \right) \right] < +\infty.
\]
Thus it follows from (6.9) an (6.10) that \(\mu_n(t)\) is a discrete eigenvalue of \(H_n\). Take \(\delta > 0\) such that \((\mu_n(t) - \delta, \mu_n(t) + \delta) \cap \sigma(H_n) = \{\mu_n(t)\}\). Then we have by (6.4)
\[
\dim \left[\text{Ran} \left(E_n \left(\left[\mu_n(t) - \varepsilon, \mu_n(t) + \varepsilon \right) \right) \right) \right]
= \dim \left[\text{Ran} \left(E_n \left(\left[-\infty, \mu_n(t) + \varepsilon_0 \right) \right) \right) \right]
\geq n.
\]
Thus there exist at least \(n\) eigenvalues of \(H_n\): \(\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_n \leq \mu_n(t)\). If \(\lambda_n < \mu_n(t)\), we have by putting \(\alpha = \frac{1}{2}(\mu_n(t) + \lambda_n)\) \((< \mu_n(t))\) in (6.3)
\[
n \leq \dim \left[\text{Ran} \left(E_n \left(\left[-\infty, \lambda_n \right) \right) \right) \right]
\leq \dim \left[\text{Ran} \left(E_n \left(\left[-\infty, \alpha \right) \right) \right) \right] < n,
\]
which is a contradiction. Therefore, \(\lambda_n = \mu_n(t)\), i.e. \(\mu_n(t)\) is the \(n\)-th eigenvalue of \(H_n\). The lemma has now been proven. Q.E.D.

Lemma 6.2. For each \(n\), \(\mu_n(t)\) is monotone nonincreasing in \(t\) on \([0, \infty)\).

Proof. Since \(\min(h_t[u], 0)\) is monotone nonincreasing in \(t\) on \([0, \infty)\), the required result follows immediately. Q.E.D.

Lemma 6.3. For each \(n\), \(\mu_n(t)\) is continuous in \(t\) on \(\mathbb{R}\).

Proof. (cf. Simon [21, p.71, Theorem II.33]) For each \(u \in H^1(\mathbb{R}^3)\) with \(\|u\| = 1\), we put
\[
f(t; u) = \min(h_t[u], 0).
\]
If we show that \(\{f(\cdot; u) ; u \in H^1(\mathbb{R}^3), \|u\| = 1\}\) is equicontinuous, the conclusion follows.

Given \(t_0 \in \mathbb{R}^1\), we have by Lemma 1.3 \((\varepsilon = \left[2(\max_{x \in S} |q(x)| + 1)(|t_0| + 1) \right]^{-1})\)
\[
(qy_x, \gamma u)_x \leq \max_{x \in S} |q(x)| \cdot \|\gamma u\|^2 \leq \frac{\max_{x \in S} |q(x)|}{2(\max_{x \in S} |q(x)| + 1)(|t_0| + 1)} \|F u\|^2 +
\]

\[+ 2 (\max |q(x)|)(\max |q(x)| + 1)(|t_0| + 1)\|u\|^2 \leq \frac{1}{2(|t_0| + 1)} \|Vu\|^2 + b_{t_0}. \]

where we put \(b_{t_0} = 2 (\max |q(x)| + 1)^2 (|t_0| + 1). \) Suppose that \(h_t[u] \leq 0 \) for some \(t \) such that \(|t - t_0| < 1\). Then we have

\[f(t; u) = h_t[u] = \|Vu\|^2 + t(q\gamma u, \gamma u)_a \leq 0, \]

which implies

(6.12) \[\|Vu\|^2 \leq -t(q\gamma u, \gamma u)_a \leq |t||q\gamma u, \gamma u)_a| \leq (|t_0| + 1)|q\gamma u, \gamma u)_a|. \]

Therefore, from (6.11) and (6.12) it follows that

\[|q\gamma u, \gamma u)_a| \leq \frac{1}{2} |q\gamma u, \gamma u)_a| + b_{t_0}, \]

and hence

(6.13) \[|q\gamma u, \gamma u)_a| \leq 2b_{t_0} \]

if \(h_t[u] \leq 0 \) for some \(t \) such that \(|t - t_0| < 1\).

Now, for given \(\varepsilon > 0 \), let \(\delta = \min \left(\frac{\varepsilon}{2b_{t_0}}, 1 \right) \). Let \(|t - t_0| < \delta\). If \(h_t[u] \leq 0 \) or \(h_{t_0}[u] \leq 0 \), then we have by (6.13)

\[|f(t; u) - f(t_0; u)| \leq |h_t[u] - h_{t_0}[u]| \leq |t - t_0||q\gamma u, \gamma u)_a| < \delta \cdot 2b_{t_0} \leq \varepsilon. \]

The above inequality is trivially satisfied if \(h_t[u] > 0 \) and \(h_{t_0}[u] > 0 \). We have thus obtained the required equicontinuity. Q.E.D.

Lemma 6.4. For each \(n \), \(\mu_n(t) \) is strictly monotone decreasing on \([t_1, + \infty)\) once \(\mu_n(t_1) < 0 \) for some \(t_1 > 0 \).

Proof. Let \(t_1 \) be such that \(E = \mu_n(t_1) < 0 \) and \(t_1 > 0 \). Assume that there exists \(t_2 \) such that \(t_1 \leq t_2 \) and \(\mu_n(t_1) = \mu_n(t_2) = E < 0 \). Then, for any \(t \in [t_1, t_2] \), \(\mu_n(t) = E \) holds by Lemma 6.2. Therefore, by Lemma 6.1 we can find \(u_t \) for each \(t \in [t_1, t_2] \) which satisfies

(6.14) \[u_t \in \text{Dom}(H_t), \ u_t \neq 0 \text{ and } (H_t - E)u_t = 0. \]

In view of Lemma 2.12, we have

(6.15) \[\gamma u_t = t \cdot \tilde{T}_{i\gamma - E}(\gamma u_t) \text{ and } \gamma u_t \neq 0 \text{ in } L_2(S_a). \]

This implies that for every \(t \in [t_1, t_2] \) \(t^{-1} \) is an eigenvalue of \(\tilde{T}_{i\gamma - E} \), which is a contradiction, for \(\tilde{T}_{i\gamma - E} \) is a compact operator by Lemma 2.4. Therefore, we must have the lemma in view of Lemma 6.2. Q.E.D.

Now, as an analogue of the Birman-Schwinger bound (e.g. Reed-Simon [19, p.98, Theorem XIII.10]), we shall give a bound on the total number of bound states of \(H \). Let \(E < 0 \) and define \(N(E) \) by
where \(\#A \) denotes the cardinality of the set \(A \). Then we have the following

Theorem 6.5. Let \(E < 0 \). Then

\[
N(E) \leq \| (\tilde{T}_{i\sqrt{-E}})^2 \|_{l.s.}^2 \leq M < + \infty ,
\]

where \(M \) is a constant independent of \(E < 0 \). In particular, the total number of negative eigenvalues of \(H \) is finite.

Proof. Since \(\mu_n(0) = 0 \) for every \(n \) and \(\mu_n(t) \) is continuous by Lemma 6.3, it follows from the intermediate value theorem and Lemma 6.4 that \(\mu_n(1) < E \) if and only if \(\mu_n(t) = E \) for exactly one \(t \in (0, 1) \). Using Lemma 2.12 repeatedly, it is seen that \(t^{-2} \) satisfying the equation \(\mu_n(t) = E \) is an eigenvalue of \((\tilde{T}_{i\sqrt{-E}})^2 \). Further, since \((\tilde{T}_{i\sqrt{-E}})^2 \) is a Hilbert-Schmidt operator by Lemma 2.8, we have

\[
N(E) = \# \{ n; \mu_n(t) = E \text{ for some } t \in (0, 1) \}
\]

\[
\leq \sum_{\{ t \in (0,1) : \mu_n(t) = E, k = 1,2,\ldots,N(E) \}} t^{-4}
\]

\[
\leq \sum_{\{ t \in (0,1) : \mu_n(t) = E, k = 1,2,\ldots \}} t^{-4}
\]

\[
\leq \sum_{\{ t \in (0,1) : t^{-2} \text{ is an eigenvalue of } (\tilde{T}_{i\sqrt{-E}})^2 \}} t^{-4}
\]

\[
\leq \| (\tilde{T}_{i\sqrt{-E}})^2 \|_{l.s.}^2
\]

\[
\leq C^2 (\max_{z \in S_n} |q(z)|)^4 \int_{S_n \times S_n} ds_x ds_y (1 + |\log |x - y||)^2 \equiv M < + \infty ,
\]

where \(C \) is a constant which is independent of \(E \) (see the proof of Lemma 2.8). The above inequality shows the theorem. Q.E.D.

§ 7. The limiting absorption principle for \(H \)

In this section we shall prove the limiting absorption principle for \(H \).

Theorem 7.1. Let \(s > \frac{1}{2} \). Then \(R(z) \) can be extended to a \(B(L^2_1(R^3), L^2_2(R^3)) \)-valued continuous function of \(z \) on \(\Pi \setminus (\sigma_p(H) \cup \{0\}) \).

Proof. Let us recall the resolvent equation

\[
R(z) - R_0(z) = T_{i\sqrt{-E}} \gamma R(z).
\]

If we assume that \((1 - \tilde{T}_{i\sqrt{-E}})^{-1} \) exists, we have on operating \(\gamma \) from left on the both sides of (7.1) and solving for \(R(z) \),

\[
R(z) = R_0(z) + T_{i\sqrt{-E}} (1 - \tilde{T}_{i\sqrt{-E}})^{-1} \gamma R_0(z)
\]
for \(z \in \rho(H) \cap \rho(H_0) \). Here we have used Lemma 2.7. By Lemma 2.9 \(T_{\sqrt{z}} \) is a \(B(L_2(S_a), L_2^{-s}(R^3)) \)-valued continuous function of \(z \) on \(\text{Im} \sqrt{z} \geq 0 \) if \(s > 1/2 \). Thus \((T_{\sqrt{z}})^* \) is a \(B(L_2^s(R^3), L_2(S_a)) \)-valued continuous function of \(z \) on \(\text{Im} \sqrt{z} \geq 0 \) if \(s > 1/2 \). On the other hand, we have by Lemma 2.13 \((q(x) \equiv 1)\)

\[
\gamma R_0(z) = -(T_{\sqrt{z}})^* \quad \text{if } \text{Im} \sqrt{z} > 0.
\]

Thus, since \(T_\kappa = T_\kappa^{(1)} \) if \(q(x) \equiv 1 \), \(\gamma R_0(z) \) can be extended to a \(B(L_2^s(R^3), L_2(S_a)) \)-valued continuous function of \(z \) on \(\Pi \) if \(s > 1/2 \). Therefore, in view of the well-known limiting absorption principle for \(H_0 \) (see e.g. Agmon [2]), the proof of the above theorem is reduced to the next

Lemma 7.2. Let \(z \in \Pi \setminus (\sigma_p(H) \cup \{0\}) \). Then \((1 - \tilde{T}_{\sqrt{z}})^{-1} \) exists and belongs to \(B(L_2(S_a)) \). In this case, \((1 - \tilde{T}_{\sqrt{z}})^{-1} \) is a \(B(L_2(S_a)) \)-valued continuous function of \(z \) on \(\Pi \setminus (\sigma_p(H) \cup \{0\}) \), where \(B(X) \) denotes \(B(X, X) \).

We will show this lemma after proving a series of lemmas. First, we have by Lemma 2.12

Lemma 7.3. Let \(\text{Im} \sqrt{z} > 0 \). Then \(1 \in \sigma_p(\tilde{T}_{\sqrt{z}}) \) if and only if \(z \in \sigma_p(H) \).

Lemma 7.4. Let \(\zeta \in C \) and let \(u \in L_2(S_a) \) satisfy the homogeneous equation \(u = \tilde{T}_\zeta u \) in \(L_2(S_a) \). Then \(u \) is bounded on \(S_a \).

Proof. Let \(k(x, y) \) be the integral kernel of \((\tilde{T}_\zeta)^3 \). It follows from Lemma 2.2 that \(k(x, y) \) is bounded on \(S_a \times S_a \). Thus we have by Schwarz' inequality

\[
|u(x)| = |(\tilde{T}_\zeta)^3 u(x)| = \left| \int_{S_a} dS_y k(x, y) u(y) \right| \\
\leq \sup_{(x, y) \in S_a \times S_a} |k(x, y)| \int_{S_a} dS_y |u(y)| \\
\leq \sup_{(x, y) \in S_a \times S_a} |k(x, y)|(4\pi a^2)^{1/2} \|u\|_a < +\infty,
\]

which proves the lemma. Q.E.D.

Lemma 7.5. Under the conditions of Lemma 7.4 \(u(x) \) is Hölder continuous on \(S_a \).

Proof. We consider the difference

\[
(7.3) \quad u(x) - u(x') = \frac{1}{4\pi} \int_{S_a} e^{i\sqrt{|x-y|}} - e^{i\sqrt{|x'-y|}} \frac{q(y)u(y)dS_y}{|x-y|} \\
+ \frac{1}{4\pi} \int_{S_a} \left(\frac{1}{|x-y|} - \frac{1}{|x'-y|} \right) e^{i\sqrt{|x'-y|}} q(y)u(y)dS_y \\
= J_1 + J_2.
\]
We shall estimate J_1 and J_2 as follows. Considering the inequality

$$|e^{i\zeta|x-x'|} - e^{i\zeta|x'-y|}| \leq |\zeta||x-x'|e^{\operatorname{Im} \zeta |x-x'|},$$

we have for $x, x' \in S_a$

$$|J_1| \leq \frac{1}{4\pi} A |\zeta| |x-x'| \int_{S_a} \frac{1}{|x-y|} dS_y$$

$$= Aa |\zeta| e^{2|\operatorname{Im} \zeta|} |x-x'|,$$

where $A = \sup_{y \in S_a} |q(y)u(y)| < +\infty$ by Assumption 1.1, Lemma 7.4 and Lemma 2.1. We proceed to estimate J_2. In view of the inequality

$$\left| \frac{1}{|x-y|} - \frac{1}{|x'-y|} \right| \leq \frac{|x-x'|}{|x-y||x'-y|},$$

we have for $x, x' \in S_a$

$$|J_2| \leq \frac{1}{4\pi} A e^{2|\operatorname{Im} \zeta|} |x-x'| \int_{S_a} \frac{1}{|x-y||x'-y|} dS_y$$

$$\leq \frac{1}{4\pi} A e^{2|\operatorname{Im} \zeta|} C |x-x'| (1 + |\log |x-x'||),$$

where we used Lemma 2.2. The conclusion follows from (7.3), (7.4) and (7.5).

Q.E.D.

Lemma 7.6. Let $\mu \in \mathbb{R}$ and $u \in L_2(S_a)$. Put $U(x) \equiv (T_\mu u)(x)$. Then $U(x)$ has the following asymptotic behavior

$$U(x) = -\frac{1}{4\pi} e^{i|x|} \int_{S_a} e^{i\mu x \cdot y} q(y) u(y) dS_y + O\left(\frac{1}{|x|^2}\right)$$

as $|x| \to \infty$, where ω_x denotes the unit vector with the direction of x. Further, $U(x)$ satisfies the following radiation condition

$$\partial U \over \partial |x| (x) - i\mu U(x) = O\left(\frac{1}{|x|^2}\right) \quad \text{as} \quad |x| \to +\infty.$$

Proof. In view of the relation

$$\frac{e^{i|u| |x-y|}}{|x-y|} = \frac{1}{|x|} e^{i|u| \omega_x \cdot y + i|u| |x| \eta_1} + \frac{\eta_2}{|x|} e^{i|u| |x-y|}$$

$$+ \frac{1}{|x|^3} \omega_x \cdot ye^{i|u| |x-y|} \quad (x \in \mathbb{R}^3, |y| < R < +\infty),$$

where η_1 and η_2 are real valued functions satisfying $\eta_1 = O\left(\frac{|y|}{|x|^2}\right)$, and η_2...
\[U(x) = -\frac{1}{4\pi} \frac{e^{i\mu|x|}}{|x|} \int_{S_a} e^{-i\mu a \cdot y} q(y)u(y)dy \]
\[-\frac{1}{4\pi} \frac{e^{i\mu|x|}}{|x|} \int_{S_a} \left(e^{-i\mu a \cdot y} (e^{-i\mu |x|} - 1)q(y)u(y)dy \right) \]
\[-\frac{1}{4\pi} \frac{1}{|x|} \int_{S_a} \eta_2 e^{i\mu |x-y|} q(y)u(y)dy \]
\[-\frac{1}{4\pi} \frac{1}{|x|^2} \int_{S_a} \omega_\alpha \cdot y e^{i\mu |x-y|} q(y)u(y)dy \]
\[= -\frac{1}{4\pi} \frac{e^{i\mu|x|}}{|x|} \int_{S_a} e^{-i\mu a \cdot y} q(y)u(y)dy + I_1 + I_2 + I_3. \]

\[I_i \ (i = 1, 2, 3) \] are estimated as follows:

\[|I_1| \leq \frac{1}{4\pi} \max_{y \in S_a} |q(y)| \frac{1}{|x|} \int_{S_a} |e^{-i\mu |x|} - 1||u(y)|dy \]
\[\leq \frac{1}{4\pi} \max_{y \in S_a} |q(y)| \frac{1}{|x|} \int_{S_a} C\mu \frac{a}{|x|^3} |u(y)|dy \]
\[\leq \text{const.} \frac{1}{|x|^2} \int_{S_a} |u(y)|dy \]
\[\leq \text{const.} \frac{1}{|x|^2} \|u\|_a, \]
\[|I_2| \leq \text{const.} \frac{1}{|x|^3} \|u\|_a, \quad |I_3| \leq \text{const.} \frac{1}{|x|^2} \|u\|_a. \]

These estimates prove (7.6).

Let us show (7.7). By differentiation under the integral sign, we have

\[\frac{\partial U}{\partial |x|}(x) - i\mu U(x) \]
\[= -\frac{i\mu}{4\pi} \int_{S_a} e^{i\mu |x-y|} \left(\frac{|x|^2 - x \cdot y}{|x-y|^2} - 1 \right) q(y)u(y)dy \]
\[+ \frac{1}{4\pi} \int_{S_a} \frac{|x|^2 - x \cdot y}{|x||x-y|^2} e^{i\mu |x-y|} q(y)u(y)dy \]
\[= J_1 + J_2. \]

Considering \(|y| = a\), we have
\[|x - y|^{-1} = |x|^{-1} \left(1 + \omega_x \cdot \left(\frac{y}{|x|} \right) + O\left(\frac{1}{|x|^2} \right) \right) \]

as \(|x| \to +\infty\), and hence

\[\frac{1}{|x - y|} \left(\frac{|x|^2 - x \cdot y}{|x||x - y|} - 1 \right) = O\left(\frac{1}{|x|^3} \right), \]

\[\frac{|x|^2 - x \cdot y}{|x||x - y|^3} = O\left(\frac{1}{|x|^3} \right) \quad \text{as } |x| \to +\infty. \]

Therefore, we have

\[|J_1| \leq \text{const.} \frac{\int_{S_a} |u(y)| \, dS_y}{|x|^3} \leq \text{const.} \frac{\|u\|_a}{|x|^3}, \]

\[|J_2| \leq \text{const.} \frac{\|u\|_a}{|x|^2}. \]

Thus (7.7) follows from (7.8) and (7.9) immediately. Q.E.D.

Lemma 7.7. Let \(\mu \in R \setminus \{0\} \) and let \(u \in L_2(S_a) \) satisfy \(u = \tilde{T}_\mu u \) in \(L_2(S_a) \). Then, for an arbitrary unit vector \(\omega \) we have

\[\int_{S_a} e^{-i\mu \omega \cdot y} q(y)u(y) \, dS_y = 0. \]

Proof. Put \(U(x) \equiv (T_\mu u)(x) \). Since \(u(x) \) is continuous on \(S_a \) by Lemma 7.5, \(U(x) \) is continuous on \(R^3 \) (see e.g. Colton-Kress \([4, \text{p.} 47, \text{Theorem} \ 2.12]\)), and hence

\[(U|_{S_a})(x) = u(x). \]

On the other hand, by Lemma 2.11 \(((T_\mu u)(x) \equiv U(x))\), \(U(x) \) satisfies the reduced wave equation

\[(A + \mu^2)U(x) = 0 \quad \text{on } \{x; |x| < a\} \cup \{x; |x| > a\}. \]

Further, \((\frac{\partial U}{\partial n_+})(x) \) can be continuously extended from \(\{x; |x| < a\} \) to \(\{x; |x| \leq a\} \) and from \(\{x; |x| > a\} \) to \(\{x; |x| \geq a\} \) with the limiting values

\[(\frac{\partial U}{\partial n_+})\left(x \right) = \pm \frac{1}{2} q(x)u(x) + W(x) \quad (x \in S_a), \]

respectively. Here

\[W(x) = -\frac{1}{4\pi} \int_{S_a} \left(\frac{\partial}{\partial n_+} \right) \left(e^{i\mu |x - y|} \right) \frac{q(y)u(y)}{|x - y|} \, dS_y \] (the integral exists as an improper integral) and \((\frac{\partial U}{\partial n_+})(x) \) are the limits of \((\frac{\partial U}{\partial n_+})(x) \) obtained by approaching \(S_a \) from \(\{x; |x| > a\} \) and \(\{x; |x| < a\} \), respectively, that is,
\[
\left(\frac{\partial U}{\partial n_+} \right)^{(+)\text{a}}(x) = \lim_{y \to x; \|y\| > a} \left(\frac{\partial U}{\partial n_+} \right)(y), \\
\left(\frac{\partial U}{\partial n_+} \right)^{(-)\text{a}}(x) = \lim_{y \to x; \|y\| < a} \left(\frac{\partial U}{\partial n_+} \right)(y), \quad x \in S_a
\]

(see e.g. Colton-Kress [4, p.47]). Using (7.12), (7.13) and Green's theorem, we have

(7.14) \[0 = \int_{|x| < a} \{(\Delta + \mu^2)U(x) \cdot \overline{U(x)} - (\Delta + \mu^2)^2U(x) \cdot U(x)\} \, dx \]

\[= \int_{|x| < a} \{(\Delta U)(x)\overline{U(x)} - (\Delta U)(x) \, U(x)\} \, dx \]

\[= \int_{S_a} \left\{ \left(\frac{\partial U}{\partial n_+} \right)^{(-)}(x) \overline{U(x)} - \left(\frac{\partial U}{\partial n_+} \right)^{(-)}(y) \, U(y) \right\} dS_x \]

\[= \int_{S_a} (W(x) \overline{U(x)} - \overline{W(x)} \, U(x)) dS_x, \]

where we have used the fact that \(\mu \) and \(q(x) \) are real-valued. Similarly, for any \(b \) such that \(b > a \) we have

(7.15) \[0 = \int_{a < |x| < b} \{(\Delta + \mu^2)U(x) \cdot \overline{U(x)} - (\Delta + \mu^2)^2U(x) \cdot U(x)\} \, dx \]

\[= -\int_{S_a} \left\{ \left(\frac{\partial U}{\partial n_+} \right)^{(+)\text{a}}(x) \overline{U(x)} - \left(\frac{\partial U}{\partial n_+} \right)^{(+)\text{a}}(x) \, U(x) \right\} dS_x \]

\[+ \int_{S_a} \left\{ \left(\frac{\partial U}{\partial n_+} \right)(x) \overline{U(x)} - \left(\frac{\partial U}{\partial n_+} \right)(x) \, U(x) \right\} dS_x \]

\[= -\int_{S_a} (W(x) \overline{U(x)} - \overline{W(x)} \, U(x)) dS_x \]

\[+ \int_{S_a} \left\{ \left(\frac{\partial U}{\partial n_+} \right)(x) \overline{U(x)} - \left(\frac{\partial U}{\partial n_+} \right)(x) \, U(x) \right\} dS_x. \]

Thus we obtain by (7.14) and (7.15)

(7.16) \[\int_{|x| = b} \left\{ \left(\frac{\partial U}{\partial n_+} \right)(x) \overline{U(x)} - \left(\frac{\partial U}{\partial n_+} \right)(x) \, U(x) \right\} dS_x = 0, \]
Teruo Ikebe and Shin-ichi Shimada

for any b such that $b > a$. Once Lemma 7.6 and (7.16) are shown, an argument similar to Povzner [16, Chap. II, Lemma 5] gives

\[(7.17) \int_{S_a} e^{-i\omega \cdot y} q(y) (U|_{S_a})(y) dS_y = 0 \quad (\omega \in S^2),\]

which implies (7.10) by (7.11).

Q.E.D.

Lemma 7.8. Let $\lambda > 0$ and let $u \in L_2(S_a)$ satisfy $u = \tilde{T}_{\sqrt{\lambda} + i \theta} u$ (or $u = \tilde{T}_{\sqrt{\lambda} - i \theta} u$) in $L_2(S_a)$. Then $u = 0$ in $L_2(S_a)$.

Proof. Put $U(x) \equiv (T_{\sqrt{\lambda} + i \theta})(u) (= T_{\sqrt{\lambda}} u)(x)$. Then, by Lemmas 7.6, 7.7 and 2.11, we have

\[(4 + \lambda) U(x) = 0 \quad \text{on} \quad \{x; \ |x| > a\}, \quad U(x) = O\left(\frac{1}{|x|^2}\right) \quad \text{as} \quad |x| \to +\infty.\]

Thus, in view of Mizohata [13, Chap. VIII §5, Lemma 8.4], we have

\[U(x) \equiv 0 \quad \text{on} \quad \{x; \ |x| > a\}.\]

Since $U(x)$ is continuous on R^3 as mentioned in the proof of Lemma 7.7, we obtain

\[U(x) \equiv 0 \quad \text{on} \quad \{x; \ |x| \geq a\},\]

and hence

\[u(x) = (U|_{S_a})(x) = 0.\]

Similarly, the case that $u = \tilde{T}_{\sqrt{\lambda} - i \theta} u$ can be proven.

Q.E.D.

We are now in a position to make use of the Fredholm-Riesz theory of compact operators in a Hilbert space, according to which, if T is a compact operator in a Hilbert space X, $1 - T$ is injective if and only if $(1 - T)^{-1}$ exists and belongs to $B(X)$ (see e.g. Riesz-Nagy [20, Chap. IV]). Thus, by Lemmas 2.4, 7.3 and 7.8 we have the following

Lemma 7.9. Let $z \in \Pi \setminus (\sigma_p(H) \cup \{0\})$. Then $(1 - T_{\sqrt{z}})^{-1}$ exists and belongs to $B(L_2(S_a))$.

Lemma 7.10. $(1 - T_{\sqrt{z}})^{-1}$ is a $B(L_2(S_a))$-valued continuous function of z on $\Pi \setminus (\sigma_p(H) \cup \{0\})$.

Proof. The conclusion follows from Lemma 2.10 and the standard estimate

\[\|(1 - \tilde{T}_{\sqrt{z}})^{-1} - (1 - \tilde{T}_{\sqrt{z}})^{-1}\| \leq \frac{\|\tilde{T}_{\sqrt{z}} - \tilde{T}_{\sqrt{z}}\| \|1 - (1 - \tilde{T}_{\sqrt{z}})^{-1}\|}{1 - \|\tilde{T}_{\sqrt{z}} - \tilde{T}_{\sqrt{z}}\| \|1 - (1 - \tilde{T}_{\sqrt{z}})^{-1}\|}. \quad \text{Q.E.D.}\]

The above two lemmas imply Lemma 7.2. Therefore, Theorem 7.1 has now been proven.
Once the limiting absorption principle for H is established, the absolute continuity of H on $(0, \infty)$ readily follows from the same argument as Ikebe-Saitô [8]. Thus we have the following

Theorem 7.11. $E((0, \infty))H$ is an absolutely continuous operator, where $E(\cdot)$ is the spectral measure associated with H.

§8. Eigenfunction expansions

We shall proceed to show the eigenfunction expansion theorem. Our method is based on Kuroda [12] and Ikebe [6, 7].

We shall start with a well-known formula.

Lemma 8.1. Let $s > \frac{1}{2}$. Suppose that $u \in L^2_s(R^3)$ and $\mathcal{F}v \in C_0^\infty(R^3 \setminus \{0\})$. Then we have

\[
(u, W_{\pm}v) = \lim_{\varepsilon \to 0} \frac{\varepsilon}{\pi} \int_{-\infty}^{+\infty} (R(\lambda \pm i\varepsilon)u, R_0(\lambda \pm i\varepsilon)v) d\lambda.
\]

For the proof, see e.g. Kuroda [11, §5.4].

Lemma 8.2. Let $s > \frac{1}{2}$. Suppose that $u \in L^2_s(R^3)$ and $\mathcal{F}v \in C_0^\infty(R^3 \setminus \{0\})$ such that $\text{supp } \mathcal{F}v \subset \{\xi; \alpha < |\xi|^2 < \beta\}$ ($0 < \alpha < \beta$). Then we have

\[
(u, W_{\pm}v) = \lim_{\varepsilon \to 0} \frac{\varepsilon}{\pi} \int_{\alpha}^{\beta} (R(\lambda \pm i\varepsilon)u, R_0(\lambda \pm i\varepsilon)v) d\lambda.
\]

Here supp means support.

Proof. (cf. Kuroda [12, p.151, Proposition 5.12]) Let $J = R \setminus [\alpha, \beta]$. By Lemma 8.1 we have only to show

\[
\lim_{\varepsilon \to 0} \frac{\varepsilon}{\pi} \int_{J} (R(\lambda \pm i\varepsilon)u, R_0(\lambda \pm i\varepsilon)v) d\lambda = 0.
\]

By Schwarz' inequality we have

\[
\left| \frac{\varepsilon}{\pi} \int_{J} (R(\lambda \pm i\varepsilon)u, R_0(\lambda \pm i\varepsilon)v) d\lambda \right|
\leq \left(\frac{\varepsilon}{\pi} \int_{J} \| R(\lambda \pm i\varepsilon)u \|^2 d\lambda \right)^{1/2} \left(\frac{\varepsilon}{\pi} \int_{J} \| R_0(\lambda \pm i\varepsilon)v \|^2 d\lambda \right)^{1/2}
\leq I_1(\varepsilon)^{1/2} \cdot I_2(\varepsilon)^{1/2}.
\]

Thus, to prove (8.3) it is sufficient to show

\[
\lim_{\varepsilon \to 0} I_2(\varepsilon) = 0,
\]

(8.4)

\[
I_1(\varepsilon) \leq \|u\|^2 \quad \text{for all } \varepsilon > 0.
\]

(8.5)
Using the spectral representation for H_0, we have
\begin{equation}
\frac{e}{\pi} \| R_0(\lambda \pm ie)v \|^2 = \int_{-\infty}^{+\infty} \frac{1}{\pi} \cdot \frac{1}{(\mu - \lambda)^2 + e^2} d(E_0(\mu)v, v),
\end{equation}
where $E_0(\cdot)$ denotes the spectral measure associated with H_0. Using the fact that H_0 is an absolutely continuous operator, we have
\begin{equation}
\frac{e}{\pi} \| R_0(\lambda \pm ie)v \|^2 = (P_\varepsilon \ast \rho)(\lambda),
\end{equation}
where $P_\varepsilon(\mu) = \frac{e}{\pi(\mu^2 + \varepsilon^2)}$ (the Poisson kernel), $\rho(\mu) = \frac{d}{d\mu}(E_0(\mu)v, v)$ and \ast means convolution. Further, $\rho(\mu)$ belongs to $L_1(R^1)$ and $\rho(\mu) = 0$ for a.e. $\mu \in J$ since $E_0(J)v = 0$. Thus we obtain
\begin{equation}
I_2(e) = \int_J (P_\varepsilon \ast \rho)(\lambda)d\lambda = \int_J ((P_\varepsilon \ast \rho)(\lambda) - \rho(\lambda))d\lambda
\end{equation}
\begin{equation}
\leq \| P_\varepsilon \ast \rho - \rho \|_{L_1(R^1)} \to 0 \text{ as } e \downarrow 0,
\end{equation}
which implies (8.4). Let us show (8.5). As we got (8.6), we have
\begin{equation}
I_1(e) = \frac{e}{\pi} \int_J \| R(\lambda \pm ie)u \|^2 d\lambda = \int_J \int_{-\infty}^{+\infty} P_\varepsilon(\mu - \lambda)d(E(\mu)u, u)
\end{equation}
\begin{equation}
\leq \int_{-\infty}^{+\infty} d(E(\mu)u, u) \int_{-\infty}^{+\infty} P_\varepsilon(\mu - \lambda)d\lambda = \| u \|^2,
\end{equation}
where we used Fubini's theorem and the well-known properties of $P_\varepsilon(\mu)$ that
\begin{equation}
P_\varepsilon(\mu) > 0 \text{ for all } \mu \text{ and } \int_{-\infty}^{+\infty} P_\varepsilon(\mu)d\mu = 1.
\end{equation}
This implies (8.5).

Q.E.D.

Let us define the generalized Fourier transform \mathcal{F}_\pm and the generalized eigenfunctions $\varphi_\pm(x, \xi)$ by
\begin{equation}
\mathcal{F}_\pm = \mathcal{F} W_\pm^*,
\end{equation}
\begin{equation}
\varphi_\pm(x, \xi) = e^{i\xi \cdot x} + [T^{(1)}_{\pm|\xi|}(1 - q \tilde{T}^{(1)}_{\pm|\xi|})^{-1}](e^{i\xi \cdot q})](x)
\end{equation}
for $(x, \xi) \in R^3 \times (R^3 \setminus \{0\})$, respectively. We should note here that by Lemmas 2.14 and 7.2 $(1 - q \tilde{T}_{\pm|\xi|}^{(1)})^{-1}$ exist and satisfy the relations
\begin{equation}
(1 - q \tilde{T}^{(1)}_{\pm|\xi|})^{-1} = [(1 - \tilde{T}_{\pm|\xi|})^{-1}]^* \text{ for } \xi \in R^3 \setminus \{0\}.
\end{equation}
We also remark that $\varphi_\pm(x, \xi)$ are regarded as the generalized eigenfunctions of H in the sense stated in Theorem 8.6. Further, they are seen to be the integral kernels of \mathcal{F}_\pm by the following theorem.
Theorem 8.3. For any \(u \in L^2(\mathbb{R}^3) \), \(\mathcal{T}_\pm \) have the form

\[
(\mathcal{T}_\pm u)(\xi) = \lim_{R \to +\infty} (2\pi)^{-3/2} \int_{|x| \leq R} \frac{\varphi_\pm(x, \xi) u(x) dx}{1 + |x|^2},
\]

where i.i.m. means the limit in the mean.

Proof. Let \(u \in C^\infty_0(\mathbb{R}^3) \) and \(v \in C^\infty_0(\mathbb{R}^3 \setminus \{0\}) \) such that \(\text{supp } v \subset \{x; \alpha < |x|^2 < \beta\} \) \((0 < \alpha < \beta)\). Using (8.7), Lemma 8.2 and (7.2), we have

\[
(\mathcal{T}_\pm u, v) = (u, W_{\pm} \mathcal{F} v)
\]

\[
= \lim_{\epsilon \to 0} \frac{\epsilon}{\pi} \int_0^\beta (R_0(\lambda \pm i\epsilon) u, R_0(\lambda \pm i\epsilon) \mathcal{F} v) d\lambda
\]

\[
+ \lim_{\epsilon \to 0} \frac{\epsilon}{\pi} \int_0^\beta (T_{\sqrt{\lambda \pm i\epsilon}}(1 - \tilde{T}_{\sqrt{\lambda \pm i\epsilon}})^{-1} \gamma R_0(\lambda \pm i\epsilon) u, R_0(\lambda \pm i\epsilon) \mathcal{F} v) d\lambda
\]

\[
= \lim_{\epsilon \to 0} J_1(\epsilon) + \lim_{\epsilon \to 0} J_2(\epsilon).
\]

For the first term of the right hand side of (8.11), as is well known (see e.g. Kuroda [12, p.54]), we have

\[
\lim_{\epsilon \to 0} J_1(\epsilon) = \int_{|\xi|^2 < \beta} d\xi \, (\mathcal{F} u)(\xi) v(x) = (\mathcal{F} u, v).
\]

We shall consider the second term. In view of Parseval's equality and (2.10), we have

\[
(\mathcal{T}_{\sqrt{\lambda \pm i\epsilon}}(1 - \tilde{T}_{\sqrt{\lambda \pm i\epsilon}})^{-1} \gamma R_0(\lambda \pm i\epsilon) u, R_0(\lambda \pm i\epsilon) \mathcal{F} v)
\]

\[
= \left(- \frac{1}{|\cdot|^2 - (\lambda \pm i\epsilon)} \mathcal{F}_u q(1 - \tilde{T}_{\sqrt{\lambda \pm i\epsilon}})^{-1} \gamma R_0(\lambda \pm i\epsilon) u, \frac{v}{|\cdot|^2 - (\lambda \pm i\epsilon)} \right)
\]

\[
= \int_{\mathbb{R}^3} d\xi \, \left\{ \frac{1}{|\xi|^2 - (\lambda \pm i\epsilon)} (2\pi)^{-3/2} \int_{S_n} dS_y e^{-i\xi y} q(y) \times \right.
\]

\[
\times [(1 - \tilde{T}_{\sqrt{\lambda \pm i\epsilon}})^{-1} \gamma R_0(\lambda \pm i\epsilon) u](y) \} \frac{\overline{v(\xi)}}{|\xi|^2 - (\lambda \pm i\epsilon)}
\]

\[
= - (2\pi)^{-3/2} \int_{\mathbb{R}^3} d\xi \, \left\{ \frac{\overline{v(\xi)}}{|\xi|^2 - (\lambda \pm i\epsilon)} \times
\right.
\]

\[
\times [(1 - \tilde{T}_{\sqrt{\lambda \pm i\epsilon}})^{-1} \gamma R_0(\lambda \pm i\epsilon) u, e^{i\xi \cdot q}]a.
\]

Since \((1 - \tilde{T}_{\sqrt{\lambda \pm i\epsilon}})^{-1} \gamma R_0(\lambda \pm i\epsilon) u, e^{i\xi \cdot q} \) are continuous in \(\lambda \) and \(\epsilon \) on \([\alpha, \beta][0, 1]\) by Lemmas 7.2, 2.9 with \(q(x) \equiv 1 \) and the fact that \(\gamma R_0(z) = -(T_{\frac{1}{2}}) \), we have
\[
\lim_{\epsilon \to 0} \int_\alpha^\beta \frac{d\lambda}{\pi} \frac{e^{\lambda \epsilon}}{(\lambda - |\xi|^2)^2 + \epsilon^2} \left((1 - \widehat{T}_{\lambda+i\epsilon})^{-1} \gamma R_0(\lambda \pm i\epsilon)u, e^{i\xi}q\right)_a
\]
\[
= \left((1 - \widehat{T}_{\pm|\xi|})^{-1} \gamma R_0(|\xi|^2 \pm i0)u, e^{i\xi}q\right)_a,
\]
where we have made use of the well-known relation
\[
\lim_{\epsilon \to 0} \int_\alpha^\beta \frac{d\lambda}{\pi} \frac{e^{\lambda \epsilon}}{(\lambda - a)^2 + \epsilon^2} f(\lambda, \epsilon)
\]
\[
= \begin{cases}
0 & \text{if } a < \alpha \text{ or } \beta < a \\
(f(a, 0) & \text{if } \alpha < a < \beta.
\end{cases}
\]
in which \(f(\lambda, \epsilon)\) is a continuous function of \((\lambda, \epsilon)\) for \((\lambda, \epsilon) \in [\alpha, \beta] \times [0, 1]\) (see e.g. Titchmarsh [22, p.31]). Further, from (8.9) and the fact that \(\gamma R_0(z) = -(T_{\frac{1}{2}}e)^*\), it follows that
\[
\left((1 - \widehat{T}_{\pm|\xi|})^{-1} \gamma R_0(|\xi|^2 \pm i0)u, e^{i\xi}q\right)_a
\]
\[
= (\gamma R_0(|\xi|^2 \pm i0)u, (1 - q \widehat{T}_{\frac{1}{2}}e)^{-1}(e^{i\xi}q))_a
\]
\[
= -\int_{\mathbb{R}^3} dx \ u(x) \left[T_{\frac{1}{2}}e(1 - q \widehat{T}_{\frac{1}{2}}e)^{-1}(e^{i\xi}q)(x)\right],
\]
where we have used Fubini’s theorem in the last equality. Thus, making use of Fubini’s theorem and the dominated convergence theorem, we see from (8.13), (8.14) and (8.15) that
\[
\lim_{\epsilon \to 0} J_2(\epsilon)
\]
\[
= (2\pi)^{-3/2} \int_{\mathbb{R}^3} d\xi \left(\int_{\mathbb{R}^3} dx \ u(x) \left[T_{\frac{1}{2}}e(1 - q \widehat{T}_{\frac{1}{2}}e)^{-1}(e^{i\xi}q)(x)\right]v(\xi)\right).
\]
Now we have by (8.8), (8.11) (8.12) and (8.16)
\[
(\mathcal{F}_\pm u)(\xi) = (2\pi)^{-3/2} \int_{\mathbb{R}^3} dx \ \overline{\varphi_\pm(x, \xi)} u(x) \quad \text{for any } u \in C_0^\infty(\mathbb{R}^3).
\]
Since \(C_0^\infty(\mathbb{R}^3)\) is dense in \(L_2(\mathbb{R}^3)\), the conclusion follows. \(\text{Q.E.D.}\)

To prove the continuity and boundedness of \(\varphi_\pm(x, \xi)\), we need the following lemma.

Lemma 8.4. Let \(K\) be a compact set in \(\mathbb{R}^3\). Let \(f(x, \xi)\) be a continuous function of \((x, \xi) \in S_a \times K\). Then \((T_{\frac{1}{2}}e f(\cdot, \xi))(x)\) is bounded and continuous in \((x, \xi) \in \mathbb{R}^3 \times K\). In particular, \((\widehat{T}_{\frac{1}{2}}e f(\cdot, \xi))(x)\) is continuous in \((x, \xi) \in S_a \times K\).

Proof. By Lemma 2.1 we have
\begin{align*}
|T_{\pm\infty}^{(1)} f(\cdot, \bar{\xi})|(x) &\leq \frac{1}{4\pi} \max_{(y, \xi) \in S_{a} \times K} |f(y, \bar{\xi})| \int_{S_{a}} \frac{1}{|x - y|} dS_{y} \\
&= a \max_{(y, \xi) \in S_{a} \times K} \left| f(y, \bar{\xi}) \right| \frac{a + |x| - |a - |x||}{|x|} \leq a \max_{(y, \xi) \in S_{a} \times K} \left| f(y, \bar{\xi}) \right|,
\end{align*}

which proves the boundeness of \((T_{\pm\infty}^{(1)} f(\cdot, \bar{\xi}))(x)\). Let us show the continuity. Let us introduce the functions \(G_{\pm}^{(1)}(x, \bar{\xi})\) with a real parameter \(\epsilon\) by

\[
G_{\pm}^{(1)}(x, \bar{\xi}) = -\frac{1}{4\pi} \int_{S_{a} \cap \{|y - x| > \epsilon\}} \frac{e^{\pm i|\bar{\xi} - y|}}{|x - y|} f(y, \bar{\xi}) dS_{y},
\]

\((x, \bar{\xi}) \in \mathbb{R}^{3} \times K, \epsilon > 0\). It is easily seen that for each \(\epsilon\), \(G_{\pm}^{(1)}(x, \bar{\xi})\) is continuous in \((x, \bar{\xi})\) in \(\mathbb{R}^{3} \times K\). Further, \(G_{\pm}^{(1)}(x, \bar{\xi})\) uniformly converges to \((T_{\pm\infty}^{(1)} f(\cdot, \bar{\xi}))(x)\) when \(\epsilon \downarrow 0\). In fact, we have for a sufficiently small \(\epsilon\)

\[
|G_{\pm}^{(1)}(x, \bar{\xi}) - (T_{\pm\infty}^{(1)} f(\cdot, \bar{\xi}))(x)| \leq \max_{(y, \xi) \in S_{a} \times K} |f(y, \bar{\xi})| \int_{S_{a} \cap \{|y - x| \leq \epsilon\}} \frac{1}{4\pi |x - y|} dS_{y} \\
= \left\{ \begin{array}{ll}
\max_{(y, \xi) \in S_{a} \times K} |f(y, \bar{\xi})| & \text{if } |a - |x|| < \epsilon \\
0 & \text{if } |a - |x|| \geq \epsilon
\end{array} \right.
\]

where we have used (2.6). Thus the continuity of \((T_{\pm\infty}^{(1)} f(\cdot, \bar{\xi}))(x)\) has been proven. Since \((\bar{T}_{\pm\infty}^{(1)} f(\cdot, \bar{\xi}))(x) = (T_{\pm\infty}^{(1)} f(\cdot, \bar{\xi}))(x) \in S_{a}\), the assertion for \((\bar{T}_{\pm\infty}^{(1)} f(\cdot, \bar{\xi}))(x)\) holds.

Theorem 8.5. \(\varphi_{\pm}(x, \bar{\xi})\) is continuous in \((x, \bar{\xi}) \in \mathbb{R}^{3} \times (\mathbb{R}^{3} \setminus \{0\})\) and bounded on \(\mathbb{R}^{3} \times K\), where \(K\) is any compact set in \(\mathbb{R}^{3} \setminus \{0\}\).

Proof. Put \(\psi_{\pm}(x, \bar{\xi}) = [(1 - q \bar{T}_{\pm\infty}^{(1)})(e^{i\bar{\xi} q})^{-1}] (x)\). Then \(\psi_{\pm}(\cdot, \bar{\xi})\) is an \(L_{2}(S_{a})\)-valued continuous function of \(\bar{\xi} \in \mathbb{R}^{3} \setminus \{0\}\) by Lemma 7.2 and (8.9). If we show that \(\psi_{\pm}(x, \bar{\xi})\) is a continuous function of \((x, \bar{\xi}) \in S_{a} \times K\), the conclusion follows from (8.8) and Lemma 8.4. Since \(\psi_{\pm}(x, \bar{\xi})\) satisfy the equation

\[
\psi_{\pm}(x, \bar{\xi}) = e^{i\bar{\xi} q x} + (q \bar{T}_{\pm\infty}^{(1)})(\psi_{\pm}(x, \bar{\xi}),
\]

we have, using (8.17) repeatedly,

\[
\psi_{\pm}(x, \bar{\xi}) = e^{i\bar{\xi} q x} + [(q \bar{T}_{\pm\infty}^{(1)})(e^{i\bar{\xi} q})](x) \\
+ [(q \bar{T}_{\pm\infty}^{(1)})^{2}(e^{i\bar{\xi} q})](x) + [(q \bar{T}_{\pm\infty}^{(1)})^{3}(e^{i\bar{\xi} q})](x) \\
+ [(q \bar{T}_{\pm\infty}^{(1)})^{4}\psi_{\pm}(\cdot, \bar{\xi})](x).
\]

\[\text{Q.E.D.}\]
It follows from Lemma 8.4 that the first four terms of the right hand side of (8.18) are continuous in $(x, \xi)\in S_a \times K$. Thus the proof of this theorem is reduced to showing the continuity of $[(qT^{(1)}_{+\xi})^4 \psi_\pm (\cdot, \xi)](x)$. Let $\mathcal{K}_\pm (x, y; \xi)$ be the integral kernel of $(qT^{(1)}_{+\xi})^4$. Then, in the same way as we proved Lemma 7.5, we can show that $\mathcal{K}_\pm (x, y; \xi)$ is continuous in (x, y) on $S_a \times S_a \times K$. We consider the difference

\begin{equation}
[(qT^{(1)}_{+\xi})^4 \psi_\pm (\cdot, \xi)](x) - [(qT^{(1)}_{+\xi}\xi_0)^4 \psi_\pm (\cdot, \xi_0)](x_0)
= \int_{S_a} (\mathcal{K}_\pm (x, y; \xi) - \mathcal{K}_\pm (x_0, y; \xi_0)) \psi_\pm (x, \xi)dS_y
+ \int_{S_a} (\mathcal{K}_\pm (x, y; \xi) - \mathcal{K}_\pm (x_0, y; \xi_0)) \psi_\pm (x, \xi)dS_y
+ \int_{S_a} \mathcal{K}_\pm (x_0, y; \xi_0)(\psi_\pm (x, \xi) - \psi_\pm (x, \xi_0))dS_y
= J_1 + J_2 + J_3.
\end{equation}

$J_i (i = 1, 2, 3)$ are estimated as follows:

\begin{equation}
|J_1| \leq \max_{y \in S_u} |\mathcal{K}_\pm (x, y; \xi) - \mathcal{K}_\pm (x_0, y; \xi_0)| \int_{S_u} |\psi_\pm (y, \xi)|dS_y
\leq \max_{y \in S_u} |\mathcal{K}_\pm (x, y; \xi) - \mathcal{K}_\pm (x_0, y; \xi_0)|(4\pi a^2)^{1/2} \|\psi_\pm (\cdot, \xi)\|_a,
\end{equation}

\begin{equation}
|J_2| \leq \max_{y \in S_u} |\mathcal{K}_\pm (x_0, y; \xi) - \mathcal{K}_\pm (x_0, y; \xi_0)|(4\pi a^2)^{1/2} \|\psi_\pm (\cdot, \xi)\|_a,
\end{equation}

\begin{equation}
|J_3| \leq \max_{y \in S_u} |\mathcal{K}_\pm (x_0, y; \xi_0)|(4\pi a^2)^{1/2} \|\psi_\pm (\cdot, \xi) - \psi_\pm (x, \xi_0)\|_a,
\end{equation}

It follows from (8.19) and (8.20) that $[(qT^{(1)}_{+\xi})^4 \psi_\pm (\cdot, \xi)](x)$ is continuous in (x, ξ) on $S_a \times K$. Thus the theorem follows. Q.E.D.

Theorem 8.6. Let $\xi \in R^3 \setminus \{0\}$. Then $\varphi_\pm (x, \xi)$ satisfy the following equations

\begin{equation}
\varphi_\pm (x, \xi) = e^{i\xi \cdot x} - \frac{1}{4\pi} \int_{S_u} e^{\frac{\pi^2 |\xi| (|x - y|)}{|x - y|}} q(y)\varphi_\pm (y, \xi)dS_y
\end{equation}

(the Lippmann-Schwinger equation).

\begin{equation}
\int_{R^3} \varphi_\pm (x, \xi)(-\Delta - |\xi|^2)v(x)dx + \int_{S_u} q(x)\varphi_\pm (x, \xi)v(x)dS_x = 0 \quad \text{for any} \ v \in C_0^\infty (R^3).
\end{equation}

Proof. By (8.8) we have
which implies (8.21). Let us show (8.22). In view of (8.21), \(\varphi_\pm(x, \xi) \) can be written as
\[
\varphi_\pm(x, \xi) = e^{i\xi \cdot x} + (T_{\pm|\xi|}(\varphi_\pm|_{S_\xi})(\cdot, \xi))(x),
\]
Therefore, by Lemma 2.11 we have for any \(\psi \in C_0^\infty(\mathbb{R}^3) \)
\[
\int_{\mathbb{R}^3} \varphi_\pm(x, \xi)(-\Delta - |\xi|^2)\psi(x)dx
\]
\[
= \int_{\mathbb{R}^3} (\varphi_\pm(x, \xi) - e^{i\xi \cdot x})(-\Delta - |\xi|^2)\psi(x)dx
\]
\[
= \int_{\mathbb{R}^3} (T_{\pm|\xi|}\varphi_\pm|_{S_\xi})(\cdot, \xi))(x)(-\Delta - |\xi|^2)\psi(x)dx
\]
\[
= -\int_{S_\xi} q(x)\varphi_\pm(x, \xi)\psi(x)ds_x,
\]
which implies (8.22). Q.E.D.

Theorem 8.7. \(\mathcal{F}_\pm \) are partially isometric operators with the domain \(E((0, \infty)) L_2(\mathbb{R}^3) \) and the range \(L_2(\mathbb{R}^3) \). Further, \(\mathcal{F}_\pm \) have the following properties: Let \(\Lambda \) be any Borel set on \(\mathbb{R} \). Then,
\[
(8.23) \mathcal{F}_\pm E(\Lambda) = \chi_{\{\xi: \xi^2 \in \Lambda\}} \mathcal{F}_\pm,
\]
where \(\chi_A \) denotes the operator of multiplication by the characteristic function of \(A \). In particular, if \(u \in L_2(\mathbb{R}^3) \), and \(\alpha \) and \(\beta \) are such that \(0 < \alpha < \beta \), then
\[
(8.24) \| E((\alpha, \beta))u \|^2 = \int_{\xi<\beta} |(\mathcal{F}_\pm u)(\xi)|^2 d\xi,
\]
\[
(8.25) E((\alpha, \beta))u(x) = (2\pi)^{-3/2} \int_{\xi<\beta} (\mathcal{F}_\pm u)(\xi) \varphi_\pm(x, \xi) d\xi.
\]

Proof. First, let us recall the well-known relations
\[
(8.26) \mathcal{F} E_0(A)\mathcal{F}^* = \chi_{\{\xi: \xi^2 \in \Lambda\}},
\]
\[
(8.27) E(A)W_\pm = W_\pm E_0(A),
\]
where \(A \) is a Borel set on \(\mathbb{R} \) (see e.g. Kuroda [12, §3.4, Theorem 2]). Putting \(A = (0, \infty) \) in (8.27), we have
\[
E((0, \infty))W_\pm = W_\pm E_0((0, \infty)) = W_\pm,
\]
from which it follows that
\[
\text{Ran}(W_\pm) \subset E((0, \infty))L_2(\mathbb{R}^3).
\]
On the other hand, it follows from Theorem 7.11 that \(E((0, \infty))L_2(\mathbb{R}^3) \) is included in the absolute continuous subspace \(\mathcal{T}_a(H) \) of \(L_2(\mathbb{R}^3) \) relative to \(H \). Therefore, we have by Theorem 4.1.
\[
E((0, \infty))L_2(\mathbb{R}^3) \subset \mathcal{T}_a(H) = \text{Ran}(W_\pm) \subset E((0, \infty))L_2(\mathbb{R}^3),
\]
and hence
\[
\text{Ran}(W_\pm) = E((0, \infty))L_2(\mathbb{R}^3).
\]
This implies that \(W_\pm \) are partially isometric operators with the domain \(L_2(\mathbb{R}^3) \) and the range \(E((0, \infty))L_2(\mathbb{R}^3) \). Thus, it follows from (8.7) that \(\mathcal{T}_\pm \) are partially isometric operators with the domain in \(E((0, \infty))L_2(\mathbb{R}^3) \) and the range \(L_2(\mathbb{R}^3) \). By (8.7), (8.26) and (8.27) we have
\[
\mathcal{T}_\pm E(A) = \mathcal{T} \mathcal{W}_\pm E(A) = \mathcal{W} E_0(A) W_\pm = \mathcal{W} E_0(A) \mathcal{F}_\pm \mathcal{W}_\pm = \chi_{\{ \xi : |\xi|^2 < \beta \}}(\xi) \mathcal{T}_\pm.
\]
This proves (8.23). Let us show (8.24) and (8.25). Since \(\mathcal{T}_\pm \) are partially isometric operators with domain \(E((0, \infty))L_2(\mathbb{R}^3) \), it follows that
\[
\mathcal{T}_\pm \mathcal{T}_\pm = E((0, \infty)).
\]
Therefore, we have by (8.23) \((A = (\alpha, \beta) \subset (0, \infty)) \)
\[
E((\alpha, \beta)) = \mathcal{T}_\pm \chi_{\{ \xi : |\xi|^2 < \beta \}}(\xi) \mathcal{T}_\pm,
\]
from which (8.24) and (8.25) follow immediately. Q.E.D.

We shall now proceed to the eigenfunction expansion theorem.

Theorem 8.8. Let \(\lambda_1, \lambda_2, \cdots \) be the nonpositive eigenvalues of \(H \) (counting multiplicity) and \(\{ \varphi_1, \varphi_2, \cdots \} \) a corresponding orthonormal system of eigenfunctions of \(H \), if any. Then, for any \(u \in L_2(\mathbb{R}^3) \) we have the following expansion formula
\[
(8.28) \quad u(x) = \sum_n (u, \varphi_n)\varphi_n(x) + \text{l.i.m. \; (2\pi)^{-3/2} \int}_{\alpha, \beta, \gamma} d\xi \chi_{\{ \xi : |\xi|^2 < \beta \}}(\xi) \mathcal{T}_\pm u(\xi),
\]
Further, \(u \in \text{Dom}(H) \) if and only if \(|\cdot|^2 \mathcal{T}_\pm u \in L_2(\mathbb{R}^3) \). In this case, we have the following representation of \(H \)
\[
(8.29) \quad Hu(x) = \sum_n \lambda_n (u, \varphi_n)\varphi_n(x) + \text{l.i.m. \; (2\pi)^{-3/2} \int}_{\alpha, \beta, \gamma} d\xi \chi_{\{ \xi : |\xi|^2 < \beta \}}(\xi) \mathcal{T}_\pm u(\xi),
\]
for \(u \in \text{Dom}(H) \).

Proof. According to Theorem 5.1 \(E((- \infty, 0]) L_2(\mathbb{R}^3) \) is spanned by
\{\varphi_1, \varphi_2, \cdots \}. Therefore, we have for any \(u \in L_2(\mathbb{R}^3)\)

\begin{equation}
(8.30) \quad u(x) = \sum_{n} (u, \varphi_n)\varphi_n(x) + \text{i.m.} \ E((\alpha, \beta))u(x). \nonumber
\end{equation}

(8.28) follows from (8.30) and Theorem 8.7, (8.25). Using Theorem 8.7, (8.24), we have

\begin{equation}
(8.31) \quad \int_{0}^{\infty} \lambda^2 \|E(\lambda)u\|^2 = \int_{\mathbb{R}^3} |\xi|^4 |(\mathcal{F}_\pm u)(\xi)|^2 \, d\xi. \nonumber
\end{equation}

On the other hand, it follows from Theorem 6.5 that

\begin{equation}
(8.32) \quad E((-\infty, 0])L_2(\mathbb{R}^3) \subset \text{Dom}(H). \nonumber
\end{equation}

Thus, we have by (8.31) and (8.32)

\begin{equation}
(8.33) \quad \text{Dom}(H) = \{u; u \in L_2(\mathbb{R}^3), \ |\cdot|^2 \mathcal{F}_\pm u \in L_2(\mathbb{R}^3)\}. \nonumber
\end{equation}

Finally, let us show (8.29). From the “intertwining” relation \(W_\pm H_0 \subset HW_\pm\) (see e.g. Kuroda [11, §3.4]) and (8.33), it follows that

\begin{equation}
(8.34) \quad \mathcal{F}_\pm H = |\cdot|^2 \mathcal{F}_\pm. \nonumber
\end{equation}

Therefore, if we replace \(u\) by \(Hu\) in (8.28), (8.29) follows rom (8.34) and the fact that \((Hu, \varphi_n) = \lambda_n(u, \varphi_n)\). Thus the theorem has been proven. \(\Box \)

\textbf{Added in proof.} The proof of the assertion \(u \in H^2(\mathbb{R}^3 \setminus S_0)\) is incomplete. But this can be proven by the standard argument for showing the global regularity for solutions to elliptic boundary-value problems (see e.g. Mizohata [13, Chap 3, §12]) if one takes into account the already known facts that \(\Delta u \in L_2(\mathbb{R}^3)\), \(u \in H^1(\mathbb{R}^3) = \text{Dom}[h]\) and that \(h[u, v] = (Hu, v)\) for any \(v \in H^1(\mathbb{R}^3)\).

\textbf{References}

[5] C. L. Dolph, J. B. McLeod and D. Thoe, The analytic continuation of the resolvent kernel and...

