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Introduction

Let M be a smooth manifold. A Poisson structure on M is defined as a Lie
algebra structure {-, -} on C*(M) satisfying Leibniz identity. Let x;, x,,..., x, be
local coordinates on M. Then as is usual [6], this is equal to giving an
antisymmetric contravariant 2-tensor P on M which satisfies Jacobi identity. In
the local coordinates expression, P satisfies:

1 0

0.1 P=- 9
o 21<Ti<n YOx;  0Ox; ji

0P; oP,; oP;;
02 P, 4P, 4P, >2)=0, for 1 <ij, k<n.
02 1<e<n< " ox, + B axl+ ke ox, 0, for 1 =i, j, k=n

The corresponding Lie algebra structure on C*(M) is called a Poisson
structure on M.

Next we shall define here a linear Poisson manifold, which is one of the most
important examples of Poisson manifolds. Let G be a connected Lie group whose
Lie algebra is g. Let g* be the dual space of g. If x;, x,,..., x,, is a basis of g
satisfying

0.3) [xi, x;] = kZ1 CijkXk>

then from this bracket operation, we can define the Poisson bracket {-,-} on
C>(g*) as follows:

of g
0.4 g} = X
0.4) {f g} 1$i,]z'.k$n Cijk Xk ox; ox,
where C®(g*) denotes an algebra of C®-function on g*. Note that each x, is
considered as a linear function on g*. By this Poisson bracket, C ®(g*) becomes a
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72 Nobutada Nakanishi

Lie algebra because (c;;) are structure constants of a Lie algebra g. Thus in this
case, a Poisson tensor P on g* is given by

1 0 0

0.5 P=_ Xy — A — .
05) 21 <Fusn Cunh ox;  0x;

Using this tensor P, (0.4) is also written as

(0.6) {f, g} =<df Ndg|P).

A linear Poisson manifold is a pair (g*, P). We may often simply write g* for
(g*, P). By the rank of P at peg*, we shall mean the rank of the skew-symmetric
matrix (P;;(u)). In an article [2], A. Lichnerowicz studied a Poisson manifold with
the constant rank.

In the present paper, we shall treat the case G = SL(2, R), and study
infinitesimal automorphisms of s/(2, R)* with a natural Poisson structure. By the
theorem of Kirillov-Kostant-Souriau (see Abraham and Marsden [1]), each
coadjoint orbit has the canonical symplectic structure. In our case, each coadjoint
orbit is noncompact, except for the origin, and therefore, we are able to obtain
interesting results for infinitesimal automorphisms.

A part of this paper was announced in [5].

1. Casimir functions and infinitesimal automorphisms

From this point, we would like to confine ourselves to the case G = SL(2, R),
with all the elements considered here as C*. We will identify g* with R3. Let x,
y and z be a basis of g = s/(2, R), satisfying the following relations:

(1.1) [x.y]=—z [yz]l=x [z x] =y.

(If we regard x, y, z as linear functions on g*, we should write: {x, y} = —z, {y, z}
=x, {z, x} =y.} Then the corresponding linear Poisson tensor P is given by

0 0 0 0 0 0

= — _— /\ /\_'
(1.2) b= N T N e Ve M ax

As is easily seen, the rank of P is two, except for the orgin.

Given feC>(g*), {f,-} defines a derivation of C*®(g*). Hence there
corresponds a vector field &,, which we call the Hamiltonian vector field.

A Casimir function on g* is a function C such that {C, f} = 0 for all function
f. In order words, C is an element of the center of the Lie algebra C®(g*). We
denote by € the set of Casimir functions. By simple consideration, we know that
for each element C of % there exists a function ¢ of one variable such that
C(x, y, 2) = ¢p(x* + y* — z?).

A coadjoint orbit G-u passing through u s 0 is also called a symplectic
leaf. There are three kinds of symplectic leaves: circular conics, hyperboloids of 1-
sheet and hyperboloids of 2-sheets. Each symplectic leaf is the common level
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manifold of Casimir functions.
By an infinitesimal automorphism of g*, we mean a smooth vector field X on
g* such that

(1.3) L(X)P =0,

where L(X) denotes the Lie derivative along X.

Next we shall define some Lie algebras. Let . be the Lie algebra consisting
of all infinitesimal automorphisms. Suppose that for a smooth vector field Y on
g* there exists a Casimir function C, depending on Y, such that L(Y)P
= CyP. Then we denote by .#° the Lie algebra consisting of such vector fields
Y. Let A& be the Lie algebra obtained as the normalizer of & in #¢, that is, &
= {XeZ|[X, £]c £}. Let J be a Lie subalgebra of # consisting of vector
fields X such that each X is tangent to symplectic leaves. And we denote by #
the Lie algebra of Hamiltonian vector fields. Then there is a canonical inclusion
relation: ¥ > /" > ¥ > # o #. Direct calculation shows that both Lie subal-
gebras £ and A are ideals of &. Let X = f0, + g0, + ho, be a vector field of
&#. Then three functions f, g and h must satisfy:

[ =xg, — y9x + zhs + xh.,
(14) g = ¥fx — xf, + zh, + yh,,
h=zf, + xf, + zg, + y9..
Put div X = f, + g, + h,. Then (1.4) is equivalent to the following:
x-div X = (xf + yg — zh),,
(1.5) y-div X = (xf + yg — zh),,
z-div X = — (xf + yg — zh),.

Next we shall investigate that under what conditions a vector field X is
contained in .. Put X = f0, + g0, + hd,. Since X is tangent to each orbit, it
satisfies: X(x2 + y2 — z2) = 0. Hence we have

(1.6) xf+yg—zh=0.

Taking (1.6) into account, we have from (1.5), x-div X =0, y-div X = 0 and
z-div X = 0. This means (x*> + y% + z2)-div X = 0 except for the orgin. Since X
is smooth on R? we have div X =0 on R3. Conversely, if a vector field X

satisfies (1.6) and div X = 0, then it is clear that X is contained in .#. Thus we
have proved:

Proposition 1.1.  For a smooth vector field X = f0, + g0, + hd, defined on R,
X is contained in # if and only if

(1.7) fi+g,+h,=0.
xf+yg —zh=0.
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Now we shall clarify the gap between # and .%.

Put fi = xm(x? + y* — 22)/(x* + y?), g, = ym(x* + y? — 22)/(x* + y?) and h,
= 0’
where m(u) is a smooth function of one variable which is defined by

0 u<o,
(18) miu) = { exp(— 1/u®)  u>0.

Then fy, g, and h, satisfy the relation (1.4), and hence Y =f,0, + g,0, belongs to
Z. In our case, three functions f, g, and h, do not satisfy the relations (1.7). In
fact, it holds that

{ xfi +ygy — zhy = m(x* + y* — z7),
(f)x + (gl)y + (hy), = zml(xz + ,V2 - z%).
Hence Y =f,0, + g,0, does not belong to .£.

Next we shall clarify the gap between .# and #. For this purpose, it is
convenient to introduce the cylindrical coordinates (r, 8, z). Let G-y be an orbit
satisfying x? + y? —z2 = ¢ # 0. We shall write the Poisson tensor P and the
symplectic form w on G- in the cylindrical coordinates. Note that 0, = cos 60,
—sinf/rd,, 0, =sin00, + cos0/rd, and 0, =0,. Then we have P =z/rd, A 0,
+ 0y N 0,

Put w = adr A dz + Bdr A d6 + yd@ A dz. Then we obtain
(1.9) = (y—(z/r)p)db A dz,

since rdr = zdz on G- .
For any smooth function F on G-y, we have

(1.10) Xp=(2/r)Fg0, — ((z/r)F, + F,)0y + Fy40,.

In particular, X, = (z/r)0, + 0, and X, = — d,. For these two vector fields
X, and X,, we have

(X, X.) =y —(z/r)B
={6,z} =1.
Hence (1.9) can be rewritten on G-u as
(1.11) w=df A dz.

Recall the function m(u) defined in (1.8). For r > 0, we define a smooth vector
field X using the smooth function m(u) as follows:

(1.12) X = (z/r)ym(r? — z2)0, + m(r* — z2)0,.

Let G- pu be a symplectic leaf defined by x* + y*> — z> = ¢ > 0, that is, G-p is a
hyperboloid of 1-sheet. Since r > 0 on this symplectic leaf G- i, the smooth vector
field X is well-defined. Then r? — z2 = x2 + y> — z? = ¢ on G- u so that we have
i(X)w = — m(r? — z2)d0 = const. df. Note that 6 is not a globally defined
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function on G-u. Hence X is not a Hamiltonian vector field on the symplectic
manifold G-u. Such a vector field exists because G-p is not simply
connected. (G-pu is homeomorphic to a cylinder.)

If we extend this vector field X to the whole space g*, we have the following
new vector field X:

m(x? + y* — z?) m(x? + y? — z?)

Y ! 2
(1.13) X = xz e O+ yz PR é, + m(x* + y* — z%)0,.

This vector field X is smooth on g* and three coefficients of X satisfy the
relations (1.7). Hence X is an element of #. If X is a Hamiltonian vector field
on g*, then X|; . , = X must be also a Hamiltonian vector field on G-pu. But X is
not Hamiltonian, as we have seen before. Hence X is not contained in #. Thus
we have proved:

Theorem 1.2. The ideal # is strictly contained in & and the ideal H# is strictly
contained in S.

Finally we shall characterize a Lie algebra 4". First we prove:

Lemma 13. Let X% and put L(X)P = CyxP, Cxe€%. Then X belongs to
A if and only if Y(Cy) =0 for all Ye &.

Proof. Let XeA'. Since [X, Y]e %, we have
0=L(I[X, Y))P = L(X)L(Y)P — L(Y)L(X)P
= — Y)LX)P = { — Y(Cy)} P.

Thus Y(Cx) =0 on M = R® — {0}. By the smoothness of Y(Cy), we have Y(Cy)
=0 on R3® The converse is easily proved. q.ed.

Recall the vector field Ye . defined in the proof of Theorem 1.2. Here we
define another vector field Z by

zs(x? + y* — z3)
V:— 22

_px 4yt -2

Z y2— 72

0, +

y

z

where s(u) is a smooth function of one variable defined by

S(u) = 0 u>0,
~lexp(—1/u?) u<0.
Then the vector field Z is an element of . Using these two vector fields Yand Z,
we shall prove

Proposition 14. /% is isomorphic to R.

Proof. Let X be any element of 4", and Cy be the corresponding Casimir
function. Put Cy(x, y, z) = ¢(x? + y2 — z2). Let Yand Z two vector fields of &
stated above. Then by Lemma 1.3, we have
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xm(x? + y* —z%) 3¢  ym(x* + y* — z%) 0¢
x2 +y? 0x x? + y? oy’

0=Y(Cy) = Y(¢) =

In the region z =0 and x2 + y? > 0, m(u) is positive. Hence d¢/du =0 if u > 0.
On the other hand, we also have

ys(x* + y* — 2%) 09 N zs(x* + y* —2%) 0

2 2

0=2Z(Cy) =Z(¢p) = _
C=2@) =" g g

In the region x=0 and y?—z2<0, s(u) is positive. Hence d¢/du =0 if
u < 0. By the smoothness of @(u), we obtain that ¢(u) is constant on R3, and
Cx(x, y, z) is constant. Put W= —(xd, + yd, + z0,). Then W satisfies L(W)P =
P so that W is an element of ‘. By Lemma 1.3, W is also an element of
A". Thus the linear mapping T: A" — R defined by X — Cy is surjective. Since
Ker(T) = &, we get /'/¥ =R. q.ed.

2. Derivations— A formal version

1/2 0 0 1/2 0 —1/2 .
L = = -
et x < 0 _1/2>,y <]/2 0>andz <1/2 0>beabasxsof

si(2, R). Then this basis satisfies the relations (1.1). Let F, be a space of

homogeneous polynomials f(x, y, z) with deg (f) =p + 1, and put F= ) F,. We

20
can also define a Poisson bracket {-,-} on F, using a linear Poisscfn tensor P
defined by (1.2). Since it is clear that {F,, F,} < F,,, (p. ¢ 20), F becomes a
graded Lie algebra.
A space h = {x} is a Cartan subalgebra of s/(2, R) and a root decomposition
of sl(2, R) with respect to h is given by:

(2.1) SI2, R)=g_, +go + g,
={y+z}+{x} +{y—z}.
The first result is:

Proposition 2.1. Each space F, (p Z 2) is generated by F,. Namely it holds
that Fy={F,, F\}, Fy={F,, F,},..., F,={F,, F,_,}.

To prove the above proposition, we need the following lemma. This lemma is
easily proved and we omit the proof.

Lemma 2.2. Let A, be a k x k matrix with (A);p+, = — 2(k — i), (Api+1,: =
— 2i and other elements (A,),, = 0. Then the rank A, = k if k is an even number,
and the rank A, =k — 1 if k is an odd number.

Proof of Proposition 2.1. We prove {F,, F,_,} = F, (p 2 2). First decom-
pose F, into two subspaces as follows: F, =V, +V,, where V;={x""!,
xPy,..., xzP} and V, = {y?*', yPz,...,z°*'}. Since {x?, F,_,}cV,, we can
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represent {x2, F,_,} as a matrix with respect to the basis of ¥;. Then we have the
following matrix Q.

A;

Apiy

/

If p is even, by Lemma 2.2, rank Q = dim V; — (p/2 + 1). To make up for
deficiencies of {x?, F,_,}, we need

{xy, xp—lz}=xp+l_ p—1 2+(p )xp 1 2

xy, xP73yPzh = xP TP = xP Tt 4 (p — STy,
y

p/2

p—2 2

{xy, xy?~2z} = x*y? "% — xy” — (p — 3)xy" %27,

{xz, xP"1y} = — xP*1 + (p — DxP71y? — xP7 122,

It is easy to see that all these brackets span the subspace V;. (If p =2, we
should use {y?, yz} instead of {xz, xy}.)

Next put W= {y?, y»"'z,..., z?}. Then we can conclude that {xz, W}, {xy,
y?7 1z} and {xy, y?~2z?} span the subspace V,.

If p is odd, the result is obtained by a similar method as above. In fact, {x?%,
F, 1}, {xy, x*7 'z}, {xy, x*73y2z}, ..., {xy, x?y? "3z} and {xz, x’"'y} span the
subspace V;. Moreover, {xz, W} and {xy, y?~ 'z} span the subspace V,. q..d.

A linear mapping c: F — F is called a derivation if it satisfies

22 c{f g} ={c(f). g} +{f cl9)} for any f,geF.

We shall determine all derivations of F. We adopt the same method as that
of T. Morimoto [4].

If a derivation ¢: F — F satisfies: ¢(F,) < F,,, for any p, we say that the
degree of c is r, and write as degc =r.

For any derivation ¢, we denote by ¢¥ the Hom (F,, F,,,)-component of
c. Define a new derivation ¢ by ¢|F, = c¢®. Then ¢ is a derivation of degree

k, and c is written as ¢ = c®.
k

For determining derivations of each degree, it is useful to obtain derect sum
decomposition of F, with respect to the action of ad(x) on F),.
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Proposition 2.3. All eigen values of a linear mapping ad(x): F »—F, are O,
+ 1, £2,..., +(p+1). Let F,k) be an eigen space corresponding to an eigen
value k. Then we obtain F,= ) piH)F o(k), where each F (k) is given by:

=~

(i) If p is even, say p = 2m,

F,0) = (x2™* 1t x2m=1(y2 — z2), ., x(y? — 2™,

Fy(1) = <x*(y = 2), x> D(y = 2)(y* = 2%), .., (y — 2)(»* — 2",

Fp(—= 1) =<y +2), x2™7 0y + 2)(y* — 22), ... (v + (02 — 22",

Fp2) = <x™ My — 2%, x®"73(y — 22 (p? — 2%), ., x(p — 2202 — 2" 1),

Fp(=2) ="y + 22 X273y + 22 (02 — 2%, x(y + 2P (0 = 227,

Fy@m+ 1) = ((y — 2 *1y,

F(—(@2m+ 1) =y + 2.

(i) If p is odd, say p=2m — 1,

Fyf0) = (x2", x2™=D(y? — 22), L x2(y? — 2 (% — 22,

F(1) =<2y —2), ¥y = 2)(p* = 22, x(y — 2)(y* = 22" 1),
F(=1) ="y +2), "3+ 20 = 2%, x(y + 2)(y* — 2" ),
Fp2) =<2y — 2%, x> 4y — 22(y* — 29), ..., x(y — 22 (p* — 29"~ ),
F(=2) =2y + 2% X274y + 220 — 29, .., x(y + 22 (0% — 22" 1),

Fp(zrn) = <(y - Z)2m>7
Fy(—2m) ={(y + 2)*").

The above proposition can be easily proved by direct calculations. (Taking
an equation (2.1) into consideration, the proposition is almost obvious.)

In the rest of this section, we shall determine an explicit form of a derivation
of each degree. First we prove:

Proposition 2.4. For a derivation ¢, if degc < — 1, then ¢ = 0.

Proof. If deg ¢ < — 2, ¢ satisfies ¢(Fy) = c(F,) =0. Combining this with
Proposition 2.1, we easily have ¢ =0 on F. Next let deg ¢ = — 1. Note that
c(F,) =0. Since ¢(F,) = F,, we can write each element of ¢(F,) as follows: c(x?)
=a,x + by +c,z, c(xy) = a,x + by + ¢z, c(x2) = azx + byy + c3z, c(y?) = ax
+ by + ¢z, c(yz) = asx + bsy + csz, c(z?) = agx + bgy + ccz. Then by equ-
ations 0 = c{x, x?} = {x, c(x?)}, 0 = c{y, y*} = {y, c(y?}, and 0 = ¢{z, z?} = {z,
c(z®)}, we easily have by = ¢, =a, =c, =as =bg =0. On the other hand, by
equations c{x, y*}={x, c(y*)} = —2¢c(yz), we have as=bs=0 and 2c;
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=b,. Similarly by equations c{y, z?} = {y, c(z?)} = 2c(xz), we have by =c3; =0
and cq = 2a;. Equations c{x, z?} = {x, c(z})} = — 2¢(yz) mean c¢s = ¢¢ = 0 and
hence b, = a; = 0. Equations ¢{x, xy} = {x, c(xy)} = — c¢(xz) = 0 mean b, = c,
=0. Equations c(y, xy} = {y, c(xy)} = c¢(yz) = 0 mean a, = 0. Finally equations
c{y, x*} = {y, c(x?)} = 2¢(xz) =0 mean a, =0. Thus all coefficients of c(F,)
vanish and hence by Proposition 2.1, we get ¢ =0 on F. q.e.d.

By the above proposition, we know that any derivation ¢ can be written as ¢

= Y ¢®™. Next we shall determine a derivation ¢ with deg ¢ = p 2 0. Consider
kz0

the adjoint action of F, = s/(2, R) over F,. Since F, is a simple Lie algebra, it
holds H'(F,, F,) =0. This means that for a derivation c, there exists an f of F,
such that ¢|F, = ad(f). Thus (¢ — ad(f))(F,) = 0. By this reason, hereafter, we
always assume that a derivation ¢ with non-negative degree satisfies c(Fy)
=0. (We are interested in only “outer” derivations.)

Proposition 2.5. Let degc=p=0. Since c(F,) < F,,,, according to the

p+2 pt2
direct sum decomposition of F,,, we can put: c(x?) = Y a,c(y)= Y b,
pt2 p+2 =2 =2
cz)= Y c,elyz)= Y ri. Then c(x?) =aq, c(y}) =r_, + by —r,, c(z?)
i=—p—-2 i=—-p—2

=r_,—by—ryand c(yz) =r_, +r,. Moreover ay + 2by€ €, where € is a space
of Casimir functions in F.

Proof. Note that ¢(F,) = 0. By the eqution 0 = c{x, x?} = {x, c(x?)} =,
ia;, we have a,=0 if i #0. Other equations c{x, y*} = {x, c(y?)} = — 2c(yz)
imply that {x, Yb} =3 ib;= —2)r. Thus we get r, =0 and b; = —(2/i)r; if
i #0. Similarly, the following equations c{x, z%} = {x, ¢(z%)} = — 2¢(yz) mean
that ¢; = — (2/i)r; if i # 0. Using c{x, yz} = {x, c(y2)} = — c(y?) — c(z?), we have

— b —c;=ir,=@/ir; (i #0),
- bo —_ CO =0.

Hence r; =0 is i # + 2, and we obtain: c(y?)=r_, + by — 1y, c(z?) =r_,
—by—r, and c(yz) =r_, +r,. It generally holds that c(%) = 6. Thus c(x?
+ y? — z%)e¥ and finally we have a, + 2bye%. qed.

The above proposition makes it easy to determine derivatins of positive
degree. In fact, using Proposition 2.5, we prove

Proposition 2.6. (i) Ifdegc=2m—1 (m = 1), then c is an inner derivation.

(i) If deg ¢ =2m (m = 0), then c is an outer derivation. More precisely, c is
essentially defined as follows:

For any p 20, c(u,) = pu,(x* + y* — z*" for any u,eF,.

Proof. (i) Notes that ¢(F,) = F,,, and that there are no Casimir functions
in F,, except for 0. So by Proposition 2.5, it holds that by = — ay/2. According
to the direct sum decomposition of F,,, ao, r, and r_, are written as follows:
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ap = a; X" 4 ax? Ny — 2 4 e + Ay 1 X(y? — 227,
ry = X2y — 2)? 4 ex?" 3y — 2)2(y? — 2P)
9 ot enx(y — 22y - 2,
rop=di PNy + 27 + do X3y + 2P - 27
+ o+ dx(y + 2)2(y? — 22"t
Again recall that ¢(F,) = 0. Substituting (2.3) into {y, c(y?)} = c{y, y*} =0
and equating coefficients of z* (k =1, 2,..., 2m + 1) to zero, we have g; = c;=d;
=0(1<=ism+1, 1<j<m). Thus ¢(x*)=c(y?) =c(z*) =0. Since ¢(F,) =0,
we also have c(xy) = c(xz) = c(yz) =0. For example, c(xy) = (1/2)c {z, y*} = (1/2)
{z, c(y*)} = 0. By Proposition 2.1, ¢(F,) = 0 (p = 1), and hence ¢ = 0 on F. This
means that ¢ is an inner derivation of F by the previous remark.
(i) In this case, ¢(F,) = F,,,+,- And the space F,, ., contains one dimensional
subspace of Casimir functions whose basis is (x2 + y* — z2)"*!. Hence we need
put by = (K(x? + y? — z%)™*! — g,)/2.  According to the direct sum decompo-
sition of F,,, ., ao, ¥, and r_, are written as follows:
Go = @, x¥™ 2 4 @Iy = 22) ko (Y - 2
ry = ¢ x*M(y — 2) + ¢,x*" 7y — 2)2(y? — 2?)
24
24 ot ey — 2207 - 2
oy =dix*(y +2)° + dpx?" 2y + 22y — %)
+o A dp (v + 27007 - 2"
Substituting (2.4) into {y, c(y*} =0, and equating coefficients of z*
(k=1,2,...,2m + 2) to zero, we have
c(x?) = ax?(x? + y? — 2" — f,
(2.5 c(y?) = ay?(x* + y> = 23" — g,
c(y?) = a2?) = az?(x* + y> — 22" + g,
where o= (m+ l)a, —a,, f=(ma, —ay))(x*+y>—z)"*, g=(1/2)a, —k)
(xz + y2 _ 22)m+1‘
Then taking account of ¢(F,) =0 and f, ge%, we also have
c(xy) = {c(y?), 2}/2 = axy(x? + y* — 22",
(2.6) c(xz) = {y, c(z9)}/2 = axz(x* + y? — z)",
c(yz) = {c(y?), x}/2 = ayz(x? + y* — zH)™.
Hence a derivation c can be essentially written as c(u,) = u,(x? + y* — z2)" for
any u,€F,. Since F, generates F, (p=2), we also obtain that c(u,) = pu,

(x? + y* — z?)" for any u,eF,.
Now we shall prove that such a derivation ¢ defined in this way is an outer



Linear Poisson manifolds 1 81

derivation. Since c¢(%) = €, a derivation ¢: F— F induces a derivation ¢: L
— L. More precisely, ¢ is defined by ¢(X,) = X, where X, e Lis a Hamiltonian
vector field corresponding to he F. By an easy calculation, we know that ¢ is
given by

¢ = ad((x?® + y? — z2)"(z0x + ydy + z0z)).

A vector field (x? + y? — z%)™(zdx + ydy + z0z) is not an element of L. So ¢ is an
outer derivation of L and thus ¢ is also an outer derivation of F. q.ed.

We have completely determined the derivation algebra of F. We shall resume
it in
Theorem 2.7. Let c: F —» F be any derivation. Then ¢ = Y, a,c*™ (mod
ad(F)), where c*™ is a derivation defined by =0
c®™(u,) = puy(x* + y* —z%"  for all u,eF,,

and ,, is some constant depending on c. In particular, all ¢*™ are outer derivations,
hence HY(F, F) is infinite dimensional.

3. Application

Let us consider the C®-version of the result obtained in the previous
section. Recall the definition of Lie algebras #¢, & and A". Put X = (x? + y?
— z2)"(x0x + ydy + z0z), (m = 0). Then we have known that ad(X) is an outer
derivation of L. If we regard X as a smooth vector field on R3, X is an element of
#¢. (Note that L(X)P = — (x* + y? — z2)"P). For such a smooth vector field X,
we shall prove

Proposition 3.1. ad(X) is a derivation of £ if and only if m = 0.

Proof. By the definitin of %, ad(X) is a derivation of % if and only if
Xe#. Hence by Lemma 1.3, X must satisfy Y(Cy) =0 for all Ye #. In this

case, Cy = — (x2 + y2 —z%)", (m=0). Let Y be a vector field appeared in the
proof of Theorem 1.2. Then from the equation Y(Cy) =0, we have m
= 0. Conversely ad(xdx + ydy + z0z) is clearly a derivation of %. q.e.d.

As the first step of studies of a linear Poisson manifold, we have studied
infinitesimal automorphisms defined on s/(2, R)*. If we take s/(3, R) as g, we shall
encounter some difficulties. For example the rank of the Poisson tensor takes the
values 4 and 6, except for the origin. A linear Poisson manifold s/(3, R)* itself has
interesting structures [3].

For a linear Poisson manifold with a compact Lie group, the circumstances
are entirely different from the case of noncompact Lie groups. We shall treat
these problems elsewhere.

The author would like to express his gratitude to Profesor P. Molino for his
introduction of the geometry of Poisson manifolds.
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