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The explosion property of holomorphic diffusion
processes on a bounded pseudoconvex
domain in C” and its applications

By

Setsuo TANIGUCHI

0. Introduction

Let D be a bounded pseudoconvex domain in C™ and m be an everywhere dense
positive Radon measure on D. The aim of this paper is to give sufficient conditions
for a transient C(D)-regular m-symmetric holomorphic diffusion process to explode in
terms of the symmetrizing measure m. As an application, the boundary behaviour of
plurisubharmonic (psh in abbreviation) functions along the sample path of the diffusion
process will be studied.

Let M=(Z,, L, P,) be a C3(D)-regular m-symmetric holomorphic diffusion process
on D with the life time ¢, i.e. a C%(D)-regular m-symmetric diffusion process such that
h(Zp:y) is a martingale under P,, M-q.e. z€ D, for every compact KCD and holomorphic
function h on D, where 7x=inf{t>0: Z,&¢K} and by “M-q.e.” we have meant “except
for a set of zero capacity with respect to the l-capacity of M”. For definitions of

symmetric diffusion processes and the associated 1l-capacity, see [5]. Assume that M
is transient:

0.1) S:T;f(z)dt<oo, m-a.e. for every f& L'(D;m) with f=0,

where {T,} is the semigroup associated with M. As was seen in [7, Appendix], if, in
addition, m(D)< 4o, then EZ[C]:SNT,l(z)dt<+oo m-a.e., where E, stands for the ex-
0

pectation with respect to P,. Hence, in this case, M explodes; P,[{<+o]=1, M-q.e.
zeD.

In this paper, we will show that M explodes if D has a defining function ¢ psh
and continuous on a neighbourhood of D such that SDIgo(z)[m(dz)< oo, See Theorem

1.1. Thus, we can weaken the assumption that m(D)<4co. Moreover, even if D has
no global defining function, we will see in Corollary 1.1 that if it has a C? boundary,
then there is an %,>0, depending only on D, such that the explosion of M is sure

whenever SDdist(z; 0D)"m(dz)<co for some 5< .

We now consider an application of the above observation. In the case when D is
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a unit disk in C", deeply studied is the boundary behaviour of harmonic functions along
the paths of the Brownian motion conditioned to exit D at £é€dD. For example see
[4]. Baifiuelos and @ksendal ([1]) investigated the similar problem for suitable diffu-
sion processes when D is a unit ball in C*. Moreover, if u is a bounded psh function
on D, then the submartingale convergence theorem implies that

0.2) P,[lim,,cu(Z,) exists in (—oo, o0)]=1, Maq.e. z,

because u(Za:,) is a bounded submartingale with respect to P,, M-q.e. See [6] and [7].

We will establish the following criterion for (0.2) to hold, which is applicable to
unbounded psh functions: the identity (0.2) holds for psh u if D has a defining func-
tion ¢ psh and continuous on a neighbourhood of D and u satisfies that inf,epu(z)>—oco
and

(0.3) SDIgoldd”u/\0<00,

where 6 is the unique closed positive current of bidegree (n—1, n—1) such that the
Dirichlet form € on L,(D; m) of M is given by

0.4 67, 9= df ndgn8. £, g=CHD).

and dd‘u A6 is the positive Radon measure on D defined by SDfdd‘u/\0=SDudd‘f/\0,

feCg(D). See Theorem 2.1. In the case where 0D is C?, the condition (0.3) with
dist (z; aD)” for |¢| implies the similar conclusion. See also Theorem 2.1. As will be
seen in Example 3.4, there are an unbounded psh u and a holomorphic diffusion process
M such that (0.3) is satisfied and hence (0.2) holds. Moreover, it will be seen in
Example 3.5 that (0.2) does not hold without the assumption (0.3) in general.

The organization of this paper is as follows. In Section 1, sufficient conditions for
a holomorphic diffusion process to explode will be given. Section 2 will be devoted to
the study of the boundary behaviour of psh functions along the sample path of the
holomorphic diffusion process. In Section 3, we present several examples to illustrate

our results.

1. The explosion property

In this section, we will give sufficient conditions for holomorphic diffusion processes

to explode.
Let D be a bounded pseudoconvex domain in C* and m be an everywhere dense

positive Radon measure on D. We denote by $D(D, m) the space of C3(D)-regular m-
symmetric holomorphic diffusion processes on D. Our goal will be:

Theorem 1.1. Let D and m be as above. Assume that M=(Z,, {, P,)s9D(D, m) is
transient. Then, the explosion of M is sure if the following condition is satisfied :

(C.1) D={z&€9: ¢(2)<0} for some open QDD and psh p=C(2),
and SD |l p(2) | m(dz)< oo
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The theorem is an immediate consequence of the following lemma.

Lemma 1.1. Let D and m be as before. Assume that M=(Z., {, P)s9D(D, m) is
transient and that there is a continuous function u: D—(—oco, 0] such that

(1.1) u is psh on D,
(1.2) u(z)=0 for z€dD and u(z)<0 for m-a.e. z€D,
(1.3) SD lu(z) | m(dz)<oo.

Then, M explodes.

Proof. We first notice that the martingale convergence theorem yields that
(1.4) P,[lim,,¢Z, exists]=1, M-q.e. zeD,

because D is bounded. Combining this with the transience property of M, we can
conclude that

(1.5) P[lim;y¢Z,€0D]=1, M-q.e. zeD.
We next recall that the plurisubharmonicity of » implies the inequality:
(1.6) u(2)S E[u(Ziacp)], M-q.e. ze€D,

where KCD is compact and rx=inf{t>0: Z,&K}. See [7]. Therefore, by virtue of
(1.2) and (1.5), letting K1 D in (1.6), we obtain that

1.7) u(Z)SE,[u(Z,): t<C]=T . u(z), M-q.e. zeD.
Observe that (1.2) and (1.5) also imply that
(1.8) limg ;B Lu(Z,): t<{]=0.

Thus, by Lebesgue’s dominated convergence theorem, we can conclude from (1.3), (1.7)
and (1.8) that

(1.9) limy 1 T ou(2m(d2)=0.

On the other hand, since the semigroup {7T.} is symmetric, we have that
(1.10) |, Tu@mdn=] u@Pr<timd.

Letting ¢ T 4o, it follows from (1.9) that

(L11) [, u@P.Le=+e0Tman=0.

This and the assumption (1.2) yield that
(1.12) P[{=+40o]=0, m-a.e. z€D.
By [5: Lemma 4.2.5], this implies that M explodes.
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Lemma 1.1 yields another sufficient condition for M to explode:
Corollary 1.1. Let D be a bounded domain in C* and m be an everywhere dense

positive Radon measure on D. Assume that Me9D(D, m) is transient. Then M explodes
if the following condition (C.2) is fulfilled:

(C.2)  the boundary 0D is C*® (i.e. for each z€0D, there are an open set U
and a ¢=C*U) such that DNU={¢<0} and d¢p+0 on UNAD) and

SDdist(z;aD)'/m(dz)<°° for some n<(@ML+1)*, where
(1.13) L=sup{|z|:zeD}
(1.14) M=sup{(Za{Zp(0°0(2)/02°02°)5*}*)"* : |&| =1, z€0D},
and o(z)=—dist(z;dD) if z€D and =dist(z; dD) if z&D.

The above ¢ is C? near the boundary since 0D is C2

Proof of Corollary 1.1. Suppose that (C.2) is fulfilled. On account of the above
lemma, the proof will be completed once we have shown the existence of a continuous
function u: D—(—o0, 0] such that the assumptions (1.1) and (1.2) are satisfied and

(1.15) lu(z)| £C dist(z; 0D)? for zeDNG,

for some C>0 and open GCC™ such that dDCG. To do this, we recall that Diederich
and Fornaess [3] showed the existence of a continuous function v: D—(—oo, 0] satisfy-
ing (1.1), (1.2) and that

lv(z)| <C'dist(z;0D)Y  for z&eDNG’,

for some C’>0, 6>0 and open G’'CC™ with dDCG’. Thus, we will construct our u
by repeating the argument due to Diederich and Fornaess carefully.

Take the function ¢ stated in Corollary 1.1. Then, ¢=C*G,) for some open set
G,CC" with 0DCG,. Since —log(—a(z)) is psh, we can conclude from the identity

Lrog-ax(z: E)=10(2)| *{|0(2)|8,(2z: §)+|<a(2), & |*}
that
Q.(z: &)=0 if <do(z), £=0 and z& DNG,,

where £,(z: &, 0)=3%,p-1 (0°/(2)/02°027)6°07, 8(2:6)=8(2: €, §) and (-, > is the
standard inner product in C®. This implies that if we decompose & as §=§"+4§", &'=
|0a(z)| ~*<00(2), Eyda(2), then

(1.16) Lo(z: 6)280(2: &, §)+L0(2: &, 7).

Take ¢>0 such that

r={u( )+

where L and M are defined by (1.13) and (1.14). Note that |de(z)|=1/2 if z€0D and
hence that for some open set G, with dDCG,CG,
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sup{|8.,(z: & &) : |EI=1€|=1, z€C.} S(1+e)M
1—e

inf{|0e(2)| : zE€G,} = 5

Therefore, it follows from (1.16) that

(L17)  8.(z: 5)2—4(112)1\4151 100(2), &|  for z&DNG, and £=C™.
Define
1—¢ -1
a=(2+ 2(1+e)ML)
K=an™'L™?

p(@)=—{(—a(@)exp(—K|z|®)}7, z€D.
Then, it holds that

(L18) 1y~ {2({55 ) MK L} (K —a)} =0,

By a straightforward computation, we obtain that
8, (z: &)=n(—0a(2))" % "% **[Ka(2)(|1£1*— K<z, £ %)
+10(2)| {84(z: §)—27KReda(2), £z, E}+(1—1)|<da(2), £>1*].
Plugging (1.17) and (1.18) into this identity, we can conclude that

Lo(z: Oz Y(—a(2) e MK (1)K

x[ 101161~ {2(1£2
0

M+ KLHE(1— )} <00(), &1

%

for zeDNG, and £€=C*. Thus p is psh on DeG,.
Take a<0 such that {zeDNG,: p(z)>a}CDNG,. It is easily seen that

max{p(z), a} if zeDNG,
u(z)={
a if zeD\G,

is a continuous function on D with values in (—oo, 0] satisfying the assumptions (1.1),
(1.2) and (1.15). The proof is completed.

2. The boundary behaviour of psh functions

Consider a bounded pseucoconvex domain D in C™ and a positive Radon measure
m on D with supp[m]=D. Let M=(Z,, {, P,)e9D(D, m) be transient and u be a
locally bounded psh function on D. In this section, we aim at giving sufficient condi-
tions in order that (0.2) holds:

P,[lim.,;u(Z,) exists in (—oo, c0)]=1, M-aq.e.

We denote by € the unique closed positive current associated with M by the relation
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(0.4). We will establish that

Theorem 2.1. Let D, m, M and 6 be as above. Then (0.2) holds for a psh u with
inf,epu(z)>—-co if either of the following conditions holds :

(C.3) D={z=8: ¢(2)<0} for some open Q2D and psh p=C(R), and

@.1) SDlgoldd‘u/\0<oo,
(C.4) 8D is C* and

@.2) Sndist(- £ D)7 dd unG <o,
for some n<(4ML+1)%, where M and L are defined by (1.13) and (1.14), respectively.

Before the proof of Theorem 2.1, we will state its application to the boundary
behaviour of holomorphic functions. We will see that

Corollary 2.1. Let D, m and M be as before. Let h be a holomorphic function on
D. Then, it holds that

P[lim;y¢ h(Z,) exists in C']=1, M-g.e.

if either (1)D={p<0} for some open 2D and psh p=C(2) and Sblgoldh/\dcﬁ/\¢9<oo
or (i) 8D is C* and SDdist(- L D) dh Ad R AO< oo for some 7<@AML+1)".

Proof. Note that dd°|h|?A8=dhAd°hA6. Then, by applying Theorem 2.1 with
u=|h|? we obtain that

2.3) P,[lim; | A(Z )2 <0]=1, M-q.e.
By a standard time change argument, A(Z,) is represented as
WMZ)—h(Z)=EKN(Z.), I(Z. ), <L,

for some C'-valued Brownian motion &(¢) with £(0)=0. Since limsup;:.|&(t)| =o0, com-

bining this with (2.3), we can conclude that <A(Z.), h(Z.)»;.<co and hence the desired
conclusion follows.

Let D, be a unit ball in C*. We denote by P, the distribution of the absorbing
boundary Brownian motion M, conditioned to exit at £=dD. Applying the corollary

to M,, we can conclude that if a holomorphic function A satisfies that SD [0h(z)|2(1—
1

|z|2)V(dz)<oo, V being the Lebesgue measure on D,, then the boundary limits of A
along Z. exist P, ¢-a.s. for [-a.e. & where [ is the Lebesgue measure on 0D,. Bafluelos
and Oksendal [1] have studied the boundary behaviour of harmonic functions along the
sample paths of more general diffusion processes on D,. In particular, in the case
where n=1, they also obtained the similar result under the stronger assumption that

SD 10h(2)|12(1—|2|)*V(dz)< oo for some @, 0=<a<1l. In this case, our corollary covers
1
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their result. However, it should be remarked that their exceptional set in dD, is not
only of zero /-measure but also of zero capacity with respect to the potential of order
a if @>0 and the logarithmic potential if a=0.

We now proceed to the proof of Theorem 2.1.

Proof of Theorem 2.1. Assume that (C.3) holds. Take an arbitrary bounded posi-
tive feL(D; m)N\C(D) and fix it. Define a positive Radon measure ¢ on D by

(2.4) dp=ddunb+fdm.

Then g charges no set of zero capacity with respect to the l-capacity of M (cf. [6,7]).
Let A, be the positive continuous additive functional associated with gz and D be its
support (for definitions, see [5]). If we denote by Cap(FE) the l-capacity of ECD with
respect to M, then we observe that

(2.5) Cap(D~D)y=0.

Indeed, if we set R=inf{t>0: A,>0}, then, by [5, Lemma 5.5.1], E.,[e"®]=1 p-a.e. z.
By the definition (2.4), this implies that £,[e"#]=1 m-a.e. Hence, by [5, Lemma 4.2.5],
we see that E,[e"®]=1 M-q.e., which means that (2.5) holds.
Define

T,=inf{s>0: A;>t},

Zt:th’ 77=ACv

M:(Zty nr Pz)‘
Then, by virtue of (1.8), M becomes a p-symmetric diffusion process on D if we re-
place D by an appropriate smaller set such that DD is properly exceptional with re-
spect to M. Hence, by making every zeD\D a trap, we can extend M to a p-sym-
metric diffusion process on D, which is again denoted by M=(Z,, n, P,). By [5,
Theorem 5.5.1] and [8, Theorem 2.1], we see that MeHD(D, p), is transient and the

corresponding closed positive current is again 4.
We decompose u(Z,)—u(Zo) as

(2.6) wZ)—u(Zy=M+N,, i<y,

where M is a local martingale additive functional and N is a continuous additive func-
tional of energy zero. By [6, Lemma 7], we obtain that the Revuz measure of N is
dd‘uNf. Since 0=dd°uNf=p, we have that

@.7) 0=N,=N.<t, 0<s<i<y.

On the other hand, since feL'(D;m) and ¢ is bounded on D, it follows from (2.1)
that

SDIso(Z)ly(dZKw.
Applying Theorem 1.1, we obtain that

(2.8) P[p<o]=1, M-aq.e.
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Then, it follows from (2.7) and (2.8) that

(2.9) P,[lim,,, N, exists in [0, c0)]=1,  M-q.e.
Plugging (2.9) and the lower boundedness of u into (2.6), we have
(2.10) Plliminf,,, M,>—c0]=1,  M-q.e.

By the standard time change argument, we see that A7I,=B(<A7I >, t<n, for some R'-
valued Brownian motion with B(0)=0, where <M, is the quadratic variation process
of M,. Since liminf;,. B(t)=—o0, (2.10) implies that

@2.11) P,[lim,,, M, exists in (—oo, 0)]=1,  M-q.e.
Substituting (2.9) and (2.11) to (2.6), we obtain that
(2.12) P,[lim,,, u(Z,) exists in (—oo, 00)]=1,  M-q.e.

Since M and M are both transient and C$(D)-regular, and their Dirichlet forms coincide
on C(D), a set E is of zero capacity with respect to the l-capacity of M if and only
if so is to that of M. See [5]. Therefore, it follows from (2.12) that (0.2) holds:

P.[lim,,cu(Z,) exists in (—oo, o0)]=1 M-q.e.

The proof in the case where (C.3) holds is complete.
That (0.2) holds if (C.4) is satisfied will be verified in exactly the same manner as
above. We omit the details.

3. Examples

In this section, we will present several examples to illustrate our theorems. We
start with the following two examples on transience.

Example 3.1. Let D be a bounded domain in C® and m be a positive Radon
measure on D with supp[m]=D. It was seen in [9] that Me9HD(D, m) is transient if
it is irreducible, i.e., if the defining function 1z of ECD is locally in § where & is
the domain of the Dirichlet form of M, then either m(EF)=0 or m(D\NE)=0. For the
sake of completeness, we repeat the proof given in [9]. Let A be a bounded holo-
morphic function on D. By the martingale convergence theorem, we have

3.1) P.[lim;y ¢ h(Z,) exists in C']=1, M-aq.e.

If M is not transient, then it is recurrent and hence (3.1) never holds, which is a con-
tradiction. Thus M is transient.

Example 3.2, Let D be a bounded domain in C'. Take a=D. We denote by V
(resp. 0,) the Lebesgue measure on C' (resp. the Dirac measure concentrated at a) and
put

m(dz)=V(dz)+0.(dz).

Then there is a unique M=(Z,, {, P,)e9D(D, m) with the associated (0, 0)-current 1.
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See [6]. If we denote by {B,} a C'-valued Brownian motion starting at 0 on a pro-
bability space (£, B, P), then it is easily seen that

the law of {Z,} under P,=the law of {z+B\,,} under P
P,[Z,=a for any t=0]=1,
where ¢,=inf{¢t>0:2+B;&D}. Thus, it holds that
P[{<+o]=1 if z#a and=0 if z=a
and M is not transient. Since m({a})=1, this implies that M does not explode.
In the following example, we consider the assumption on integrability stated in
Theorem 1.1.
Example 3.3. Let D={z=C": |z|<1}. Define
m*(dz)=1—|z|%)"°V(dz).

There exists a unique M*=(Z,, {, P)eH$D(D, m*) with the associated (0, 0)-current 1.
We will then observe that M* explodes if a<2 and does not explode if a=2.

Indeed, since M“ is generated by (1—|z|?)*{(0/0x)*+(d/dy)?}, where z=x+iy=C",
it is elementary to see that the law of {|Z.|?} under PZ is the one of the l-dimen-
sional diffusion process {&;} on (0, 1) generated by 4(1—&)*&(d/dEC+4(1—E&)*(d/dé).
Thus, by applying Feller’s test, we obtain the desired conclusion.

The above observation yields that one cannot replace in Theorem 1.1 the integra-

bility assumption that SD|<p|dm<+oo by the weaker one that Snl<p|‘“dm<+oo for

some ¢>0.
We finally give two examples concerning Theorem 2.1.

Example 3.4. Let ¢(z)=max{|z'|? |2*|*}—1 for z=(2", 2*)C® and D={p<0}. We
denote by M=(Z,, {, P,) the absorbing boundary Brownian motion on D. Then M<
HD(D, V), is transient and the associated current is dd°|z|?, where V is the Lebesgue
measure on D. Set

u(z)=—log(2— | z|?).

It is easily seen that
SDIgo[dd“u/\ddclz|’<00.
Hence, our theorem implies that (0.2) holds for such u and M although u is not bounded.
Example 3.5. Let ¢ and D be as in Example 3.4. Define
0,=dd*{—log(1—|z'|)—log(1—|2*|®)}.

Then there exists a unique M=(Z,, {, P,)e9HD(D, V) whose Dirichlet form on Cg(D)
is given by (0.4) with §=4,.



582 Setsuo Taniguchi
Combining the observations in [2] and [9], we see that if we set

S={lz'|=1z"|=1}
then,
Pz[lim51CZLES]=1y ]‘['Q'e'

In particular, if we take the same psh function u as in Example 3.4, then it holds that

Pllimqu(Z)=00]=1, Mq.e.

It is straightforward to see that SDIgolddCu/\Boz-l—OO. Therefore (0.2) does not

hold without the integrability assumption (2.1) in general.
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