
J . Math. Kyoto Univ. (JMKYAZ)
31-3 (1991) 695-711

Local structure of analytic transformations
of two complex variables, II

By

Tetsuo UEDA

This is  the continuation of our previous paper o f  th e  sam e title [I]. We
continue the investigation of semi-attractive and semi-repulsive transformations
of type (1, b),.

L e t u s  briefly recall some definitions a n d  results i n  [ I ] .  B y  a n  analytic
transformation of two complex variables we mean (the germ o f)  a  holomorphic
mapping o f a  neighborhood of 0 = (0, 0)e C 2  in to  C 2 su c h  th a t T(0) = O .  We
say that T  is  of type (1, b) if the  eigenvalues of the  linear p a rt o f  T a re  1 and
b. W hen b 1 , w e  c a n  c h o o se  lo ca l coordinates (x , y) a ro u n d  0  so  tha t
T: (x, ( x 1 ,  ) , , )  takes the form

.x, =  x + E ai i x i yi
(0.1) i + j 2

Y 1 = by +  E  bux i Yi -

I n  [ I ,  Sec. 6 ]  w e show ed that every transformation T  of type  (1, b) with
b  0 0, 1 is equivalent to a transformation (z, (z1, w 1 ) of a  neighborhood of

(co, 0)e t x  C  in to  t  x  C  of the form

(0.2)
z , = z  + a, + + 2 ±  •  •  •

b i w b2 (w)= bw +

where a0 , a 1 , b, are constants and ai (w) (i = 2, 3, ...), bi (w) (j = 2, 3, ...) are
holomorphic functions o f one complex variable w in a neighborhood of
w  =  0. This transformation will be regarded as an expression of T  with respect
to the "local coordinate system" (z, w) around 0 = (Go, 0) and denoted also by T

T  is  s a id  to  b e  o f type  (1, b ) ,  if  a, 0  0  in  the expression (0.2). T his is
equivalent to the condition a 2 0  0  0  in  (0.1).

In  what follows, we assume that 0 < I b  < 1, so  tha t T is semi-attractive and
its  inverse T  1 is sem i-repulsive. Further, fo r  th e  simplicity of the argument,
w e assume th a t a , is  a  rea l positive n u m b er. T he  result fo r the  general case
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will be derived by rotating the coordinate z.

1 1 .  Invariant asymptotic curve.

I n  th is  sec tion  w e investigate t h e  sim ply convergen t po in ts  fo r the
semi-repuisive transformation T -

1 . We shall show that the  se t o f these points
can be obtained as the image of a holomorphic mapping of a domain in  C .  Thus
we will call this set the invariant asymptotic curve.

1 1 .1 . Let T be an analytic transformation of the form (0.2) with 0 < I b  < 1,
ao  > 0, defined in  a  neighborhood of 0 = (co, 0). To fix the  ideas, le t 1/1 , 1  b e
neighborhoods o f 0  such that T  is  a  biholomorphic map o f  Vi  o n to  V,. We
choose and fix a  relatively compact neighborh000d V of 0  of the form

(11.1)V =  {(z, w)Ge x C1R' <1z1 CO, 114) 1 < P}

contained in n V,. Let

C = {(cc, w)et x CI 114)1 < pl.

F or any real number L , we denote by E, the half-plane

(11.2) E, = tacCIReo - < — Ll

in  C  (which we shall call the  a-plane).

Theorem 11.1. There are a positiv e number L  and an injective holomorphic
mapping

H: o-H ( a )  =  ( h ( o -), k(o-))

o f  EL  into V —  C  w ith the properties:
( i )  H  satisfies the functional equation

(11.3) To H(o- — a0 ) = H(a), a E L ,

(ii) h(o-) — (o - +  —! log o-)  tends to a constant as
ao

denotes a single-valued branch o f  log a on I L .
(iii) k(a) tends to  0  as cc, o - e I L .

I 
al( 3 9 ,  (7  GIL, where log a

Remark. If H (a) is as in  the theorem and .70  is any complex number, then
the  holomorphic mapping H(o-  — o- 0 )  lo- eEL +Read has also the  properties of the
theorem. A  criterion which characterizes these mappings will be given in
Proposition 11.5.

The proof of Theorem 11.1 will be reduced to the  lemma below. To state
the lemma, we consider the following situation. L et A" be a  domain in C 2 defined
by
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(11.4)2  = {(Z, W)GC 2 1ReZ < — 14, 1W1 < pl p>  0),

and let Q = (Z, W )I - - t(Q) = (Z 1, W1 )  be a  holomorphic mapping of A into
C 2 of the form

697

Z 1 = f (z, = Z  + a, + Œ(Z, W ),

[ W1 = g(Z, W) = + fi(Z)) W + y(Z, W).

Here a(Z, W) and y(Z, W) are holomorphic functions on 2  such that

a(Z, W)l K ly(Z, W)l K / 1 4 ' ,

and f3(Z) is  a  holomorphic function of Z  on {Z e CI Re Z  < — TZ} such that

f3(Z)1 K/IZ11 ,

for some positive constants K,

Lemma 1 1 .2 .  Under these conditions, there ex ist a positive number L and an
injective holomorphic mapping fi : fi(a) = (f)(o-), ka)) o f  I ,  into 2  w ith the
properties:

satisf ies the functional equation

(11.3)' T. Fl(o- — ao ) = o-

(ii) h(o) —  a tends to  a constant as lal -4 co, a eEL .
(iii) i(a ) tends to 0  as co, a e E,

The proof of this lemma is given in the next paragraph.

Proof  o f  Theorem 11.1. First let us note that, if a, = 0, then the Lemma
is directly applied by setting Z = z, W = w, a(z, w) = a 2 (w)/z 2  +  • • • ,  y(z, w) = b 2 (w)
/z 2  +  - - • ,  and fi(z) =

To prove the general case, we take a  domain of the form

=  {(z, w)eC 2 1n/2 — e < arg(z + R0 )  < 3n/2 +

where 0 < e < n/2  and Ro is  a positive number such that A0 c  V  Let

{ Z = z —a  log z
a( )

on d o . Here log z denotes a single-valued branch of log z on the simply connected
domain d o . W h en  Ro is sufficiently large, (Z, W) can be regarded as a coordinate
system on A,; and with respect to this coordinate system A , contains 2 defined
by (11.4) with sufficiently large k .  This fact can be easily verified (c.f. [I, Sec.
7.3]).

We denote by T the restriction of T to 2 expressed in terms of (Z, W ). Then
(Z, W) —> (Z1 , W1)  takes the form:

W= w
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a la l a,Z  = z ,  — —
a l

log z , =  +  a , + + •••)—  — log(z + a , + —  + •••)
a , a ,

a, a, a, a
= z— log z +  a , + (—  + •••)—  log — ++ —

„  
+ •-•)

a, a,

=  Z  +  a , +  O (1z1 -  2 ).

= (b +
b 
z

)W  + 0  (1z1 - 2).

Since 1z1- 1  =  0  ( Z )  f o r  any 2 (0 < 2 < 1), the transformation -i ' satisfies the
condition of the lem m a. Let Fl be the holomorphic mapping in the lemma and
express Fl in terms of the coordinate system (z, w). Then we obtain the mapping
H  with the  desired properties. Thus Theorem 11.1 is reduced to Lemma 11.2.

1 1 .2 . P roof o f  L em m a 11 .2 . T h e  p ro o f is  d iv id ed  in to  t h e  steps
(a) — (e). To simplify the notation we om it —  in  the proof.
(a) We assume that a , =  1, since the lemma is reduced to this case by replacing
Z  and  a  by ao Z  and ao o- respectively.
(fi) To show  the lemma we can replace A  by a  smaller domain o f th e  same
form contained in  A .  Replacing p  by a  smaller number a n d  R  by a  greater
number, and estimating Cauchy's integral representations, we assume that

(11.5) — 1I 5
K ' K'lfw l

IZI1+Â.'

 

K ' K'
19 <z1

z À
1914, — bl 5

Iz12
,

on 41, where K ' is some c o n sta n t. Further, replacing R by a  greater number we
assume that

(11.6) 19(Z, l'1 )1 (1b1 + —

K

)p  + < p
RAR 1 + 2

on A , and that

2K'
(11 .7) suplgzi + suPigwl +   < 1.

- R Â •

(y) We set

(11.8) M  =  E 
, , , ( R  + v) 1 ± A '

and choose L  such that R  + M.
We want to define a  sequence of holomorphic mappings

H„(o-) = (h,,(o-), k„(o-)), n = 0, 1, 2,....
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of EL  into A  by

(11.9) = — n, 0).

Then these mappings will satisfy the recurrence relations:

(11.10) H„, Au) = To 11„(o-  —  1).

We shall show that the sequence {1-1„(a)} is well-defined and uniformly convergent
on /L . T h e n  b y  (11.10) the lim it H(o) = film H n (o ) will satisfy the required

n--■

equation (11.3)'.
(6) To show that H (a) , n  = 1 , 2,..., are well-defined, we prove the following
assertions *„ (n = 0, 1, 2,...) inductively:
*„ H „(o) is well-defined and the inequalities

(11.11)n Re lin (a) R e  
+ v=11Reo- + M — v1 1 + 1 '

( 1 1 .12). k„(01 < p

are satisfied on EL.
Clearly the assertion *0  is  true. Suppose that *„ is already proved. Noting

that Re a < we have

(11.13) Re hn (o- ) Re o- + M < — R( a  e EL)

by (11.11)„ and (11.8). Hence HJEL ) c A  and so

= T. H n (o- — 1) = T (h(o -  —  1), lc„(• — 1))

is well-defined.
Now (11.12) +1 follows from (11.6). To show (1 1 .14H-1 we note that

hn + ,(o) = f (h„(o- — 1), lc n (o- — 1))

= h„(cr — 1) + 1 + oc(h„(o- — 1), k„(a. — 1)),

and that

1 cOn(cr — 1), kn (o- —
— 1)1' 1 R e ( 0 - — 1) +

by (11.13). From this inequality and (11.11)„ it follows that

Re hn + +
v=11Re(o- - 1)+M— v1 1 + 1  + 1Re(o- — 1)+

Hence (11.11)„,„ holds. Thus *n + 1  is proved.
(s) For points Q = (Z , W) and Q' ( Z %  W') in  A  we define their distance by
d(Q, = max {1Z — Z'1, 1W— W'1 }. We want to prove the inequality
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M '

(11.14) d(H (a), H .- 1(01
ci -  1111 -" '

o-eEL, n = 1,2, —

where M' is some constant.

T o  show (11.14) we fix a  a n d  n; and use the notations

12( ,) = (Z ( v ) , Wm ) = Tv (a - n , 0) = H v (o- - n + y ),

Qiv ) = (4 ) , W(
1
0 ) = Tv - (o - - n + 1, 0) = H v _ 1 (a - n  + v)

for v = 1, 2,...,n. In particular,

Q(1 ) = (f (a - n , 0), g(o- -  n , 0)), 420) H

= (0" - n + 1 , 0), 44 ) =

First, d(Q" ) , Q d  is estimated as follows:

1Z( 1 )=  I f  — n, -  (a — n + 1)1 = 11(0 — 0)1 5
la —ni l " '

-  147(01 = 19(a — n, -  0 1  =  1 V (a  -  0)1 5 
la -

Hence

(11.15) d(Q(1), Q1))
la - n1 1 ± A •

Next d(0,-(v + 1), Q + 1)) is estimated in  terms of d(Q ( v ) , Qi0 ):

14+1) - 4+1)1 5 If(Z(v), Wm) — f ( 4 ) , W(0 )1

(max I fzDI Z (,) — + (max Ifw  Woo — W( ',) 1

(maxl fz1 + max I fw I) d(42( ) , 14 )),

where the maximums are taken over the segment which joins Q( , ) a n d  Q(',) . By
(11.13) these points Q( v ) = -  n  + v) a n d  Q('v) = H v _ 1 (a - n + v) are  in  the
domain Re - R - n + v  and hence this segment is also. Therefore by (11.5)

2K' }
d(02(y)14 + 1 ) -  4 + 1 ) 1 { 1  + ,(R  n — y)' +

Similarly by (11.7)

1147(v+1) - 11/(4 1) 1 < (max l I + max Igw pd(Q (v ) , 44) 5 d(Q(0,

Thus we obtain

2K'
(R  + n - v)

1 + A  }  d ( Q ( v ) ,  Q ( v ) )cl(Q0, + 11, vQ+ l)) '5 11 +
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for v = 1, ,  n  -  1; hence

n — 1 2K'
d(42(), 12(n)) II {1 + (R  + v )' ).}  d ( Q ( 1 ) ' 1 2 ( '1 ) ) .

Now the required inequality (11.14) follows from this and (11.15) by setting

2K' 1
M ' = K  H  ti +

(R + v) 1 +Ai •

( )  Now, for o- e EL , we have

1 dx dx

n=110- — nr" o—  0 -1 1 + A 0 Ix +
This integral is convergent. Hence, in view of the estimate (11.14), the sequence
{H (o ) }  is uniform ly convergent on EL . Let H(a) = lim  H n (o- ). Then H (a)
satisfies the required functional equation (11.3)' as is verified letting n -+ co in
(11.10).

Further we have

I'. Ix _ av"-
Since 1/1 x - al '  - * 0  (10- 1-4 co, o- EEL ) ,  the integral on the right tends to  0
(I trH  cc, a EE L ) , b y  the Lebesgue dominated convergence theorem. Thus the
properties (ii), (iii) of the lemma is proved.

This completes the proof of Lemma 11.2.

1 1 .3 . L et u s recall some definitions [I , Sec. 4  and  7 ] .  W e choose a
neighborhood V  of 0  as the domain of definition of a transformation T 1 . A
point P c V  is said to be stable (relative to  T 1 ) i f  T  '(P ) , n  = 1, 2,..., are all
in V (and hence inductively well-defined). A stable point P  is said to be simply
convergent (relative to  T -

1 )  if the sequence T - n (P )  (n = 1, 2,...) converges to
O .  The set of all simply convergent points relative to  T 1 will be denoted by
K .  We should note that these definitions depend on the choice of V.

A subset E c V  is called a base of simple convergence for T 1 if the following
conditions are satisfied : (i) E g  K ; (ii) For every P eK , there is a  sufficiently
large number n o  su c h  th a t  T  '° (P)E  E ; (iii) T -

1 (E ) g  E .  This definition is
independent of the choice of V. (See [I, Lemma 7.1]).

Now, when T  is  a semi-attractive transformation of type (1, b ) , ,  we can
present a base of simple convergence for the inverse T -

1 . Let T , V  and H:
EL  -> V  be as in Theorem 11.1.

Theorem 1 1 .3 .  The set H(E L )u { 0}  is a base of simple convergence for T -
1 .

The proof will be divided into several steps.
(a) The conditions (iii) and (i) are easily verified by the equation To H(cr - a0)

d(H(c), Ho(a))<
œ dx
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=H (a)  and by the fact H (a) - >O as Rea -*  -  oo .
(#) We note that 0  is  the only simply convergent point (relative to  T - 1 )  on
C = { (cc, w)l w i  <  pl. Hence, to show (ii), it suffices to prove that, for every
PEK  n (v— C ), there is an no  such that T '° (P)e H (EL ).

We fix real numbers 0  and p o  such that 0 <  0 < t/2, 0  <  p o  <  p. Let

=  1z e CIRe (e - i °  z )  < -  R ,  a n d  Re (ew  z )  < -  RI,

and

A, = x  { w E C  iw  < P o }

with positive R  such that AR c  V  If R  is sufficiently large, then AR  h a s  the
following property :  For every point P e K  n (V - C ) , there is an  n ,  such that
T '(P )E  A , for all n n , .  This can be proved by the same argument as in [I,
Sec. 7.2].
(y) We denote T -

1 (P) = (z w_,) for P = (z , w )e V. The following assertion is
easily shown: For any positive number g, there is a  sufficiently large number R
such that

w/bl< e for every P = (z , w) E AR.

(6) Consider the holomorphic mapping H(u) = (h(u), k(a)) of EL  into V  Clearly,
we may replace L by a larger number in the proof of the condition (ii). By the
same argument as in [I, Sec. 8.3], we can prove that, if L  is sufficiently large,
then h  is injective and that h(EL )  contains a  domain of the form M R with some
R .  Then H(E L ) n A , is an analytic subset of AR  and  represented as the graph :

H(EL ) n AR  = { (z, e(z))iz  E MR },

where e (z) = k h -  '(z). Further, for any positive number e, there is a sufficiently
large R  such that 1/(z)I < e  o n  R  by Theorem 11.1 (iii).
(E )  We choose the numbers g, L , and R  in the following way :  Choose E  so that
0 <e  < p o ,  and that

Po + E   <1.
—  

2 e

Next, choose L  and R  so that the conditions in (6) are satisfied. Then, replace
R  by a  larger number so that the conditions in (13), (y) are satisfied.
( )  In view of (fi), the property (ii) will be derived from the following assertion:
If P  is a point in AR such that T - 1 (P), T - 2 (P) ,... are all contained in AR, then
P  is in H(E L ).

For any point P = (z , w ) in A R , le t T  (P)  = (z  _  w  _ ,)  and define

q(P) = (w  - e(z))/(w  -  e ( z  _ , ) ) .

If w_ i — _ 1) = 0, then T '(P)  = H (a)  for some o- e EL+ a o  ;  hence P = H(o- + a o )
(o-  + a o e EL ) and w = e(z). Thus q(P) is a  holomophic function on A R . Further
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w e w ant to show the inequality

(11.16) lq(P)1 c for PEA R .

F or P = (z , w ) with z e MR , WI =  p o ,  we have by (y), (6),

+ it(z)1P o  + E 
C.

M PH
IW —  le (Z -1)1 — P011131 — 2 E

The inequality (11.16) follows by the maximum principle.
Now suppose that P ,T -

1 (P), T -
2 (P),... are all in 4 , .  Then, we have, for

any n,

—  i(z )1<lq(P)q(T - 1 (13))• • • ( IC F - n + 1 (P))1 — e(z
cn(p0 + E).

This im plies that w  = t(z ) a n d  hence P  H(EL ). T h u s  the assertion is proved
and the proof of the  theorem is completed.

1 1 .4 . The set K  of all (simply) convergent points relative to  T -
1 i n  V  can

be described a s  th e  analytic continuation H (E ) of H (E ,), w hich  w e call the
invariant asymptotic curve:

Proposition 11.4. T he m apping H : EL  — > V —  C is ex tended to an injective
holom orphic m apping (denoted by  th e  sam e letter) V —  C  s u c h  t h a t
H(i)U101 = K , w here t is som e dom ain in C  containing I,.

P ro o f . Let t = ta e CI there exists a positive integer n such that a —  nao EEL

and Tv. H(o- — nao ) e V for v = n} and define H(o-) = H ( o -  —  n a 0 ) for a c t ,
a — nao EEL . T h is  g iv e s  a n  e x te n s io n  o f  H .  W e  c a n  e a s ily  v e r ify  th a t
H (t)u{0}  =  K  using Theorem 11.3. q .  e .  d .

N ow  w e can  g ive  a  characterization o f  th e  m apping H  mentioned after
Theorem 11.1.

Proposition 11.5. L et E' be a domain in C such that (i) for every  a E C  there
is a positive integer n such that a —  na, E E ' and that (ii) a E E ' implies a — a, E E'.
L et H ': E' — > V —  C be an injective holomorphic m apping satisfy ing the  equation
T. H'(o-) = H'(o- — a0 ) (o - e I ' )  an d  such that M u —  na,) — > 0  as n— > co. T h e n
H'(o-) = H(o- — 0-

0 ) f or som e constant a o .

P ro o f . The im age H '(E ') is contained in  th e  se t  K  — {0 }. T h e re fo re  the
composition ri =  H - 1 . H ': E' C  can be defined. T his satisfies the equation

(11.17) n(o- — ao ) = g(o-) — a, (a e E').

By this equation, n can be extended to an  entire function (denoted by the same
letter) n : C C satisfying (11.17). Since I/  is  injective on E ', i t  is  injective on
C .  Therefore ri i s  a  linear func tion . I n  v iew  of (11.17), i s  o f  th e  form
ri(a) = a  —  a , .  Hence If lo -) = Hog(a) = H(o - — a 0). q. e. d.
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11 .5 . We consider the case of global transformations as in [I, Sec. 1 0 ] .  Let
9R be a  complex manifold of dimension 2  a n d  le t  T  be a  holomorphic auto-
morphism of 9 R . Suppose that there is a  fixed point 0 e  9R o f T  and that T  is
semi-attractive of type (1, b ), at 0. In the expression (0.2) we can assume that
ao  =  I. By applying the  results o f this section, we easily obtain the  following
theorem.

Theorem 11.6 . (i) There is an injective holomorphic mapping H : C  911 which
satisf ies th e  equation T . H(o-) = H(o- + 1 )  (a e C), an d  such that H (o -) — )0 as
Re a — co.

(ii) Such a  mapping H  is unique up  to  the translation o f  the variable a.
(iii) The set H(C)u { 0 }  is the set of  all (simply) convergent points with respect

to  T - 1 .

1 2 . Analytic continuation of the invariant asymptotic curve and coordinates on
the domain of uniform convergence for T.

I n  th is section  w e continue considering local transform ations of type
(1, b),. We show that the invariant asymptotic curve H (t)  and the set U  of all
uniformly convergent points with respect to T  have non-empty intersection. We
obtain a  canonically determined coordinate system o n  U  using the invariant
asymptotic curve. This supplements the result o f [I, Sec. 9].

12 .1 . We defined, in  th e  a-plane, a half-plane E , by (11.2), which will be
denoted by E  for simplicity. In addition we define half-planes by

=Ej+= > El,

E -  = EE. = a < — El,

where L' is a positive number. We set

E*  =  E t v  =EUE + 0E -

Theorem 1 2 .1 . I f  L ' is sufficiently large, then the m apping H: -+ V  can be
extended to a holomorphic mapping (denoted by the same letter) H: E* — > V  The
points in H (E ) ,  ME - ) are all uniformly convergent w ith respect to T

Let us first prepare a  lemma. We denote

Do , R  =  f (Z , w)1Re(e - i e z) > R, 1w1 < p l c  V

We have shown in  [I, Proposition 7.2] that, for every 0  with — m I2 < 0 < n/2,
there is a  sufficiently large R  such that De , ,  is a  b a se  o f  uniform convergence
fo r T  We fix 0  (0 < 0 < n/2) and  R  such that Do , R  and  D _ 0 , R  are both bases
of uniform convergence for T  Then D:= D e ,,u D_ 0 ,R is also a base of uniform
convergence.

Further we consider domains in  the  a-plane:
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A +  =  A L  =  to- eCI— L— Reo- < — L, Imo- >

A -  =  AZL, = Rea < — L, <  —

Lemma 1 2 .2 .  I f  L ' is sufficiently large, then H (A )  is contained in D6,,,  and
H (A )  is contained in D_ 0,R .

P ro o f . Choose E so that 0 < e < sin O. By Theorem 11.1, (ii) we can choose
L'o  so that Ih(o-) — e Imo- for  a eA L 0 . T h e n  w e  have I Re (e - Nh(o- ) — u))1
< e Im cr , and hence

Re (e -  h (o -)) >  Re (e -  o -) — e 1m o-

=  cos 0. Re a  +  (sin 0 — e) 1m a

—  cos 0 .(L + ao ) + (sin 0 — e) Tm

Thus, if L'( LO) is sufficiently large, we have

Re (e -  h (o - )) >  — cos 0 (L + a 0 ) +  ( sin 0 — e) L' >

for aeA L . T h i s  implies H (2 4 1 :,,)c  D ". Similarly we have H(A2,,.)
q. e. d.

To prove th e  theorem , we choose L ' a s  in  th e  le m m a . For cre E +  [resp.
E - ]  we choose a n  integer n so that a —  nao e [resp. A - ]. Then the point
H(u — nao ) is a  (uniformly) convergent point with respect to  T by the lem m a. It
is also a  (simply) convergent point with respect to  T - 1 . Hence T".H (o -  — nao )
i s  i n  V  We define H (a )  by  se tting  H(u) = T n ° H (a — nao ). I n  view of the
functional equation (11.3), this gives an extension of H  to  a holomorphic mapping
defined o n  E * . Thus Theorem 12.1 is proved.

12 .2 . W e have constructed in  [ I ,  Sec. 8] a  so lu tion  cp, called Abel-Fatou
function, of the equation

(12.1) 9(T(P))= (P(P) + ao

defined in  th e  dom ain o f  uniform convergence U  fo r  T. Since H(E + ) ,  H (Y )
are contained in  U, we can define functions

(12.2) P+ (a) = 9( 11 (a))
P -  (a) = (P(H(a))

Proposition 12.3. (i) The functions p± satisfy the equation

p± (o- + a o ) = p ± (o-) + ao , creE ± .

(ii) They are expressed by series

p
+  

(0-) =  o- +  E p , exp (2wciala0 )
v = 0
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E p i ,  exp(— 2ynicr/a0 ).
v= o

(iii) The constant terms N E,  and p .,; are related by the equation

— = 27da, I ao .

P ro o f. For (ye E± ,  we have

p±(o- + a0 ) yo(H(o- + a 0)) = yo(T(H(o- ))) = yo(H(u)) + ao = p ±  (o- ) + do ,

which shows (i).
Now, b y  (i), p ±  (o- ) — a  a re  holomorphic functions with period ao o n

E ±  . Hence they are expanded into Fourier series
CO

p + (o-) — a =  E p e x p  (2wriu I ao )
V  =  0 0

convergent on E+  a n d  E-  respectively. To prove (ii), we want to show that
= 0  for y <0  a n d  that = 0  for y >  0 . In  view of the periodicity of

p ±  (a) — o- ,  it suffices to show that p+ (a) — a [resp. (a) — o- ]  tends to a  finite
value as al —> co a E A +  [re sp . e

We use the notation log ( 1 ) C [resp. 1og ( 2 ) C] to denote the single-valued branch
of log 4 on C —(the negative real axis) [resp. C—(the positive real axis)] determined
by the condition

- Tm log ( 1 ) < i t [ r e s p .  0  <  Im  lo g ( 2 ) <  27r].

We note that

l o g ( 2 ) C  —  lo g ( " C  =
0 if Im > 0 ,

Now every Abel-Fatou function yo(P) has the form

tp(P) = z(P) a 1 logwz(P) + A (P),
at)

where A(P) —> A (constant) as z(P)I —> co, P e D = D,,,u D _ 0 , R  (see [I, Sec. SA ).
On the other hand, by Theorem 11.1, the mapping H(a) = (h(u), k(o - )) has

the form

h(u) = a + 
a ,  

log
( 2 )

0" + B(u)

where B(a) —> B (constant) as 'al —> co, o- E E.
If a e ,  then H (a) e D and hence

P±  (a) = 9( 11(a), k(a))
a a

=
,+ —  log ( 2 ) o-  + B(a) —  

,
—  log ( 1 ) h(c) + A(H(u)).

aoa „

p - (a )=  a +

2ni if Im < 0 .
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When o —> cc, o - e A ±  , we have h (a)/a —> 1; hence

log" )  h(a) — log" ) a  —> O.

Since log (2 ) o- — log" ) o- =  0  or 27-ci according as cr e A +  o r  A -  , we conclude that
(o- ) — o - — + B  w h en  o - 1– > co , o- ;  an d  p -  (o- ) — a —> A +  B  + 27ria1 /a0

when o —> cc , o -  e A -  . Thus (ii) is proved.
Since p,1-  =  A  + B , and p c; = A  + B  + 2nia 1 la 0 ,  the assertion (iii) is also

proved.

As a corollary we have the following

Proposition 1 2 .4 .  I f  L ' is sufficiently large, then s = (o-) [resp. s = p -  (a)]
maps conformally E +  [resp. E - ]  onto a domain <99 +  =  r ( E + ) [resp. <99 -  = p -  (E - )]
in C (the s-plane). The domains <99 ±  are invariant under the translation s i– s  + a 0 ;
The domain <99 +  [re sp . 9 '1  c o n tain s  a  half-plane of  the f o rm  {seClIms > L"}
[resp. {s e s  <  –  L " } ] .

1 2 .3 . Now let us recall the result of [I, Sec. 9] and make some supplementary
observations (which could have been included in  Sec. 9).

A s in [I, Sec. 8.2], let

=  { seC IR es> R
i }

and

D [a] = {PE U ( P ) E } .

When R , is sufficiently large, the mapping Pi—>(s, y) defined by s = cp(P), y = w(P)
maps D [a] biholomorphically onto A' x fly1 < pl. (In (8.11), we have a = arg a,
= 0 ; and set 0 ' = — mI2, 0" = n12.)

W e constructed a  holomorphic function 1//(P) on D [a ] which satisfies the
equation
(12.3) 1//(T(P)) =  0(P) +  K(cp(P)). P e D [a],

where K(s) is a  holomorphic function of one complex variable s E a .
We want to obtain, by modifying OP), a  holomorphic function 0 ,(P ) which

is invariant under T, i.e., ifr (T(P)) = 1 / / ( P ) .  For this purpose we will construct
a  holomorphic function 2(s) on B  satisfying the difference equation

(12.4)2 ( s  +  a 0 ) = 2(s) + K(s) s e a .

W e prove the existence of a solution  2 ( s )  o f  (12.4) i n  a  slightly general
situa tion . We denote

(R i , R 2 ) = { seC IR , < Re s < R 2 } for –  co R, <  R2 + c 0 .

Lemma 1 2 .5 .  L et K(s) be  a  holomorphic function on  .4(1? 1 , R 2 )  and le t a,
b e  a  positiv e  num ber. T hen  there  ex is ts  a  holom orphic f u n c tio n  2 (s )  on
.4(R 1 , R2 + a0 )  which satisfies the equation (12.4) f o r sea(R ,, R 2).
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Pro o f . Choose a real number R , with R, < R 0  <  R 2 , and a positive number
6  so that 0  <  < a 0 /4 , R , <R 0  — 6, R , + ô < R 2 . Consider the holomorphic
mapping E: C  C *  defined by = c(s) = exp(2ni (s — R 0 )1 a„). This function
e  maps th e  domains M , = M (R, — 6, R , + a 0 12 + 6), =  M (R 0  a0 /2 — 6,
R , + a, + 6) conformally onto

= g e CI — 6' < argC < m + (51
=g e C in  —  < arg < 2n + 6'1,

respectively, where 6' = 2761a0 (< 712).
{ .91,,,4 2 1 is  an open covering of C* and the intersection o f  d , a n d  cri2

consists of two connected components:

=  1( e CI — 6' < argC < 6'1

d "  = 6' < arg < ir + 6'1.

We note that e maps M' = M(R o  — 6, R , + 6) onto Let

k(C) = K0 (e14 ') - 1 (4) for Jar

Since the first cohomology group 1-1' (C*, 0) with coefficients in holomorphic
functions vanishes, there exist holomorphic functions 2 , 0  on d, and  2 2 (C) on .212

such that

(12.5) :12(c) — = fok(c)
on d'
on d".

We define

2 (s )  =  IiI1(6 (S))
2

2 (E(S))

on M,
on 112

We know by the second equality of (12.5) that A(s) is well-defined, and by the
first equality that A(s) satisfy (12.4) for SE (RO — 6 , R , + 6 ). Using this equation,
A(s) can be analytically continued to .4 (R 1 , R2 + ao ). q. e. d.

Now returing to our problem, let A(s), se B, be a solution of (12.4). We set

(12.6) 0*(13) =  0(P) — 1 (S0 (13)), P ED [ R ] .

This function is invariant under T, as can be verified by substituting s = 9(P)
into (12.4) and subtracting (12.4) from (12.3).

As was mentioned in Sec. 9.3], we can regard s = 9(P), u = O P)  as
coordinates on D [ ]. Hence, setting t = 11( * (p), we can regard (s, t) = (s, u — A(s))
a s  a  coordinate system on D [ a]. With respect to this coordinate system, the
transformation T  restricted to D[M ] is represented by the translation (s, t)1—
(s + a0 , t).

12 .4 . We want to choose a solution .1.(s) of (12.4) so that tlf * (P) defined by
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(12.6) h a v e  some good property. T h e  clue f o r  th e  choice is the invariant
asymptotic curve.

Let A(s) be any solution of (12.4) and let 0 (P )  be defined by (12.6). We set

q±(a)=111,(H(o)) a E .

The functions q±(o) are holomorphic and have period c/o , i.e., q ± (o- + a 0 ) = q ± (o-).
Hence they can be expanded into Fourier series

q ± ( o ) =  E  qv
±  exp(2ynio-/a0 ) o- eE ± .

v= - so

The sets H ( )  a re  analytic subsets of 1P e D [M ]ly 9(P)E ±}  and expressed with
respect to the  coordinate system (s, t)  as graphs

H(E±)= {(s, p ± (s))1seY ± }

where p ±  (s) = q ±  ((p ± ) -  (s)) by Proposition 12.4. The functions p± (s) have period
a0 , since (p ± ) - 1 (s + a0 ) = (p ± ) - 1 (s) + cto  and  q ± ( a )  have  period ao . (This is also
clear by the fact that H ( )  are invariant under T.) Hence p ± (s) can be expanded
into Fourier series

COpt(s) .= E exp (2y7ris/a 0 ) Im s > L" o r  Im s < — L".
V = - 00

Proposition 12.6. W e can choose a solution A (s) of  (12.4) (and hence
in such a  way that

= 0  for y  <  0  a n d  q,7 = 0  for y > 0.

(ii) Pv+ =  0  for y <0  a n d  p ; = 0  for y > 0.

We note that (i) is equivalent to the condition: q + (a) [resp. (a)] tends to
a  finite value when Im a + co [resp. Tm—  cc]; a n d  that (ii) is equivalent
to the condition 13+ (s) [resp. (s)] tends to  a  finite value when Tm s +  co
[resp. Tm s —  o c ] .  Since E ± and g' ± correspond conformally and Im a —> o o
if and only if Im s ± co, the conditions (i), (ii) are eqivalent to each other.

To prove Proposition 12.6, we start from any solution A(s) which exists by
Lemma 12.5. We shall construct a  new solution ;1(s) required in the proposition
by modifying A(s).

We decompose p ±  (s) as follows :

P+ (s) = P +- (s) + Pô + (s)

P -  (s) = PI (s) + Po-  +  p i  (s)

where we set

(s) = E p :  exp(2yEisla 0 ),
v<0

(s) =  E p : exp(2ynis/a 0 ),
v> 0
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P 1  (s) = E p, exp (2vnis I ao ) , Pt (s) = E p exp (2vnis/a0)-
v < 0 v > 0

Here, it is important to observe that the series which define pt (s) and p  ( s )  are
convergent for all s e C . W e  regard them as entire functions with period a 0 .

We define a  new solution of (12.4) by

;1(s) = 2(s) + p +_(s) + p (s)s e a.
Let

0.* = tfr (P) — "L(P (P)) D [ I ]) ;

4±  (0) = (H ()) (a e );

(s) = 4 1  ((13 ± ) -  1  (s)) (s G 9  ±).
Then,

Hence

4± (o-) = q ±  (o-) — pt (cp(H (o-)) — (H(o-)) (a e I ±).

 

4 + (0) = P + (P+ (0.)) — Pt(P + (0) — P -T(P+ (a))
=p + 13 -4E-(P+ (c)) P -T-(P+ (Œ))

)6 +  (s) = p + (s) P --F (s)

= Pô + exp (2wris I a 0)

Similarly,

v= 1

(0) = P (P -  (a)) — Pt- (P -  (u)) — PT- (P- (0)
= Pô + P -1 (13 -  (0) — (P-  (a))

(s) = p +  p 1 ( s )  p t  ( s )
CO

 

= p +  E (p1, —  p v) exp ( —  2wris I a 0 )
1

Thus ;1(s) has the required properties and Proposition 12.6 is proved.
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