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tion, we assume that
6.3 0<k<l, 0<a<k+1,
(6.4) t=k+1+m(+1), c=m+(k+1)/(l+1).

Lemma 6.1. The eigenvalue problem (6.1) can be solved. The smallest eigenvalue

w(n) and the corresponding eigenfunction v(x; n) with SQ lv(x; p)|*dx =1 satisfy the

following :
(I) For any a>0 there exists a constant C, independent of a and v such that

(6.5) wm=Cillog 9)*  if 927

for a sufficiently large 1,>0.
(Il) For any fixed positive b<a we see that

(6.6) IimS [u(x; 9)|*dx=1.
n=o JLp

Proof. Consider the Dirichlet problem
(6.7) L v=F, vlae, =0,
where £,=A+f(x)7*. For u, veC7(L2.) we have

(6.8) (Lyu, v)=Du, Dw)+(x{Deu, x1Dw)+(hDoyu, Dov)+(fn*u, v).

Let 4 be the Hlibert space that is the completion of C%(2,) by the norm |ju] 4=
~(u, w)g. Here (u, v)sx denotes the right hand side of (6.8) and it is the positive
Hermitian form. It follows from the Poincaré inequality that [u]ieco,;<Celulls for
any u€ 4. Since .L, is elliptic in a neighborhood of 92  and subelliptic in 2, there
exists a Green operator &, from %' onto 4 such that .£,G,=I in %' and G,.L,=]
in 4, where 4’ denotes the dual space of 4. Furthermore, ¢, is a compact positive
Hermitian operator in L%*Q,) (see Mizohata [5, Chapter 3]). We shall show that the
smallest eigenvalue p(%) is given by

(6.9) pp=inf (L0, v)/(gv, v)>0.

vECT (Rqe)
V#£0

The positivity of the right hand side follows from the Poincaré inequality. Since
C3(RQ,) is dense in L%(2,) we have

p)™'= sup (G,8G,u, w)/(G,u, u).
uECTRq)
u#0

If H=g;?gg;/* then we have
u(n)'= sup (Hw, w),

weCH (Rq)
lwl=1

because the image of g;/* from C%(£2.) is dense in L*2,). Take a sequence {w;}C
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C%(L2.) such that |lw;|=1 and (Hw;, w;)—pu(y)"'. Note that
0= 1 Huwy— pn)” ",
=[Hw;|*=2p(n)"'(Hw;, w)+p(n)* —>0  (j—o0).

We see that ¢,g6;/*w,—a}/*w,/p(9)—0. Since G, is compact and {gg}/*w;} is a bounded
set in L*#,), there exists a subsequence {w;,} such that {gG,gg;*w;,} is convergent
and so {g;*w;,} is also convergent. If v0=,leim Gy*w;, = L*2.) then we have p(7)@,gvo

=v, and v,#0 because &, is positive. Therefore, .£,v,=p(n)gv, and volae,=0. For
the proof of (6.5) we set

(6.10) Q,={xeR*; 1/2< x,(log 9*)P <1, 1/2< x,(log 9?0< 1},

where p={k+1+m(+1)}"' and ¢g=(l+1)p. We see that 2,C82,,, for a large 7>0.
It follows from (6.4) that

f(x)1;2§2, g(x)g4p—(k+m+l)(]0g ﬂ)zp—z in ‘Q” .

Since h(3(|x.] —a)/a)=0 on £,, the right hand side of (6.9) is estimated above from
the constant times of (log #)*-*” multiplied by

inf ~ ((Di+(log n*)~**'Di+2)v, v)/(v, v)=0((log 7)*"),
vECT (24
V#0

so that we obtain (6.5). Since v,=u(x; %) belongs to C7(2.) we have

(£ a0 v Z| ) (1D 154 61 Dav, P4 ()72 v, 1*) dx

26, 11Dy " +exp (=1/x 1977 v, [ dx
21

where 2,=2.N{| x| Zb}. Since a(x,, §&)=8+exp (—1/|x,|")n* and W(x,)=2"*(log »)*/*
satisfy the condition (4) of Theorem 1 we have

Cottn)2 p(nXgvy, vr)Zcilog | [0, 17dx

In view of k<1, it follows from (6.5) that lim SQ lv,12dx=0. If Q:=02.N{|x.|=b}
1

N0

and 2,,=2,N{|x,| =(log »)~'/¢*+>} then we have

(L vy, v,,)zc{,’ggz{ | Dy |2 4exp (—1/1 2,1 )n* v, dx

2
;c{{nggzlllvql dx,

so that lim Sg v, 17dx=0. If 2(x)=h(xi(log 7)"/**) then
o0 Jig
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(L yXvy, X)) ZL‘A’SQZ{ | DiXv, |*+exp (—1/[ x| )n*[Xv, [* dx

>¢,(log n)*"SQZIXv,,lzdx .
Here the last inequality follows from Theorem 1. Since
(L vy, Xvy)=p(n)gvy, Yvy)+Re ([, v, Xv,)
< Cap(n)log n) **/ D4 Cl(log p)P/k+

we see that limsq [Xv,|*dx=0. In view of 2,\Q2,=2,UQ, we obtain (6.6). Q.E.D.
o0 J8y
Proof of Theorem 7. Suppose that L is hypoelliptic in some neighborhood £ of
the origin in R* It follows from the Banach closed graph theorem that for any
integer »>0 and for any open sets wGw’'C {2 there exists an integer »' >0 and a con-
stant C satisfying
(6.11) IDiullecr=Ct 5 1D Lullizcos +Nulizecost  for any ue Cxa@").

fals

If w,={xeR*; |x;|<a} for a sufficiently small ¢>0 and if

Uy (x)=exp {+/ () xs+inxv(x,, x5 7).

for u(xi, x,; %) in the above lemma, we have Lu,=0 in w,./,,. Substituting u, into
(6.11) with w=w.,,"\{x,>0} and w'=w,.;;, by means of (6.5) and (6.6) we have 0<can"
<C'yp* with p=C}{"*a/2 if 5 is sufficiently large. If we choose r=p then the estimate
is absurd for large ». The proof of Theorem 7 is completed. Q.E.D.

Remark. As stated in Introduction, the other hypothesis 0<A<min (k+1, (+1)
(resp. 0<k<1 under the condition ¢=1) seems to be necessary because it is necessary
for the operator frozen with respect to the variable x,#0 (resp. x,#0). In fact, for
example, the operator frozen with respect to x,#0 is equal to D+ x? D34 x2*D?4
exp(—1/|x,|*)D? after the change of the scale. We can construct the solution uy(x)
= exp (v p(n) x;+inx)v(x,) contradictory to (6.11) by considering the eigenvalue problem

{ {Di+ exp(=1/| x| )ptlv=xPpu(n)v  in (—a, a),
v=0 on x,=+a,

where s=min (/, k) and j=2 or 3 according to s=/ or =k.

7. Proof of Theorem 8

In the proof of Theorem 8 we may assume that f(0)=0 by taking the change of
varibles, otherwise,

,
Zg
]

=xp (=1,2), x3=x;+f<o>5 2t .
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We may also assume that @, f and g are bounded because our consideration is local.
At first we shall prove the theorem in the case when a vanishes infinitely at the
origin. Then we may assume that «=0. As in Section 5 we set for a real 3 (not
always positive)

Y, =D+ f(x1)g(x2)n , Ly,=Di+a(x,)’Y;.

Noting that for an integer 2>0
7.1 P¥P,=(D,+ixta’Y )(D,—ixta®Y ;)

=D+ x*a'Vi+ixta’ [V, Di]—(kxi"'@*+2xfaa’)Y ,,
for any compact set KCR? we have

Ha¥(xtfgntv, vISCx(Ly, v), veCy(K).
In fact, this follows from

[(kxt'a?+2xtaa)Y v, )| SCk(laY pl*+vl*),  veCTK)

and the Poincaré inequality
(7.2) IIP< Cx I DS Cu(Lyp, v),  vECTUK).

Here and in what follows we denote by Cx different constants depending on a fixed
compact set K. If we also consider (7.1) with P, replaced by P} then we have with
k=1 or 2

(7.3) (latxtf'gnlv, NS Cr(Lyv,v), vECTK),

because x*f’(x,) has the definite sign if we choose & even or odd, suitably. If follows
from (7.3) that

(7.4) Cx(Ly, 0)ZIDwl+llaY pl*+(la’xif'gnlv, v),  veCHK).

From now on, for the proof of the theorem we shall show that for any s>0 and
any compact KCR? the estimate

(7.5) la(x)(log |7 5 WI*S(Lyv, v)  for ve CT(K)
holds if |9|=7(s, K) for a large 5(s, K) (cf., Lemma 5.1).

In order to make the idea clear, at first we shall prove (7.5) assuming g(0)>0.
Since (26) still holds with f' replaced by a®(t)t* f'(t), in view of (7.4) the estimale (7.5)
is a direct consequence of

Lemma 7.1 (cf., Proposition 3.1 of [4]). Let a, reC>(R") satisfy r(0)=0 and
(7.6) a(t)>0, 7(1)>0, ta’(£)=0 if t#0.

Furthermore, assume that

7.7) ltizrollta(t)l |log 7(1)|=0.



Estimates for Schriodinger operators 365

Then for any s>0 there exists a (>0 such that for any usCHR') with suppuC
{l|x| =1} we have

(7.8) UD*HCr(o)bu, u)zs(a(x)*(og {*u, u)  if £=Ls.

Proof. Set a(x, §)=&+V(x) with V(x)={7(x) and W(x)=sa(x)*(log {)* for s>0.
The direct application of Theorem 1 does not work when a vanishes infinitely at x=0
(see Remark 1 below). We have to return to its proof. It follows from (7.7) that for
any s>0 there exists a d(s)>0 such that

7.9) 0 —|xla(x)log r(x)<1/s if |x|<d(s).

For the brevity we assume that a(x) is even function. Since a(x) is monotone in
[0, o), for any >0 there exists a unique positive root x; such that

(7.10) sa(xg) log {=x7'.

We may assume that x; is smaller than d(s) if  is sufficiently large. It follows from
(7.9) that if x(<|x|<d(s) then

7(x)¢= exp{log {+log r(x)}
= expilog {—(s|x|a(x))'}=1.
Since 7(x)=¢s>0 on {0(s)<| x| Z1}, we see that
(7.11) 7(x)X=1 on {x&R'; x;=|x|<1},

if £{={, for a sufficiently large {,. Divide J=[—1, —x¢]\U[x¢, 1] into four congruent
intevals J, (k=1, ---, 4) and divide each J, into two congruent intervals. We repeat
this cutting until the decomposition J= 31, satisfies

(7.12) {r<(diam 1,)2,
Then we have {'*=(2diam [,)"%. If follows from (7.11) that

(7.13) Vx)=¢ on [, if { is sufficiently large.

If Ke=[—x;, x7] and if ueC5({|x|<1}) then we have

(7.14) 2a(x, Dy, u)gg ‘leu(x)|2dx+S V@)lux)|*dx
KO Ko

+3 Sl IDu(x)|2dx+Sl‘V(x)| w(x)|?d x
EQ0+ Z‘Qv ’

where K% is four times dilation of K,. It follows from Lemma 1.1 that
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Q(,zcgh, [5 {(diam K,)*] u(x)—u(.v>12+v<.v>|z«<y>\2}d,v}/\1<o|dx
oL K,

Z¢'sa(xP(log O lu(x)|*dx

| u
Ky
because of (7.10) and (7.13) with [, replaced by K¥\K,. By means of (7.12) and (7.13)
and Lemma 1.1 we have

.szc”c*ﬂg, ()| *dx .

Summing up above two estimates, in view of (7.14) we get the desired estimate (7.8).
Q.E.D.

Remark 1. We can apply Theorem 1 directly if the condition (7.7) is streng-
theened to
7.7 l{ino1 [ta(A)] |log r(t)| =0

with a sufficiently large A>1 which depends on the modulus of the dilation B** in the
condition (4).

2. The lemma still holds with 7(x) replaced by 7(x)sin?l/x. In fact, since {'/*=>
(2diam /,)"* we see that sin*(1/x)=C{ '/ on a half of /.. Consequently, it fqllows
from (7.11) that

(7.13) m({xel,; V(x)=£"*H=1/2]1.]
Using this instead of (7.13) we get the same conclusion.
In the case when g(0)=0, the estimate (7.5) is obtained from the following lemma

because Y, can be regard as if D,, as stated in the proof of Theorem 5 (see (4.11) in
Section 4).

Lemma 7.2. Let a, ¥ be the same as in Lemma 7.1 and let g(t)e C(R') satisfy
(25), g(0)=0 and g®)>0 if t#0. If V(x)=L7(x)g(x:) and if Ii={xeR*; |x;| <1}
then for any s>0 there exists a (>0 such that for any ueC3(l,) we have

(7.15) ({Di+a(x 2 Di+V()u, u)Zs(a(x)*(log OPu, u)  if £={;.
Proof. 1t follows from (25) that for any s>0 there exists a ;>0 such that if
{={; then
(7.16) g(x)f=1  on {(slog )'=|x.| <1}.
If x; is the same as in the proof of Lemma 7.1 and if y;=(slog {)™' we set

o={xely; | x| <xz}
and
w={x&ly; | x| <yl
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Then I,\(w,\Jw,) is composed of four congruent rectangles. We divide each rectangle
into four smaller congruent rectangles. We repeat this cutting procedure. Let I,=
QiXQ; (CR: XR;,) denote one of congruent rectangles on some step (, that is,
lo\(wlu(z)z):&le,). We repeat the cutting and stop it if /. satisfies

7.12) g <(diam 1,)"2 .

Then we have '/?*>(2diam /,)"%. Noting that diam [, is equivalent to diam Qj with
J=1, 2, by means of (7.16) and (7.11) we have

(7.17) V(x)={® on [, if { is sufficiently large.

We also divide &, w, (and @, w,) into congruent smaller rectangles as follows:
o o=\ [, Jw=[—xg xIXQ
@0 =\) Jor, =0 X [—ys v2]

where the diameter of Q) (resp. Q%") is equal to that of Q3 (resp. Q%). Set K,=
w;Nw, and let K¥ denote four times dilation of K,. If ueC%(l,) then we have

(7.18) AU D4 a(x )P D3+ V (x)tu, 1)

2| (1Dl laGe)Du V(e dx

+3), et 3]

I,

{-}dx+§§ {-}dx

‘,Ix«’ v

=0,+ ;Q,Jr ;Qwr 20,

+
J3

where [, =[—2x: 2x:]X Q% and J3..=Qy" X[—2v;, 2y:]. If follows from Lemma 1.1
and (2.17) of Lemma 2.1 that

(7.19) QochKO[S {221 u(x)—u(yy, )]

Ko\ @y my)

+a(y)?ye®lu(y,, xz)—u(y)lzﬂ-‘f’(y)lu(y)lz}dy]/lKoldx

Zc'satxolog O] |u(x)'dx

because of (7.10) and (7.17) with I, replaced by K*\(w,\Jw,). Exchanging the order
of D} and a?Dj} and noting that (diam Qy")*~{'/* we also have

(7.20) Q,,,,_Z_CS [\ {aCx)ve? | u(x)—u(xy, )|
Joyn= ng\‘”z
0 s, ) —uD V)3 |/ el dx
zc'saogc)ﬂ laCx)u(x)|%dx .

Joy



368 Yoshinori Morimoto

Similarly we have

(7.21) Q.. =c"sa(x)*(log C)ZS lu(x)|*dx .

Iyt
(7.22) 2.ze0r| junldx.

Summing up (7.19-22), in view of (7.18) we obtain the desired estimate (7.15). Q.E.D.

Let 2(t) be C=(R') function such that suppXC{|t|=1}. Then, by substituting
A(x,/0)v into (7.5), in view of (7.2) we see that for any 6>0, any s>0 and any compact
KCR? there exists a 5(d, s, K)=1 such that

(7.23) [dog|plHX(x /owIP=(Lyw, v)  for veCHK),

provided that [9|=%(d, s, K)(cf., Lemma 5.2). We remark that if compact set K of
R® is contained in {|x,|=6d} for a 0>0, then for any ¢>0 there exists a constant
C=C(e, k) such that

.(7.24) I(log Mul*<e(Lu, w+Clul?, ucCHK).
In fact, it follows from (7.23) that

[(log (| Ds| +Dull*se(Lu, u)+Clull?, ueCy(K).
This yeilds (7.24) because we have with a ¢;>0

(7.25) 2Lu, Wz |Dwu|*+laDeull*—(suplg|)llafDsul*
Z||DyulP+coll DaulP—C4 I Dyull?,  ueCy(K).

The formula (21) in the region {|x,|+#0} is clear by means of (7.24) and Corollary 2
in [10].
To consider (21) in the region near x,=0 we prepare the following:

Lemma 7.3. Let ¥(&)ES?, satisfy 0<X<1 and suppAC{|&'|=08,|&|} for a §,>0,
where &'=(&,, &). If K is a compact set in R® ana if 6>0 is sujficiently small then
there exists a Cy such that

(7.26) la(x)| DIXDu|* < Cr(Lu, u)
for ue CYK) satisfying
(7.27) suppucC{|x,| £448}.
Proof. Let X, (§)e Sy, satisfy 0=<X,<1 and suppX.C{|&|=0,1&:1/2}. Since the

first inequality of (7.25) holds for any u<S and f vanishes infinitely at the origin, by
substituting Xo(D)h(x,/40)u into (7.25) we have

2(Lu, w)Z [ DXo(D)ull®+ & DeXo( DYue|f?
—C{ollah(x,/40) DaXo(D)ue[|*+ e ||?} .
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Here h(t) is the same as in Section 5. If 6>0 is sufficiently smaller than d, then we
have

2(Lu, W)z21/2{| DXo(D)ul*+ la DXo(D)u |t — C” [[ulf®

for ueS satisfying (7.27). Since (5.1) still holds, from (7.28) we obtain the desired
estimate (7.14) because of ||D,u|*<(Lu, u). Q.E.D.

We shall prove that if p,=(0, (0, 0, +1) and if ve&’ then

(7.29) 0 EWF Lv implies p,&EWF v.

As in Section 5, for a sufficiently small >0 we define @s(x) and ¥4é) with xeR*
and £=(¢&’, £&)ER* replaced by x&R® and £=(&, &)=R®, respectively. Then the
implication (7.29) is obvious, if we show Lemma 5.4 for the corresponding {¢;}, {¥;}
to those ¢;, ¥s.

We shall derive (5.16) in the present case, assuming K ={]|x;| <4d}. Recall (5.17),
that is,

(L, @) (D=L, @()]¥ (D) +,;(x)LL, ¥(D)].

We see that
Re([a®(Do+ fgDs), @(x)]u, @i(x)u)

<(CN)2|aul? for ues.

As in the proof of Lemma 5.4, for a moment we denote by the same notation C
different constants independent of N, M and s. Therefore,

(log M*)* Re([@*(D:+ fgDs)*, @i(x)]¥ (DY, ¢;(x)¥ ;(D)u)
S(CNYHli(log MH¥ (Dyau|*+(log M| [e, ¥ ;(D)l[uf*} .
Using (7.5), for any s>0 we have
[(log M ¥ ;(D)aull*< Cll(log | Ds|*)h((M | D3| —3)/20)au|?
<C(Lu, u) for ueCyK),

if M=M, for a large M;>0. Since (5.1) still holds (cf., (7.2)), by means of (5.13) we
see that

(log M*PI|[a, ¥ ,(D)]ulf?
S(log MM - Cx(Lu, u)+C:N***M=*|ul®}, ueCHK),

if logM*=CN. Therefore, if log M*=CN and M is sufficiently large such that
(log M*)*M-'<1 then we have

(7.30) (log M*) Re ([a¥(Do+ f g Ds), 01% u, o u)
S(CNY{(Lu, w)+C, N> M ~lu|*} =0, ue=CHK).

Note that
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(log M*)* Re (LD}, ¢s(x)]¥ (Dyu, ¢(x)¥ (D))
S(CNY(log M |X(x1/ 0¥ (D)ul®
S(CNYHlIAog | Dy HA((M =] Da| —3)/200X(x1/d)u |*
+(log M*PII[X(x,/0), ¥ 5(D)Jull®},

where X(¢) is the same as in (7.23). Using (7.23) and (5.13) to estimate the first term
and second one, respectively, we obtain

(7.31) (log M*? Re ([ D}, ¢;(x)J¥ (D), ¢ (x)¥ (D))= 2, ueCH(K),

if M satisfies the same condition as in (7.30). From (7.30) and (7.31) we obtain (5.23).
On the other hand, since coefficients of L are independent of x,, by noting the form
of ¥'; we see that

(7.32) (log M*)* Re (p,(x)[L, ¥ (D)]u, ¢;(x)¥ ;(D)u)
< C(log MPP{N NaXo(D)ul>+N>(laa’ | Xo(D)u, Xo( D))
+N¥(ala” | +a"Xo(D)u, Xo(D)u)
+NMHu P4 Co N2 M =2},
where X, 5}, satisfies
suppXeC{201&1 2 1§'1201&: 1 IN{2= 16, 1/M <4}.
Note that the assumption a=0 implies [a’|<C+a and that (vVaNP<aN2+(aN?)?.
If log M*=CN then it follows from (7.32) that
(7.33) (log M*)? Re(p;(x)[L, ¥(D)u, o;,(x)¥(D)u)
S CN*{(log M*)'llaXo( D)u|?

+(14-(log M*Y'M D ul*4-Co N2+ M == u |2},
because we have

(aXout, Xou)Z(log M laXou|*+(log M*)-2|lu]®.
By means of Lemma 7.3 and (5.1) we have
(7.34) Xoau|2<CM 2| | D Xoau|?’<CM~*(Lu, u) for ueCy(K).

Using this to estimate the first term of the right hand side of (7.33) we get (5.26) if
log M=CN and M is sufficiently large such that (log M*)*M -'<1. Since (5.23) and
(5.26) still holds we obtain (5.16). "Therefore, we get (7.29) if p,=(0, (0, 0, +1)).

The implication (7.29) for po=((0, Xos, Xo3), (0, 0, :£1)) With (xg, x0)#(0, 0) is ob-

3
vious. In fact, Lemma 5.4 still holds for ¢;(x) corresponding to ¢s(x)= Hl h((x;— x,;)/0),
je
where x,=0. In view of Lemma 7.3, the preceding argument also yields (7.29) for
00=(x,, &) with £(0, 0, £1) if we modify ¥;&) to correspond to the direction &,.

Thus the proof of Theorem 8 is accomplished when «(x,) vanishes infinitely at the
origin.
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In the finite vanishing case, the above arguments can be carried out until (7.32)
(without serious change). Instead of (7.32), we employ

(7.32) (log M*)2 Re(p;(x)[L, ¥ {(D)]u, @;(x)¥ (D)u)
= C(log MePEN Y Xo(D)ul?+Cs NP+ M =5~ u |2}
If a vanishes of order [ at x,=0, by the well-knowun Hérmander theorem we have
D M PulP< Cr(I Dl +lla(x)Deull®)  for ueCH(K).
This and (7.26) give
(7.24) [Xo(D)ullP S CM -2 <+D| | D [1+DL(D)ulf?
SCM MY (Lu, u) for ueCyK).

By (7.32)" and (7.34)" we get (5.26) and hence (5.16) in the finite vanishing case. The
rest of the proof is the same as in the infinite vanishing case. Now the proof of
Theorem 8 is completed.

To end this paper we state a conjecture about the assumptions (25) and (26).
That is, (25) and (26) seem to be close to necessary under the additional condition that
f’ and g are monotone in (—oo, 0] and [0, o). For instance, as for (26) we consider
a little weaker condition as follows: For a positive k<1 we have

(26)’ lim ta(xt) log | £'(5)| =0,

Suppose that (26)’ does not hold. Then, without loss of generality we may assume
that there exist ¢,>>0 and a sequence of positive numbers 1>¢,>¢,>--->t;—0 such that

(7.35) | f't)] sexp{—eo/t;lalat;)|}  (cf., (1.5) of [4]).

If we take the change of variables x;=y; (=1, 2) and x3=y3+f(yl)g:2g(t)dt then the

operator L of Theorem 8 becomes '

(7.36) a(e ) DDy — (x| gOdtDoY,

where x denotes the new variables instead of y. Let {; be a positive such that

(7.37) tilakt;)log {i=¢,.

Then £, tends to oo as j—oo. For each {; we consider a small box in T*(R. XR.,)
Bi={et;=x:=t5, | x| £1/2, 161 S1/2(0—k)ty, 16,851 =1/2} .

Since f’ and a are monotone in [0, o), it follows from (7.35) and (7.37) that on ﬁjz
{x2; |x.] 1} X B; we have

(7.38) &= £ g ®digs] /1 ax)]

S HCLPEDIEH Lalkt))]
<C’logg;.
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In view of (7.38), the operator L of the form (7.36) might be seen “hyperbolic” with
respect to D, on éj in a certain microlocal sense (see also Introduction of [12]). We
might expect the propagation of wave front set along the null-bicharateristic curve of
D, passing (0, (0, 0, {;)eT*(R*®), and hence L might be not hypoelliptic in a neigh-
borhood of the origin. The similar consideration can be done to the assumption (25)
without the change of variables.
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