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Equations of evolution on the Heisenberg group II
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1. Introduction

I n  [0 2 ]  w e have discussed th e  well-posedness of C auchy problem fo r p-
parabolic operators on the H eisenberg  group. In  th is paper, w e a re  concerned
w ith  th e  well-posedness fo r  th e  hyperbolic operators o f  h igher order on the
Heisenberg group W. N am ely, w e consider the following operators:

P = Or' + E
where a;  a r e  th e  homogeneous right invariant differential operators o f  order j
on W . O u r  q u e s t io n  is whether the  hyperbolicity of the  operator

n(1 ) (C)) = (K)m  + n(aMiCr - i

=1

for every non-trivial irreducible unitary representation it on the Heisenberg group
implies the well-posedness for the Cauchy problem for P.

F o r  th e  p-parabolic operators, th e  corresponding problem  has a positive
answ er. ([0 2 ]). But for the hyperbolic operator we know that the problem as
above has no solution unless some extra conditions are im p o sed . O ur m ain re-
sult says that if Fourier transform of imP6 is strictly hyperbolic of non-degenerate
type, n(P(C)) is hyperbolic ty p e  a n d  it satisfies som e commutativity relations
am o n g  its  coefficients for every irreducible unitary representation it o n  t h e
Heisenberg group, then there exist a  neighborhood U  H" of the  origin and a
positive number T such that for any f  e  Co°((— T, T) x U) with support in It 01,
there is a solution u(x, t) e g'((—  T, T) x U) such that

Pu = f  in ( —  T, T) x H"
isupp u [ 0 ,  T ] x H".

W e say briefly that the Cauchy problem for P  is  solvable a t  th e  origin if the
above property holds.

To m ake a situation clear, in the last section, we shall give several exam-
ples. W e  note  th a t th e  idea o f the  characterization o f operators having some
property by such im plicit conditions goes back  to  V . V . Grugin's one in  the
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study of hypoellipticity. For the wave equation on the Heisenberg group, there
are  the related works [N ] a n d  [T].

2. Statement of results

Recall that the 2n + 1-dimensional Heisenberg algebra h„ is  the Lie algebra
with generators i = 1, n, X 0 satisfying the commutation relations

[X , X i] = • J () , X0] = X0] = 0.

The Heisenberg group fl"  is  the unique simply-connected L ie group having h,,
as its  Lie a lgeb ra . T he group H" has a  group of dilations {Sr } defined by

.5,.(X ;) = rX  , (5,.(K ) = , 6,.(X o ) = r2 X 0 .

W e shall use exponential coordinates
( x ,,  x ,,,  x 0 )  e R 2 1e x p  (x'X ' + x"X" — x 0 X 0 ) .

Hereafter, as a set we identify the group H" with its corresponding Lie algebra h„.
L et H " =  R " 0  R " R  a n d  w e le t (x', x", x o )  denote the  components of a

vector x  in W . T h e n , th e  bracket operation is given by

[x, y] = (0, 0, <x", y'> — <x', y">)

and the formula for multiplication is

1
x •y = x  +  y + —

2  
[x, y] .

We consider the  operators of evolution o n  H"

P = +  ET=,
= „>=., c,x / 5

where /—  1111C1 E  R, <I> = N  + (times of 0  appearing in  I = (i 1 , iN )) and the
right invariant vector fields

= x i ,... x iN :

a a a a x f  aX0 = x • =  —   x_•— +   =ax oa x . ; 2 ax oa x ; 2 ax o

There are two classes of irreducible unitary representations, a s  follows from the
Stone-von Neuman theorem:
(1) A  family o f  1-dimensional representations which map X0 t o  0. They are
param etrized  by  = e R2 ", and are  given by

x", xo ) = ex '4' " r )E R 2 " ,

ir4(X i ) = /—  1 ,i r 4(X _ i ) = — 1 ',i t ( X 0 )  =  0 .
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(2) A  family parametrized by A e R\{0} acting on L 2 (R )  which m ap X ,  to  a
nonzero scalar. They are  given by

PrA(x', X " ,  Xo)v] (Y) = e i A " x " . Y > - x ° + < " " > / 2 ) V(y x') fo r  v  L 2 (11"),

=  , nA (X _ i ) = .1— lAy i , nz(X 0) = — 1 A

We introduce the following two generalized symbol of P, according to two
family of irreducible representation o n  H": for e C, a n d  e R 2 ",

= (iC)m + 1Y a i)(i) m - i

a n d  e C and  A e R \O,

MC, A) = (iC)m + nz(c())(iC)m - i : 5 (14 ") Y(Rn) •

Denoting the Fourier transfomation of u with respect to the variables t, x by 6,

<1,0+ < x' ›+ < 4 " . x " > - A x o )
U(t, X)CitdX

x  H.

Let us denote the dual variables of t, (x', x"), x o b y  T, = n ,  A, respec-
tively. W e  s h a l l  assume the following three conditions on these symbols:
(H-1) All roots = ( J O  of the characteristic equation

Png, =  0

are real distinct if = e R 2" \O, and if a root çio takes the value 0 at some
point 0 0, then the roo t Cio  is identically zero,
(H-2) For a n y  e {C e C; Im < 01 and any A, AI = 1, the operator .9G, A) and
Y*(C, A) are injective on the space .91R") and
(H -3 )  The symbol p(C, is real-valued and  the  commutator

[ 9 (C, A), acY(C, A)] =
if E R  and  A = +1.

Now, w e can state our m ain result.

Theorem 2.1. Suppose that the conditions (H-1)-(H-3) hold. Then, the Cauchy
problem for P  is  solvable at  the origin.

For the well-posedness of (1.1), it is necessary that all the root of pm g, = 0
are real, which is almost a n  immeadiate consequence of Lax-Mizohata theorem.
The condition (H-2) is also necessary for (1.1) to be well-posed. This is essentially
proved in Theorem 1 of [O s ] (c.f. § 7 ) . On the other hand, the non-zero condition
of the roots of pm(, =  0, except at most one root, is necessary in  our formula-
tion. W ith o u t  th is  condition the m odified statem ent is not tru e . In  fa c t , we
shall show tha t there  a re  operators which satisfy all th e  o ther conditions but
for which the Cauchy problem is not well-posed.
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3. Estimate—elliptic type

W e  sh a ll u s e  t h e  sa m e  n o ta t io n s  a s  in  [0 2]. D enoting the Fourier
transfomation of u w ith respect to  the variables t, x  by

= f
x)dtdx ,Rx H.

( t 'C>+ <4 . ) 4 - <4 ' •x" ) -  - t x°) u(t, 

the  symbol p(C, c, A) =  P6 is  a  quasi-homogeneous polynomial in C, and A of
degree m and

MC, /1, )  =  op A. (p (C , •  , f l ,

where

op, (a)f(x') = (2 7 ) ' ei<x— Y'•"'>a(C, 2( x '  +
2 1,f ( y ') d y 'd n ' .

The quasi-homogeneous of p implies

g g , _ mcil 21 1/2, + 1) 1,11m/2g +  (VA1112)

We recall the some function spaces, introduced in  [M ] . F o r  a  non-negative
integer k, Bk will denote the closure of .91H") in the n o r m  f  Ilk =  max I DOEJI.
di' is the space of distributions u E  Y'(Hn) such that there exists a positive integer
k for which qu e Bk' for every polynomial q(x) on  W . I f  (L )T  is  a  sequence in
d i  and u E di, then we say that u ; tends to  u  on  d i  if and only if one can find
k so that qui , qu e Bk'  for all j  and qui  q u  weakly in f fk  when q is a polynomial.

For s e R ,  e F and it > 0, let us denote by H (R ) the space of distribu-
tions u e ,r(12") for which Asu e OR"), where A s means that

Asu = +  I 4 12 
+ 

(I
px12 121,12)}4214

and we write II A suILL2( R.) =
First, we assum e a stronger condition (H-1)' than (H-1):

(H-1 )' the  characteristic equation

Ang, =  0

has non-zero real distinct r o o t s  (  =  ( g ) ,  1  j  m  if e  R ' \O.
W e shall construct a param etrix op, (q) o f  op, (p) = g(C, 2) w h e n  E E .

Here E

= 14' e C; Re 4' = — 0 Im C, Im —El , 0 e R

Lemma 3.1. Assume (H-1)' is satisfied. For any  0 e R  and any  positive num-
ber e ,  there are positiv e constants C  an d  COE s u c h  th at  if  e Fo ,„ 121 1 and

11 112C I A ' ,  then

1P(4', 2)1 C-1  {1C1 + ( 1 + 11 + 1/11"2)}m
and
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10 ,z(l/P)1 c.{ICI + (1 +I  +1 ,11'12)}-111/1p1
f o r any  multi-index a.

Pro o f . Since the principal symbol o f p  is p m ,  th e  quasi-homogeneity and
the condition (H-1)' yield to the assertions.

Let F be a  subset of C and it e R. Then we define the class S. which consists
of the functions a(C, such that
1) a(CO 3 e  C (R 2 ) for any fixed Co E F and
2) fo r any  multi-index a of dimension 2n, there exists a  positive constant C
such that

lEla(C, -121

for e R 2 n, where <<O> = (1 + K1 2 + 11 2 )1/2.
B y  th e  sam e argum ent in  the  section  4 i n  [0 2 ] ,  w e can  construc t the

parametrix of p. Let p i  -= ± 1).

Proposition 3.2. Suppose th at P  satisf ies (H-1)'. Then f o r an y  0 e R  and
any  e > 0, one can f ind g , e S7-07 such that if  e Fo ,„

p+ #g ±  — 1 e S , g± #p ±  — le  S7-07 .

Proposition 3.3. Suppose that (H-1)' is satisfied. T h e n  f o r any  0 e R, e >
and s E R, there is a constant C such  that w hen  e

C{11.9 ±(C)14 11 1 MUlls,C,1}

f o r any  u e 9112).

Proposition 3.4. Suppose that (H-1)' and (H-2) are  satisfied. T hen, for any
0 E R, e > 0 and s e R, there are constants C independent of  a n d  2 such that

s+m,c,IAI C 11•9(C,
and

C

f o r any  u e .?(Rn), e  ro ,, and 121 1.

Pro o f . By the  continuity argum ent as in  the proof o f  Lemma 5 in  [0 2 ],
we have s+m,,o, _r ClIg±(Co)ull 1 •

Multiplying both sides o f this inequality by lills+ m and  changing the variable y
b y  P 2 11/2, w e  h av e  th e  desired inequality. A s  fo r  th e  a d jo in t operator, the
inequality is obtained similarly.

Hence, for e v e r y  e C ,  — > .9  is analytic with values in L2 (12") except for
e F A R  = { I M  (th e  r e a l  line. B u t  i n  o r d e r  to  o b ta in  t h e  estim ate  in
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978 Takashi Okaji

—B — A log 1M, where A  and B  are positive constants, we m ust investigate the
behavior of ,q),- 1  w hen  Im  approaches to z e r o .  To overcome this difficulty, we
consider Y,(C)u = 0 a s  a  nonlinear eigenvalue p ro b lem . F or the  simplicity, we
may only consider the operator g',((), denoted by g(C ). By Proposition 3.4, we
can apply  the  abstract theory in  [L R ] t o  th e  operator In  fac t, since the
operator 5"(11") 9 1 1 2 ) is closable, we denote its closure in  /2(R") by  Ai .

By our hypothesis, n4 (a,,,) is elliptic. T h u s , f ro m  th e  result in  [R ], [S ], it
follows that there is a positive constant t o and a non-zero constant a such that
for ;1-„, = aA„, + To , the  domain of the  operator Am  is

= Itt e ,99 '(11"); xaDflu e L2 , for any  locl + Ifil ml
which we denote by .rt'm(11"). By the same argument in the proof of Proposition
3.4, w e see that (H-1)' and (H-2) implies (gm — C) l ex is ts  and

11(2in, — 0- 1 11L2 = 0 (1/KI) for C e r a s  C oo ,

where F  is  an  open  cone with vertex 0 in  C  containing (—cc, 0] such that

Im

Therefore, we can define the fractional powers of ;I'm .
It is seen that

o-Yg) +  t o = (1 + cm-iAignv ( mi rv ) 71,

Since Api 1 i s  a com pact operator,

Y(C);1-,;,1 = I + a com pact operator and

271;„1Y(C) = I  + a compact operator.

Hence g)(0 is a Fredholm operator in L 2 (R2 ) with index O. M oreover, w e have

Lemma 3.5. Y(C) - 1  is  a  meromorphic function in  th e  whole plane C
w ith values in Y(L 2 (R"), D(A m )).

Pro o f . To linearize ,9(( ) in we introduce the  system
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X  = D(;1- n- 1 ) 1 "1) x  D (A ' - 2 ") x • • • x x L 2 (R )

with domain

D(.91) = D(A m ) x  D()-1 '") x  • • • x  D (A -111")

since the  operator 4 21;iim is extendable to a  bounded operator o n  L 2 (R") for
any j.

It is seen that s i  — C is a Fredholm  operator with index = 0 for any C e C.
Hence the  mapping C — C)- 1  i s  meromorphic in  C  w ith values in .1)(X).
Denoting (s1 — = (b i i (C)), < ; , m ,  then  . 9 '  =  —b i ,m . Hence .9(C) - '  is also
meromorphic in  C .  From  Proposition 3.4, it follow s that all th e  poles {CJ }  lie
on  the  real line.

)-1 Q j ,k s ( )  5

k=1 g C.i)k

w here  S () is  holomorphic in  a  neighborhood of Ci  and

Qj,k = 
1

(j)k-ig(C)-1C1C
" 1

where ei  i s  a  sufficiently small positive number.

W e note that D(A m ) = D(2-4-„,) and  tha t if  u E D(A m )  a n d  Am u = 0, then u e
,9*(R"). We can realize the fractional power A-M- 1 /m as pseudo-differential operator
(c.f. [R]), so  tha t the above argument is also valid if we replace the base space
L 2(R n) b y  y t ok( R n

Theorem 3.6. Suppose th at (H-1)' and (H-2) are satified. For any  R  > 0
and any  k  e N, there are constants C  and N  such that

1114 11m+k,,1 N 11 ± ( ) 4 11k,&,1

if< R  and Im&. = — j7 < 0, = C/1.11 112 .

If the condition (H-1) is satisfied instead of (H-1)', p(C, 2) is  a polynomial
of order m — 1 w ith respect to and  the  terms of to ta l order less than m — 1
have the order at most m — 2 with respect to Moreover, Cs- i n(am _1 ) is elliptic
a n d  am  = O. T h e re fo re , th e  preceding argument, slightly modified, implies the
followings results.

Proposition 3.7. Suppose that P satisf ies (H -1 ) . Then for any 0 E R and any
8 > 0, one can f ind g e  S " "  such that if e Fo ,,,

g # p - 1 e S °4 7 .

Theorem 3.8. Suppose th at (H-1) and (H - 2 ) are satisfied. For any  R  > 0
and any  k  E N, there are constants C  and N  such that

N  11•9 ±(6 14 11k,e,1

R  and 1m  = <O, = /121112.

). ( k  is  a positive integer.) Summing up, w e have
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4. Estimate—hyperbolic type

In §3, we have constructed the  parametrix of p  in  th e  domain FO, E ,  which
enables u s  to  obta in  the  estimate in

e C; < R, Tm <  0} .

In this section, we shall prove an uniform estimate in the complementary domain

{C E C; ICIIIA1112 R,Im  < 0} .

More precisely, we work in  the  domain

F =  { e C; —Im B + A  log ICI} ,

where A  and B  are  some constants. Then, we have

Theorem 4.1. F o r  = C/111 112 ,  1m < 0 ,  th e re  are positive constants R  and
C  such that if > R , then

f o r any  u e

F or the  proof, we make some preparations. W hen it e R  and k  is  a  non-
negative integer, S'»k  i s  the  space o f C°3 functions a  o n  122 " w ith a  parameter

= a  —  i y e r satisfying the following inequalities: for any CZ, there exist positive
constants Ca such that

114a(C, CŒV>>4Y-
2

1' -1OE1

for any 4 E f ,  a n y  e R a n, and

s r ° = n FS .

W e recall the composition formula.

Lemma 4.2. A ssume that a e  S 'e  and b  e  S ' .  Then a # b E S " ' ' '  and

a # b {(io-(D4, Dn)/2)k a(, )b(C, ,

where a  is  the bilinear form  <x", y'> — <x', y"> on H".

Pro o f . L et g  be  a  Riemannian metric in  Ri":

= (d '2
y

Then the  result follows from Theorem 18.5.4 in  [H2 ].

Recall that p(C, 2 )  =

Lemma 4.3. Suppose that (H-1) holds. Then, one can find a positive constant
R  such that if  G  F, 11m CI > R121 112 ,  then
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IP(C, A)I C- 1 Y(ICI +11+1 ,1 11/2 )m - 1

and

loGe11(1/p)1 c0c'OE+,1 (oc + )6)!7-12+PI/Ipl

Pro o f . Since p( , 0) is strictly hyperbolic, p + = p(C, +1 )  is hyperbolic
i.e. there is a constant R  such that for e v e ry  ro o t  = /.4,, ± ( )  of p + = 0,

Ilin 11 ,±()1 R .

Since

19(V21112, A 2 11/2 , A/12 1112 ) = f i g /P , I112/ I L  ±W ai l I N

and for some large constant c > 0, if  11 > clA1 112 a n d  Ihn CI > 11/2 , then

(5 (1 1 + 12 19  , 5 > O

we see that if el/1.1112 a n d  1Irn CI > c121'12 , then

P(C, 2 11 C- 1  ya l 11 IAI h/2 )m 1
.

O n the other hand, if we choose R  large enough, in  the  r e g io n  O m  > RH.1 1/2 ,
< clA1 1/2 1, A ) does not vanish. Therefore, w e get the  elliptic estimate

stronger than the  hyperbolic estim ate . T his finishes the  proof o f the  first half
of the statement o f L em m a. U sing the inequalities:

p

( a )

et!p
<  C Im 1 -1

Œ
1 ,

  

and the  Fad di Bruno formula, we obtain the second half o f the  result.

Lemma 4.4. Suppose that P satisfies (H-1). Then one can f ind q +  e

such that

p+#g+ —  l e S (1:1 , g+ #p ± — 1 e

P ro o f . Let x(t, e  C ( R ' )  such that

{1
if t + 2

and oc, )= e lm  /R , /R )  fo r  R  is large enough. W e m ay consider the case
+ .  Let

g(C, =  1//g, 0/PAC, 0

Then g e  S 7 +1 '° . Since p+ g —  1 = —  1 e S 7, from Lemma 4.2, it follows that

P +  #  - 1 E  S7:
 1

Proposition 4.5. Suppose that P  satisfies (H- 1). For 4 = there is a
positive constant R 1 such  that if  1m  >  R i an d  Im 4 < 0, then

x =  0 if Itl + 11
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— Im

f or any  u e 99 (R").

Proo f . If r e S7: 1 , then there is a positive constant C such that

llop, (r)uli 5 ,1C l I m

Therefore, from Lemma 4.4 and its proof, we obtain the desired estimate.

For the case th a t  Im C- is  bounded  but R e  large enough, the hypothesis
(H-3) plays an important role.

Proposition 4.6. Suppose that (H- 1) and (H-3) are satisfied. For any  s e R,
there are constants C, N  and R 2  such that

C11.914 110 1

i f  I R e  > R 2  and — N < Im < O.

Proo f . For simplicity we only consider the case A = 1. Let g  = .9, and
= Oc.9. Recall that p„, be the principal part of p(C, We consider the follow-

ing form:

—2i Im (gu, .2u)L 2 = ((.2*Y — .

Since the symbol p is real-valued for real C, we see that

.9 * (C) =

Also (H-3) implies that

— {-2*Y — = i(Im ,

where .4f is an operator of degree 2m — 2. In fact, the top order term of 2*.9 —
,94 .2 is

2i Im (Ocp„,p,„) = 2i Im [( I n
p  )11P.1 2

1
= 2i Im [E7= 1  ]1P.12

—

= 2i Im [E7= 1

= 2i Im C Ezi=, Bok IC — A.0 1 2 .

Here, A;  denotes the simple real roots of N g ,  = O. M oreover, by  the product
formula, L em m a 4.1, the rem aining term s o f  .2*.9 — g*.2 is estim ated by

(9(1g, )1 2 'n- 3 )  a s  1G, 01-0 co. T herefore , there  are positive constants C ,  J  =  1,
2, such that for the full symbol r(C, of the operator .92 satisfies the inequality
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r(C, )12"1-2 — C2 .

Hence, if  1Rei a  large enough,

1
r(C, -

2  
C ig , 012 m - 2

for a n y  E R2 ". It is easy  to  see  that for any s > 0, there is a  constant C,
and R 2  such that

--Irn C10)1411011-2nli0 '.1- 111,.91411Z +  I Im I -141}

for any u e 99 (11n ) and  any I Re R 2 .  W e get the  desired inequality.

Summing up, by quasi-homogeneity, we have

Theorem 4.7. Suppose that (H-1) and (H-3) are satisfied. T h ere  are constants
C, N and R  such that

— 1m CM1411. - 1,4,.1

KVIAI 1 /2R ,  I m  <  0  and I Al 1.

F or the  bounded A, w e have

Proposition 4.8. Suppose that (H-1) holds. T h e re  is  a positiv e number B
such that

—1m Cllulls+.-1,c,A

f o r IAI 1 ,  Im —B an d  u E 91R").

P roo f. W e can m ake th e  same reasoning a s  in  th e  proof of Proposition
4.5 bu t in  the  region

{(x, 2); + > R » 1,1m < — B, 121 < 1}

instead of

{(x, ( , 2 ); I  + 11 ,11112 >  R» 1, Im < — B' 121 112 , 1.11 > 1} .

5. Proof of Theorem 2.1

Let P4 ( K )m + ET=, c(i)m —i. Then, we have the following basic inequality.

Theorem 5.1. There are positive constants A , B, C and a positive integer N
such that

Ilx.V4/411E  Y gi Vull C  E
f or u e 91R") a n d  e r„,,.
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Proof.

II nA(x114)911 = 117r," 1 )7r2(u)(p11

< + I ADN Iln z(TP rA(0911

= C(1 + A D N  117r,t(Pu) 911 •

W e note that

nA (u)* = nA(5( —  x)) , it(P) = n_ A (P),

lu(x)I 2 dx = Tr Or ,t (u)n A (u)*)
Fin R \ {0 }

If T  is  a Hilbert-Schmidt operator o n  a  H ilb e rt space H  with inner product
( • , • )H , then

Tr T = (T9i ,  T c ) ,

where {9; } is an orthonormal system of H .  Let {(pi } be an orthonormal system
of L 2 ( R )  such that each (pi  belongs to  Y(R").

111rA(Xj u)ÇOi  =  n z a j )7EA(u)(Pi

< C(1 + lin-A1P*)n-211419;11

= C(1 + I ADP  117EACP/n-,1109;11

= C(1 + I).DP  rA (Pu) (Jo ill •

This inequality and the form ula for Tr im ply the desired estimate.

Proposition 5.2. Let be fixed with Im C < O. I f  P( u = 0  for u e L 2 ,  then
u = O. The same property also holds for 11`u = O.

Proof. Let x E  91R) be any function such that supp .2(A) c  [a, b]. We take
a convolution u and x with respect to  the variable x o ;

v(x) = (u * x)(x)  = f 14(x 1, • • • , x 2n, x o — z)x(z)dz .

W e rem ark that if  u  is  a  solution of Po = 0 , then  »  is  a lso  a solution of the
sam e equation. The energy inequality which we establish is persistence with the
commutator argument between the molifier and y, as in the globally elliptic case
(c.f. [M 2 ])  s ince  w e  fix  C . H ence  w e  can  conc lude  tha t u  x =  0  fo r  a n y  x,
which implies u = O.

Let C E ro , B • Here, B  are chosen in Proposition 4.8 in the previous section.
L et Y  be  the Hilbert space such that

Y =  fll E ; (1 — X 1,1q v e (H")} .
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with natural inner product ( • , • ) y ,  where 2q = N . If for some y e  Y,

(Pe u, v)y  = 0

for any u e 99,  then w e have

(u, (1 — Xb 2 q11̀14/ ,2 = O.

Hence, (1 — X (1)2 qP v  =  0  in (1 + I A2)2 6  =  0, Pî'v = 0, and = 0  for
y e  Y c L 2 (H " ) . Then,

<g * n A(049 , > = <n(049 , Y tk> = O.

Hence ,9*7tA (y)(p = 0 in  9 9 '. By Proposition 5.2, it follows that nA(v)(p = 0, which
yields to y  =  O. F r o m  the  molifier argum ent in fin  (Proposition 6.4 in  [M 2] ) ,
it follows that the  estimate in  Theorem 5.1 is holds for u e D(P), where

D(Pe) c X* = lu e 9'; )M4 e L 2 (H"), <I> < m*} .

Hence the range Pc is  c lo se d . This means that for each C e F the range P‘  =  Y.
Here, w e take m* = m o r  m — 1, accordingly P  satisfies the condition (H-1)' or
(H-1).

Let

o i o o

=
0 1

o
o

o 0 o 1
— Am — Am _i — Am  _2 —  A l _

and

I I L 2 ( R 2 n + 1 • 1 m)) and V  = 1-1,7- 1  x  H r 2  x • • • x

where

•
=  {u  e  9 9,( R 2.+1 ); (1  _  x )2N x / U E L 2 , VI, ../}

Then, d  is  a  closed operator from 5C-  to with its domain

D(saf) = fu e u e .
Since the equation (C — d)U = F  is equivalent to the equation /Au = f , —
is  a bijection from D (d) t o  k. Therefore, the inverse operator (C — s i r  f r o m
f ' to  D (d) exists, is holomorphic and has its norm  less than C(— Im C) - 1  in  the
dom ain  f. T herefore , the  operator d  generate a distribution semi-group.

Let us denote the Laplace transform of f  with support in ft 0 1  by Let
x(t) be a  smooth function o n  [0, T ] such that

x =  1  if 0 < t < T/3 and = 0 f o r  2T/3 < t <  T .

We extend the function x(t) in  the  whole line R  by 0 and denote it by the same
letter. Put
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U(x, t) = (2i) - 1  f  e * C - 2 PC1 -;:f (N g ,
sf

where te =  OTA ,B • Then the solution of the Cauchy problem

SPu = f
(*) isupp, u c [0, co)

in [0, T/3] is given by

u = D t
2 U(x, t)

(c.f. [C] and C hap. 8 in [F]).

6. Examples and Remarks

In  this section, we consider the meaning o f our condition (H-1)—(H-2).

Theorem 6.1. Suppose that the Cauchy problem (1.1) is w ell-posed at the
origin in the distribution's sense (c.f. [ H , ] ) .  Then fo r any with Tm 4 <O ,

tu e Y (R"); Y I( )u = 01 = {O}.

Proo f . W e m ay only  consider th e  `+ ' c a se . S u p p o se  th a t  fo r  some
having negative imaginary part, there is a  function y  0  0  satisfying .9N 0 )v = O.
We define a  smooth function u by the following w a y . F o r  0 e Ct,(1-1n),

<uÂ (t, •), 0> = (n,(0)v, O e itcolAH2

which satisfies the equation Pu = 0  because if X  is a  right invariant vector field
on  H",

1r,1( X0)v = nA(X)nA(46)v

Set

up (x, t) = 0(x, t) f u p ,t (x, t)g(2)d2 ,

where 0 E  C (R 2 n  + 2 ) such that 0 = 1 near the origin and sufficiently small support
and g E CZ)(R)\ {0} such that g  0 with support contained in (1, co). By integra-
tion  by  parts, it is  seen  that for any J e N,

Pup  = O (p ')  as p --0 cc.

W ith this functon up ,  th e  same argum ent in the proof o f Theorem  1 o f  [O r]
enables us to  show that a priori inequality which follows from the well-posedness
never holds.

L et us begin with good examples for our theory.
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Example 1 (m = 2, n = 1).

P = — a(X? + X 1 ) + ciX 0

where a is a  real positive number and c is a  complex c o n sta n t. It is well-known
that the Cauchy problem for P is well-posed if and only if c is real and lc l < a.
From  the point of view in  our theory, this is equivalent to the condition (H-2).
By simple calculation, this is verified since the Hermite operator -- +  x 2  has the
lowest eigenvalue 1.

Example 2 (m = 3, n = 1).

P = at fq — a(X  + X .2_1 ) + c i X o l + c 2 iX 1 X 0  + c 3 iX_ 1 X 0

where a is a  real positive number and ci  a re  real numbes. The Cauchy problem
for P is well-posed if and  only if

—  i l) > .\/c? + c .

Example 3 (m = 4, n = 1).

P = — a()C + X 1 )} { — b(Xl + x 1 )} + cx6
where a  a n d  b  are positive constants and c  is  a  rea l constant. The Cauchy
problem for P is well-posed if and  only if

—
1

(a — b)2
 — c —  ab.4

The following example shows the limitation of our theorem.

Example 4 (m = 2, n = 1).

P = + 2at x 1 + x 1 + cx 0

where c  u s  a  complex c o n s ta n t. It is easy  to  see that the Cauchy problem for
this operator is well-posed if and  only if c = O. Let us examine the conditions
in  Theorem 2.1.

FPS  = 2C1 + ic

Hence, the condition (H -1) is not satisfied fo r  th is  o p e ra to r . B u t it is easily
verified that the condition (H-2) holds in  th is  case  for a n y  constant c. This
observation shows that w ithout condition (H-1), the condition (H-2) does not
implies the well-posedness.

From the Euclidean point of view, the similar examples as above have been
considered in  [IP ], [Z ], [0 ,] a n d  [Hi, respectively.

DEPARTMENT OF MATHEMATICS
KYOTO UNIVERSITY
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