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On holomorphic maps between Riemann surfaces
which preserve BMO

By

Yasuhiro GOTOH

O. Introduction

W e say  that a nonconstant holomorphic map between plane dom ains is a
BMO map if it preserves BMO, where BMO is the space of functions of bounded
mean oscillation with respect to  the 2-dimensional Lebesgue measure.

R e im an n  [1 6 ] and Jones [ 1 0 ]  sh o w e d  th a t B M O  i s  invariant under
quasiconformal maps. Hence conformal maps are B M O  m aps. O sgood [13]
characterized BM O maps in the case of universal covering maps of plane domains.
In [4] we defined B M O space on general Riemann surfaces and extended his result
to  Riemann surfaces. We also characterized B M O maps between plane domains
in [ 5 ] .  Moreover we investigated Blaschke type holomorphic maps between the
extended complex planes in [6 ], and gave an estimate for their operator norms
as B M O m a p s . In th is paper w e treat B M O maps between Riemann surfaces
in succession.

In § 1  w e give a  characterization of B M O  m aps betw een plane domains
(T h eo rem  1 ), w h ich  ex ten d s o u r former re su lts  in  [ 5 ] .  W e  g iv e  a ls o  a
characterization of B M O H  m aps between plane domains (Theorem 2), where
B M OH map is a nonconstant holomorphic map which preserves harmonic BMO
functions. In particular we show th a t a covering map between plane domains
is  a B M O m ap if and only if it  is  a B M OH map (Corollary 6).

In  § 2  w e investigate  Hahn m etric  on Riemann surfaces w h ic h  is  a
generalization of the quasihyperbolic metric. We generalize several properties of
the quasihyperbolic metric to Hahn m e tric . In particular we show that the Hahn
metrical length of every closed curve which is not homotopic to a point is not
less that n /2  (Proposition 9).

In § 3, by using the result in §2, we investigate B M O maps between Riemann
surfaces. In particular : (1) W e give a  characterization o f B M O  maps with
noncompact targets (Theorem 9); (2) W e give a characterization of B M O maps
in case of covering maps (Theorem 11 and 12); (3) We give several results which
indicate an essential difference between B M O maps with noncompact targets and
B M O  m aps w ith compact targets (cf. Corollary 17 and 20, Theorem  14). W e
cannot obtain, however, a characterization of B M O m aps with compact targets.
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1. B M O  maps between plane domains

Let D be a plane dom ain. L et BMO (D) be the space of all locally integrable
functions g on  D such that

II g II = sup I I g  —  g  dxdy  < oo,
B J8

where the supremum is taken over all disks B in D and g B  denotes the average of
g over B and  1B is  the 2-dimensional Labesgue measure of B .  Let BMOH(D)
(resp. BM0A(D)) be  the space of all harmonic (analytic) functions in  BMO(D).

We say a nonconstant holomorphic map F: D —> D ' between plane domains is
a BMO (resp. BMOH, BMOA) map if T g  g o F e B M O (D ) for every geBMO(D')
(B M O H (D ), B M 0A (D )). T he category argument shows th a t  a  BMO(BMOH,
BM O A) m a p  F  induces a  bounded  opera to r T F .  L e t  11 T  IIF BMO (11 TF IIBMOH ,
II TF B M O A ) be its operator n o rm . In  this section we investigate BMO and BMOH
maps between plane domains.

In  the  following t  denotes the extended complex plane, d( • , • ) denotes the
Euclidean distance, disk means an open disk, rad (B) denotes the radius of a disk
B, tB, t > 0 , denotes th e  disk having th e  sam e center a s  B  a n d  t rad (B) a s  its
radius, A  denotes th e  u n it  d isk , a n d  a  covering m ap m eans a n  unbranched
unbounded (not necessarily normal) holomorphic covering m a p .  W e say tw o
positive constants a and b  are comparable (or a )- •.) b) if A '  < alb < A for some
universal constant A  > 1, and a < h if a < Ab for some universal constant A > 0.

The following remarkable result by Reimann and Jones shows th a t in  spite
of the  dependence o f the  definition o f  BMO(D) o n  th e  2-dimensional Lebesgue
measure o n  D w hich is not conformally invariant, BMO(D) becomes a  function
space on a "Riem ann surface" D .  Using this fact we define BMO o n  general
Riemann surfaces later.

Proposition 1  (quasiconformal invariance)( [16], [10]). Let F :  D —> D ' be a
quasiconforal map between plane domains. Then go Fe B M O (D ) f o r  every
g e BMO(D') and

C(K) 1 1194„D' 119 ° F 14,D C (K )1194,D ,

where K  is the maximal dilatation of F.

Corollary 1. Let F :  D  D '  be a  conformal map between p lan e  domains.
Then g  FE BMO(D) f o r every g E BM 0(D ') and g o F 0 g M D .

W e list up som e basic facts about BMO which we need later.
Let 1 h (D) the  harmonic Bloch space on  D , tha t is, ,4 h (D) is  the space of all

harmonic functions g o n  D  such that

g II Atha)) = sup d(z , 8D)117  g (z)1 < oc) ,
zeD



Y asuhiro Gotoh 301

and le t .4(D) be  the standard (analytic) Bloch space o n  D.

Proposition 2 (cf. [ 2 ] ) .  BMOH(D)= 1,,(D), and BM0A (D)= .4(D) f or every
plane domain D and II9II * ,D 119IIA,(D), g G B M OH(D). In particular BMOH(C)=
B M 0A (C)= C.

Let MD L' L > 0, denote the set of all disks B on a plane domain D such that
d(B, OD) rad (B).

Proposition 3  (localization theorem)(cf. [17], [7, Lemma 6 ] ) .  L et L > 1  and
g a function in 140,(D) satisfying the condition IBI S B Ig g s ld x d y  < K  for every
disk  B e Y7D, L , then g B M O(D) and M g I , D  L K .

Proposition 4 (removability theorem)(cf. [17]). L et D be a plane domain and
E  a discrete subset o f  D  such that # ( E n B ) ,N  f o r every disk  Let
D' = D \E  and gEB M O (D '). Then geBM O(D) and  1191I D

 C ( L ,  N)119II*,D, .

P ro o f . W e note th a t le t Q  b e  a n  arbitrary plane dom ain a n d  z eQ , then
BM 0(2 \ { z} ) = B M 0(0) and  it h o ld s  th a t II  II 4.,0 g  * ,n (z) (c f . [1 7 ] ) . And
so the assertion follows from Proposition 3.

Lemma 1. L et B  be a d isk , g e li(B ) , and i t  a  signed m easure on B  such
that A g = 14. in the distributional sense ( ,  which means g  is locally  a  dif ference of
tw o  superharmonic f unctions). L e t  k  b e  a  C2 f u n c t io n  o n  B  w ith  compact
support. T hen

    

A k  .1  Ig — g dx dy .

 

Proof.

        

Is
k d p

 

Is

gAkdxdy

  

(g — gB)Akdxdy
s 

 

f gBICIXdy.

     

Proposition 5  ( [ 3 ] ) .  Let s  b e  a  superharmonic function on a p lane domain
D such that A s = — it and IlsII „< K , then 12 is a uniformly locally finite measure
on D , that is, pi(B ) . C(L )K  holds f o r every L > 0  and disk  B e.FD,,,.

P ro o f . L e t  B e. L ,  z ,  its  cen te r, r  i t s  ra d iu s , a n d  B ' = (L + l)B (c D).
L et /co >  0  b e  a  C2 function  o n  A  w ith compact support such  tha t 1(0  =  1  on
{I z I < 1/(L + 1) }. Let k(z)= k o ((z — z0)1((L+ 1)r)). Then k 0 is a  C2 function
on  B ' with compact support such that 1(0  =  1  o n  B .  It follows from Lemma 1

1.2(B) Ako , C(L)K.
( L +  0 21.2B'

Let F: A  C  be a  holomorphic m a p .  If its  Schwarzian derivative

SF (z) — 
F

" (
z

)  y 1 ( F " ( z )y

F'(z) 2  F(z ))
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satisfy IS,(z)I 2 / ( 1  — 1 z 2 )2 , z e d , then F is univalnt on d ( [1 2 ] ) . Hence we have

Lemma 2. Let F: D — )D' be a holomorphic map between plane domains such
that IS F (z) l < Kld(z, OD) 2 , z eD , then  F is  univalent on each disk  B E. ,, w here
L =  / K / 2 .

We say a nonconstant holomorphic map F : R  R ' between Riemann surfaces
is p-valent, if # F (C )  p , C e  R ' , where F  1 (() is to be counted with multiplicity.

Lemma 3. L et F: d — )R  b e  a p-valent holom orphic m ap in to  a R iem ann
surface R, R  t ,  a n d  E F  t h e  s e t  o f  all branch points o f  F. T hen #(B nE F ) <
C(a, p) f o r every oc > 0  and d i s k  B  d  with hyperbolic radius a, where EF i s  to
be counted with multiplicity . M oreover if  F is locally univalent, then F is univalent
on e ac h  d is k  B  d  with hyperbolic radius C(p).

P ro o f .  First, assume that there exist a plane domain R , an d  a  sequence of
p-valent holomorphic m a p  F„: d — )R  su c h  th a t  #(E F „ n{lzi < 1 /n }) >  p. We
set t i ( f )  =  max { I an 0  n  p l for a  holomorphic function f  (z) = En-_0  a n z" on
A, then the family of all p-valent holomorphic functions f  on d  such that gp ( f ) <  1
forms a normal family (cf. [ 9 ] ) .  Let g (z )  = F„(z)— F(0) and hn (z) = g n (z)11.4p (gn).
Then u ( h )  = 1 and h„(0)= 0, and so some subsequence h„,, converges uniformly
on compact set to  a  nonconstant holomorphic function h on A . T h e n  the origin
is  a  branch p o in t o f  h  with m ultiplicity > p. Hence h„,, (and  s o  F,,k )  is not
p-valent for sufficient large k, which is a contradiction. The same argument holds
in the case of locally univalent functions.

Next let R  be a Riemann surface. L et n: R  = C  or d) be a universal
covering m ap and P  a  l i f t  o f  F .  L et F  b e  p-valent. S in c e  P  is  a  p-valent
function having the  same branch points as F, the  same estimate holds. Finally
let F be locally univalent p-valent then I' is also locally univalent p-valent. Hence
there exists a  constan t 0 < lp < 1  su c h  th a t  P  is  univalent on {Izl < We
c a n  assume P (0) =  0 .  L e t  r = P '(0 )  1 ,,/4 , th e n  P({1z1 < 4}) {  w  I < r } b y
Koebe's theorem . T hen  111471 < rl2 p l contains n o  two equivalent points, indeed
if w1 , w2 , w, w 2 , is equivalent points on {Iwi < r/2p} and let T  be the covering
transformation such that T(w 1 ) = w2 th e n  Tn(w,)e w I < rl, 0  n  p, which is
a  con trad ic tion . Applying Koebe's theoem again w e have P({1z1 < / p /32p})
{I w  <  rl2p}  and so  the assertion follows.

L et D  b e  a  p lane  dom ain a n d  E  a  closed subset o f  D  such  that D \ E  is
connected. We say E  is removable for B M O(D) if every B M O (D \E) function
is  a restriction of som e BMO(D) function. Then there exists a  constant C > 0
su c h  th a t  f o r  every g e B M O (D \E )  w e  c a n  c h o o se  a  function eBMO(D),

i(D \E )= g so that 11411,,,D  ClIg11,,,,\E by  the open m apping theorem . In case
of D = C, E  is removable for BMO(C) if and only if E  is  a  uniform domain (cf.
[1 0 ] ) . W hen D  is  a n  arbitrary plane domain, E  is removable fo r BM O(D) if
and only if D \E  is  a "relative" uniform domain (cf. [7]).
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Theorem 1  ( c f .  [ 5 ] ) .  L e t  F :  D  D ' b e  a nonconstant holom orphic map
between plane dom ains. T hen the following conditions are equivalent to each other:
(1) F  is  a B M O m ap;
(2) F  is o f  bounded local valence on D , that is, there ex ist a  constant L > 0  and

an  integer p > 0  such that f o r every  disk  B e  M D L ,
F  is p-v alent on B;

(3) T h e  se t E , o f  all branch p o in ts  o f  F is  a  removable set for B M O(D) and
there exists a constant L > 0 such that f or every disk Be F is univalent
on B ;

(4) log  F' eBMO (D);
(5) su lpc  II log F — CI Ii * ,D < 0 0 ;
(6) suPcely II log F — < co.
I f  D ' adm its Green f u n c t io n s  g .( , C e D ', th e n  th e  n e x t condition is also
equivalent:
(7) sup c e p, II 1) , (F < cc.

Rem ark that only the condition (4) is  n e w  :  T his theorem  was proved in  [5]
except for (4).

P ro o f . We have (1) ( 5 )  ( 6 )  a n d  ( 1 )  ( 7 ) ,  since log I • e BMO(C), g p .(- , C)
eB M O(D'), and sup w )

, g p , ( • , I l * ,D, <  co (cf. [ 3 ] ) .  A p p ly in g  Proposition 5 to
superharmonic functions — log IF — CI, gi y (F, C), we have (6) ( 2 ) ,  a n d  ( 7 )  ( 2 ) .
(2) ( 3 )  is  a  consequence of Lem m a 3 and  the  rem ovability theorem . (3) (1)
follows from the  localization theorem.

((3) (4)) L e t F  sa tisfy  (3 ). L e t  G  = D \ E F. I f  G = C  th e n  D = C  and
F(z )= az  + b, hence (4) holds. N ext le t G  C . L e t  z e G  a n d  B ' the  d isk  in
G  around  z  s u c h  th a t  d(B ', (3G)= L rad(B '). A pplying K oebe's theorem  w e
have IF"(z)/F'(z)1 4/rad (B') (3G ) .  Hence by Proposition 2, log IFIG
B M O (G ). And so  log I BMO(D).

((4) (3)) Let log F' E B M O (D ). Applying Proposition 5 to a superharmonic
function — log IF' , w e  have #(B n EF ) C2 for every disk B e .97D  . Hence EF
is removable for BMO(D) by  the rem ovability theorem . L et G  =  D \E , .  Since
log W I is harmonic o n  G, Proposition 2 shows th a t  IF"(z)/F'(z)I C 3 Id(z, (3G),
z e G .  Hence I SF (z)( C4 /c/(z,(3G) 2 ,  z e G .  A nd so  L em m a 2  shows th a t F  is
univalent on each disk B'

Corollary 2. L e t F: A  \ {0} D ' b e  a  B M O  m ap  in to  a  p lan e  domain
D'. T h e n  the origin is not an  essential singularity  of  F.

P ro o f .  B y T heorem  1  F  is p - valent o n  each  d isk  B  (1 /2)4  such that
d(B, {0}) r a d  (B). H ence by Lem m a 3  there ex ist a  co n stan t e > 0 and
sequences INITT-1, 2 ' 1 r n < O  On < 2m, such that F is univalent
on B 2 for each Z EN   and F(C ) 0 0 o n  U z E N B 2 , w here Bz  = IC E C I  — zI < e  zl 1,
and N  = U n (IICI = =  re i e n12 - n- 2  r  <  2 - n } ) .  Then by Koebe's theorem

IF(Z2V-F(Z1)1 1, z1, Z2E(1/2)B 2 , Z E N,

hence
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1F(z)1 C 1 IF(rn )1, zI = r„, n  = 1, 2,...,

IF(rn+ 1)1 —‹ C 2 I F ( r n ) 1 ,  n = 1, 2,...,

a n d  s o  1F(z)1 < C 3 C t  C 5 rn- `6 , I z  =  r n , h en ce  t h e  o r ig in  is  a  removable
singularity of zE") + 1 F(z), which implies the assertion.

There exists, however, a  holomorphic m ap F: A  \101 t  having the  origin
a s  a n  essential singularity such that F  i s  p-valent o n  each  d isk  B  (1/2)4
satisfying the condition d(B, {0}) rad (B). Let m: C \ {0} T be a covering map
on to  a  to rus T , and f : t  a  nonconstant holomorphic m ap, then F = f o n
is  one such function.

Corollary 3. L e t  E  b e  a  f in ite  se t o f  p o in ts  o n  C, D = C\E, D ' a plane
dom ain, and F: D  D ' a nonconstant holom orphic m ap. T hen F is a B M O  map
if  and  only  i f  F  is a  rational map.

P ro o f .  First, a  ra tio n a l m ap  is  a  B M O  m a p  s in c e  it  is  a  finite valent
m a p .  N ext le t F  b e  a  B M O  m a p . L e t  Do = lz e <  z  <  1 ,  1 /z  E l, then
G: D ', G (z )= F(1/z ), i s  a  B M O  m a p .  H ence E u {G o }  a r e  not essential
singularities of F  by Corollary 2.

In  particular we have

Corollary 4  (cf. [ 5 ] ) .  ( 1 )  L e t  F : C  -*C  b e  a nonconstant holom orphic
m a p .  Then the following conditions are equivalent to each other:

a) F  is a B M O  map;
b) C \EF  i s  a  uniform  domain and there ex ists a constant L > 0  such that

F  is  univalent on each B e \ E F .,,,;
c) F  is a polynomial.

(2) There is no B M O m ap F: C —>C \ 101.

Corollary 5. L e t  F : D  D ' be a nonconstant quasiregular map between plane
dom ains. T hen the following conditions are equivalent to each other:
(1) F  preserves BMO;
(2) F  is of  bounded local valence on D;
(3) T he set EF of  all branch p o in ts  o f  F is  a  removable set for B M O(D) and

there exists a constant L > 0 such that f o r every  disk  B ed .°—»\ E ,,L  F is univalent
on B ;

(4) log JFE  B M O(D), w here JF is the Jacobian of  F;
(5) log 11 7 ' FIG B MO (D).

P ro o f .  Let F = Fn . Fq , where F h is a holomorphic map and Fq  is a  quasicon-
formal m a p .  T hen  log JF = (2 logIF,;1)• Fq + log JFq a n d  lo g  JFg e B M O ( D )  (see
[1 7 ] ) . Since K - 1 J, <11711 2 < K J F  w h e re  K  i s  the m axim al dilatation of F,
log J F eB M O(D) if and only if log IV  FIE BM O(D). Similarly log J F a eB M O(D) if
and only if log 117 Fq 1 e B M O (D ). Moreover let G: D, D y  be a  quasiconformal
m ap w ith  maximal dilatation K , then  fo r every L > 0  a n d  every B e "- D I  ,C(K,L)
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there  ex ists a  B 'e,FD 2 ,L  s u c h  t h a t  G ( B )  B'. A n d  so  T h e o re m  1 and the
quasiconformal invariance of BMO imply the assertion.

Next we characterize BM OH maps.

Theorem 2. L e t  F: D —* D', D' 0  C , b e  a  nonconstant holomorphic map
between plane dom ains. T hen the following conditions are equivalent to each other:
(1) F  is  a  BM OH map;
(2) D 0  C and there ex ists a constant K  > 0 such that

IdF(z)1 Idzi
< K z eD;

d(F(z), OD') d(z, OD)'

There exists a constant L > 0 such that f o r every disk  Be F(B) does not
surround any component o f  OD' ;

(4) ci = suPcecm , 111 0 g F — < ;
(5) 13 = sup ‘ e " ,  II log F — < co.
M oreover IIT,11„ 0 ,  inf K c i  f l  and inf L < inf K  < inf L + 1.

P ro o f . (2) ( 1 )  is a  consequence of Proposition 2. Since log H  e BMO(C),
(1) . (4) (5) holds.

((5) ( 2 ) )  L e t F  satisfy (5). T hen D 0  C  since B M OH(C)= C . L e t  z e D
a n d  a  p o in t  o n  OD' such that d(F(z), OD') = 1F(z) — Applying Proposition 2
to  a  function log  F — we have IF' (z)111F(z) — C I d(z, OD).

((2) (3)) Let F satisfy (2). We show that (3) holds for L > K i n .  Otherwise,
there exists a  d isk  B e ,  su ch  th a t F(B ) surround a  p o in t  w0 e 0 D ' .  Then
th e re  e x is t  tw o  p o in ts  z 1 ,z 2 eB , z 1 z 2 ,  s u c h  th a t  F(z i ) = F(z 2 )  a n d  F(y)
surrounds 14, 0 , where y is a segment on B joining z, to z 2 . Let w — wo  =  re16 , then

< rld01 Idwl KIdzI2 K  rad (B) 2K< < 2n,
f , ty , r ,(,)d(w, OD') y  d(z, OD) d(B, L

which is a contradiction.
((3) ( 2 ) )  L e t  F  satisfy (3). I f  D = C, C \ F(C) contains a  (unbounded)

continuum, which contradicts w ith Picard's theorem . Hence D 0  C . L e t  z e D
and  B c  D  a  disk around z  such that d(B, D) = Lrad (B). Then there exists a
simple connected domain G such that F(B) c  G c  D '.  Applying Schwarz lemma
we have

IdF(z)I IdF(z)I 4PG(F(z))1dF(z)1d(F(z), OD') d(F(z), aG)
41dz1 4(1, + 1)1dzI 4pB(z)Idzl=

rad (B) d(z, OD)

(3 )

where PG' p B  denote th e  hyperbolic metric.

N ote  that if D' = C, F: D —> D ' is always a  BM OH map since BM OH(C)= C.
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Corollary 6. L e t  n :  D  D', D ' 0 C ,  b e  a  cov ering m ap betw een plane
dom ains. T hen the following conditions are equivalent to each other:
(1) n is a  BMO map;
(2) n is a  BMOH map;
(3) There exists a constant L>  0 such that f o r every disk  BeF,, L , n is univalent

on B;
(4) There exists an  integer p> 0  such that f o r every  disk  B e FD , , ,n  is p-valent

on B;
(5) D 0 C  and there ex ists a constant K > 0  such that

Idn(z)i
 < K  

 idzi
d(n(z), ED') d(z, ED)'

zeD;

(6) log  n' e BMOH(D);

(7) = sup log — <  0 0  ;

(8) a 2  = SUPED lo g  n  —  Cill * ,D < 0 0 ;

(9) (1 3 — SUREC \ D  Hogn — CI II* ,D < 0 0  ;

(10) a , =  su D ' II log In — Clil * ,D < (x) .

I f  D ' adm its Green functions gD ,(.,C), eD ', th en  th e  n e x t condition is also
equivalent:
(11) = suR E D, 11 D, (7r, C)II * ,D < co.
Moreover II TFilam o , II TF B M O H , inf L + 1, inf p, inf K, Illog I 11*, D 1 ,  and Œk ,
(k = 1, 2, 3, 4(, 5)) are com parable to each other.

P ro o f .  Since I d(z, OD) 4ldn(z)11d(n(z), ED'), ze D, by Koebe's theorem,
we have inf K >  1 /4 . H en ce  II TFII BMOH inf L + 1, inf K, a 3 , and a , are comparable
b y  T h e o re m  2 . T h e  proof o f  Theorem  1 show s inf L +  1  11 log 11*,D and
inf p < ak<IITFIlamo inf L + 1, k = 1, 2, 5. A s  f o r  in f  K  inf p  see Corollary
12 below.

R em ark  th a t th e  co n d itio n  (5 )  o f  C o ro lla ry  6  im p lie s  th a t th e  metrics
ldz 1/d(z, OD) and  I dn(z)11 d(n(z), ED') o n  D  are comparable to each other.

Let n: D, 13 = C  o r A , be a  universal covering map of plane domain D.
L et B M 0 0 (D) be  the  space of a ll L L (D) functions g  such  that g one BM0(13).
L et BMOH0 (D) (resp. BM0A 0 (D )) b e  the  space o f all harmonic (holomorphic)
B M 0 0 (D) functions. Then it always holds that B M 0 0 (D) BMO(D) by the con-
formal invariance of B M O . Hence n is BMO (resp. BMOH, BMOA) m ap if and
only if B M 0 0 (D) =  BMO(D)(BM0110 (D)= BMOH(D), BM0A 0 (D)= BM 0 A(D)).

Corollary 7 (c f . [13 ], [4 ]) . L et D  be a plane domain having n: A —>D as a
universal covering m a p .  Then the following conditions are equivalent to each other:
(1) n is a  BMO map;
(2) n is  a BMOH map;
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(3) There exists a constant a  >  0  such that f o r every  disk  B  A  with hyperbolic
radius a, i t  i s  univalent on B;

(4) T he hyperbolic metric pD (z)IdzI and the quasihyperbolic m etric IdzIld(z, OD)
on D are com parable, that is, there ex ists a constant K > 0  such that

IdzI
Kpp(z)IdzI,

(5) log I e  BMOH(A);

(6) log ppe B M 0 0 (D).

Moreover II T. II BMO,T7,11 BMOH inf (a - 1 ) +
II log pp . n II"  are  comparable to each other.

P ro o f .  Since PA (z ) dz  I and  IdzIl d(z, OA) are comparable, the equivalence of
(1) — (5) follows. Next, applying Proposition 5 to  the equality log pA =  log pp . n
+  log I n' I we have

Illog PD ° A (log p,)dxdy Z. 1.

And so w e have II loglg' I II + 1 II log p p  n 1 1 * ,4 ,9  s ince  log p  E BM0(4).

I t  is well known that the condition (3) of the above corollary holds if and only
if C \ D is a  uniformly perfect set (cf. [1], [15]), and we can replace the condition
(3) with
(3') D  admits the Green function gp  an d  there exists a constant K > 0 such that

the domain {C eDI g D (C, z) > K } is simply connected for every z e D.
It is to be noted that (3) (3 ')  d o e s  n o t  h o ld  in  general when D  is  a Riemann
surface even if  D  admits the Green function (cf. [19]).

Corollary 8. L et F: D  D ' be a nonconstant holomorphic map between plane
domains, and D' simply  connected. Then F is a BMOH map and II T' F BMOH 1.

Here we give a  lower estimation of BMOH map norms.

Proposition 6. L e t F :  D  D ',  D' C , b e  a  nonconstant holomorphic map
between plane dom ains. L et F  be univalent on a subdomain Do  o f  D  an d  F(D o )
contains a  disk  B such that d(B, ED') Lrad (B), I. T h en  II  TF BMOH 1/L.

P ro o f . L e t  e  OD ' such that d(C, B)< Lrad (B). Then a n  easy calculation
shows II log I —  CI B  Z ,1 1 L . Since BMO is conformally invariant, we have

— IIlog I F — CIII * ,Do1110g I — CI II 4,,F (Do) 1 /L.
Let Fn : A —> nzl, F (z )=  z .  Then II TF . IIB M O H  11n. Hence the above estima-

tion is best possib le . (Compare this with the fact II TF  11,3„,,0 1  for every F.)
Next we investigate BMOA m a p s . Let g  be an  analytic function on a plane

domain D .  L et dg (z) be  the radius of the largest schlicht disk around g(z) on

d(z, OD)
zeD;

inf K, +  1 ,  and
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the Riemann surface of the inverse function of g. Then ge.4(D ) if and  only if
sup z e o  dg (z) < co (cf. [14]), hence by Proposition 2  we have

Theorem 3 ( [ 4 ] ) .  Every nonconstant holomorphic map F: D -> D ' between
plane domains is BMOA map and 1 TF BmaA 1.

U sing  th is  fac t w e  can  g ive  ano the r p roo f o f  C orollary 8  a s  follows : Let
geBM OH(D '), a n d  f  a n  analytic function o n  D ' su c h  th a t R e f  = g. Since
I V f l=  2117 g1, Proposition 2  a n d  Theorem 3  show s 11 goF11  II f  F
If M 1 11 g 114, D ' •

Example 1 . L et 4* = A \ {0} and g(z)=  log I z I.
(1) Let F: 4 - * 4* be  a  universal covering m ap, then  F  is  n o t a  BMOH map
by Corollary 7.
(2) Let F„: 4* 4 * , F (z )=  z " .  Then II 1, IM O II TF,, IIBM011 n by Corollary
6 . ( I I  TF„IIBMOH n is  trivial since g o  F(z) = ng(z).)
(3) L e t  G„: 4* 4 ,  G , , (z )=  e . ThenII TG  B A  40H 1 b y  C o ro lla ry  8  and
Proposition 6. O n the  other hand II TG

,, IBMOI I  TF,, II emo n-
(4) Let B: be  a  Blaschke product

z - (1  - 1 /n 3)  y
B(z)= 1 -1

n=i 1 -(1  - 1 1 0 )z

then B is a  BMOH map and  II TB IIB M O H  1 by Corollary 8 and Proosition 6. On
the other hand B is  n o t a  BMO m ap by Theorem  1.
(5) Let B is the Blaschke product in (4). Let D  =  B - 1 (4*). then B, = BID: D - +
A is  a  BMOH m ap a n d  II T B° liB m o ,  1  by Corollary 8 and Proposition 6. On
the other hand, B , =  B ID :  D  4 *  is  no t a  BMOH m ap by Corollary 7.

Finally we remark that if a  given holomorphic map between plane domains
is  a  BMO map, then it is always a  BMO map independent of the choice of its
target by Theorem 1.

2. Hahn metric

Let R  be a Riemann surface. We define the Hahn metric OR (z)I dz I on R  by

= PR1zn,

where the infimum is taken over all simply connected domains G  R  containing
z  and  pG (z)IdzI denotes the  hyperbolic metric o n  G .  If  G  does not admit the
hyperbolic metric we regard pG (z) as 0. Equivalently, f3,(z) = inf (Y(0)1 -  ,  where
the infimum is taken over all conformal maps 4) of 4  into R such that 4)(0) = z. If
R  is simply connected, H ahn metric and  the  hyperbolic metric coincide. Hahn
m etric is a  conformally invariant continuous metric a n d  there exists a unique
sim p ly  connec ted  dom ain  G  R  f o r  e a c h  z e R  su c h  th a t /5R (z) = pG(z)
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([8 ], [11 ]). T h e  H a h n  m etrics o n  C \ {0}, A \ 101, a n d  {r, < izj < r ,}  are
explicitly calculated by [ 1 1 ] .  By the definition we have

Proposition 7. (1) L et S R  then f i R ( z ) I d z I z  e S.
(2) L et n: R be a  covering m a p .  Then fiR (74z))1d7r(z)1 hi(z)IdzI, zek.

Hahn metric on a plane domain D, D 0 C, is equivalent to the quasihyperbolic
metric Id*  d(z, O D ). Indeed we have the following by Koebe's theorem:

dz 1 dz
Proposition 8 (cf. [ 4 ] ) .  

4d(z, OD)
p(z)ldz

'

 ZED.I
d ( z ,  D )  

Hence H ahn  m etric  is a  generalization of th e  quasihyperbolic m e tr ic . I n  this
section we investigate some basic properties of H ahn metric.

Let n: D - * R be a  covering map between a plane domain D  and a Riemann
surface R .  L et lz , Z ED, denotes the  Euclidean radius of the largest disk o n  D
around z  on which n is  un iva len t. W e set lz = oo if D  contains arbitrary large
such disks. Then w e have

dz1 Theorem 4 (cf. [4]).
41z OR(n(z))1(17(z)1

Id z  I
 , ZED.

lz

P ro o f . We may assume /z  <  co since Oc  =  0 .  Let 00(C) = 74z + 1g ) .  Since
00: .61-> R  satisfies 0 0 (0) = n(z), w e  have i)R(n(z))11e(z)1 _In'(z) 1 I (1) (0 )1 = 111,
N e x t L e t  0 : A  R  b e  a n  a rb itra ry  injective holomorphic m ap  su ch  th a t
0(0) n ( z ) .  L e t  G  b e  th e  com ponent o f  n -

1(0(4 ) )  containing z. Applying
Koebe's theorem to the conformal map g = n - ' . 0 :A - * G we have 17r'(z)1/143 '(0 )1
= 1/Ig'(0)1 1 / 4 1 z .

W e have ',3e < j5 =  0  b y  Proposition 7. O n the  other hand, let R C,
and n: D R  its universal covering map, then /z <  (X). H e n c e

Corollary 9 ([ I I] ). Hahn metric t5R (z)Idzi degenerates if  and only  if  R =
or C.

L e t R  b e  a  R iem ann surface having n: A R  a s  its universal covering
m a p . L e t rz , zeR, be the hyperbolic radius of the largest hyperbolic disk around
z  o n  which n  is  un iva len t. L e t L z b e  th e  Euclidean rad ius o f the  disk o n  A
around the origin with hyperbolic radius rz . Then since 15A =  PA  w e  have

Corollary 10. L et R be a R iem ann surface having n: A -+ R as  its universal
covering m a p .  Then

PR(z)Idz1
z PR(z)Idz1 < PR(z)Id 

4L
z1

L z

Corollary 11 (cf. [ 4 ] ) .  L et R be a R iem ann surface having n: A -> R as  its
univ ersal cov ering m a p .  T h e n  H ah n  m etric  a n d  t h e  hy perbolic m etric are
com parable to each other if  and only  if  infzE , r z > 0.

z e R.
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Let h ,  and fiR  d en o te  the hyperbolic distance function and Hahn distance
function on a Riemann surface R  respectively. Lt z e R ,  t> 0, and set

= {C R  h, (C, <  t }, = tCERIfiR(C, <  .

Lemma 4. Let 7r: D - R  b e  a  covering map between a plane domain D and
a R iem ann surface R (0 C, 0, then

n ( {1C - < 
1

z

t

13̂ ,(z),, c 7r(IIC - z i <61 z t}), ZED, < t < .
2 12

-

8  
P (z)IdzI R  (Z ) Idz1 6t ,h. (z)Idzi,z,

1
zeR , 0  < t < .

12

P ro o f .  Let K — z lz /2 then /z /2 3/z/2 hence lc/Cl/6 1z  d R (n(C))1c/n(()I
<21dCill z by Theorem  4, which implies the first inequality. N ext let z e R  and
w en - 1 (z). Using Theorem 4  again we have

p , o (z )idz1= / t
2   ldwl PR (z )Id,

where Bo 7 t({ 1 C  -  w l<1 t1 2 } ). We obtain the inequality d R (z)1 dz1. 6tphr(z )Idz
similarly.

Lemma 5. L e t R (0  e, e) be a Riemann surface.
L et 4): d -*R  be an injective holomorphic map then

4)1RzA,i) OE -R. !:(z),t ,z e d ,  t >  O.

In particular < OE iii4c0,4q3, 0 <t 1/2.
(2) L e t  z e R .  Then there ex ists an injective holomorphic m ap 0 0 : A - ) R, 4) 0 (0)

= z , such that

i t i i 2  OE 0.9({1CI <t}), 0 < t  <1 .

Proof . (1) is trivial since N I < t} c 4 4 ,13 , O < t 1 / 2 . Next let 7r: D - * R
be a covering map from a plane domain D, wen - 1 (z), and set 0 0 ( ) = n(w + I /2),

e A. Then Lemma 4  shows th a t 0 0 ( I C I  < t} )  = 7t({1C -  w  < 1t12} ) D  ljzR
a  12-

Proposition 9. L et y be a  closed curve on R iem ann surface R  w hich is not
hom otopic to a point, then

f P R ( Z )  dzI

The equality  holds if  and  only  if  R  = C \ {0} and y  = Ilz 1= 0 <  r < co.

P ro o f . (Dr. T. Sugawa, oral communication) Let R  be  a Riemann surface
and y  a  closed curve on R  w hich is not homotopic to  a po in t. L et 7 r: - -*  R ,

= C or d, be the universal covering m ap. Let g be the covering transformation
in d u c e d  b y  y ,  G  th e  cyc lic  g roup  genera ted  by  g ,  a n d  R ,  =  / G .  Then

(1)
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120  = {a <Iz l< b} , 0 < a < b < oo. Let Ro be the unique closed curve which
is  a lift of y under the covering map no : R o  -+ R .  Since Pc \ m (z) = 1/4 I z1 (see
Proposition 8), Proposition 7 and 8 show that

IdI 
OR(z)IdzI PRo (z)IdzI )5cv

z
oilz/IdzI — nI2.

741z1

Since the equality in Proposition 7 (1) (resp. (2)) holds if and only  if R = S
= R) (cf. [11]), the equality above holds if and only if R = R o  = { 0 <1z1 < cc}

and y =.)7= = rl, 0 < r  < co.

In the case of the quasihyperbolic metric on a plane domain D , we have

f I dz I > 2

y d(z, n'

for every closed curve y c  D  w h ic h  is  n o t homotopic t o  a point, where the
constant 27r is best possible.

Proposition 1 0 .  L e t F : R  R ' b e  a  nonconstant holomorphic map between
R iem ann surf aces, w here  R, R' C, C. T h e n  t h e  f o llow ing conditions are
equivalent:
(1) There ex ists a constant K  > 0  such that

P„(F(z)) I c/F(z)1 KOR (z) dz , z e R ;

(2) There exists a constant L > 0  such that F(li z
R ,L ) is contractible on R' f o r each

z e R.
Moreover inf (L - 1 ) < inf K  < inf (L - 1 ) + 1.

P ro o f . ((1) ( 2 ) )  L e t F  sa tisfy  (1 ). W e  show (2 ) h o ld s  if w e  set
L <n l4 K .  Otherwise, there exists z e R  such that  F(A L )  is not contractible.
Then there exist two points z 1 , z 2 e li z

R
. L , z, z2 , F(z ,)= F(z 2 ), and a curve y  on

fiz
R,,, joining z1 t o  z2 s u c h  th a t  y  R(C)1(1C1 < 2L and F(7) is a closed curve which

is no t homotopic to  a po in t. It follows from Proposition 9 that

r it< p',(w)ldwl K  !W O W (' < 2K L  <  ,
2 F(y ) Y 2

which is a contradiction.
((2) ( 1 ) )  Let F  satisfy (2 ). W e m ay  assume L  1 / 1 2 . Let z e R , and

G c  R ' a  simply connected domain containing F( L ). Applying Lemma 4 we
obain

PR,(F(z))1d1'(z)l ijG(F(z))1d1'(z)1
8= p G (F (z))1dF (z)l phs , L (z)IdzI —L P R (z)IdzI.

Corollary 12. L et n: R R ' ,  R  e, e, be a covering map between Riemann

1
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surfaces. Then the follow ing three conditions are equivalent to each other:
(1) There exists a constant K > 0 such that

R .(n(z))1 dn(z)1 K  R (z)IdzI, z e R ;

(2) There exists a constant L >  0 such that n is univalent onL f o r  each zER;
(3) There ex ists an  integer p >0  su ch  th at n is p-valent on each ij z

R
, 1/24>  z  R.

Moreover ‘ /inf p < inf (L - 1 ) + 1 i n f  K < inf p. 

P ro o f . Since K >  1, inf K and inf (L -
1 )+1 are comparable by Proposition 10.

Next we show inf K  inf p. Let (3) h o ld . L e t z e R ,  =  n(z) and no : -+ R,
= C, o r d , a  universal covering map such that n0 (0) z. L et 1 and l ' be the

largest Euclidean radii of the disks o n  rt around the  origin o n  which n o , 22 o 7E0

are univalent respectively. Then it o no is  p-valent o n  {1 WI < //24} by Lemma 4.
Then {lwl < 1/48p} contains no  two equivalent points for i t  0 n o (cf. the proof of
Lemma 3). And so  /' 1 / 4 8 p .  Hence Theorem 4  shows pR ,(C)IdC1 I dw1//'
48p I dwi// 1920,(z)Idzi.

F inally  w e show  \ /inf p  in f (L ') +  1 . L e t  (2 ) h o ld .  W e  m a y  assume
L < 1/12. Let no : k  R, j = C, d , be a  universal covering m a p . L e t zE R  and
w e 1 (Z ). Since B 1 1 2 4  n o ( {1 (  — wl < /w /4}) ,  Theorem  4  show s that there

zRkexist zk e fe,1124, 1 < k < k o , 1(0L - 2 , such that B , 2 4zR ,1/24 Uk  lj ,L • Since each
f i z

R,  L  contains a t m ost one  po in t w hich is equivalent to z  b y  it,  w e have
i n f  < L -

2 .

A simple example (see Example 3  below) shows there exists a  sequence of
covering maps F„ such that inf K„ = n, inf p„ n 2  ,n = 1, 2,... On the other hand,
w e  sh o w  th a t  i f  R ' i s  noncompact inf (L -

1 ) + 1 inf K  inf p  holds later
(Theorem 11). Here we give one sufficient condition for (1) (and (2), (3)) above.

L em m a 6 . L e t  n: R  R ' b e  a  cov ering m ap betw een Riemann surfaces
satisfy ing th e  condition a) o r b ) below . T hen  TC satisf ies the condition (1 ) of
Corollary  12.
a) R  is a  torus o r C \ 101, and R ' is a  torus.
b) R ' adm its the hyperbolic metric, and infz E ,  r z >  0, where rz i s  the hyperbolic

radius o f  the largest hyperbolic disk  around z e R'.
In particular if  n :  R  R ' ,  R  C , t , is a  covering map with com pact target, then
the condition (1) o f  Corollary  12 always holds.

P ro o f . (Case a ))  T he  a sse rtion  easily follows if  w e apply Theorem  4  to
the universal covering map of R .  (Case b ) )  By Corollary 11 w e have

PR ,(n(z))1c1n(z)1 Cp,(n(z))1dn(z)1= Cp R (z)Idz1 Cp',(z)Iclzk

L em m a 7. L et F :  R  R ' ,  R  C, t, R ' be a  nonconstant holomorphic
m ap, L >  0, and z e R .  L et F  be locally  univalent p-valent on fi z

R,L . Then there
ex ists a constant C = C(p, L)> 0 such that F  is  univalent on ii zR,c .

P ro o f .  Let z e R .  Because of Lemma 5 (2) there exists an injective holomorp-
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hic m ap 4)0 : A —)R, 4)0 (0) = z, such that ijzRa/12 0 0 ( { <  t } ) , <  t 1. Let
r, = min {3L/4, 1/2} th e n  4 ) ( { I  < r,}) ifizi4j, by Lem m a 5 (1). Hence F
is p-valent on  {I < N}. Therefore Lem m a 3 shows that there exists a constant
r2 < r 1 such  tha t  F o  4), is  univalent on {K1 < r2 }. A nd so  F  is  univalent on
b' zR ,r2/12•

3. BM O maps between Riemann surfaces

L e t R  b e  a  R iem ann  surface . L et BM0 * (R ) b e  th e  space o f  all locally
integrable functions g  o n  R such that

1!g11**,R= suP f  g ° — (g ° 0)eidxdY < 00,
4,

where the suprem um  is  ta k e n  o v e r  a ll injective holomorphic m aps 4): A —) R
( [ 4 ] ) .  Equivalently, g 11* R =  sup o II go OM * , A  w here the suprem um  is taken
o v e r  a ll  injective holomorphic m a p s 4) o f  A  in to  R , o r  o v e r  a ll  injective
holomorphic m aps (1) of a  p lane dom ain into R.

Also 4 h * (R) be  the  space of all harmonic functions g  o n  R such that

g 11,1h„(R ) = sup g(z)I R (z) -  <  cc.
zER

In the case tha t D  is  a  p lane  domain we have

Proposition 11 ( [ 4 ] ) .  ( 1 )  BM0 * (D)= BMO(D) and it holds that

11911,1„D 11g11* * ,D geBM0*(D).

(2)
 

4 1,* (D )=  A (D ) and it holds that

II g II g  lla„„ 4 g e  h * (D).

(1) is a  consequence of the conformal invariance of BMO (Corollary 1) and (2) is a
consequence of Proposition 8. Hence BMO *  and 4 h * are  generalizations of BMO
and ,4h to  Riemann surfaces respectively. So in the following we identify BMO * ,
4 h * w i t h  BMO, .4h a n d  u se  th e  n o ta t io n  B M O (R ), h  instead o f  BM0 * (R),
4 h *  fo r an  arbitrary Riemann surface R for the simplicity, ignoring the ambiguity
of universal constant factors of their norms.

Now we investigate BMO maps between Riemann surfaces. By the definition
we have

Proposition 12 . (1 ) L et i: R —) R' be an inclusion m ap. Then i  is  a  BMO
map an d  II TIIBmo
(2) Let ThenR—)R' be a  covering map. Mg11*,R, 11T„g11 R , gEBMO(R').

Theorem 5 (cf. [ 4 ] ) .  L et R  be a R iem ann surface, D a plane dom ain, and
D—)R a covering m ap . L e t g e L L (R ).  Then geBMO(R) i f  and only  if
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K = sup1/11' 1g — (g n)B 1dxdy < oo ,
J B

where the suprem um  is taken over all disks B c D  such that it is univalent on
B .  Moreover it holds that K 11g11* ,R , K.

P ro o f. K < 11g11 * ,, is trivial. Next let 0: R be an injective holomorphic
m a p . L e t  -0: d —> D  be a lift of 0, then el) is also injective. L e t  D o = (7)(d). Let
g e LL,c (R) satisfy K < oo . Since n is  injective on each disk B  Do , 11 g  n11*,D.

K .  Hence we have 119 ° 011* ,A =11(9 ° ° '4) 11* ,A ll °  7r 114,,D. ,, K, by Corollary
1, which implies the assertion.

Theorem 6. Proposition 2, Theorem 3, and Corollary 8 are true for Riemann
surfaces, that is,
(1) BMOH(R)= BM0A(R)= .4(R) hold f o r every Riemann surface R and

11 g 11.41,,(R) 1-̂ .1 11 g 11 * , R ,  g  BMOH(R).
(2) Every nonconstant holomorphic map F :  R  R ' between Riem ann surfaces is

BMOA map and  II TF11 B M O A  1.
(3) L et F: R—) R' be a  nonconstant holomorphic map between Riemann surfaces,

and R' simply connected. Then F  is a  BMOH map an d  II TF B m 0 H  1 .

P ro o f. Since the proof is a  routine work, we prove only (1). L e t g  be  a
harmonic function o n  R, then by Proposition 2

IV g (0 (Mil 0 ' WI II g 11 *,R — sup 119 ° 011 * , d  - -'r.' Sup
0 0,z PA (Z )

1170 4 1V g ( w )
,1

 i i= sup  — sup ii 9 ii A„(R),
• G , w  PG (W ) w  P R ( W )

where sup.., is taken over all injective holomorphic maps 4): d  R and all points
z e d, and supG ,,„ is taken over all simply connected subdomains G  of R and all
points w e G.

Theorem 7  (generalized localiztion theorem) (cf. Proposition 3, cf. [4 ]) .  Let
L< 1, K > 0, and g a locally integrable function on a R iem ann surface R (0  t, C)
such that 11g11,,h. ,L , < K f o r every z e R. Then geBMO(R) and  IIg11* ,R 1 , - 1  K.

P ro o f. L et 0 :  d  R  b e  an injective holomorphic m ap , and  w e d . Then
(H!,,,) H ence 11 g 0 11 K , a n d  s o  11 g o 4)11 *, d L - 1  K  b y  the

localization theorem.

Theorem 8  (generalized removability theorem) (cf. Proosition D, cf. [4]).
(1) L e t  E  be a  discrete subset o f  a R iem ann  su rf ace  R (0  ,C )  such that

ii(A zR ,LnE ) K , z E R .  L et Ro = R\E, and ge BMO(R 0). Then gEBMO(R)
and  11911 * ,R C(K, L) 11 g 11 * ,Ro .

(2) L e t  E  t  satisfy # E  K ,  a n d  Ro =  t \ E .  L e t g  E BMO(R o ). Then
geB M 0 (t) an d  11g11* ,'è Ro. In  particular we have BMO(C)=
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B M 0(t).

P ro o f . T h e  a sse r tio n  (2 ) is  tr iv ia l b y  t h e  removability theorem. Let
47: A  R be an injective holomorphic m a p . Then 4(BL) c /P:0 ) ,,,, z EA. Hence
#(R4

z ,, n 0- 1 -(E)) .. K, so by the  removability theorem

II g ° 49 II * ,e < C(K, L)Ilg . abll i(E) C(K, L)11g11 * ,R0 •

Proposition 13  (cf. Proposition 5 ). L et s be a  superharmonic function on a
R iem ann surface R (0  t , C) such that A s = — 1.1 an d  II sIl * ,,, K ,  then i i  i s  a
uniform ly  locally  f inite m easure on  R  w ith respect to  the H ahn m etric, that is,

l2(lizR,1124), K, zeR.

P ro o f .  Let z E R , and  00 th e  map in  Lemma 5. Then by Proposition 5

1.1( 1,24) 1 (4)0({1C1 < II / 2}) Is ° 4) 011*,A ,-, 11 S 11*,R •

Lemma 8  (c f. [5 ]). (1 ) L e t  R  b e  a  noncompact R iem ann surface, and
z e R . T hen there ex ists a function pz o n  R satisfy ing the following conditions:

a) pz is harm onic on R\ {z} ;
b) M O + log I ( —  z I is harm onic near z;
c) 11 P z II * ,R

(2) L e t R  b e  a com pact R iem ann surface, and z1 , z2 e R, z, 0 z 2 . Then there
ex ists a function p 2 o n  R  satisfying the following conditions:
a) pz 1 z2 is harm onic on R\{z 1 , z2 };
b) Pz 1z2(C) + log I C —  z1 I is harm onic near z1 ,  an d  D ( 0. z i z2 . „  - -  log IC —  z2 I is

harm onic near z2 ;
c) II Pz , z211 *,R l•

P ro o f . First let R be noncompact. Let pz be the Green function with pole
z if R  admits the G reen function, and  the  Evans-Selberg potential with pole z
(cf. [18]) if R  does not admit the Green function. Then

I': I * dPz I 2m , seR.

Let 0: A -÷ R\ {z} be an injective holomorphic map and f  is an analytic function
on A  such that Ref = p z . 47• Since the Riemann surface of the inverse function
of f  does not contain a  schicht disk whose radius is larger than 7r, Proposition
2  show s that Il Pz ' 011*,zt 1 .  Hence Il Pz11*,R\tzt ,5•, 1, a n d  so
the generalized removability theorem.

Il I I  * ,R ,., Pz 1 by

Next let R  be com pact. L et pz ,z2 be the unique (up to constants) harmonic
function o n  R \ {z,, z 2 }  satisfying th e  cond ition  a ) and  b ).  T I7R\ipz2z),z  l is an
Evans-Selberg potential o n  R \ fz21 with pole z „ .  Hence II p z i z z

 a n d. 
so lIpz ,z2 II *, R ,.., 1 by the  generalized removability theorem again.

T h e  next theorem is a  generalization o f  Theorem 1. Combining it with
Corollary 4, we obtain a  characterization o f B M O  maps F :  R  —> R ' in the case
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th a t R ' is  no t compact.

Theorem 9  (cf. T heorem  1, cf. [ 4 ] ) .  L e t  F :  R  R ',  R  0 C ,  t ,  b e  a
nonconstant holomorphic map between Riemann surfaces. W e consider the following
tw o conditions:
(1) F  is a B M O m ap;
(2) T he set E F  o f  all branch p o in ts  o f  F is  a  removable set for B M O(R ) and

there exists a constant L > 0 such that f o r ev ery  disk  z eR \E F , F is univalent
on

(3) F  is o f  bounded local valence with respect to  Hahn m etric, that is, there exist
a constant L > 0  and  an  integer p > 0  such that F is p-v alent on f i z

R
. L  f o r

each z e R.
T hen it alw ay s holds that (2) .(1 ), (3 ) ( 1 ) .  I n  t h e  c a s e  o f  R ' t, (3 )  ( 2 )
holds. M oreov er i f  R ' is noncom pact (1), (2), an d  (3) are  equivalent to each
other. In particular if  R ' admits the Green functions g i e (• , z ), z eR , the following
condition is also equivalent:
(4) suPceR, g R , (F, C)114.,R, <  co.

P ro o f . (2) ( 1 )  follows from th e  conformal invariance of B M O  and the
generalized localization theorem.

((3) ( 2 )  if R' t )  Let R' t  and F  satisfy (3). Let z e R  and 4),: R ,
0 0 (0) = z , be the injective holomorphic map satisfying the condition of Lemma 5
(2). Then F o 4), is p-valent on 4, by Lemma 5 (1). Since R' t ,  Lemma 3
sh o w s t h a t  #(E Fo ,. n Bgx ,) C 2 .  A n d  s o  ME, n fizR,c 3 ) < C 2  b y  L e m m a  5
(2). H ence  E ,  is  rem ovab le  f o r  B M O (R ) b y  t h e  generalized removability
theorem . Finally since R' t ,  Lemma 7  shows the assertion.

((3) ( 1 ) )  L e t  F  satisfy (3). L e t  14,
0 e  R ' a n d  s e t  R , = R '\{ w 0 } ,  R ,=

R \ F  ( w „ ) .  Then FIR ,: R , --* R ,, R , satisfys the condition (3). Therefore
F R 0 satisfys (2), and so F I R , is a  B M O m a p .  Since F - 1 (w0 ) is removable for
BM O(R) by  the generalized removability theorem, F  is  a  B M O map.

((1) ( 3 )  if R ' is noncompact) Let R ' be noncompact, and F  a  B M O map.
ER', a n d  pc t h e  function in  Lemma 8. T h e n  11/0c ° F 4,R  T „  „  .  Since

4(p c o  F)= — 27EL E F _1 ( ) 6,,„ where (5,4, is the dirac measure at w, Proposition 13
shows that 1/ F#( ( ) )  T F  B M O , Z  e R .  This argument shows (1) ( 4 )
(3) when admits

 t e
 h  Green function.

•i j zR, 2  4  n

If R ' = e , Theorem 9 (1) ( 3 ) ,  ( 1 )  ( 2 )  do not hold in  general (see Theorem
14 below ). H ere w e give a  necessary condition for a nonconstant holomorphic
map with compact targets to be a  BM O m ap. T he se ts F - '( ), E R ',  are similar
to each other in  the  following sense:

Proposition 14. L e t  F : R  R ' be  a B M O  m ap betw een Riemann surfaces.
L e t R ' be  compact, and z 1 , z 2 eR ', z ,  z 2 . L e t  k  be a C 2  f unction on  A  with
compact support, and 4): 4 —> R an injective holom orphic m ap. Then

E  k(w) — E  k(w)i T F  11 .m o  A k •
w ( F ) -  1 (21) we(F.0)-- (22)
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P ro o f . Let pz , „  be  the function in  Lemma 8 o n  R'. Since

F  0 ) =  2 7 r E E w)
w e(F .0)-

 1
 (z2 )w E ( F . 0 ) -  ( z

the assertion follows from Lemma 1.

If  R ' is noncompact we can show that

E k(w)I TF B M O  1 1  k
w e ( F )  ' (z)

by using the function p z o f  Lemma 8 instead of p z , z 2 • I f  R is compact, however,
th is estimation does no t ho ld  in  general. (See Theorem  13 a n d  Corollary 20
below.)

T h e  nex t coro lla ry  is  a n  immediate consequence o f  T heo rem  9  i f  R  is
noncompact.

Corollary 13. L et F :  R  R ' be a BMO map between Riemann surfaces,: E R,
and v,(z) the valency o f  F at z, that is, F(C) = F(z)+ —  zr ( z)  + c 0, near
z. Then VF (Z) TF11 BMO •

P ro o f . L et 0 : A  R  b e  a injective holomorphic m ap such that 0(0) =  z,
F (0 ( ) )  F  (0 (0 ) ) ,  e  A \ {0}, a n d  F(0(A)) R'. L e t w , =  F (z ) a n d  WI E R' \
F(c/o(A)). L e t k 0  b e  a  C 2 func tion  o n  A  w ith  com pact support such that
k(0) = 1. Then by Proposition 14 we have

14(z) = E k( ) — E k( ) TF  Ilsmo IH Mr.,3 TF smo.
ce(Foo - '(w2) C e(F0) 1)

We give several consequences of Theorem 9.

Corollary 14. L et F: R—> R' be a nonconstant p-valent holomorphic map bet-
Ilween Riemann surfaces. T h e n  F  is a BMO m ap and 11T  s m o, C (p ).  Especially

a  nonconstant holomorphic m ap betw een com pact R iem ann surfaces is alw ay s a
BMO map.

P ro o f .  Let w 1 , w„ e F (R ) ,  w ,  w , a n d  s e t  RO= R'\{w 1 , w2 } , R 0 = R\
F  ( { w  w2 }). Then F0  =  F R o : Ro  R O  satisfy the condition (3) of Theorem 9.
H e n c e  TF.11 B M O  C  i ( P ) .  Hence 11 TF 1 IBmo C 2 (p) by the generalized removability
theorem.

Corollary 15. W hether a  given nonconstant holomorphic m ap F: R ' is a
BMO m ap or not is independent of  the choice o f  its target, that is, let ik : R' R k",
k = 1, 2, be injective holomorphic maps, then j 1

 o  F  is  a  BMO m ap if  and only  if
i2 . F  is  a  BMO map.

P ro o f .  It suffices to show that let F: R ' be a nonconstant holomorphic
map, RO a  proper subdomain of R ' such that F(R) R O ,  then F  is  BMO map
if a n d  o n ly  if F, =  F :R —>R O  is a  B M O  m a p .  I n  t h i s  c a s e  R O  is
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noncompact. (Case 1) L et R  = C  a n d  R;,, = C  o r  C \ {0} . Then R ' = C  o r  C
hence BM0(e) = B M O(C)= B M O(C\ {O}) implies the  a sse rtion . (Case 2) Let
R  C ,  C .  Let F ,  be a  B M O m a p .  Since R;) i s  noncompact, F ,  is of bounded
valence with respect to  the  Hahan metric by Theorem 9. Therefore F  is  BMO
map by Theorem 9  again.

Corollary 1 6 .  L e t  F : R  R ' an d  G : R ' R "  be both nonconstant holomorphic
m ap s . Let R" be noncompact, and G o  F a B M O  m ap. Then F is a BMO map.

P ro o f . N o te  th a t  R , R ' a r e  b o th  noncompact. In  th e  c a s e  R  C  the
assertion follow from Theorem 9. In the case R  = C then R ' = C or C  {0} and
R " = C  o r C  {0} . Hence G o F  is  a polynomial by Corollary 4, and so  F  is a
polynomial, which is B M O map by Corollary 4  again.

Next we generalize Theorem 2. Since its proof is almost the  same a s  that
of Theorem 2 except for (2)-• (3), which we have already proved as Proposition
10, w e om it its proof.

Theorem 10 (cf. Theorem 2). L e t  F : R  R ',  R ,  R ' C, C, be a nonconstant
holomorphic m ap betw een R iem ann surfaces. W e consider the  follow ing three
conditions:
(1) F  is a B M OH m ap;
(2) There exists a constant K  > 0  such that

OR4F(z))1d 1 '(z)1 K O R (z)Idzi, z  R ;

(3) There exists a constant L > 0 such that F(.1fi z
R,L ) is contractible on R ' f or each

z e R.
T hen  it alw ay s holds (2) <:*. (3) (1) and 11 TF BMOH inf K , in f (L ') i n f  K
inf (L - 1 ) +  1 . In  particular i f  R ' is  a plane dom ain, these three conditions and
the follow ing two conditions are equivalent to each other:
(4) a = SUD 4eC R '  1110g1 F 14,12 < ;
(5 ) fl = suPw R, IllogIF CIII* ,R  <  co;
Moreover a f l  M  T_ F IIB

 0 H  inf K.

W e note that (1) ( 2 )  does not holds in  general.

Example 2. Let R ,  R  t ,  be  a compact Riemann surface, z0 e R , and set
R ' = R \Iz o l. L et { I z — zo l < 1} R  b e  a  loca l d isk  around zo , a n d  se t G =
{0 < z — zo l < 1} R '.  W e define a  m a p  F: R  b y  F(C) = e( - ' ) /( 4 +  e  G,
which is a  universal covering map onto G . F does not satisfy the condition (2)
of Theorem 10 since ijc(C)1 4 1  and Ow(C) I dC I are comparable on {0 < I z — zo <
1/2} c G .  O n the  other hand, F  is  a  B M OH map since B M O H (R )= C,

W e don 't know  w hether (1) ( 2 )  i s  t r u e  o r  n o t  u n d e r  th e  assumption
B M 0 H(R) 0 C .  We note that we cannot apply the same method used to prove
Theorem 2 to prove this. Indeed, even if B M O H ( R )  C, there is no  family of
harmonic functions hz , z e R', such that
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a) hz 11,,R , C l ,  ze R',

b) I Fli z (z)1 C 2 f)R ,( z ) , z E R' ,

in  genera l. L e t R, R t ,  b e  a compact Riemann surface, z1 , z2 eT, z, z 2

and set R' = T \ { z 1 , z 2 1. Then BMOH(R) is the space of all harmonic functions
on R' which has at most logarithmic singularities at z 1 , z 2 , so dim BM OH (R ')= 1.
Hence there exists a z o  ER ' such that 17  h(zo ) = 0, hE BMOH(R), and  so b) does
not holds.

Theorem 11 (cf. C oro lla ry  6 ). L et n: R R ' ,  R  C, t, be a  covering map
between R iem ann surfaces. T hen the following conditions are  equivalent to each
other:
(1) n  is  a  BMO map;
(2) There exists a constant L >  0 such that n is univalent on .fiz

R ,L  f or each z E R;
(3) There ex ists an  integer p > 0  such that n  is p-valent on each B 1 1 2 4 ,

 T h e re  e x is ts  a constant K > 0  such that

15,„(n(z))1dn(z)1 K  R (z) I dz1, z e R,

1124, z E R.

and w e hav e 11T, IIBM O inf K  inf p  and inf K  in f  ( L ')  +  1 .  M oreover i f  R'
is  noncompact w e have F1113M0 inf K  inf (L ") +  1 inf p. In  particular if
R ' adm its the G reen functions gi e ( • z ) ,  z e R ,  the  follow ing condition is also
equivalent:
(4) a = sup e R , z)11,,R. < oo,
and a TF BMO •

P ro o f . (2)<=>(3)<=>(4) and inf (L - 1 ) + 1 inf K  inf p follows from Corollary
12. ( 2 )  ( 1 )  a n d  II TFI B M o  inf ( L ' )  +  1 follows from the  generalized localiza-
tion  theo rem . I f  R ' is noncom pact Theorem  9 (and its proof) shows (1) ( 3 )
and inf p II T F I I B M O •  N e x t  if R  is  compact (3) always holds by Lemma 6.

We note that if R' is compact p TF  BMO does not hold in general (See Example
3 below).

The following Theorem and Theorem 11 completely characterize BMO maps
in case of covering maps:

Theorem 12. (1) L et n  = ? : C  C  \  {0 }. T hen n  is  n o t a  BMOH map.
(A nd so n  is not a  BMO map.)

(2) L et n: C  T  b e  a  uniersal covering m ap o f  a  torus T  with modulus -r e Q,
where S2 is a fundam ental set {z -= x + iy I y > 0, — 1/2 < x 1 / 2 , z  1 }  of
Riemann m oduli space. T hen n is a  BMO m ap and

B m o  IM  T.

(In other word, II T,I1Bmo exP ( h a i l  [r ] ) ) , lin r >0, w h e re  h ail  [T ]) is the
distance between [ i ]  and  [ r ]  in the R iem ann m oduli space induced by  the
Teichnfiller metric.) I n  p art ic u la r i t  h o ld s  th a t  119114„7. 119° 7r11 c,
Imr gI T ,  gEBMO(T).
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W e don't know  w hether the similar estimation holds or n o t in case of genus
> 2. (1) is  a  consequence of Theorem 2 . To prove (2) we need the following
two lemmas.

Lemma 9. L et T  be a torus with modulus i, that is, T =  C l{ m  + nilm , neZ } .
Then its universal covring map 7r: C  T  is a B M O m ap.

Pro o f . Let Q = {0 < x 1 ,  0  y 1} and Bo  its c ircum scribed disk . Let
B  b e  a  disk on C . (Case 1) Let rad (B) rad (B 0 ). Then It is  2-valent on B,
hence II g  - *,B  g  * , T  b y  C orollary  14. (C ase  2 ) Let rad (B) > rad (Bo).
Then by the periodicity of g o n  and Case 1, w e have

IBI - j  1g .7r — (g on)B o ldxdy 1 Ig .7 r —  (g n) B 0 Idxdy

.,., I B 0 I -  1I  g , n — (g , n)B o l dxdy ,., II g II * ,T  .I
Bo

Lemma 1 0 .  L e t p > 0 be an  integer, E = { rn + f ilm , neZ } , E  =  {mlp +
f ilm , n E Z}, T1 = C/E, and T2 = C lE p . Let i t  : T2 be the canonical p-valent
covering m ap . Then it is a B M O  map and IIT,TIIBmo -& P.

Pro o f . Il T„11e m o  P  follows from  Theorem  11. N ex t let b e  a  1,10 c (C),, 
function such that

t, 0 t < 1/2,4(z ) =
(i - t), 1/2 < t  <  1,

where t = Im z — [Im z]. Let g  be a L 0 (T2 ) function induced by . Let B  C
be a  disk which contains no two E r -equivalent points. Then

B '  Ç14 - BI dxdy sup ö (z 1) — (z2)l < l / p.
zi,z2EB

Hence 11 g II* , T 21 /p  b y  T h e o re m  1 2 . S in c e  l g ° itll * Tl is independent of p, we
have 11T, I1B m o  Z, p.

Proof  o f  Theorem 12 (2). B y the quasiconformal invariance of B M O, we
c a n  assume t  =  ip, p e N .  Let Ep = {m/p + ni I m, nn Z }  th e n  T = C/Ep . Let
E  = {m  + nilm , n e Z}  , T , = C I E ,  no : T, T  the canonical p- valent covering
map, and it t : C T , the universal covering m ap . Since it = n o o n ,  Lemma 9
and 10 show th a t  11 T7,11 BMO T n o l I B M O  Il T, I BMO P .

Next, by Lemma 10 there exists a  B M O(T) function g  such that II = 1
and l g o it0llP .  Hence 119 o 7r11* ,c = Ilg it o  ° it 1 r c c P  by Proposition 12,
and so II Tit Ilsmo Z' P.

Corollary 17 (cf. [6 ] ) .  L et F: C be an elliptic function o f  order p, and
T  a  torus associated with F .  Then F  is  a BMO m ap an d  II TFIIBMO C(T, 13).
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P ro o f .  Let rt: C  T  be a  universal covering m a p .  Then F = F o  o  7 ,  where
F  T  t  is a  p-valent holomorphic m a p .  Hence Theorem 12 and Corollary 14
we have 11 TF11 BMO T F 0  BMO Tn11 C 1 (1 ° )C 2 (T )•

Corollary 18 (cf. Lemma 1 0 ) . Let T 2  be a  nonconstant holomorphic
m ap betw een tori. T hen F is a  B M O m ap and 11TF IIBMO 1 m  1 2 ,  where 1 2  is the
modulus o f  T 2  contained in a fundamental set 1z = x + iy y  > 0, — 1/2 x  1 / 2 ,
1z1 1 1  o f  Riemann moduli space.

P ro o f .  L e t  g B M O (T 2 ). L e t mi : C =  1, 2, be universal covering
maps, a n d  F: C  C  a  lif t  o f  F .  Then P(z) = az  + b  s o  Te,' is  a n  isometry of
B M O (C ). Hence by Proposition 12 and Theorem 12 we have

119 F n2° =  II g g211,,,c 1[111 1 2  g

Combining Theorem 11 a n d  12 we have

Corollary 1 9 .  L et 7i : R ' be a  covering map betwen Riemann surfces.
R ' is compact m  is alw ay s a  B M O map.

Example 3. Let T  b e  a  torus a n d  F,,: T —>T  a  covering map induced by
Fn : C  C ,  F ( z )  nz. Then F„ is  n2 -valent, a n d  fi T (F„(z))1dF„(z)1= O T (z) dzI
by  the homogeneity o f  T  O n the  o ther hand 11 T e „1 1 1 3 M 0  C ( T ) .

L et B: t  be  a  Blaschke type holomorphic map such that

Z —
B (z )= , _ ,

n = 1  1  —  Zn Z

Let d p ,= E n
N _,(1 —lz,J2 )616z ,  where Szn i s  the dirac measure at zn. We denote

the  Carleson constant of a  given positive measure p  o n  A  by Carl (p). W e set
Carl *  (B) = supce, Carl ( p , ) ,  where B(Z) = (B(z) — )/ (1 — CB (z )). Then we showed
the following:

Theorem 1 3  ( [ 6 ] ) .  L e t Carl * (B ). K  then 11T 8 11,,,,0 C i (K ). Conversely
TBMB M O L  then Carl *  (B) C  2(L ).

From this, we can easily construct a  sequence of rational functions Fn : t
su c h  th a t  11 T I I 8 M O  1  a n d  deg Fn —> co, o r  even construct a  Blaschke type
holomorphic map preserving B M 0 ( t )  with essential singularities in  the following
sense:

Example 4  ( [ 6 ] ) .  L et F  b e  a  Blaschke type function with respect t o  the
upper half plane such that

— z
F(z) = 1J

 Z  ±  2 ' i + z

If

lz„1 < 1,

F  is  meromorphic o n  C \ {0}. Then by repeating the  proof of Theorem 13 we
can show th a t F: C \ {01 —■ t is  a  B M O m ap ([6]) which has the  origin as an
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essentia l singularity . (Compare th is  w ith  C o ro lla ry  2.) S in c e  B M 0 (t)=
BM O(C\ {O}) we can regard TF  a s  a  bounded operator on B M O (C ) . We can
similarly regard an elliptic function as a BMO map between t  with an essential
singularity at co.

Furthermore we have

Theorem 14. L et D  be a plane domain and { z }  a sequence of distinct points
on  D  having no cluster points in D . T hen  there  ex ists a  B M O m ap F: D—> t,
11TFIIBMO 1, having { z„} as the  se t o f  all poles of  F.

P ro o f . W e show tha t if len l, n= 1, 2, ..., are sufficiently small,

enF ( z ) =z + E 
n = 1  Z Zn

is a  required map.
Let B „ b e  a  d isk  o n  D  a round  z „ s u c h  th a t  B „nk n = 0 , n  é  m .  Let

Bn = (1/3)B„, and  Do  = D \( j,,B „. I f  I Eni, n= 1, 2 , . . . ,  a re  sufficiently small,
Fo = FID 0  i s  a  conformal map which has a  quasiconformal extension P 0  t o  D
such that the maximal dilatation of Fo is  le ss  th an  2. Let g e B M 0 ( t ) .  Since
BMO is quasiconformally invariant Mg° 1 1 g 1 1 - e .  Since F is 2-valent on
each B „ we have 11 g  o  F 11 gM e by Corollary 14. Let B  b e  a disk tangent
to  B„ such that rad (B )= rad (B„). Since B B„,

1(g. (g Fo)B„1 1(g F)13„ — (g F)8 1 + 1(g o  P0)13 — (g o Po)B„I

11 g o  F11.,8„ + Mg1 1 * ,D 11g11 •
Hence

fB„ 
Ig o  F — g o f o ldxdy

lg o  F — (g o  F ) 8 „I d x d y  f  1g 0 F 0  ( g  F0)8„Idxdy
B,, B,,

I(go F)8. — (g ° r. 0)8„Idxdy
B,,

113,1111g 111,1111g ° P 011,k,D 113,1111g11*,e
Let B  be  a  disk on D.

(Case 1) Let rad (B) rad (Ba ) for some n  such that B n B „  0 .  Then B  B „,
hence

f Ig  F  — (g  F) B  I dxdy II g 11g11*,e•

(Case 2) Let rad (B) > rad (Ba ) for every n such that B n B 0 .  Since B„ OE 3B
holds for such n, we have EB n n B 4 O 1Bn I 91B1. Hence
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e

lg F —  (g Fo)BI dxdy

1g F  —  g  F o ldx dy  + f  19 ° —  ° Fo)B1dxdY

<  E 1g . F — g  P o ldxdy  + 1./3111g ° Po II* ,D
B,r111#0 B,,

E 1Bni 11g Le + BI 1 Le BI 11g11*,e•
Bn n B *0

Corollary 20. Let {z„}„N = ,  be a finite sequence of  distinct points on C . T hen
there exists a B M O  map F: C— * t, 11 TF Ilam o

 having lz„1,,N = ,  as the set of  all
poles of  F.

P ro o f .  W e can assume z, = co. Then, since B M O (C )= B M 0(t), we can
show tha t if e,j, n = 1, 2,... N, are sufficiently small,

F ( z ) = z +  E  En

n=2 Z  —  Zn

is  a  required map similarly.
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