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On holomorphic maps between Riemann surfaces
which preserve BMO ‘

By

Yasuhiro GOTOH

0. Introduction

We say that a nonconstant holomorphic map between plane domains is a
BMO map if it preserves BMO, where BMO is the space of functions of bounded
mean oscillation with respect to the 2-dimensional Lebesgue measure.

Reimann [16] and Jones [10] showed that BMO is invariant under
quasiconformal maps. Hence conformal maps are BMO maps. Osgood [13]
characterized BMO maps in the case of universal covering maps of plane domains.
In [4] we defined BMO space on general Riemann surfaces and extended his result
to Riemann surfaces. We also characterized BMO maps between plane domains
in [5]. Moreover we investigated Blaschke type holomorphic maps between the
extended complex planes in [6], and gave an estimate for their operator norms
as BMO maps. In this paper we treat BMO maps between Riemann surfaces
in succession.

In §1 we give a characterization of BMO maps between plane domains
(Theorem 1), which extends our former results in [5]. We give also a
characterization of BMOH maps between plane domains (Theorem 2), where
BMOH map is a nonconstant holomorphic map which preserves harmonic BMO
functions. In particular we show that a covering map between plane domains
is a BMO map if and only if it is a BMOH map (Corollary 6).

In §2 we investigate Hahn metric on Riemann surfaces which is a
generalization of the quasihyperbolic metric. We generalize several properties of
the quasihyperbolic metric to Hahn metric. In particular we show that the Hahn
metrical length of every closed curve which is not homotopic to a point is not
less that n/2 (Proposition 9).

In §3, by using the result in §2, we investigate BMO maps between Riemann
surfaces. In particular: (1) We give a characterization of BMO maps with
noncompact targets (Theorem 9); (2) We give a characterization of BMO maps
in case of covering maps (Theorem 11 and 12); (3) We give several results which
indicate an essential difference between BMO maps with noncompact targets and
BMO maps with compact targets (cf. Corollary 17 and 20, Theorem 14). We
cannot obtain, however, a characterization of BMO maps with compact targets.
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1. BMO maps between plane domains

Let D be a plane domain. Let BMO (D) be the space of all locally integrable
functions g on D such that

lg1l4.p = sup |B|~! J lg — gpldxdy < oo,
B
where the supremum is taken over all disks B in D and gy denotes the average of
g over B and |B| is the 2-dimensional Labesgue measure of B. Let BMOH(D)
(resp. BMOA(D)) be the space of all harmonic (analytic) functions in BMO(D).

We say a nonconstant holomorphic map F: D — D’ between plane domains is
a BMO (resp. BMOH, BMOA) map if Tpg = g - Fe BMO(D) for every ge BMO(D’)
(BMOH(D), BMOA(D')). The category argument shows that a BMO(BMOH,
BMOA) map F induces a bounded operator Tp. Let | Tglgmo (I Trllsmon-
| Tr |l smo) be its operator norm. In this section we investigate BMO and BMOH
maps between plane domains.

In the following C denotes the extended complex plane, d(-, -) denotes the
Euclidean distance, disk means an open disk, rad (B) denotes the radius of a disk
B, tB, t > 0, denotes the disk having the same center as B and trad(B) as its
radius, 4 denotes the unit disk, and a covering map means an unbranched
unbounded (not necessarily normal) holomorphic covering map. We say two
positive constants a and b are comparable (or a x~ b) if A™! <a/b < A for some
universal constant 4 > 1, and a < b if a < Ab for some universal constant 4 > 0.

The following remarkable result by Reimann and Jones shows that in spite
of the dependence of the definition of BMO(D) on the 2-dimensional Lebesgue
measure on D which is not conformally invariant, BMO(D) becomes a function
space on a “Riemann surface” D. Using this fact we define BMO on general
Riemann surfaces later.

Proposition 1 (quasiconformal invariance)([16], [10]). Let F: D — D' be a
quasiconforal map between plane domains. Then go Fe BMO(D) for every
ge BMO(D') and

CK)Y ' lglyp <llgeFllyp < CK) gl p

where K is the maximal dilatation of F.

Corollary 1. Let F: D—> D' be a conformal map between plane domains.
Then g o Fe BMO(D) for every ge BMO(D') and ||go Fl,p= llgllyp -

We list up some basic facts about BMO which we need later.
Let 4,(D) the harmonic Bloch space on D, that is, 4,(D) is the space of all
harmonic functions g on D such that

gl @,y = sul;)) d(z, D)V g(2)| < o0,
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and let #(D) be the standard (analytic) Bloch space on D.

Proposition 2 (cf. [2]). BMOH(D) = #,(D), and BMOA(D) = #(D) for every
plane domain D and | g\ ,.p = 19|l @, ), 9€ BMOH(D). In particular BMOH(C) =
BMOA(C) =C.

Let #, ., L> 0, denote the set of all disks B on a plane domain D such that
d(B, 0D) > Lrad (B).

Proposition 3 (localization theorem)(cf. [17], [7, Lemma 6]). Let L>1 and
g a function in L}, (D) satisfying the condition |B|™" [,|g — gl dxdy < K for every
disk Be %y, ,, then ge BMO(D) and | gl p S LK.

Proposition 4 (removability theorem)(cf. [17]). Let D be a plane domain and
E a discrete subset of D such that #(ENB) < N for every disk Be %y, ,. Let
D' = D\E and ge BMO(D'). Then ge BMO(D) and ||gll,.p < C(L, N) gl p -

Proof. We note that let Q be an arbitrary plane domain and zeQ, then
BMO(2\{z}) = BMO(R) and it holds that |gl, o < Iglls.0\ (cf. [17]). And
so the assertion follows from Proposition 3.

Lemma 1. Let B be a disk, ge L'(B), and n a signed measure on B such
that Ag = u in the distributional sense (, which means g is locally a difference of
two superharmonic functions). Let k be a C? function on B with compact
support. Then

j kdu’ < |4kl J lg — gpldxdy.
B B

Proof.

j kdu
B

Proposition 5 ([3]). Let s be a superharmonic function on a plane domain
D such that As = — p and ||s| . p < K, then u is a uniformly locally finite measure
on D, that is, u(B) < C(L)K holds for every L> 0 and disk Be %}, .

f gAkdxdy
B

j (9 — gp)dkdxdy
B

< || 4dk]l J lg — gpldxdy.
B

Proof. Let Be%y,,z, its center, r its radius, and B = (L+ 1)B(< D).
Let ko >0 be a C? function on 4 with compact support such that k, =1 on
{lz| < 1/(L+ 1)}. Let k(z) = ko((z — zo)/((L+ 1)r)). Then k >0 is a C? function
on B with compact support such that k, =1 on B. It follows from Lemma 1

[ 4ko Il

Ltz Blsln < CLOK.

u(B) Sf kdu < || 4kl |B'| I sll 4,0 =
.

Let F: 4> C be a holomorphic map. If its Schwarzian derivative

s =(EO) - (52
F'(z) 2\ F'(2)
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satisfy |Sgp(z)| < 2/(1 — |z|%)?, z€ 4, then F is univalnt on 4([12]). Hence we have

Lemma 2. Let F: D — D' be a holomorphic map between plane domains such
that |Sg(z)| < K/d(z, 0D)?, z€D, then F is univalent on each disk Be %, ,, where

L= JK/2.

We say a nonconstant holomorphic map F: R — R’ between Riemann surfaces
is p-valent, if #F ~'({) < p, {e R’, where F ~*({) is to be counted with multiplicity.

Lemma 3. Let F: A4— R be a p-valent holomorphic map into a Riemann
surface R, R # C, and E; the set of all branch points of F. Then #(BnEp <
C(a, p) for every a >0 and disk B = 4 with hyperbolic radius o, where Ep is to
be counted with multiplicity. Moreover if F is locally univalent, then F is univalent
on each disk B = A with hyperbolic radius C(p).

Proof. First, assume that there exist a plane domain R, and a sequence of
p-valent holomorphic map F,: 4 - R such that #(E; n{|z| <1/n})>p. We
set u,(f) = max {|a,||0 < n < p} for a holomorphic function f(z) =Y.  a,z" on
4, then the family of all p-valent holomorphic functions f on 4 such that pu,(f) <1
forms a normal family (cf. [9]). Let g,(z) = F,(z) — F,(0) and h,(2) = g,(2)/ 1,(9,)-
Then p,(h,) =1 and h,(0) = 0, and so some subsequence h,, converges uniformly
on compact set to a nonconstant holomorphic function h on 4. Then the origin
is a branch point of h with multiplicity > p. Hence h, (and so F,) is not
p-valent for sufficient large k, which is a contradiction. The same argument holds
in the case of locally univalent functions.

Next let R be a Riemann surface. Let 7: R —» R (R = C or 4) be a universal
covering map and F a lift of F. Let F be p-valent. Since F is a p-valent
function having the same branch points as F, the same estimate holds. Finally
let F be locally univalent p-valent then F is also locally univalent p-valent. Hence
there exists a constant 0 <[, <1 such that F is univalent on {lz <1,}. We
can assume F(0)=0. Let r=|F(0)[l,/4, then F({|z|<I,})>{Iw|<r} by
Koebe’s theorem. Then {|w| < r/2p} contains no two equivalent points, indeed
if wy, w,, w, # w,, is equivalent points on {|w| < r/2p} and let T be the covering
transformation such that T(w;) = w, then T"(w,)e{|w|<r}, 0 <n < p, which is
a contradiction. Applying Koebe’s theoem again we have F({|z| < 1,/32p})
{Iw| < r/2p} and so the assertion follows.

Let D be a plane domain and E a closed subset of D such that D\ E is
connected. We say E is removable for BMO(D) if every BMO(D\ E) function
is a restriction of some BMO(D) function. Then there exists a constant C >0
such that for every ge BMO(D\ E) we can choose a function ge BMO(D),
GI(D\E) =g so that ||gl,.p < Cl gl pe by the open mapping theorem. In case
of D =C, E is removable for BMO(C) if and only if E is a uniform domain (cf.
[10]). When D is an arbitrary plane domain, E is removable for BMO(D) if
and only if D\ E is a “relative” uniform domain (cf. [7]).
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Theorem 1 (cf. [S]). Let F:D— D be a nonconstant holomorphic map
between plane domains. Then the following conditions are equivalent to each other:
(1) F is a BMO map;

(2) F is of bounded local valence on D, that is, there exist a constant L> 0 and

an integer p >0 such that for every disk Be %y, F is p-valent on B;

(3) The set Egp of all branch points of F is a removable set for BMO(D) and
there exists a constant L> 0 such that for every disk Be p, g, 1, F is univalent

on B;

(4) log|F'|eBMO(D);

(5) supgc llog |[F — L ly,p < 003

(6) supeep ll0g |F — {11y < c0.

If D' admits Green functions gp.(-,(),(eD’, then the next condition is also
equivalent :

() supgep 9o (F, Ol 4, p < 0.

Remark that only the condition (4) is new: This theorem was proved in [5]
except for (4).

Proof. We have (1) = (5) =(6) and (1) = (7), since log | - |e BMO(C), gp( -, {)
€ BMO(D’), and supyp gp (-, {) 4.0 < o0 (cf. [3]). Applying Proposition 5 to
superharmonic functions — log |F — {|, gp.(F, {), we have (6) = (2), and (7) = (2).
(2)=(3) is a consequence of Lemma 3 and the removability theorem. (3)= (1)
follows from the localization theorem.

((3)=(4)) Let F satisfy (3). Let G=D\Er. If G=C then D=C and
F(z) =az + b, hence (4) holds. Next let G#C. Let zeG and B’ the disk in
G around z such that d(B’, 0G) = Lrad (B'). Applying Koebe’s theorem we
have |F"(z)/F'(z)| < 4/rad (B) < C,/d(z, dG). Hence by Proposition 2, log |F'|e
BMO(G). And so log|F'|e BMO(D).

((4)=(3)) Let log |F'|e BMO(D). Applying Proposition 5 to a superharmonic
function —log |F'|, we have #(BnEy) < C, for every disk Be#,,. Hence E
is removable for BMO(D) by the removability theorem. Let G = D\ E;. Since
log|F’'| is harmonic on G, Proposition 2 shows that |F"(z)/F'(z)| < C5/d(z, 0G),
zeG. Hence |Sp(z)| < C,/d(z, G)?, zeG. And so Lemma 2 shows that F is
univalent on each disk B'e %; ,.

Corollary 2. Let F:A\{0}>D' be a BMO map into a plane domain
D'. Then the origin is not an essential singularity of F.

Proof. By Theorem 1 F is p-valent on each disk B <= (1/2)4 such that
d(B, {0}) > rad (B). Hence by Lemma 3 there exist a constant ¢>0 and
sequences {r,},, 27" ' <r,<27", {6,}=,, 0 <6, < 2=, such that F is univalent
on B, for each ze N and F({) #0 on |,y B,, where B, = {{eC||{ — z| < ¢]|z|},
and N =, ({I{| =r,}u{{ =re®|27""2 <r <27"}). Then by Koebe’s theorem

|F(z2)/F(z))l % 1, z,,2,€(1/2)B,, z €N,

hence
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[F@) < Cy[Fr)l, lzl=r,, n=12,.,
[F(rys )l < Co|F(r)l, n=1,2,.,

and so |F(z)| < C3;Ci <Csr,%, |z|=r,, hence the origin is a removable
singularity of z°*! F(z), which implies the assertion.

There exists, however, a holomorphic map F: 4\ {0} — C having the origin
as an essential singularity such that F is p-valent on each disk B < (1/2)4
satisfying the condition d(B, {0}) > rad (B). Let n: C\ {0} - T be a covering map
onto a torus T, and f: T— C a nonconstant holomorphic map, then F =foxn
is one such function.

Corollary 3. Let E be a finite set of points on C,D = C\E, D' a plane
domain, and F: D — D' a nonconstant holomorphic map. Then F is a BMO map
if and only if F is a rational map.

Proof. First, a rational map is a BMO map since it is a finite valent
map. Next let F be a BMO map. Let Dy ={zeC|0<|z| <1, 1/z¢E}, then
G:D,—- D', G(z) = F(1/z), is a BMO map. Hence EU{oo} are not essential
singularities of F by Corollary 2.

In particular we have

Corollary 4 (cf. [5]). (1) Let F:C—C be a nonconstant holomorphic
map. Then the following conditions are equivalent to each other:
a) Fis a BMO map;
b) C\Ep is a uniform domain and there exists a constant L> 0 such that
F is univalent on each Be Zp, 1 ;
¢) F is a polynomial.
(2) There is no BMO map F:C— C\{0}.

Corollary 5. Let F: D —» D' be a nonconstant quasireqular map between plane

domains. Then the following conditions are equivalent to each other:

(1) F preserves BMO;

(2) F is of bounded local valence on D;

(3) The set Ep of all branch points of F is a removable set for BMO(D) and
there exists a constant L > 0 such that for every disk Be #p\g, 1, F is univalent
on B;

4) logJre BMO(D), where Jg is the Jacobian of F;

(5) log|V F|le BMO(D).

Proof. Let F = F, o F,, where F, is a holomorphic map and F, is a quasicon-
formal map. Then log Jp = (2log|F;|)- F, +log Jp, and logJy € BMO(D) (see
[17]). Since K !'J. <|VF|> < KJ where K is the maximal dilatation of F,
log Je€ BMO(D) if and only if log |V F|e BMO(D). Similarly log J € BMO(D) if
and only if log |V F,|e BMO(D). Moreover let G: D; — D, be a quasiconformal
map with maximal dilatation K, then for every L> 0 and every Be %), c«k.1
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there exists a B'e %, such that G(B)c B'. And so Theorem 1 and the
quasiconformal invariance of BMO imply the assertion.

Next we characterize BMOH maps.

Theorem 2. Let F:D—D',D #C, be a nonconstant holomorphic map
between plane domains. Then the following conditions are equivalent to each other:
(1) F is a BMOH map;

(2) D # C and there exists a constant K >0 such that

|dF(z)] <K |dz|
d(F(z), 8D') ~  d(z, 0D)’

zeD;

(3) There exists a constant L> 0 such that for every disk Be %, ., F(B) does not
surround any component of 0D';

(4) o= supgcyp log|F — || 4,p < 0;

(5) B =supysp llog|F — {1, p < .

Moreover | Ty | pyon = INf K x a~ f and inff LS inf K <inf L+ 1.

Proof. (2)=>(1) is a consequence of Proposition 2. Since log|-|e BMO(C),
(1) = (4) = (5) holds.

((5)=>(2)) Let F satisfy (5). Then D # C since BMOH(C)=C. Let zeD
and { a point on 0D’ such that d(F(z), 0D') =|F(z) — {|. Applying Proposition 2
to a function log |F — (|, we have |F'(z)|/|F(z) — (| < C/d(z, éD).

((2)=(3)) Let F satisfy (2). We show that (3) holds for L> K/n. Otherwise,
there exists a disk Be %), such that F(B) surround a point woedD’. Then
there exist two points z,,z,€B, z, #z,, such that F(z,) = F(z;) and F(y)
surrounds w,, where y is a segment on B joining z, to z,. Let w — w, = re'’, then

ZnSJ r|d0|<j |dw| SJ‘ K|dz| <2Krad(B)<2_K<2n’
F(y) Y

ro " Jepdw, D) d(z, 8D) = d(B,dD) ~ L

which is a contradiction.

((3)=>(2)) Let F satisfy (3). If D=C, C\F(C) contains a (unbounded)
continuum, which contradicts with Picard’s theorem. Hence D # C. Let zeD
and B < D a disk around z such that d(B, D) = Lrad (B). Then there exists a
simple connected domain G such that F(B) = G =« D’. Applying Schwarz lemma
we have

|dF(2)] |dF(2)]
d(F(2), 0D ~ d(F(2), 8G) — 4pg(F(2))|dF(2)|

4|dz| < 4(L+ 1)|dz|
rad(B) =  d(z, 0D)

< 4pp(2)ldz| =

where pg, pp denote the hyperbolic metric.

Note that if D' =C, F: D> D' is alwaysAa BMOH map since BMOH(C) = C.
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Corollary 6. Let n:D->D', D' #C, be a covering map between plane

domains. Then the following conditions are equivalent to each other:

(1) = is a BMO map;

2) mis a BMOH map;

(3) There exists a constant L> 0 such that for every disk Be %, ;, n is univalent
on B;

(4) There exists an integer p >0 such that for every disk Be %, ,, n is p-valent
on B;

(5) D # C and there exists a constant K > 0 such that

|dn(z)] <K ldz|
d(n(z), 8D') ~  d(z, dD)’

(6) log|n'|e BMOH(D);

zeD;

(7) oy =supgc llog|m — (| l4,p < 0;
(8) &, =supyp [log|m — | ll,,p < 00}
(9) a3 =supgc\p llog | — {ll4,p < o0;
(10) oy = supp [[10g |7 — L] ll4,p < 0.

If D' admits Green functions gy (-, (), {eD’', then the next condition is also
equivalent :

(11) a5 = supep lgp (@ Ol 4,p < 0.

Moreover | Trllgpmos | Trllsmon, inf L+ 1, infp, inf K, |[log|n'||l,.p+ 1, and «,
(k=1,2,3,4( 95) are comparable to each other.

Proof. Since |dz|/d(z, 0D) < 4|dn(z)|/d(n(z), dD'), ze D, by Koebe’s theorem,
we have inf K > 1/4. Hence | T |l gpon» inf L+ 1, inf K, a5, and a, are comparable
by Theorem 2. The proof of Theorem 1 shows inf L+ 1 = |log|n’||, p and
infp <o S| Tellpmo SInfL+ 1, k=1,2,5 As for infK < infp see Corollary
12 below.

Remark that the condition (5) of Corollary 6 implies that the metrics
|dz|/d(z, D) and |dn(z)|/d(n(z), D) on D are comparable to each other.

Let z: D> D, D = C or 4, be a universal covering map of plane domain D.
Let BMO,(D) be the space of all Lj, (D) functions g such that g o me BMO(D).
Let BMOHy(D) (resp. BMOAy(D)) be the space of all harmonic (holomorphic)
BMO,(D) functions. Then it always holds that BMO,(D) = BMO(D) by the con-
formal invariance of BMO. Hence 7 is BMO (resp. BMOH, BMOA) map if and
only if BMO,(D) = BMO(D)(BMOH (D) = BMOH(D), BMOAy(D) = BMOA(D)).

Corollary 7 (cf. [13], [4]). Let D be a plane domain having n: 4 — D as a
universal covering map. Then the following conditions are equivalent to each other:
(1) nis a BMO map;

(2) = is a BMOH map;
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(3) There exists a constant o> 0 such that for every disk B < 4 with hyperbolic
radius o, m is univalent on B;

(4) The hyperbolic metric pp(z)|dz| and the quasihyperbolic metric |dz|/d(z, OD)
on D are comparable, that is, there exists a constant K > 0 such that

ldz|
d(z, 0D)

(5) log|n'|e BMOH(4);

< Kpp(2)|dz|, zeD;

(6) log ppe BMO,(D).

Moreover || T,|pmos | Tellpmon, inf(a™")+ 1, infK, [log|n'|ll, 4+ 1, and
|log pp © ll,.4 are comparable to each other.

Proof. Since p,(z)|dz| and |dz|/d(z, 04) are comparable, the equivalence of
(1) ~ (5) follows. Next, applying Proposition S to the equality log p, = log ppo 7
+ log |7'| we have

lllog ppomlea R J A(log p4)dxdy 2 1.

lz|<1/2
And so we have |log|n'| |, + 1 ~ |[log Ppe 7|, 4, since log p,e BMO(4).

It is well known that the condition (3) of the above corollary holds if and only

if C\ D is a uniformly perfect set (cf. [1], [15]), and we can replace the condition

(3) with

(3) D admits the Green function g, and there exists a constant K > 0 such that
the domain {{eD|g,((, z) > K} is simply connected for every zeD.

It is to be noted that (3)=(3’) does not hold in general when D is a Riemann

surface even if D admits the Green function (cf. [19]).

Corollary 8. Let F: D — D' be a nonconstant holomorphic map between plane
domains, and D" simply connected. Then F is a BMOH map and || Tg || gpon S 1

Here we give a lower estimation of BMOH map norms.

Proposition 6. Let F: D —» D', D' # C, be a nonconstant holomorphic map
between plane domains. Let F be univalent on a subdomain D, of D and F(D,)
contains a disk B such that d(B, 0D') < Lrad (B), L> 1. Then || Tg|lgpmon 2 1/L.

Proof. Let {e€éD’ such that d({, B) < Lrad (B). Then an easy calculation
shows |log|- —{lll, 8= 1/L. Since BMO is conformally invariant, we have

og|F — Clllx,p = Ilog|F — I ll4,p, R ll0g] = {lll4.rwe R 1/L

Let F,: 4 > nd, F(z) =z. Then || Tg |lgpmon = 1/n. Hence the above estima-
tion is best possible. (Compare this with the fact || Tyl gpo = 1 for every F.)

Next we investigate BMOA maps. Let g be an analytic function on a plane
domain D. Let d,(z) be the radius of the largest schlicht disk around g(z) on
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the Riemann surface of the inverse function of g. Then ge#(D) if and only if
Sup..p d,(z) < oo (cf. [14]), hence by Proposition 2 we have

Theorem 3 ([4]). Every nonconstant holomorphic map F:D — D' between
plane domains is BMOA map and || Ty | gpmos S 1-

Using this fact we can give another proof of Corollary 8 as follows: Let
ge BMOH(D'), and f an analytic function on D’ such that Ref=g. Since
[V f1=2|Vg|, Proposition 2 and Theorem 3 shows |ge Fl,p S| foFlgp <
”f“gm)') < ”g”*’D"

Example 1. Let 4* = 4\ {0} and ¢(z) = log |z|.
(1) Let F: 4— 4* be a universal covering map, then F is not a BMOH map
by Corollary 7.
(2) Let F,: 4* > 4*, F,(z) =2". Then | T¢ llgmo = Il Ty, I ppron = n by Corollary
6. (I T, llppron = 1 is trivial since g o F,(z) = ng(z).)
(3) Let G,:4*—> 4, G,(z)==z". Then | Tg llpyon =1 by Corollary 8 and
Proposition 6. On the other hand || T; llsmo = | Tr, llgmo = -
(4) Let B: 4—> 4 be a Blaschke product

B = [ ( M)

11— 1/nd):z

then B is a BMOH map and || Tg| gpon = 1 by Corollary 8 and Proosition 6. On
the other hand B is not a BMO map by Theorem 1.

(5) Let B is the Blaschke product in (4). Let D = B~'(4*). then B, = B|D: D —
A4 is a BMOH map and | T, llgyou = 1 by Corollary 8 and Proposition 6. On
the other hand, B, = B|D: D —» 4* is not a BMOH map by Corollary 7.

Finally we remark that if a given holomorphic map between plane domains
is a BMO map, then it is always a BMO map independent of the choice of its
target by Theorem 1.

2. Hahn metric

Let R be a Riemann surface. We define the Hahn metric pg(z)|dz| on R by

Pr(2) = inf pg(2) (= pr(2)),

where the infimum is taken over all simply connected domains G = R containing
z and pg4(z)|dz| denotes the hyperbolic metric on G. If G does not admit the
hyperbolic metric we regard pg(z) as 0. Equivalently, pg(z) = inf|¢’(0)| !, where
the infimum is taken over all conformal maps ¢ of 4 into R such that ¢(0) =z If
R is simply connected, Hahn metric and the hyperbolic metric coincide. Hahn
metric is a conformally invariant continuous metric and there exists a unique
simply connected domain G < R for each zeR such that pg(z) = pg(2)
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([8], [11]). The Hahn metrics on C\{0}, 4\{0}, and {r, <|z| <r,} are
explicitly calculated by [11]. By the definition we have

Proposition 7. (1) Let S = R then pg(2)|dz| < ps(z)|dz|, z€S. .
(2) Let n: R— R be a covering map. Then pg(n(z))|dn(z)| > pi(z)|dz|, zeR.

Hahn metric on a plane domain D, D # C, is equivalent to the quasihyperbolic
metric |dz|/d(z, D). Indeed we have the following by Koebe’s theorem:

d d
Proposition 8 (cf. [4]). _lz_l__ < ppl2)]dz| < |dz]

, zeD
4d(z, 0D) d(z, 0D)

Hence Hahn metric is a generalization of the quasihyperbolic metric. In this
section we investigate some basic properties of Hahn metric.

Let n: D —» R be a covering map between a plane domain D and a Riemann
surface R. Let [,, ze D, denotes the Euclidean radius of the largest disk on D
around z on which # is univalent. We set I, = oo if D contains arbitrary large
such disks. Then we have
92 (@) dn ()| < ?, zeD.

z z

Theorem 4 (cf. [4]).

Proof. We may assume [, < oo since pc = 0. Let ¢o({) = n(z + [,{). Since
$o: 4 R satisfies ¢o(0) = n(z), we have pg(n(2))|7'(2)| < |7'(2)I/1$6(0)| = 1/1..
Next Let ¢: 4— R be an arbitrary injective holomorphic map such that
¢(0) = n(z). Let G be the component of n~!(4(d4)) containing z. Applying
Koebe’s theorem to the conformal map g =n""'0c¢: 4 - G we have |7'(2)|/|¢'(0)|
=1/1g'(0)| = 1/4l..

We have p¢ < pc =0 by Proposition 7. On the other hand, let R # C, C,
and n: D — R its universal covering map, then [, < co. Hence

Corollary 9 ([11]). Hahn metric pg(z)|dz| degenerates if and only if R = C
or C.

Let R be a Riemann surface having n: 4 — R as its universal covering
map. Let r,, ze R, be the hyperbolic radius of the largest hyperbolic disk around
z on which 7 is univalent. Let L, be the Euclidean radius of the disk on 4
around the origin with hyperbolic radius r,. Then since p, = p, we have

Corollary 10. Let R be a Riemann surface having n: A - R as its universal
covering map. Then

pr(2)ldz| _ pr(2)dz|
—_— < z2)|dz| € ————, zeR.
aL, Pr(2)|dz| L
Corollary 11 (cf. [4]). Let R be a Riemann surface having n: A — R as its
universal covering map. Then Hahn metric and the hyperbolic metric are
comparable to each other if and only if inf,.gr, > 0.
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Let hg and 1%;( denote the hyperbolic distance function and Hahn distance
function on a Riemann surface R respectively. Lt zeR, t >0, and set

BY, = {leR|hg(({, 2) <t}, BR, = {leR|hg(l, 2) <t}

Lemma 4. Let n: D — R be a covering map between a plane domain D and
a Riemann surface R(# C, C), then

1t -
n({l( —z| < %}) c Bi,.cn({ll—z|<6lt}), zeD, 0<t< é

t 1
gpéf,l(z)ldzl < pr(2)ldz| < 613 (2)|dz], zeR, 0<t< o

Proof. Let|{—z|<I,/2thenl,/2 <1, <3l,/2 hence |d({|/6l, < pr(r({))|dr({)]
< 21d{|/l, by Theorem 4, which implies the first inequality. Next let zeR and
wen~!(z). Using Theorem 4 again we have

R . 2 8
psr (2)|dz| < ppr (2)|dz| < pp,(2)|dz| = pg,(2)|dz| = " ldw| < 7 Pr(2)ldz],
where B, =n({|{ —w]| < ,t/2}). We obtain the inequality pp(z)|dz| < 6tpgr (2)|dz]
similarly.

Lemma 5. Let R(# ¢, C) be a Riemann surface.
(1) Let ¢: 4— R be an injective holomorphic map then

$(B2)c BR,,. zed, t>0.

In particular ¢({|{| <t}) < BRo) a3, 0 <t <1/2.
(2) Let zeR. Then there exists an injective holomorphic map ¢o: 4 - R, ¢4(0)
=z, such that

BRacdo({lll<t}), O<t<l.

Proof. (1) is trivial since {|{| <t} = B 4,3, 0 <t <1/2. Nextletn: D—>R
be a covering map from a plane domain D, wen ™ '(z), and set ¢o({) = n(w -|:le/2),
{eA. Then Lemma 4 shows that ¢o(|{| < t}) =n({|{ —w| <1,t/2}) > BE, 5.

Proposition 9. Let y be a closed curve on Riemann surface R which is not
homotopic to a point, then

4

4 dz| >
LPR(Z)I z| 5

The equality holds if and only if R=C\{0} and y ={|z| =r}, 0 <r < c0.

Proof. (Dr. T. Sugawa, oral communication) Let R be a Riemann surface
and y a closed curve on R which is not homotopic to a point. Let n: R — R,
R = C or 4, be the universal covering map. Let g be the covering transformation
induced by y, G the cyclic group generated by g, and R, = R/G. Then
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Ro={a<|z|<b},0<a<b<oo. LetjcR,be the unique closed curve which
is a lift of y under the covering map 7,: R, = R. Since pg)(z) = 1/4]z| (see
Proposition 8), Proposition 7 and 8 show that

. N o |dz|
f pr(2)dz| = J Pro(2)ldz] ZJ Pevoy(2)1dz] = J — >n/2
y ; ; y4lzl

Since the equality in Proposition 7 (1) (resp. (2)) holds if and only if R=S
(R = R) (cf. [11]), the equality above holds if and only if R = R, = {0 < |z| < o0}
and y=9={lz|=r}, 0<r < 0.

In the case of the quasihyperbolic metric on a plane domain D, we have

J |dz] > 2m,
,d(z, D)

for every closed curve y < D which is not homotopic to a point, where the
constant 2z is best possible.

Proposition 10. Let F: R — R’ be a nonconstant holomorphic map between
Riemann surfaces, where R, R # C,C. Then the following conditions are
equivalent :

(1) There exists a constant K > 0 such that

Pr(F(2))|dF(z)| < Kpp(2)|dz|,  zeR;

(2) There exists a constant L> 0 such that F (ﬁf, L) is contractible on R' for each
zeR.
Moreover inf(L™') < inf K Sinf(L™Y) + 1.

Proof. ((1)=(2)) Let F satisfy (1). We show (2) holds if we set
L<m/4K. Otherwise, there exists ze R such that F(éfy,) is not contractible.
Then there exist two points z,, zzeﬁﬁL, zy # z,, F(z,) = F(z,), and a curve y on
Bf,,“ joining z, to z, such that LﬁR(CHdCI < 2L and F(y) is a closed curve which
is not homotopic to a point. It follows from Proposition 9 that

< f pre(w)ldw| < KJ pr(0)1d] <2KL< ",
F(y)

T
2 , 2

which is a contradiction.
((2)=(1)) Let F satisfy (2). We may assume L<1/12. Let zeR, and

G c R’ a simply connected domain containing F (ﬁf' L).- Applying Lemma 4 we
obain

Pr(F(2))|dF(2)| < ps(F(2))|dF(2)|

— palF @) IdF @) < iz, (6)1d2] < pale)dz].

Corollary 12. Let n: R— R', R # C, C, be a covering map between Riemann
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surfaces. Then the following three conditions are equivalent to each other:
(1) There exists a constant K > 0 such that

Pr(n(2)|dn(z)| < Kpr(z)|dz|,  zeR;

(2) There exists a constant L > 0 such that r is univalent on ﬁf L for each zeR;
(3) There exists an integer p >0 such that m is p-valent on each BY,,,,, zeR.

Moreover /infp S inf(L™!)+ 1 x~ inf K < inf p.

Proof. Since K> 1, inf K and inf (L™ ')+ 1 are comparable by Proposition 10.

Next we show inf K < infp. Let (3) hold. Let zeR, { = n(z) and n,: R > R,
R=C, or 4, a universal covering map such that n,(0) =z. Let | and I’ be the
largest Euclidean radii of the disks on R around the origin on which 74, 7 o 7,
are univalent respectively. Then 7 -7, is p-valent on {|w| <[/24} by Lemma 4.
Then {|w| < 1/48p} contains no two equivalent points for 7oz, (cf. the proof of
Lemma 3). And so I'>1/48p. Hence Theorem 4 shows pg.(0)|d{| < |dw|/l' <
48p|dw|/l < 192ppgr(z) |dz].

Finally we show ./infp <inf(L™')+ 1. Let (2) hold. We may assume
L<1/12. Letn,: R— R, R=C, 4, be a universal covering map. Let zeR and
wem, 1(z). Since é£1,24c no({I{ — w| < 1,/4}), Theorem 4 shows that there
exist z,€ BR | 54, 1 <k < ko, ko < L2, such that B, ,, = U, BR ;. Since each
ﬁfk,L contains at most one point which is equivalent to z by non,, we have
infp S L2

A simple example (see Example 3 below) shows there exists a sequence of
covering maps F, such that inf K, = n, infp, * n>,n = 1, 2,... On the other hand,
we show that if R is noncompact inf(L™!)+ 1 ~infK ~infp holds later
(Theorem 11). Here we give one sufficient condition for (1) (and (2), (3)) above.

Lemma 6. Let m: R— R be a covering map between Riemann surfaces
satisfying the condition a) or b) below. Then = satisfies the condition (1) of
Corollary 12.

a) R is a torus or C\ {0}, and R’ is a torus.

b) R’ admits the hyperbolic metric, and inf, g r, > 0, where r, is the hyperbolic
radius of the largest hyperbolic disk around zeR'. ‘

In particular if n: R—>R', R # C, C isa covering map with compact target, then

the condition (1) of Corollary 12 always holds.

Proof. (Case a)) The assertion easily follows if we apply Theorem 4 to
the universal covering map of R. (Case b)) By Corollary 11 we have

Pr(n(2)|d7(2)| < Cpg(n(2))|dn(z)| = Cpr(z)|dz| < Cpr(2)|dz|.

Lemma 7. Let F:R—> R, R#C, é, R’ # C, be a nonconstant holomorphic
map, L>0, and zeR. Let F be locally univalent p-valent on BX . Then there
exists a constant C = C(p, L) > 0 such that F is univalent on BX..

Proof. Let zeR. Because of Lemma 5 (2) there exists an injective holomorp-
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hic map ¢o: 4 = R, ¢,(0) = z, such that B,’f,,/lz < ¢o({llI'<t}), 0<t<1. Let
ry = min {3L/4, 1/2} then ¢o({|{| <r,}) = BR, by Lemma 5 (1). Hence Fo ¢,
is p-valent on {|{| <r;}. Therefore Lemma 3 shows that there exists a constant
r, <r, such that Fo ¢, is univalent on {|{| <r,}. And so F is univalent on

R
BZ,rz/lZ'

3. BMO maps between Riemann surfaces

Let R be a Riemann surface. Let BMO,_(R) be the space of all locally
integrable functions g on R such that

g1l 4s.r = sup n_"[‘ |god —(ge¢)aldxdy < oo,
4 A

where the supremum is taken over all injective holomorphic maps ¢: 4 - R
([4]). Equivalently, [|gll,u.r =Sup,llgec ¢l 4, where the supremum is taken
over all injective holomorphic maps ¢ of 4 into R, or over all injective
holomorphic maps ¢ of a plane domain into R.

Also 4,,(R) be the space of all harmonic functions g on R such that

gl 2r) = SUII() IV g(2)| prlz)™' < 0.

In the case that D is a plane domain we have
Proposition 11 ([4]). (1) BMO,(D) = BMO(D) and it holds that
19040 < 9lles.p S 19140, g€ BMO(D).
(2) %, (D) = B,(D) and it holds that

19lls, < 192, <4l19la,. 9B (D).

(1) is a consequence of the conformal invariance of BMO (Corollary 1) and (2) is a
consequence of Proposition 8. Hence BMO,, and %, are generalizations of BMO
and %, to Riemann surfaces respectively. So in the following we identify BMO,,
By with BMO, #, and use the notation BMO(R), #, instead of BMO,(R),
%, for an arbitrary Riemann surface R for the simplicity, ignoring the ambiguity
of universal constant factors of their norms.

Now we investigate BMO maps between Riemann surfaces. By the definition
we have

Proposition 12. (1) Let i: R—> R’ be an inclusion map. Then i is a BMO
map and. || Tyl g0 < 1.
(2) Let m: R— R’ be a covering map. Then |g|,.r < T,gll.r g€ BMO(R').

Theorem 5 (cf. [4]). Let R be a Riemann surface, D a plane domain, and
n: D — R a covering map. Let geLl, (R). Then ge BMO(R) if and only if
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K= suplBl“f |gom — (g o m)pldxdy < oo,
B

where the supremum is taken over all disks B = D such that © is univalent on
B.  Moreover it holds that K < |g|, r < K.

Proof. K < | gll,.gis trivial. Nextlet ¢: 4 — R be an injective holomorphic
map. Let ¢: 4 — D be a lift of ¢, then § is also injective. Let D, = $(d). Let
geL),(R) satisfy K < co. Since n is injective on each disk B < Dy, g nll,.p,
<K. Hence we have [[go¢ll,s=@°m)°PlyaSIg°nl,p,< K, by Corollary
1, which implies the assertion.

Theorem 6. Proposition 2, Theorem 3, and Corollary 8 are true for Riemann

surfaces, that is,

(1) BMOH(R) = %#,(R), BMOA(R) = #(R) hold for every Riemann surface R and
191l aya) % 1.z, 9€ BMOH(R).

(2) Every nonconstant holomorphic map F: R — R’ between Riemann surfaces is
BMOA map and || Tg |l gpoa S 1-

(3) Let F: R—> R’ be a nonconstant holomorphic map between Riemann surfaces,
and R’ simply connected. Then F is a BMOH map and | T | gpon S 1.

Proof. Since the proof is a routine work, we prove only (1). Let g be a
harmonic function on R, then by Proposition 2

190sx = sup llg o $ll,.a ~ sup LN
¢ .z PA(2)

7900 _ P
6w Pg(w) w  Pr(W)

= ” g ”93;.(R)a

where sup, . is taken over all injective holomorphic maps ¢: 4 — R and all points
ze4, and supg ,, is taken over all simply connected subdomains G of R and all
points weG.

Theorem 7 (generalized localiztion theorem) (cf. Proposition 3, cf. [4]). Let
L<1, K >0, and g a locally integrable function on a Riemann surface R(# C 0
such that |gll, 5, , <K for every zeR. Then ge BMO(R) and ||g|,r S LK.

Proof. Let ¢: 4> R be an injective holomorphic map, and wed. Then
¢ (B, 1) = B,,.- Hence |godlyps, <K, and s0 [goPl,a < L 'K by the
localization theorem.

Theorem 8 (generalized removability theorem) (cf. Proosition D, cf. [4]).
(1) Let E be a discrete subset of a Riemann surface R(# C, C) such that
#(ﬁ:‘_,_nE) <K, zeR. Let Ry =R\E, and ge BMO(R,). Then ge BMO(R)
and g lly.x < C(K, L) 1914, )
2 Let EcC satisfy #E<K, and Ry=C\E. Let ge BMO(R,). Then
geBMO(C) and |gll,e < C(K)lglyr,- In particular we have BMO(C) =
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BMO(C).

Proof. The assertion (2) is trivial by the removability theorem. Let
¢: 4 > R be an injective holomorphic map. Then ¢(B2,) c By, ., z€4. Hence
#(B2,.n¢ '(E)) <K, so by the removability theorem

Igodllea<CK L)godlyae-re<CK, L) gllyro-

Proposition 13 (cf. Proposition 5). Let s be a superharmonic function on a
Riemann surface R(# C, C) such that As= —pu and sl r <K, then p is a
uniformly locally finite measure on R with respect to the Hahn metric, that is,
u(BR 24 S K, zeR.

Proof. Let zeR, and ¢, the map in Lemma 5. Then by Proposition 5

H(BR | 120) < m(o({101 < 1/2}) S liso dollya S Islyk-

Lemma 8 (cf. [5]). (1) Let R be a noncompact Riemann surface, and
zeR. Then there exists a function p, on R satisfying the following conditions:
a) p, is harmonic on R\ {z};
b) p,({) + log|{ — z| is harmonic near z;
) 1plyr S 1.
(2) Let R be a compact Riemann surface, and z,z,€R, z, #2z,. Then there
exists a function p, ,, on R satisfying the following conditions:
a) p,,., is harmonic on R\{z,, z,};
b) p..,(0) +log|l —z,| is harmonic near z,, and p, ,,({) —log|{ — z,| is
harmonic near z,;
) Paesllyr S L.

Proof. First let R be noncompact. Let p, be the Green function with pole
z if R admits the Green function, and the Evans-Selberg potential with pole z
(cf. [18]) if R does not admit the Green function. Then

J |*dp,| <2m,  seR.
pPz=s

Let ¢: 4 > R\ {z} be an injective holomorphic map and f is an analytic function
on A4 such that Ref =p,- ¢. Since the Riemann surface of the inverse function
of f does not contain a schicht disk whose radius is larger than n, Proposition
2 shows that [|p,o@ll, 4 <1. Hence [p,lyrin<1, and so |p, [,z <1 by
the generalized removability theorem.

Next let R be compact. Let p, ,, be the unique (up to constants) harmonic
function on R\{z,, z,} satisfying the condition a) and b). Then p, , is an
Evans-Selberg potential on R\ {z,} with pole z,. Hence ||p,,., |4 ry <1 and
SO [|P;,z, 14,8 S 1 by the generalized removability theorem again.

The next theorem is a generalization of Theorem 1. Combining it with
Corollary 4, we obtain a characterization of BMO maps F: R — R’ in the case
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that R’ is not compact.

Theorem 9 (cf. Theorem 1, cf. [4]). Let F:R—R, R#C,C, be a
nonconstant holomorphic map between Riemann surfaces. We consider the following
two conditions:

(1) Fis a BMO map;
(2) The set Ep of all branch points of F is a removable set for BMO(R) and
there exists a constant L> QO such that for every disk ze R\ Eg, F is univalent

on BRFr, A
(3) F is of bounded local valence with respect to Hahn metric, that is, there exist

a constant L> 0 and an integer p >0 such that F is p-valent on ﬁf' L for

each zeR.

Then it always holds that (2)=(1), (3)=(1). In the case of R #C, 3)=(2)
holds. Moreover if R’ is noncompact (1), (2), and (3) are equivalent to each
other. In particular if R’ admits the Green functions gg.(-, z), z€R, the following
condition is also equivalent:

(4) SupgeR’ ||gR’(Fa C) “*,R’ < .

Proof. (2)=>(1) follows from the conformal invariance of BMO and the
generalized localization theorem.

(3)=2) if R" # é) Let R #C and F satisfy (3). Let zeR and ¢,: 4 > R,
¢0(0) = z, be the injective holomorphic map satisfying the condition of Lemma 5
(2). Then F o ¢, is p-valent on By ; by Lemma 5 (1). Since R # C, Lemma 3
shows that #(Ep.,,NBac)<C,. And so #(EgnBR.)<C, by Lemma 5
(2). Hence E; is removable for BMO(R) by the generalized removability
theorem. Finally since R’ # C, Lemma 7 shows the assertion.

(3=(1)) Let F satisfy (3). Let woeR and set Ry = R'\{wy}, Ry =
R\ F~'(wy). Then F|Ry: Ry — Ry, Ry # C, satisfys the condition (3). Therefore
F|R, satisfys (2), and so F|R, is a BMO map. Since F~'(w,) is removable for
BMO(R) by the generalized removability theorem, F is a BMO map.

((1)=(3) if R’ is noncompact) Let R’ be noncompact, and F a BMO map.
{eR’, and p, the function in Lemma 8. Then | p;o Fl, r < | T¢lgmo- Since
A(p;o F) = — gnzweF_,@éw, where ¢, is the dirac measure at w, Proposition 13
shows that #(BY, 4N F~'({)) < I Tr lpmo»> € R.  This argument shows (1) = (4) =
(3) when R’ admits the Green function.

If R" = C, Theorem 9 (1)=(3), (1)=(2) do not hold in general (see Theorem
14 below). Here we give a necessary condition for a nonconstant holomorphic
map with compact targets to be a BMO map. The sets F~({), {e R, are similar
to each other in the following sense:

Proposition 14. Let F: R—> R’ be a BMO map between Riemann surfaces.
Let R' be compact, and z,,z,€R’, z, # z,. Let k be a C?* function on A with
compact support, and ¢: A - R an injective holomorphic map. Then
Y kW= Y kWIS | Tllsmo Il Akl -

we(Fog) =~ 1(z1) we(Fo¢)~ 1(z2)
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Proof. Let p, ,, be the function in Lemma 8 on R'. Since

APpzyzyo Fod)=2r( Y  6,— 2 0.

we(Fo¢) ™ 1(z2) we(Fo¢) ™ 1(z1)
the assertion follows from Lemma 1.

If R’ is noncompact we can show that

| Y kWIS I Tellsmo | 4kl
we(Fod)~ !(2)
by using the function p, of Lemma 8 instead of p,,,,. If R is compact, however,
this estimation does not hold in general. (See Theorem 13 and Corollary 20
below.)
The next corollary is an immediate consequence of Theorem 9 if R is
noncompact.

Corollary 13. Let F: R — R’ be a BMO map between Riemann surfaces, z € R,
and vi(z) the valency of F at z, that is, F({) = F(z) + ¢({ — 2)'F® + ..., ¢ # 0, near
z. Then vg(z) < | T | smo-

Proof. Let ¢:4— R be a injective holomorphic map such that ¢(0) =z,
F(¢(0) # F(¢(0)), {e4\{0}, and F(¢(4))# R'. Let w, = F(z) and w,eR’\
F(¢(4)). Let k>0 be a C? function on 4 with compact support such that
k(0)= 1. Then by Proposition 14 we have

vp(2) = Z k(¢) — Z k() S 1 Tellpmo 1 Akl o S Il Tl gpro-
Le(Fod) ™ Y(w2) Le(Fog)™ 1(wy)

We give several consequences of Theorem 9.

Corollary 14. Let F: R —» R’ be a nonconstant p-valent holomorphic map bet-
ween Riemann surfaces. Then F is a BMO map and || Tr |gyo < C(p). Especially
a nonconstant holomorphic map between compact Riemann surfaces is always a
BMO map.

Proof. Let wy,w,eF(R), w, #w, and set Ry =R'\{w,, w,}, Ry =R\
F~'({w;, w,}). Then F, = F|Ry: Ry —> R satisfy the condition (3) of Theorem 9.
Hence | Tr, lsmo < C1(p). Hence || Tg || gpr0 < C,(p) by the generalized removability
theorem.

Corollary 15. Whether a given nonconstant holomorphic map F: R - R’ is a
BMO map or not is independent of the choice of its target, that is, let i,: R' — R},
k =1, 2, be injective holomorphic maps, then i, o F is a BMO map if and only if
iyoF is a BMO map.

Proof. 1Tt suffices to show that let F: R - R’ be a nonconstant holomorphic
map, R, a proper subdomain of R’ such that F(R) = Ry, then F is BMO map
if and only if Fp=F:R->Ry is a BMO map. In this case R; is
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noncompact. (Case 1) Let R=C and Ry =C or C\{0}. Then R = CorC
hence BMO(C) = BMO(C) = BMO(C\ {0}) implies the assertion. (Case 2) Let
R#C,C. Let F, be a BMO map. Since Ry is noncompact, F, is of bounded
valence with respect to the Hahan metric by Theorem 9. Therefore F is BMO
map by Theorem 9 again.

Corollary 16. Let F: R — R' and G: R’ — R" be both nonconstant holomorphic
maps. Let R" be noncompact, and G o F a BMO map. Then F is a BMO map.

Proof. Note that R, R’ are both noncompact. In the case R ## C the
assertion follow from Theorem 9. In the case R = C then R’ = C or C\ {0} and
R"=C or C\{0}. Hence G- F is a polynomial by Corollary 4, and so F is a
polynomial, which is BMO map by Corollary 4 again.

Next we generalize Theorem 2. Since its proof is almost the same as that
of Theorem 2 except for (2)<>(3), which we have already proved as Proposition
10, we omit its proof.

Theorem 10 (cf. Theorem 2). Let F: R—> R, R, R' # C, é, be a nonconstant
holomorphic map between Riemann surfaces. We consider the following three
conditions:

(1) F is a BMOH map;
(2) There exists a constant K > 0 such that

Pr(F(2)|dF(2)| < Kpg(2)|dz|,  zeR;

(3) There exists a constant L> 0 such that F (ﬁf, L) is contractible on R’ for each
zeR.

Then it always holds (2)<>(3)=(1) and | T¢|lpmon S inf K, inf(L™!) SinfK <
inf(L™Y) 4+ 1. In particular if R is a plane domain, these three conditions and
the following two conditions are equivalent to each other:

(4) o= supgcr II10g|F = {4,z < ©;

(5) B =supor I110g|F — {|ll4,r < 0}

Moreover a ~ f = || Tg | pmon = inf K.

We note that (1)=(2) does not holds in general.

Example 2. Let R, R # C, be a compact Riemann surface, z,e R, and set
R = R\ {zo}. Let {|z— 2,/ <1} =R be a local disk around z,, and set G =
{0<|z—2z9| <1} = R. We define a map F: 4—>R by F({)=e* 1¢+Deg,
which is a universal covering map onto G. F does not satisfy the condition (2)
of Theorem 10 since pg(¢)|d{| and pg.({)|d{| are comparable on {0 < |z — z,| <
1/2} = G. On the other hand, F is a BMOH map since BMOH(R') = C,

We don’t know whether (1)=(2) is true or not under the assumption
BMOH(R') # C. We note that we cannot apply the same method used to prove
Theorem 2 to prove this. Indeed, even if BMOH(R') # C, there is no family of
harmonic functions h,, ze R’, such that
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a) “hz“*,R’ < Cla ZER(,
b) [Vh,(2)] = C3pp(2), zER',

in general. Let R, R # C, be a compact Riemann surface, z,, z,€T, z; #z, ,
and set R' = T\ {z,, z,}. Then BMOH(R') is the space of all harmonic functions
on R’ which has at most logarithmic singularities at z,, z,, so dim BMOH(R') = 1.
Hence there exists a zoe R’ such that Vh(z,) =0, he BMOH(R'), and so b) does
not holds.

Theorem 11 (cf. Corollary 6). Let n: R—> R, R #C, C, be a covering map
between Riemann surfaces. Then the following conditions are equivalent to each
other:

(1) nis a BMO map;

(2) There exists a constant L> 0 such that r is univalent on ﬁf L for each zeR;
(3) There exists an integer p > 0 such that © is p-valent on each ﬁﬁl 24> ZER.
(4) There exists a constant K > 0 such that

Pr(n(2)|dn(2)| < Kpr(z)ldz],  z€eR,

and we have || Ty | ppo SinfK Sinfp and inf K = inf (L") + 1. Moreover if R'
is noncompact we have || Tg|pyo =inf K ~inf(L™Y)+ 1 ~infp. In particular if
R’ admits the Green functions gg(-,z), zeR, the following condition is also
equivalent

(4) o = supgr lgr(F, 2) | 4,r < 0,

and o = | T || ppo-

Proof. (2)<>(3)<>(4) and inf(L™') + 1 ~ inf K < inf p follows from Corollary
12 (2)=(1) and | T¢| gpo S inf(L™Y) + 1 follows from the generalized localiza-
tion theorem. If R’ is noncompact Theorem 9 (and its proof) shows (1)=(3)
and infp < || Trllgmo- Next if R is compact (3) always holds by Lemma 6.

We note that if R’ is compact p < || T | gyo does not hold in general (See Example
3 below).

The following Theorem and Theorem 11 completely characterize BMO maps
in case of covering maps:

Theorem 12. (1) Let n=¢*: C—>C\{0}. Then n is not a BMOH map.
(And so n is not a BMO map.)

(2) Let n: C—> T be a uniersal covering map of a torus T with modulus 1€,
where Q is a fundamental set {z = x +iy|y >0, —1/2<x<1/2,|z| > 1} of
Riemann moduli space. Then n is a BMO map and

[ Tz llpmo =~ Im .

(In other word, || T, gpo = exp (h([i], [t])), Im t > 0, where h([i], [1]) is the
distance between [i] and [t] in the Riemann moduli space induced by the
Teichniiller metric.) In particular it holds that lgller<lgemlyc=<
Imt|gll,.r. g€ BMO(T).
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We don’t know whether the similar estimation holds or not in case of genus

>2. (1) is a consequence of Theorem 2. To prove (2) we need the following
two lemmas.

Lemma 9. Let T be a torus with modulus i, that is, T = C/{m + ni|m, neZ}.
Then its universal covring map n: C—> T is a BMO map.

Proof. Let 2 ={0<x<1,0<y< 1} and B, its circumscribed disk. Let
B be a disk on C. (Case 1) Let rad (B) <rad(By;). Then =z is 2-valent on B,
hence |gon|, < lgll,r by Corollary 14. (Case 2) Let rad(B) > rad (B,).
Then by the periodicity of g -7 and Case 1, we have

IBI”J lgon—(gon)soldxdy,SlQl_lf lgom —(g°m)p,|dxdy
B n

< |Bol ™! J lgom— (g0 n)p,ldxdy S gl r-
Bo

Lemma 10. Let p >0 be an integer, X = {m + ni|m,neZ}, X, = {m/p +
nilm,neZ}, Ty =C/X, and T, = C/X,. Letn: T, - T, be the canonical p-valent
covering map. Then n is a BMO map and || T, | gyo = P-

Proof. || T,llgmo S p follows from Theorem 11. Next let § be a L} (C)
function such that

- t, 0<t<1/2,
g2 =
(1 —1), 12<t<1,

where t = Imz — [Im z]. Let g be a L},(T,) function induced by §. Let B< C
be a disk which contains no two X ,-equivalent points. Then

|B|™! J |g — gpldxdy < sup 1g(z,) — g(z;)| < 1/p.
B z1,z26B
Hence ||gll,.7, < 1/p by Theorem 12. Since ||go n|l, r, is independent of p, we
have | T¢llpumo R P-

Proof of Theorem 12 (2). By the quasiconformal invariance of BMO, we
can assume t=ip, peN. Let X,={m/p+nilm, neZ} then T=C/Z, Let
E={m+nilmnel}, Ty =C/Z, ny: Ty > T the canonical p-valent covering
map, and n,: C —» T, the universal covering map. Since n = 750on, Lemma 9
and 10 show that || T;llgmo < || To llamo | T, lBMo < P-

Next, by Lemma 10 there exists a BMO(T) function g such that |[gl, =1
and [|g > molly, 7, 2 P Hence [[geollyc=lgemo Ty llec P by Proposition 12,
and so | T,llgmo R P-

Corollary 17 (cf. [6]). Let F: C - C be an elliptic function of order p, and
T a torus associated with F. Then F is a BMO map and | Tg| gm0 < C(T, p).
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Proof. Let m: C— T be a universal covering map. Then F = F, o n, where
Fo: T—> C is a p-valent holomorphic map. Hence Theorem 12 and Corollary 14
we have || Trllpmo < || Tr, lamo | Trllamo < C1(p)Co(T).

Corollary 18 (cf. Lemma 10). Let F: T, — T, be a nonconstant holomorphic
map between tori. Then F is a BMO map and || Tg|gyo S Im 15, where 1, is the
modulus of T, contained in a fundamental set {z = x +iy|ly >0, —1/2<x<1/2,
|z| = 1} of Riemann moduli space.

Proof. Let ge BMO(T,). Let n;:C—> T, i=1,2, be universal covering
maps, and F: C—>C a lift of F. Then F(z)=az + b so Ty is an isometry of
BMO(C). Hence by Proposition 12 and Theorem 12 we have

lgoFllyr, <llgeFomllyc=1lgom,o F”*,c =gemllec SIm, Mgl 1,-
Combining Theorem 11 and 12 we have

Corollary 19. Let n: R —> R’ be a covering map betwen Riemann surfces. If
R’ is compact n is always a BMO map.

Example 3. Let T be a torus and F,: T— T a covering map induced by
F,:C—>C, F,(z) =nz. Then F, is n*-valent, and p(F,(2))|dF,(z)| = npy(z)|dz|
by the homogeneity of T. On the other hand | Ty, |l gyo < C(T).

Let B: C - C be a Blaschke type holomorphic map such that

—Z,

N
[I szl <1,

—Z,z

Let dug = Z"N=1 (1 — |z,|*)dé,,, where &, is the dirac measure at z,. We denote
the Carleson constant of a given positive measure u on 4 by Carl (u). We set
Carl, (B) = supy, Carl (up,), where By(z) = (B(z) — {)/(1 — {B(z)). Then we showed
the following:

Theorem 13 ([6]). Let Carl, (B) < K then | Tgllgpmo < C((K). Conversely
| Tgllgmo < L then Carl, (B) < C,(L).

From this, we can easily construct a sequence of rational functions F,: C » C
such that || Ty [Igpo <1 and deg F, — o0, or even construct a Blaschke type
holomorphic map preserving BMO(C) with essential singularities in the following
sense:

Example 4 ([6]). Let F be a Blaschke type function with respect to the
upper half plane such that

z—27" 2 2" —z

n=02+2_"in=12ni+2‘

F is meromorphic on C\{0}. Then by repeating the proof of Theorem 13 we
can show that F: C\{0} > C is a BMO map ([6]) which has the origin as an
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essential singularity. (Compare this with Corollary 2.) Since BMO(C) =
BMO(C\ {0}) we can regard T as a bounded operator on BMO(C). We can
similarly regard an elliptic function as a BMO map between C with an essential
singularity at oo.

Furthermore we have

Theorem 14. Let D be a plane domain and {z,} a sequence of distinct points
on D having no cluster points in D. Then there exists a BMO map F: D-C,
| Tellppo S 1, having {z,} as the set of all poles of F.

Proof. We show that if |¢,|, n =1, 2,..., are sufficiently small,

€n

Fy=z+ )
n=12 — 2,

is a required map.

Let B, be a disk on D around z, such that B,nB, =9, n#m. Let
B,=(/3)B,, and D,=D\U,B,. If |¢], n=1,2,..., are sufficiently small,
F, = F|D, is a conformal map which has a quasiconformal extension F, to D
such that the maximal dilatation of F, is less than 2. Let ge BMO(C). Since
BMO is quasiconformally invariant | g o FO lu.p S llgll,e. Since F is 2-valent on
each B,, we have |go F|, 5 < llgll,,¢ by Corollary 14. Let B, be a disk tangent
to B, such that rad (B,) = rad (B,). Since B, < B,,

(g o F)s, — (g ° Fo)s,| <1(g° F)g, — (g Flgz| + 1(g > Fo)gr — (g © Fo)g,|
SlgoFllys, +19°Follyn < 19le-

Hence

J l|go F — g o Foldxdy
Bn

Sf IQOF_(QOF)BJdXdY"'f |g<>ﬁ0—(90f0)3"|dxdy
B,

B'I
+ f (g > F)g, — (g ° Fo)s,|dxdy
Bn

SIBlg e Fliys, +1Bulllge Follp+IBullglae SIBllgle-

Let B be a disk on D.
(Case 1) Let rad (B) < rad (B,) for some n such that BnB, # @. Then B c B,,
hence

|BI—IJ |g0F —(goF)BldxdyS ”gOF‘“*'B:I 5 ||g”*,f:
B

(Case 2) Let rad (B) > rad (B,) for every n such that BnB, # @. Since B, < 3B
holds for such n, we have ), ..o|B,| <9|B|. Hence
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J |g o F — (g o Fo)sldxdy
B
SI |g°F_g°Fo|dXdY+j |g°Fo—(Q°F0)B|dXdy
B B

< ¥ j|goF—g~F‘o|dxdy+|B|||goFo||*,D

B.nB#0

n

< Y |Bllgl

Bn.nB#0

wetBllglye<IBllglye-

Corollary 20. Let {z,}N_, be a finite sequence of distinct points on C. Then
there exists a BMO map F: C— C, || Tgllgyo S 1, having {z,}N_, as the set of all
poles of F.

Proof. We can assume z, = co. Then, since BMO(C) = BMO(C), we can
show that if |¢,|, n =1, 2,...N, are sufficiently small,

Noog
Fz)=z+ ) —"
n=22 — Z,
is a required map similarly.
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