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On the space of schlicht projective structures
on compact Riemann surfaces with boundary
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Toshiyuki SuGawa

§1. Introduction

Let I" be an arbitrary Fuchsian group acting on the upper half plane H =
{zeC;Imz > 0}. We denote by S(I') the set consisting of the Schwarzian
derivative S, of all the univalent meromorphic functions f on H with foy = x(y) o f
on H for some group homomorphism y: I"—> Mob. Then it turns out that S(I")
is a bounded closed subset of the complex Banach space B,(H, I') (see §2 for its
precise definition). It is an interesting matter to investigate how (the Bers model

of) the Teichmiller space T(I") is embedded in S(I"). Generally, T(I') ¢ S(I')

holds. In fact, first Gehring has shown that T(1) < S(1) in [7], and later the
author proved in [14] that T(I") < S(I') for any Fuchsian group I of the second
kind. Moreover, recently K. Matsuzaki showed in [9] the existence of certain
infinitely generated Fuchsian groups I' of the first kind such that T_(F—) g S(I).
But, it is still a difficult problem to decide whether T(I') = S(I') for a finitely
generated Fuchsian group I' of the first kind. (We remark that this problem is
equivalent to the Bers conjecture: any b-group is a boundary group of the
Teichmiller spaces.)

On the other hand, Gehring has shown in [6] that Int S(1) = T(1). Further-
more Zuravlev showed in [17] that T(I") is the zero component of Int S(I") for
an arbitrary Fuchsian group [I. Thus, it is naturally conjectured that
Int S(I')= T(I') for any I. In this direction, Shiga proved in [13] that the
above conjecture holds if I is finitely generated Fuchsian group of the first kind,
equivalently, if B,(H, I') is finite dimensional.

The main theorem in this article (Theorem 2.1) is the claim that
Int S(I') = T(I") for any Fuchsian group I" uniformizing a compact (bordered)
Riemann surface with nonempty boundary, in other words, for finitely generated,
purely hyperbolic Fuchsian group I” of the second kind. In order to prove this
theorem, we shall utilize Gehring’s method in [6] with several localization
techniques for overcoming difficulties caused by the group action. Here we
remark that our proof does not depend on Zuravlev’s result.

The proof of the main theorem divides into several steps as follows. In §2,
we prepare terminologies and notations for later use, and state the main theorem
and some lemmas. Let I" be an arbitrary Fuchsian group, ¢e€lInt S(I") and f
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be a univalent function such that S, = ¢. To say that ¢eT(I"), we have to
show essentially that D = f(H) is a quasidisk, or equivalently, D is a locally
connected John domain (if D is bounded).

In §3, we will show that D is locally connected, but “locally” in Q(G) where
G = f~'I'f (Proposition 3.1). Roughly speaking, in the “island” D, there is no
very deep bay. In fact, if such a deep bay exists, one can construct a
G-equivariant meromorphic map g on D with small Schwarzian which shuts its
inlet (thus, is not univalent) by bending D a little, and this will lead to a
contradiction. As a corollary of this result, we see that dD = d(C\D), in
particular, C\ D # @, for any ¢elnt S(I').

In §4, we also see that D is a John domain, at least “locally” in Q(G)
(Proposition 4.1). Roughly speaking again, there is no peninsula so much
constricted in the island D. In fact, if such a peninsula, one can construct a
G-equivariant meromorphic map g on D with small Schwarzian which touches
the opposite shore of D by lengthening a narrow part of the peninsula, and this
also will lead to a contradiction.

In both steps, we shall accomplish the construction of g as follows: first, we
construct a G-equivariant quasi-regular (in fact, quasiconformal locally, but not
necessarily injective) map h with small deformation which has the same properties
as g except the holomorphy. By an appropriate construction of h, the Beltrami
coefficient u of h™! can be well-defined, so we can choose w* o h as g, where w*
is a p-qc map of C (here, for example, u was extended to O in h(D)). For
estimation of the norm of the Schwarzian derivative of w* o h, we shall utilize
the “local norm technique” as in [16].

In §5, for a Fuchsian group uniformizing a compact bordered Riemann
surface with nonempty boundary, we prove that the boundary of D/G in 2(G)/G
is a disjoint union of quasi-analytic curves by invoking the annular covering
argument. Thus, in particular, the induced conformal map F: H/I'—D/G by f
can be naturally extended to a homeomorphism H/I - D/G. Furthermore, in
§6, F turns out to be extended to a quasiconformal map F: Q) - Q(G)/G
which can be lifted to a quasiconformal map f :Q(I') > Q(G). This fact follows
essentially from the existence of a G-equivariant quasiconformal reflection with
respect to dD. Since f may be continued to a quasiconformal self-map of C, it
has shown that ¢ = S, e T(I').

Finally, the author would like to express his sincere gratitude to Prof. M.
Taniguchi for encouragement and worthy advices.

§2. Preliminaries and the main theorem

In this section, we shall fix the terminologies needed below and state related
facts and the main theorem. As a general reference, we refer to the textbook
[10] by S. Nag.

Projective structures on a Riemann surface. Let R be a hyperbolic Riemann
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surface and p: H— R be a holomorphic universal covering of R, where
H = {zeC; Im z > 0} is the upper half plane. A projective chart on the Riemann
surface R is a complex chart on R such that the transition functions are (locally)
restrictions of Mobius transformations. Two projective charts on R are equivalent
if their union is also a projective chart. Equivalence classes of projective charts
on R are called projective structures on R.

Let o be a projective structure on R represented by a chart {y,: U,»V; acA}.
Set U,:= p~'(U,), and write Y,=,opon U, for xe A. Then (U,),, is an open
covering of H. Define y,; =y, Y5 ' on y,(U,nUj), then y,, is a restriction of
Mobius transformation on each component of y,(U,n Uy), by the very hypothesis.
And we have

@.1) Vo=Vyo¥, on U0,

for any a, fe A.
Here, we recall some of the properties of the Schwarzian derivative. The
Schwarzian derivative S, of a non-constant meromorphic function f on a plane

domain is defined by
f 2\f

S, is holomorphic at a point if and only if f is locally schlicht (= locally univalent)
at the point. And, S, =0 on a domain D c C if and only if f is a restriction
of a Mobius transformation. Further, if f and g are meromorphic functions and
if f o g is defined, then the following important formula (the Cayley identity) holds:

(22) Sra=(5)°9 @)+,

By the above properties and (2.1), we obtain that

for any o, fe A. Thus a holomorphic function ¢: H— C is well-defined by
©=S;, on Ua

for any a. Moreover, by the relation (2.2), we can see that the holomorphic
function ¢ satisfies the following functional equations:

(@) )P =9

for all yerl, where I’ <Mob is the covering transformation group of
p: H— R. The above ¢ is called a holomorphic quadratic differential for I" on
H. We will denote by Q(H, ') the set of all the holomorphic quadratic
differentials for 1" on H.

Conversely, let a holomorphic quadratic differential ¢ for I' on H be
given. Consider the following homogeneous linear ordinary differential equation:
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1
2.3) y' + 2 oy=0 on H.

Since H is simply connected, there exists a pair of fundamental solutions (y,, y,)
on H uniquely determined by the initial condition

(2.4) Yo(i) =0, yo(i)=1; y,(i))=1, yi(i) =0.

Noting that ygy, — yoyi = 1, we obtain that f¢:= y,/y, satisfies the following
conditions:

(2.5) Spe =10 on H,

2.6) o) =@z —i)+0(z—i]®) as z—i=./—1.

It should be remarked that f¢: H—C is uniquely determined by the above
conditions (2.5) and (2.6).
az + b ab
Let yel' be represented by y(z) = —— for some eSL (2, C).
cz+d c d

Conventionally, we write (y)”'? =cz +d, then J;=(y;°y)(y)” "> becomes a
solution of (2.3) again. (J; may be considered as the analytic continuation of
the solution y; along with a path from i to y(i).) Therefore y, and y, are
uniquely represented by linear combinations of y, and y, as

Yo = Ayo + By,

2.7) ~
Vi1 =Cyo + Dy,,

A B
where A, B, C and D are constants. Since yoJ; — JoJ; = 1, ( >ESL 2, C).

We denote by x?(y) the Mobius transformation

, which is independent
Cz+D

of the choice of signature of (y)”!'2. The group homomorphism y*: I' - Mob
is called a holonomy homomorphism associated with ¢. By (2.7), we have the
following transformation formula for f¢:

(2.8) fPoy=x(y)o f° for all yer.

Such a meromorphic map f? as S;, = ¢ is called a developing map of ¢, and
also the pair (f¢, x¥) is called a deformation of the Fuchsian group I

In this article, we will call ¢ a schlicht projective structure if its developing
map f¢ is schlicht (= univalent) in H. Let S(/”) denote the set of totality of
schlicht projective structures for I on H. The Nehari-Kraus theorem states that
if f¢ is schlicht in H then

lolla= sup lp(2)|(2Im 2)* < 6.

So it is natural to consider a complex Banach space B,(H, I') = {peQ(H, I');
lolly < oo}. Of course S(I') = B,(H, I').
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By Hurwitz’s theorem, it turns out that S(I") is closed in B,(H, I').
On the other hand, S(I") is closely related to the Teichmuller space T(I")
of I, where (the Bers model of) the Teichmiiller space T(I") of I' is defined by

T(I')={peQ(H, I'); f¢ can be extended to a I'-compatible
quasiconformal homeomorphism of é},

where we say that f is I'-compatible if foyof~'eMob for all yer.

It is a well-known fact that T(I") is a bounded connected open set of
B,(H, I'). Clearly T(I')= S(I'), and it is conjectured that T(I") = Int S(I),
where Int S(I") denotes the interior of S(I”) in the Banach space B,(H, I').

Now we state the main theorem, which is a generalization of Gehring’s result
in [6].

2.1. Main Theorem. [f I' is a finitely generated, purely hyperbolic Fuchsian
group of the second kind, then T(I') = Int S(I").

2.2. Remark. For a Fuchsian group I" acting on H, the following conditions
are mutually equivalent:

(i) I is finitely generated, purely hyperbolic and of the second kind,

(ii) I is a Schottky group,

(i) 7 is a uniformizing group of a compact bordered Riemann surface with
nonempty boundary, more presicely, I" is the covering transformation
group of a holomorphic universal covering p: H— R, where R is a
compact Riemann surface of genus g (=0) with mutually closed
topological disks D,,...,D,, removed (m > 1).

In case of (iii), we say that R is of conformal type (g, 0, m), and we should
note that I" is a free group of rank 2g + m — 1.

In the sequel, we are mainly concerned with the properties of a point in
Int S(I") for an arbitrary Fuchsian group I, more precisely, the shape of the
domain D = D* = f*(H) for @ elInt S(I").

First, for ¢ €S(I"), the holonomy homomorphism x“: I'— Mob is injective
and G = y?(I') < Mob acts on D = f?(H) discontinuously, therefore D = Q(G), in
particular, G is a Kleinian group. Furthermore, for @elntS(I"), y*: I'> G
enjoies the following property.

23. Lemma (cf. [15]). For @elntS(I"), the holonomy homomorphism
x?: I'> G = y*(I') is a type-preserving isomorphism.

Proof. First, we remark that the mapping ¢+ tr? x°(y) is holomorphic on
B,(H, I'), where y is a fixed element of I and tr?g = (a + d)? if the Mobius

. . a b .
transformation g is represented by g(z) = —Zj;g with ad — bc = 1.
cz +

If y is parabolic or elliptic, i.e., tr?y = 4cos? gn for some rational number g,
then tr? y*(y) = 4cos® qn for @ e T(I') by quasiconformal homogeneity of T(I').
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Since T(I') is open in B,(H, I'), the identity theorem implies that tr? y*(y) =
4cos? gn for all peB,(H, I'). Thus x* preserves types elliptic and parabolic.
Finally, let yeI" be hyperbolic. Since x* is injective for @elnt S(I"), x*(y)
should not be elliptic. Suppose that ¥?°(y) becomes parabolic, i.e., tr? y?°(y) = 4,
for some ¢,, the identity theorem produces again that tr? y°(y) is a nonconstant
map on Int §(I"), so the image of Int S(I") under this map is open neighborhood
of 4. In particular, for sufficiently large ne N there exists a point ¢, in Int S(I")

T L -
such that tr? y*'(y) = 40052;, which is a contradiction. Q.E.D.

24. Remark. The proof of the above lemma in [15] relies upon the
J-lemma. The author has learned the idea in the above proof from H. Shiga.

Hyperbolic sup norm. For later use, we shall fix several notations in the
more general situation. Let D be a hyperbolic simply connected domain with
the Poincaré metric pp(z)|dz| of negative constant curvature — 4, and let G be
a Kleinian group acting on D (, which is not necessarily a component of
Q(G)). The complex Banach space B,(D, G) is defined as the set

{@: D - C: holomorphic map; (¢ - L)(L')*> = ¢ for all LeG, |¢|, < oo},

where || @|p = sup,cp |@(2)| pp(z)~%. If G is the trivial group, we write B,(D, G)
simply by B,(D). Let f: H— D be a conformal map, then by the conformal
invariance of the Poincaré metric, we have

(2.9) @ )fPla=lelp for peBy(D).

G-Schwarzian domains. Under the above preparations, we shall state a
characterization of such a domain D as f?(H) obtained from some ¢e€Int S(I").

25. Lemma. Let I' be an arbitrary Fuchsian group acting on H. For
oeS(I'"), ¢ belongs to Int S(I') if and only if the domain D = f*(H) has the
following property: There exists a positive constant ¢>0 such that any
non-constant meromorphic map g: D - C with S,€B,(D, G), must be univalent in
H, where G = x?(I") and B,(D, G), = {y € B,(D, G); | ¥ lp < €}.

When a Kleinian group G acts on a hyperbolic domain D (not necesarily
simply connected), D is called a G-Schwarzian domain with constant ¢ if the above
property holds.

Proof. By (2.2) and (2.9) we obtain the equality
[Sgope — @ lla = 1S, ps
which implies what we need here. Q.E.D.

Next we refer to the local quasiconformal homogeneity of Int S(/°), which
plays an important role in §4. The proof of the following proposition is deeply
indebted to a group equivariant version of the A-lemma.
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2.6. Proposition ([15]). Let V be a connected component of Int S(I"). For
any @, @ €V, there exists a quasiconformal self-map F of C with the following
properties :

(1) f*=Fof® on H,
Q) x*()=Foy® () oF ' on C for all yer.

An estimate of the hyperbolic sup norm. In what follows, it becomes
important to estimate the magnitude of the hyperbolic sup norm | ¢|p, and so
we now give a method to controle the norm by the another (relatively) local
data easy to treat. Let A€[l, ov) be a constant and D a proper subdomain of
C. Define 2,(D) by the collection of all disks B(z,, r) = {zeC; |z — z4| < r} such
that B(zy, Ar) = D.

In this article, an orientation-preserving homeomorphism (or, non-constant
continuous map) f: D, —» D, shall be called, conventionally, a k-quasiconformal
map (or, k-quasiregular map, respectively) where ke[0, 1) is a constant if f has
locally L2-derivatives such that |0;f| < k|0,f| almost everywhere in D,. A
quasiconformal map is often called a qc map, for short. And, we denote here
by u[ f] the Beltrami coefficient d;f /0, f of quasiconformal map (or, quasi-regular
map) f. We remark that, since 0,f#0 a.e., u[f] is well-defined. Thus, a
quasiconformal map f is k-qc if and only if |u[f]ll, < k. We should remark

1 +k

1—k
and this terminology has a advantageous property that the composition map
fiof, is K;-K,-qc if f; is K,-qc and f, is K,-qc. With these notations, we
have the following

that such an f is ordinarily called K-quasiconformal where K =

€[1, o0),

2.7. Proposition (cf. [2], [16]). Let D be a simply connected hyperbolic
subdomain of C, A>1 and ke[0, 1) be constants, and f be a non-constant
meromorphic function on D. If f|, can be extended to a k-qc map of C for any
A€24(D), then |S;|, < 96kA>.

Conversely, if ||S;|lp < 2kA* then f|, can be extended to a k-gc map of C
for any A€ 2 ,(D).

Bers projection. The measurable Riemann mapping theorem due to
Ahlfors-Bers claims that, for peL®(C) with ||u|, <1, there exists a unique
quasiconformal homeomorphism of C, denoted by w*, such that d;w* = ud,w*
a.e. and w*(0) =0, w*(1) = 1, w*(c0) = c0.

Let G be a Kleinian group acting on an open set Dc C. We set
E =C\D. L*(E, G) and M(E, G) denote the complex Banach space {ueL*(C);
u=0 on D, (uoL)-L'/L =pu ae. for all LeG} and its open unit ball,
respectively. If G =1, we shall write L*(E) = L*(E, 1) and M(E) = M(E, 1) for
simplicity.

For pue M(E, G), by the automorphy of u, w* conjugates G to another
Kleinian group, i.e., w*G(w*)"! < Mdb, and w*|,, is conformal since =0 on
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D. As a result, the Schwarzian derivative of w*|, is well-defined and turns out
to be a (bounded) holomorphic quadratic differential for G on D. Particularly,
when D is simply connected domain of hyperbolic type, we denote by @,(u) the
Schwarzian derivative of w*|,, and which is called the (generalized) Bers projection
of ne M(E, G). As is well-known, @,: M(E, G) > B,(D, G) is holomorphic and
its differential at the origin is represented as an integral operator (cf. [15]):

do®p[¥](2) = — 9” O gean = c+in
n JJg((—2)
for every veL*(E, G). In the special case that D =H, &y is the original
Bers projection and its image @u(M(H¢, G)) is the Teichmiller space T(G) of the
Fuchsian group G.
As a corollary of the main theorem, we can verify the following:

28. Corollary. Let D be a simply connected subdomain of C of hyperbolic
type and E its complement. Suppose that a Schottky group G acts on D. Then
the following conditions are equivalent to each other:

(1) dy®p: L*(E, G) - B,(D, G) is surjective,
(2) dy®p: L*(E) - B,(D) is surjective, and
(3) D is a quasidisk.

Proof. As the claim (2)<>(3) is a special case G =1 of (1)<>(3), it suffices
to prove (1)<>(3). The part (3)=>(1) is a direct consequence of the submersivity
of the generalized Bers projection (cf. Bers [3], Earle-Nag [5]). Thus we have
only to prove that (1) implies (3). First observe that if d,®,: L*(E, G) - B,(D, G)
is surjective then @,(M(E, G)) is a neighborhood of 0 in B,(D, G) (see, for
instance, [1] Proposition 2.5.9), that is, D is a G-Schwarzian domain. Let
f:H->D be a Riemann mapping function of D and ¢ its Schwarzian
derivative. Then, the above observation shows that ¢ € Int S(I") where I denotes
the Fuchsian group f~'Gf. Here we may assume that f = f*. Since y*: I - G
is a type-preserving isomorphism by Lemma 23, [I' is also a Schottky
group. (Here note that Schottky groups are characterized as the finitely
generated, purely loxodromic free Kleinian groups by Maskit’s theorem
[8].) Therefore Theorem 2.1 produces that Int S(/") = T(I"). Thus we have
shown that e T(I'), in particular, D = f*(H) is a quasidisk. Q.E.D.

Quasidisks. Finally, we shall mention a characterization of the quasidisks,
where we recall that the quasidisk is defined as an image of the unit disk (or
the upper half plane) under a quasiconformal self-map of C. Before stating the
result, we shall define a distance (“path diameter distance” w.r.t. the Euclidean
metric) 6, on any open subset D of C. For given two points z,, z, in D, we set

oplzy, z,) = inf diama,
acD

where the infimum is taken over the paths a connecting z, and z, in D and
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diamo = sup,,, ,,ea|W; — W|. If z; and z, do not belong to the same component
of D, we define 6,(z,, z,) = 0. As is easily seen, d, satisfies the axiom of distance
except that &, possibly takes the value co. In particular, ,, is certainly a distance
on D if D is a domain, and d,(z,, z,) > |z, — z,| by definition.

A bounded simply connected domain D is called linearly connected if
0p(z,, z,) < Clz, — z,| for any z,, z,eD, or equivalently, for an arbitrary disk
4, any two points in Dn4 can be connected by a path in Dn4,, where C and
A is constants (> 1) depending only on D and 4, denotes {|z — zo| < Ar} if
4 ={lz—1z5| <r}. Tt is worthy to know the fact that a linearly connected,
bounded, simply connected domain is always a Jordan domain (see Theorem 3.3
below).

A bounded simply connected domain D is called a John domain if, for an
arbitrary disk 4, any two points in D\ 4, can be connected by a path in D\ 4,
where A4 is a constant (> 1) depending only on D.

29, Theorem (cf. Gehring [6], Pommerenke [12]). A bounded simply
connected domain D is a quasidisk if and only if D is a linearly connected John
domain.

§3. The first construction of non-univalent meromorphic map with G-invariant
small Schwarzian

In this section, we shall proceed in a general situation. Let G be an arbitrary
Kleinian group, D be a G-invariant hyperbolic plane domain and p: Q(G) > R =
Q(G)/G be the natural projection. Here we should remark that D = Q(G), for
C\D is a G-invariant closed set containing at least three points, thus
C\ D > A(G). In this section, it is our main job to prove the following

3.1. Proposition. Suppose that a Kleinian group G acts on a simply connected
plane domain D = C of hyperbolic type. If D is a G-Schwarzian domain with
constant ¢ > 0, the following is valid for an appropriate constant B > 1 depending
only on &: for an arbitrary A€ 2y(2(G)) such that pl,, is injective, any two points
in AND can be joined by a path in AgnD.

Before stepping into the proof of the above proposition, we state a few
corollaries.

3.2. Corollary. If a hyperbolic simply connected plane domain D is
G-Schwarzian for some Kleinian group G acting on D, and if A(G) # 0D then
0D = 0D* where D* is the exterior of D. In particular, D* # Q.

Proof of Corollary 3.2. Since always A(G) < @D, the hypothesis implies that
there exists a point z, in 4D\ A(G) = dDNR(G). The limit set A(G) is contained
in the closure of the orbit G - z, of z,, and on the other hand, G - z, is contained in
0DNQR2(G), thus we obtain that A(G)c G-z, « IDNQR(G). As a consequence,
we have 0DNQ(G) = oD. Clearly, dD* < dD, so it is sufficient to prove that
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dDNQ2(G) = éD*. 1If not, since the free regular set °Q(G) = Q(G)\ {elliptic fixed
points of G} has at most countable complement in Q(G), there exists a point
woedDN°Q(G)\ 0D*. Pick and fix another point w, in dD. Then, since wye
Int Dn°R(G), there exists an injective disk 4 with center w, and radius r >0

such that 4 < D and w, ¢ 4. Now we take a sufficiently large n so that sin i <
1 27ii n

1B’ and set e; = %exp(ﬂ) +wy, for j=0,1,...,n. Then e;edd,,, and
n

. T r . . _
le;y; —e;l =rsin — < — for j=0,1,...,n— 1. Since e;ed = D, we can choose
AR n 4B I

a point a;e D such that |a; — ¢;| < é for each j=1,...,n, and set a, = a,. Then
a;, a,-HeB(ej, é) and the disk B(e;, r/2) is included in the injective disk 4,

so Proposition 3.1 guarantees the existence of a path y; = B(e;, r/2)n D connecting
a; and a;,; (j=0,1,...,n—1). Therefore y=UjZ4y; is a closed path in D
separating w, from w,, which contradicts the connectedness of 0D. Q.E.D.

By the next characterization of Jordan domains, we obtain a further
information about G-Schwarzian simply connected domains.

3.3. Theorem (Newman [11] Chap. VI, Theorem 14.1 and Theorem 16.2). A4
hyperbolic simply connected domain D c C is a Jordan domain if and only if D
is uniformly locally connected, more precisely, for any positive number ¢ there exists
a positive n such that, for all pairs of points x, yeD, d(x, y) <n implies that
Op(x, y) <&, where 6 denotes the “path diameter distance” with respect to the
spherical metric d of C.

3.4. Corollary. Let D be a hyperbolic, G-Schwarzian, simply connected plane
domain for some Kleinian group G and D' a Jordan domain such that
a(DnD) <= °Q(G), where °Q(G) denotes the free regular set of G, i.e.,
°Q(G) = Q(G)\ {elliptic fixed points of G}. Then, each component of DND' is a
Jordan domain.

Proof of Corollary 3.4. Since DnD’ is simply connected, it suffices to show
that each component of DN D’ is uniformly locally connected, by Theorem 3.3. By
Corollary 3.2, we can assume that D and D' are both bounded domains. Let
0 <e<diam dDnoD’. Since some compact neighborhood of d(DnD’) is contained
in free regular set of G, Proposition 3.1 yields that there exists a positive ; such
that d,(x, y) < ¢/2 for any x, yeDnD’ with |x — y| <n,.

On the other hand, Theorem 3.3 implies that there exists a positive 5, such
that dp.(x, y) <e¢/2 for any x, ye D' with |x — y| <#,.

Let D, be a component of DnD’ and x, yeD, with |x — y| <#,=min {n,, #,}.
Then, there exist paths y,, y, from x to y such that y, = D,y, = D’ and that
diam y; < ¢/2. And, since D, is connected, there exists a path y, in D, from x
to y. Since D and D’ are both simply connected, y, is homotopic to y, in D
and y, is homotopic to y, in D', and so y, is homotopic to y, in DuD’. Let
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v denote the closed curve y, - y; !, then y is null homotopic in (6DNdD’Y. Since
diam y < ¢ < diam éDNnadD’, y bounds no points of dDNdD'. And therefore y is
null homotopic in 4\ (@DndD’) = (4\dD)u(4\dD’), where 4 = {zeC;|z — x| <
¢/2}. (Remark that y; c 4.)

Therefore by Alexander’s lemma (to be stated below) x and y are known to
be connected by a path y; in (4\dD)n(4\0D’) = A4\(@DudD’). Since y; < D,
and diam y; < diam 4 = ¢, it is proved that D, is uniformly locally connected.

3.5. Alexander’s lemma (cf. Newman [11]). Let O, and O, be open sets
in C. Suppose that x, ye O, N0, are connected by paths y; in O, (i =1, 2). Then,
if Y, Uy, is null homotopic in O, UQ,, x and y are connected by a path in O,n0,.

As the final corollary, we state a rather technical lemma which will be used
in §5.

3.6. Lemma. Under the same hypothesis of Proposition 3.1, let w, be a
point of 0DN°R(G) and 4 = °Q(G) an injective disk centered at wy. Then there
exists a connected open neighborhood V of wgy in A such that VND is connected.

Proof. Consider the disk 4,56 25(€2(G)), where B is the constant which
appeared in Proposition 3.1. Let W be a connected component of 4nD which
includes a point in 4,,,nD. Then, by Proposition 3.1, 4,,,nD = W. Therefore,
we can adopt 4,,,U W as a neighborhood V. Q.E.D.

Proof of Proposition 3.1. We choose B> C >1 so that B>6C and
C>9+2'"-.3%/e. For some disk 4 = B(z,, r)e D5(2(G)), suppose that pl|,, is
injective and that two points z,, z,e4nD cannot be connected by any path in
4cnD (see Fig. 3.1). Let D; be the connected component of 4.nND containing
z; (j=1,2). Noting that D,nD, =@ by the hypothesis, we can choose a
component of d4.\ D, , say J, containing a point of D,. Then the closed interval
I =04:\J has the following properties:

(1) Dyndd¢c< 1,
(2 D,n(I\él) =@, and
(3) al < oD,

where 01 denotes the set of endpoints of I.
Furthermore, interchanging D, and D, if necessary, we may assume that

1
4 < 5|aAc|

where || denotes the arc length.
We assign the anti-clockwise orientation to I with initial point w, and
terminal point w,. In the following, we frequently utilize an auxiliary Mobius

. zZ—w
transformation Q(z) = °

, which maps wg, w, to 0, oo, respectively. First,
z—w,
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Figure 3.1.

we remark that the quantity 4 = Q(z,)/Q(z,) is near to 1. Precisely, for the
principal value ¢ of log 4, we have the next

3.7. Lemma.

|0|$4'W0_‘;V1|<S 8C 2>, and |0[SL-
(C—1)*r (c-1 Cc-—-1

Proof of Lemma 3.7. 1If we set u = 2 h and v = 27 % , then we have
Zy = Wo Zy — Wy
2 1 2 —
lul, |v] < —<< —), lu —v| < M and
Cc-1 2 (C— 1)%r
1 v d 4w, —
o] = |log % =J—i’szj |dc|=2|u—v|sw.
1+U ul+c [u,v) (C_l)r
. 8
Similarly, we have |o] < 2(|u| + |v]) < c—1' Q.E.D.

Let o =Imo =argl (Jw| <|o| <n/4) and 6, be an angle of the ray Q(I)
with the positive real line, i.e., Q(I) = {re'®; 0 <r < co}. In order to construct
a tame deformation such that its images of z; and z, coincide, we first define a
map T: C—> C by

zexp(n/4+0o> (—n/4<0< —w)

n/4 —w
) Az (—w<f<n)
zZ) =
zexp(—sni‘;; 00) (n<0<5m/4)

z (57/4 < 0 < Tn/4)
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where z = rei®*%_ T(0)=0, and T(o0)= oo, and further set T=0Q o To Q.
Then T(z,) = z, and we have the following

38. Lemma. T and T are -g¢ homeomorphism of C.

Proof. 1f we set

o
—n/d<f< —w
n/4 — w ( / )
t =t(ré'®*%) = { _dg/n (t<6<5n/4)
0 (otherwise),
- ~ . . '
then s:= irg/ g S — a.e. and we have an estimate |t| < 4|6|
or| 00 t+i 1—it n/4 — |o|
1 1
< 2|o| since |g| < 8 < - <n/4 ——. Therefore,
cC—1 4 2
- s—1 it It] o] 8
[u[T]l = = - < < < >
s+ 1 2 —it 2—t] 1—]Jo| C-9
e LT, = 1AL < ED
€ H o = IH oo—C_9 Q
If we set
E, ={zeC*; 0, —n/4 <argz <0,)},
E,={zeC*; 0+ n<argz <0, + 7 + 0},

and E; = Q‘l(Ej) (j=1,2), then we obtain the following.
39. Lemma. T(4cUE,)<c AcUE UE, c Ad,c(< 4p).

Proof. The first inclusion is clear by construction of T. Now we prove
the second inclusion. With a suitable normalization, we may assume that
4c=B(0, 1) and w,; = wy =€ (0 < ¢y, <m). The condition (4) implies that
0 <@y <m/2. Thus we observe that E, is largest if ¢, = n/2, in that case

(.1) E, < B(1,/2) < BO, | +./2) = B(0, 4) = 4,.

Next, we shall consider E,. We may assume that w >0, for otherwise
E, =0. We need to calculate the radius p and the center ¢ <0 of the circle
Q '{argz = 6, + wmod n} (see Fig. 3.2). The elementary geometry tells us that

psin (9o — w) = sin @y,
pcos (9o — w) = €os gy — C,

and the latter i.mplies that —c <p. By Lemma 3.2,
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4 w; — wol _ 8sin ¢, < Po

(C —1)? (c—-1*" 2

El

since C > 5. So, ¢, — w > ¢o/2, and therefore p = sin @,/sin (¢, — W) < sin ¢,/
sin (@o/2) = 2cos (po/2) < 2. The above estimate enables us to deduce that
E, = B(c, p) = B(O, p — ¢) = B(0, 2p) = B(0, 4) = 4, < 45. The proof is now
completed. Q.E.D.

Now, we shall go to the next step. We construct a locally injective
quasi-regular map h:D—C as follows. Let y(z)= &(z) + i(n(z) + 0,) be the
branch of log Q(z) in D such that n =0 on In D_l, where we note that log Q(z2)
has the same imaginary part on InD; by the property (1). Then, clearly

8
—2n<n<mn(z) >0 nz) < —n and |n(z,) — n(z,) — 27| =|Imo| < —.
At first, we define h on AgnD by c-1

z if n(z) < —=n/4,
h(z) = .
T(z) if —n/4 <n(2).
Observe that {zeD; nz) > — %} c AcUE,, h(dgnD) « 4g and h = id on d4znD
by Lemma 3.9. Since |J,.cL(4p) is a disjoint union, we can extend h to a

continuous map on D (denoted by the same letter h) as follows:

h(z)_{LOhOL_’(Z) if ze L(45n D) for some LeG,

otherwise.

By construction, h satisfies the following.

5 -quasi-regular,

(b) hoL=Loh for all LeG,
(c) h(zy) = h(zy),

Figure 3.2.
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(d) h(4gnD) < Ag, and h(D\ dg)ndg = 0.
And, a crucial point of the above construction is the validity of the following

3.10. Lemma. The Beltrami coefficient u[h~'] on h(D) of the (local) inverse
of h is well-defined, i.e., it is independent of a particular branch of h™"'.

Proof of Lemma 3.10. By equivariance of the definition of h and the property
(d), it is sufficient to prove only on 4, Let

Ey={zedynD;#h ' (h(z)) > 1}, and
E4 = {ZEABﬂD; 0z—h(z) #0}

First, h(E3) = T({zedgnD; — n/4 < n(z) < n})n{zedznD; — 2rn < n(z) < — n/4}
c Q@ '({—2rn <argz < — =}), by definition of h. On the other hand, h(E,) =
T(—n/4<niz) < —w})=Q '({—n/4<argz<0}), and so it follows that
h(E;)nh(E,) = @, this shows that any branch of h~! is holomorphic on
h(E;). Thus, the proof is finished. Q.E.D.

The above lemma says that the next definition:

3 {u[h"] on h(D)
o on C\h(D)

is well-defined and the properties (a) and (b) imply that pueM(C, G) and
Il < %(< ). Now, we define a quasi-regular map ¢g:D—C by
g =w* o h, then by the chain rule for quasi-regular mappings, we can see that
ulg]l =0 a.e. on D. By virtue of Weyl’s lemma for quasi-regular mappings,
g: D> C is known to be meromorphic, moreover property (c) of h implies that
g(z,) = g(z,), that is, g is not univalent. By the fact that pue M(C, G), w*
transforms the Kleinian group G to another one by conjugation, thus g does so,
in other words, S,(z)dz* is G-invariant.

Finally, we shall give an estimate of the hyperbolic sup norm of S, which
will lead to a contradiction.

Before into the final step, we prepare some lemmas. The proof of the first
is quite elementary (see [16] Proof of Proposition 2.4).

3.11. Lemma. For any constant A > 1, the following is valid. If A'€ 2,(D)
A+ A7}

and if Le Mob satisfies that L(D) = C then L(4')e D ,.(L(D)) where A’ = 5

3.12. Lemma. Let E={zeD; —n/4<n(z)< —w} and A>3 be a constant.
Then, for A" € 2D,4(D) such that A'NE # @, h coincides with T on A'.

Proof of Lemma 3.12. We may assume that 4. = B(0, 1). Suppose that
4" = B(c, p)e D4(D) satisfies 4A'NE #©. Then clearly —5n/4<n<m—w on
4. And we note that
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Fig. 3.3.: Case 1.

(3.2) Ap<lc—w| (i=0,1)

from the assumption and the fact that w;edD (the property (3)). Pick a point
{ from 4'nE, then |¢c — {| < p, |{ — w,| <diam E < diam E, < 2ﬁ and || <1+
ﬁ by (3.1). Hence, Ap<|c—w|<|c—=C|+|{—wl<p+ 2\/§, thus we

2
have psA—\[zlsﬁ. Since |c|£|c—C|+|C|<p+(l+\/§), we have that

4" < B0, |c| + p) < B0, 1 + \/5 + 2p) = B(0, 6) < 4. Thus we need only to
prove that A'NE' =@ where E =Q '({zeC*; — 5n/4 <argz < — 3n/4}) =
Q0 '({zeC*; 3n/4 < arg z < 5m/4}).

Suppose that A'NE #@. We may assume that |wy, —c| <|w; —c|. Let
C, and C, denote the circles (or lines) including circular arcs (or segments)
11 =0 '({{; arg{ —0p= —n/4}) and y, = Q" '({(; arg { — 6, = — 37/4}), respect-
ively. Here we note that C, is necessarily a circle, say C, = {z; |z — a,| =r,},
by (3.1), whereas C, is possibly a line. Further remark that, by assumption, y,
and y, perpendicularly intersect at the two points w, and w, and that y;nd4’ # @
for j=1,2.

Let {; denote the nearest point of C; to ¢ for j=1,2. If {;eC;\y;, then
Ap < |c — wy| = dist (c, y;) < p, this is impossible. Thus we conclude that {;ey;,
and hence we have

(3.3) lc — (| =dist(c,y) <p for j=1,2.

Now let ¢; be the orthogonal projection of the point ¢ to the normal line
of C; at wy (j=1,2).
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Fig. 3.4.: Case 2.

Case 1: W=Q '({{; —3n/4 <arg{—6,< —n/4}) is unbounded (see
Fig. 3.3).

In this case, we have |c; — wo| <|c — ;| < p for j=1,2. Thus we get an
estimate that

lc —wol = \/lcl —wol® + le; — wol* < \/ZP-

By (3.2), we have Ap < \/Ep, which is a contradiction.

Case 2: W is bounded.

We may assume that ¢ is in the inside of C, and in the outside of C, (see
Fig. 3.4).

Then, as in Case 1, we know that

(3.4) lez = wol < p.

Next, because |c—a;| <|c—ci|+lc; —ay|=lcs — wol + (ry — ey — wol), we
obtain that

(3.5) le; —wol < lcy —wol +ry —lc—ay|=lc; —wol +1c— {1 <2p
by (3.3) and (3.4). So, by (3.4) and (3.5), we have
e — wol = /ley — wol? + le; — wol? < /5p.

Combined with (3.2), we can deduce that Ap<\/§p, which contradicts the
hypothesis that A4 > 3.

Proof of Propositon 3.1 (continued). Here, we shall examine the local qc
extendability of h. Let A > 6 and 4 92,(D). If AnL(E) # O for some LeG, then
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A+A7!
L™ Y(4)nE #@ and, by Lemma 3.11, L™} (4)e 2,.(D) where A’ = —%—# > 3.
So, Lemma 3.12 implies that h=T on L '(4), i.e., h=LohoL '=1L
oToL™! on 4. From Lemma 3.8, we know that h|, can be extended to a k-qc
N 8

homeomorphism Lo To L™! of C, where k = c 9

Otherwise, 4N (g L(E)) =D, so h is a restriction of a Mobius transforma-
tion on 4. Thus, in any case, h|, can be extended to a k-qc homeomorphism
of C. On the other hand, w* is originally a global k-qc map, and hence
1+ K

’

gls = w* o h|, can be extended to a k’-qgc homeomorphism of C, where

2k 16(C - 9)
< <
1+ k2~ (C—9) + 64

1+ k\? . . /
) By quite easy calculations, we have k' =

, therefore combined with Lemma 2.7, we obtain an estimate

16
c-9

||Sg||D£96A2k’s96-62- <e.

From the first hypothesis, g should be univalent on D, which contradicts the fact
that g(z,) = g(z,). Thus, z; and z,e 40D must be connected by a path in 4.nD,
therefore, in 45N D.

§4. The second construction of non-univalent meromorphic map with G-invariant
small Schwarzian

In this section, we shall make another construction of non-univalent
meromorphic map, which is, in a sense, a dual of the one in §3. At first, we
prove a rather technical proposition, which holds for general Kleinian groups.

4.1. Proposition. Suppose that a Kleinian group G acts on a simply connected
plane domain D < C of hyperbolic type and let p: Q(G) - Q(G)/G be the natural
projection. If D is a G-Schwarzian domain with constant ¢ > 0, the following is
valid for an appropriate constant C > 1 depending only on ¢: for each disk
A€ De(R2(G)) such that E = Q(G) and that pl; is injective where E = D\ D, and
D, is some connected component of D\ 4, any two points z,, z,€D\ ds can be
joined by a path in D\ 4.

We remark that D, is ordinarily the “main body” of D\ 4, precisely speaking,
the unique component of D\ 4 containing G-equivalent points.

Proof. Let C>5+2'°.3.5%/¢ and assume that 4€ 2:(2(G)), D, and E
satisfy the above hypothesis. Suppose that some pair of points z,,z,eD\ 4
cannot be joined by any path in D\4. We denote by D; the connected
component of D\ 4 which contains z; for j =1, 2. By the assumption, D, # D,.
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Let I be the closure of connected component of 84\ D, containing points of
d4nD,. Obviously d4nD, =1, and d4nDy <=1 or é4nD, <= d4\1°, where
I°=1\0I. Replacing I by 04\ I° and interchanging D, and D, if necessary, we
may assume that

@1 dAnD, c d4\I°, 4nD,c 1, and 94nD, < I

We assign the anti-clockwise orientation to I, and let w,, w, be the initial and
terminal point of I, respectively. Note here that w;edD by construction. Now

— wy

we introduce a Mobius transformation Q(z) = Let o be the principal

zZ—w 8
value of log A, where 4 = Q(z,)/Q(z,). By Lemma 3.2,1we know that [o]| < ———.

We define a family of quasiconformal maps T.C—->Cfor 0<t<1 by -1

zexp<0;/§/3 ta) (n/3 <6< 2m/3)

zexp (to) (2n/3 <6 <46/3)
zexp(wta> 4n/3 <6< 5n/3)

n/3
z O0O<f<mn/3 or 5n/3<60<2n)

where z = re'®*%) and 6, is an angle of the ray Q(I) with the positive real
line. Next, let ,=Q 'oT,oQ for0<t<1. By the same way as in the proof
of Lemma 3.8, we have the following

42. Lemma. T, and T, are

t ~
S-qc homeomorphism of C for 0 <t < 1.

Let y(z) = £(2) + i(n(z) + 6,) be a branch of log Q(z) in D such that n =0
on dDyND(<= 1°). Then it is clear that —n <y <27 on D, n <0 on DyUD,
and that n > on D,. First, define h,(z) for ze E = D\ D, by the rule

z if n(z) <0,
h(z) = < Ti(2) if 0<n(z)<m,
Q7 '(eQ() if m<n().

Noting that |J,.q L(E) is a disjoint union by assumption, next we extend h, to
a mapping on .. L(E) (still written by the same notation h,) as follows:
h, = Loh,o L™' on L(E). Since h(z) = z for any zedEnD = dD,n D by the choice
of n, we can continuously extend h, by difining as the identity map on
D\ UL L(E). By (4.1), these quasi-regular mappings h,: D — C (0 < t < 1) satisfy
the following conditions.

’ . lt
(a) t 1§ j

s -quasi-regular,

(b) h,o L= Loh, for any LeG,
(c) hy(z)) = hy(z;) = z,, and
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(d) h,(z) continuously depends on (¢, z)e[0, 1] x D.

Now we let J = {te[0, 1]; ILe G\ {1} such that h(E°)nL(h(E°)) # @}, where
E° =IntE = D\ D,.

4.3. Lemma. For any te[0, 1]\ J, the following Beltrami coefficient u, is
well-defined:

_ {#[hf T on h(D),
H 0 elsewhere.

Proof of Lemma 4.3. Set E, ={zeD; n/3 <n(z) <2n/3} (= 4). Then, by
definition, h, is holomorphic off (J, g L(E,). Therefore, it is sufficient to show that

4.2) h(E))nh(D\E,) = 0.
Since h, =T, on ANE, h, is injective in A4nE, so we have

4.3) h(E)Nh(ANE\E,) = 0.

- 8t
Noting here that |arg(T,(2)/z)| < |arg(e”)| =t|Ima| < c_1 <mrn/6, we have

larg (Q(h,(z))/Q(z)| < =/6 for all ze E. Hence, we obtain

4.9) Qh(E)) = {{;m/6 <arg{ — 0, < 57/6}, and
(4.5) Qh(E\A)) = {{; 5n/6 <arg{ — 0, < 13n/6}.
In particular, we have

(4.6) h(E)Nh(E\ 4) = Q.

By (4.3) and (4.6), we can see that

4.7 h(E))nh(E\E,) = 0.

Further (4.4) implies that
(4.8) h(E))nDy =0

since Q(Do) = {{; —m <arg{<0}. Noting that h, =id on Dg:= Do\ Urcc\(1) LAE),
we have the following equality

h(D\E,) = h(E\ E\)Uh,(Do) = h(E\ E;)UDgU(U_Leq\i1) LA (E))).-

Combining h,(E,) N (ULe\1) L(h,(E))) = @ with (4.7) and (4.8), we obtain (4.2), thus
we finish the proof. Q.E.D.

Let te[0, 11\ J. By properties (a) and (b), one can see that u,e M(C, G)
4t ) A
with ||y, ll, < 5 We define a quasi-regular map g,: D - C by g, = w* - h,.

Then, it follows that g, is meromorphic, for u[g,] =0 a.e. Since g, L= y,(L) - g,,
where x,(L) = w* o Lo (w*)"'e M0b for all LeG, the Schwarzian derivative of g,
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is G-automorphic. Now we shall estimate || S, ||p.

44. Lemma. Let A>5, then hy=T, on A for any A €2,D) with
ANE, #0Q.

Proof of Lemma 4.4. Let A" = B(c, r)e 2,(D) such that 4/'nE; # @. Then
it suffices to show that 4' = 4. Suppose that 4’ & 4, then one and only one of
the following happens:

(1) I'nda’ #@ and Q '({:argl{ — 6, =n/3})nod" # Q.
(2 @A\Dnoa #0 and Q~'({{:arg{ — 0, =2mr/3})nod" # Q.

In both cases, there are two circular arcs y, and 7y, with the following
properties.

(i) y;is a subarc of a circle C; centered at a; with endpoints w, and w,
(ii) y;ndd" #@Q for j=1,2, and
(i) 7y, intersects y, at w; with angle n/3 for i =0, I.

Without loss of generarity, we may assume that |wy, — ¢| < |w, —c|. Since
A'€2,D) and woedD we have

4.9) [wg — c| = Ap.

Now let {; be the intersection point of the circle C; and the ray starting from
a; and passing through c, where we should note that ¢ # a; by (4.9). Moreover
by (ii) and (4.9), we can see that {;ey; and |c — ;| = dist (c, y;) < p, so we have
that

(4.10) 1§ — wol = Iwo — ¢l = | —c| > (A = 1)p.

Let m; be the midpoint of y;, that is, m;ey; such that |m; — wo| = |m; — w,|. By

m,

Fig. 4.1.
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the property (iii), the elementary geometry tells us that / m,wom, =7n/6. Set
0=/ iwel,€(0, ), then we can verify that

(4.11) 0> n/e6.

Indeed, this is evident if the region W bounded by y, Uy, is covex. Next,
we consider the case that Wis not convex. We may assume that m, is contained
in the inner domain of the circle C, (see Fig. 4.1).

Let y; =/ m;a;(;e(0, n) for j=1,2. Then ¢, =/ mya;c </ myazc=y,.
Noting that / mjw,{; = y;/2, we have that 6 = /6 + (y; — ¥,)/2 > n/6.
Now the cosine formula says that
18 = LI =18 — wol? + 18, — wol> = 218, — wolI{z — wolcos 0

> |{y — wol? + 1L; — wol? = 21, — wol ¢, — wolcos /6 (by (4.11))
> (A - 12p*2—/3)  (by (4.10)).

On the other hand, |{; — {,| <|{; —c|+1{; —c| <2p, so we obtain that

2 \/E(A —1)p<2p, thatis, A< 1 +2/./2 — ﬁ< 5. This contradicts the

assumption that A > 5. Q.E.D.

Proof of Proposition 4.1 (continued). Take a number A >1 such that
A+ A1

’

>5 Let 4€2,D). If AN(UpcL(E;) =9, then hl, is a

restriction of a Mobius transformation by constrution. If 4'n(U . L(E;)) # 9D,
then

A'nL™Y(E,) # 0 for some LeG.

Since L(A)nNE, #@, Lemma 3.11 and Lemma 44 yield that h, =T, on L(4),
hence h, =L 'ch,o L=L"'oT,oLon 4. Consequently, h |, can be extended

to a ts-qc map by Lemma 4.2. In any case, |, can be extended to a
- 4t . ..
global k-qc map, where k = ——. Because w** is originally a k-qc map, gl,-
- 1+ k L+ k\ .
can be extended to a k’-qc map, where = (——) . Since k' = 5 <
8¢ 1-FK 1—k 1+k
2k = c_s’ by Proposition 2.7, we obtain an estimate
1S, 1 < 9642k < 9647 - "
aiP = - c-5

By assumption on C, we have |, |, <& if we take A = 10, for example. Let
f:H—> D be a Riemann mapping of D, then the above implies that S, ., belongs
to the ball centered at S, of radius & in B,(H, I') where I' = f~'Gf. Remarking
here the ball above is contained in S(/") by the assumption on D, we can deduce
from Proposition 2.6 that there exists a global qc extension g,: C - C of g, such
that g,o L= y,(L)o g, on C for all LeG. (Or, by utilizing a group equivariant
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version of the ultimate A-lemma due to Slodkowski (cf. Earle-Kra-Krushkal [4]),
we have directly this result) Therefore h, also has a global qc extension
(w*)~! o g,, in particular, the next lemma follows.

45. Lemma. For any te[0, 1]\J, h,: D—C can be extended 1o a
homeomorphism h of C commuting with G.

Now suppose that J = @, then the above lemma implies that h,: D — C is
injective, which contradicts the property (c). So, J must be nonempty. Let ¢,
be the infimum of J. Since J is open in (0, 1], we remark that t,€[0, 1]\ J, in
particular Lemma 4.5 is applicable to t,. Let ¢, (n =1, 2,...) be a sequence in
J converging to t,. As t,eJ,

4.12) h, (E*)nh, (L,(E") # @ for some L,eG\ {1}.

Suppose that there exists an LeG\{l} such that L= L, for infinitely many
ns Then, by the property (d) and the fact that E c Q(G), (4. 12) forces that
(E)nh (L(E)) # @, which is impossible because EnL(E) =@ and h :Co>Cis
injective. Thus, we may assume that L, is a distinct sequence in G\{l} In
this case, as is easily seen from (4.12), h J(E)n A(G) # @, which is contradictory
to the fact that EnA(G) =@ and that h, .(A(G)) = 4(G).
In any case, contradictions are deduced, which implies the falsity of the
assumption that z,, z,€D\ 4. cannot be joined by any path in D\ 4. Q.E.D.

§5. The boundary of R, = D/G is a disjoint union of quasi-analytic curves

Let I" be an arbitrary Fuchsian group and ¢elnt S(I"). We denote by R
the (possibly disconnected) Riemann surface 2(G)/G where G = y*(I').

In this sectoin, we shall study the relative boundary 0R, of the subdomain
Ry =D/G = f*(H)/G in R. Our main aim here is to prove that dR, is a disjoint
union of quasi-analytic curves under the suitable hypothesis, where the
quasi-analytic curve means the quasiconformal homeomorphic image of the
circle. To this end, we recall a notion of the annular covering. Let o be a
homotopically nontrivial simple closed curve in a hyperbolic Riemann surface
R. Let n: H— R be a holomorphic universal covering of R, and y an element
of the covering transformation group Iy < Mob of n which covers «, i.e., the
terminal point of a lifting curve & of a with respect to n equals to y(z,) where
2z, is the initial point of d.

As is easily seen, the quotient Riemann surface H/{y) is conformally
equivalent to an annulus 4 = {zeC;c < |z| < 1}, where 0 <c¢ <1 satisfies the
relation cosh (z2/log ¢) = |tr y|/2, which is not so significant below.

Let n,: H— A be a holomorphic covering with the covering transformation
group 7). The induced holomorphic covering map g =gq,: A - R such that
m=gqom, is called an annular covering with respect to a. By construction,
& =7, (%) is the unique closed lift of a, in other words, any other lift of « than
@ is not closed. Using the tool above, we shall prove the following result.
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5.1. Theorem. Let I' be an arbitrary Fuchsian group of the second kind
acting on the upper half plane H. For oelntS(I'), let G = y*(I"), D = f*(H),
R = Q(G)/G, and Ry = D/G. If a connected component o of OR, is compact and
contains no branch points of the natural projection p: Q(G)— R, then a is a
quasi-analytic curve and a one-sided boundary component.

5.2. Corollary. In particular, when I' is a finitely generated, purely hyperbolic
Fuchsian group of the second kind, the relative boundary OR, of R, is a disjoint
union of finitely many quasi-analytic curves, and thus the conformal map F¢:
So = R, induced by f*: H— D, ¢ €Int S(I'), naturally extends to a homeomorphism
F?: Sy —» Ry, where So = H/I'" and S, is its closure in S =Q(I')/T, in other
words, f*: H — D naturally extends to a homeomorphism f*: H\ A(I') - D\ A(G).

Proof of Corollary 5.2. By the hypothesis, R is compact, thus so is
0R,. Therefore the former part of the above assertion directly follows from
Theorem S.1. In particular, S, and dR, consist of mutually disjoint simple
closed curves, therefore the latter part can be deduced from the general version
of the famous Carathéodory theorem. Q.E.D.

In order to prove Theorem 5.1, first we need the next

5.3. Lemma. In addition to the hypothesis in Theorem 5.1, further assume
that I' has infinitely many elements. Then, there exists a certain exhausting
sequence (R,)X-, of R, with the following properties:

(0) each R, is a subdomain of R,

(i) RicRy=...,UX R, =R,,

(ii) each a, = 0R,NR, is a homotopically non-trivial smooth simple closed
curve which is freely homotopic to any other a,,, and moreover if R is not
biholomorphic to the punctured plane C* then w, is not homotopic to any
puncture of R,

(i) every limit point of (,)-, is contained in a, and

(iv) R\ R, contains no branch points of p.

Proof of Lemma 5.3. First we shall show that « is open in 0R,, in other
words, VNOR, = a for some open neighbourhood V of « in R. In fact, let T
be a relatively compact neighborhood of a with smooth boundary such that
T c°R:=°Q(G)/G and that 0TNdR, =@, then it suffices to show that
T,:= TnR, consists of finitely many components each of which has at most
finitely many boundary components, i.e., T is a finite union of surfaces of finite
topological type. Here, we should note that a Riemann surface X is of infinite
topological type if and only if there is an infinite family of mutually disjoint,
homotopically independent simple closed curves y; (j =1, 2,...) in X. (We call
Y1 ¥2.... is homotopically independent when each y; is not freely homotopic to
any y, for k #j nor null-homotopic.) Let € = {y,,...,7} be a finite family of
mutually disjoint, homotopically independent simple closed curves in T,. Then
each y; is not null-homotopic in T, too. Otherwise, y; bounds a topological disk



Schlicht projective structures 721

4 in T, and furthermore, f=A4n0R, #@ for y; is not null-homotopic in
T,. Since 4 is simply connected domain and since 4 < °R, p|;: Ad—4 is
blholomorphlc where 4 is a component of p~'(4). Thus, 04 = Q(G) separates
B:=(pl5)""(B) = 0D from D\ B, this contradicts the connectedness of dD. So
we have seen that y; is not null-homotopic in T.

Next suppose that y; is freely homotopic to y, for some k #j in T. Then
y; and y, bound a topological annulus (ring domain) 4 in T. Since y; is not
freely homotopic to y, in T,, f:= ANOR, # @. Moreover, f separates y; from
. in A. Indeed, if not, there exists an arc é in 4\ f connecting y; and y,, then
A\ J is simply connected and contains a nonempty subset f of dR,, which leads
to a contradiction in the same way as in the above.

Further suppose that y; is freely homotopic to y, for k' #j, k in T. Then
similarly y; and y,, bound a topological annulus A" in T, and B:= A'ndR,
separates y; from y,. in A’. Because dANJA" =y;, we have Ac A, A= A4 or
AnA'=0. In any case, fUf devides R, into two pieces, which contradicts
the connectedness of R,.

Thus we conclude that each y; is freely homotopic in T to at most one
other curve. So we can renumber € = {y,,...,7,} so that y; is freely homotopic
t0 y54,+; in T for j=1,...,s and that y.,; is not freely homotopic in T to any
other curve 7y, for j=1,...,t, where integers s,t>0 satisfy 2s+t=1 In
particular, {y,,...,ys+,} is a family of mutually disjoint homotopically independent
simple closed curves in T.

On the other hand, as is well-known, a Riemann surface X of finite
topological type (g, 0, m) has at most 3g — 3 + 2m mutually disjoint homotopically
independent simple closed curves if (g, m) # (0, 0), (0, 1), (1, 0). Therefore, | =
25+t <2(s +t) <239 — 3+ 2m) if T is of topological type (g, 0, m), hence [ is
bounded. This means that T, should be a finite union of surfaces of finite
topological type. Thus, we have proved that compact component o of dR, is
always isolated in 0R,.

Let po: Q(I')— S = Q(I")/I" be the natural projection, and F: S, = po(H) —
R, the conformal mapping induced by f=f?:H—-D. From the above
observation, we can take a curve ﬁ [0, 1] = 2(G) such that ﬁ([O 1)) D and
B(l)ep"(oc) Let Bo:=f"'o B: [0, 1)> H, then we know that B,(t) has a limit,
say [30(]) as t— 1 (see for example, Pommerenke [12] Proposition 2. 14)

Clearly ﬂo(l)eRnQ(F) and let I be the connected component of RNQ)
containing Bo(1). Now we shall show that the stabilizer H of I in I is generated
by a hyperbolic or parabolic element. (Here we remark that the latter case
happens only when I is generated by a single parabolic element.) Otherwise, H
must be trivial, and so p, is injective on a neighborhood V of I. Thus we can
select a sequence (I,)%, of simple arcs in VNH with the same end points as I
such that E, > E,,, (n=1,2,...) and N*, E, = I, where E, is the region bounded
by I,ul. First, we remark that the cluster set C = %, F(po(E,)) is contained
in 0R,. Now, we can choose a compact neighborhod W of o such that
O0WnoR, =0. Here, F(py(l,)) is not relatively compact in R and @ # ﬁo([O, 1))
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NI, = pg "(F"'(WnRy)) for sufficiently large n, therefore we may pick a point
0.€F(po(l1,))noW for large n. Because W is compact, we may assume that Q,
converges to a point QedW. On the other hand, Qe C = dR,,, which contradicts
the fact 9WnOR, = . Thus, we have proved that H = Stab(I) is generated by
a hyperbolic or parabolic element y,. Let ()7, be a sequence of circular arcs
(or horocycles) in H with the same end points as I such that E,>E,,,
(n=1,2,..), and ., E, = O, where E, is the region bounded by I,uUl. Then
R,:= Ro\ F(po(E,U1,)) is a desired exhaustion of R, for sufficiently large n.
Q.E.D.

Proof of Theorem 5.1. We shall prove in the case that I' is an infinite
group. (When I is finite, R = C/I"= C by the Riemann-Hurwitz formula, thus
the proof is much easier.) Moreover, we may assume that R is hyperbolic. In
fact, even if not, taking a sufficiently small closed disk E < R such that En R, =
@ (see Corollary 3.2), we have only to replace R by the hyperbolic surface
R’ = R\ E. Therefore we assume that R is hyperbolic and I is an infinite group
in the sequel.

Let R,,a, (n=1,2,...) be as in Lemma 52 and n: A = {c < |z| <1} > R be
an annular covering with respect to «,. (Remark that for freely homotopic curves,
we can take the same annular covering.)

Denote by &, the unique closed lift of a, via 7 and let W, c U = {z; |z| < 1}
be a Jordan domain bounded by d&,. Compositing the map z+>c/z to = if
necessary, we may assume that W, = W, for all n > 1, here we should note that
¢ >0 by Lemma 5.3 (ii). Set W=, W, and ¢ = AndW. Clearly, n(d) < o
We shall show that the restricted map =n|;: & - o is a homeomorphism.

Let w, be an arbitrary point of «. By Lemma 3.6, there exists a connected
open neighborhood V of w, such that ¥nR, is connected, VN R, =@, VN(0R,\ @)
= @ and that V is contained in a topological disk ¥V in °R. Now we claim that
there exists a (unique) component ¥, of =~ '(V) with the following conditions:

(1) ¥na#0,

Q@ @ '(V)\K)ni=0,

3) ¥nan~'(x) = Knd.

To prove the above claim, we first remark that 7, := m|y\ 5, : W\ W, - R, \ R,
is biholomorphic. Let ¥, be a component of n~'(V) containing a point of
;' (VNRy). Then Wn(W\W,)=n=r; (VNR,) because VnNR, is connected. In

particular, (= '(V)\ )n(W\ W,) =@, thus the condition (2) follows. Since
my:=7ly,: Vo= V is biholomorphic, we have

7T )NV =75 @nV) =75 (9RoN V) = dmg '(Ron V)N K
= an; "(RonV)n¥ = a(ln (W\ W)k
=oWnk =adanl,

where we use the fact that ¥yn W, = O thus (3) is proved. By the condition (3),
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{o:= 1o ' (Wwo)e ¥ynn~ ' (a) = &, which implies (1), and as a by-product we obtain
that « = n(4). Moreover, condition (3) yields the injectivity of n|;: & — a, therefore
we have proved that z|;: & — « is a homeomorphism.

We shall continue the proof of Theorem 5.1. Since n is a conformal map
in a neighborhood of 4, it is sufficient to prove that & is a quasi-circle.

Here we mention a lemma which is a direct conclusion of the Koebe
distorsion therem: — - <I|f(2)| < % for |zl =a < 1 if f is univalent in

(1 + a)? (1 —a)?

the unit disk and f(0)=f'(0)—1=0.

54. Lemma. Let f be a conformal mapping from a disk A into C. For
(1 —a)?

4a

K > 1, let ae(0, 1) satisfy the equation K = Then there exists a disk

A such that f(4,) = 4 and Ag < f(4).

First, we shall show the following lemma.
5.5. Lemma. The domain W constructed above is linearly connected.

Proof of Lemma 5.5. Since & = 0Wc A is compact, there exists a positive
constant § < diam W with the following property: if a disk 4 with diam 4 < ¢
had a nonempty intersection of &, then 4 = A\(n '(0R,)\ &) and = is injective
in 4.

. . (1—a)?
Take 0 < a < 1 satisfing the equation B =

a
which appeared in Propostion 3.1. Let 4 be an arbitrary disk. In order to
prove linear connectedness, we shall consider several cases.

Case 1. Ana=0.

In this case 4 =« Wor AnW=0, so any two points in 4N W can be always
joined by a path in 4nW.

Case 2. And # @ and diam 4 < aé.

Then 4,,< A, 4,,,n(n"'(OR,)\d) =@, and = is injective in 4,, by the
choice of 4.

Let V be a connected component of p~'(n(4,,,)). Remark that p is injective
in V because p is a covering map and n(d4,,) is simply connected. Now we
apply Lemma 5.4 to the conformal mapping f = (pl,) " 'on: 4,,,—» V. Thus we
know that f(4) = 4 and 4, < f(4,,,) = V< Q2(G) for some disk A. Then, any
two points in f(4)n D can be joined by a path in 4;nD, so in ¥n D by Proposition
3.1. Since f(4,,nW)=f(4,,)nD =VnD by the condition 4,,n(x""(OR,)\ &)
= @, any two points in 4n W= f~!(f(4)nD) can be joined by a path in 4,,,n W.

2diam W
Case3. And # @ and diam 4 >ad. If we set M =1+ —%(> 1/a),
a

where B is the constant

then 4,, > W. Thus any two points in A4nW can be joined by a path in
AynWw=Ww

Hence, in any case, arbitrary two points in 4nW can be joind by a path
in 4, nNW, thus W is linearly connected. Q.E.D.
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By Lemma 5.5, in particular, W is a bounded Jordan domain. We should
remark that we have proved Lemma 5.5 without results in §4. As for Jordan
domains, we mention the next elementary fact, which follows from the uniform
continuity of a homeomorphic parametrization S' - 0W and its inverse map.

5.6. Lemma. Let W be a bounded Jordan domain in C and n any positive
number. Then there exists a positive constant & with the property that, for any
cross cut y of W with diamy <9, it holds that

min {diam W, diam W,} <,

where W, and W, are two components of W\ 7y.
By the help of Lemma 5.6, secondly we shall show the following lemma.

5.7. Lemma. W is a John domain.

(1 —a?

a
constant in the statement of Proposition 4.1. Since o < 4 is compact, we can
choose a positive 7 > 0 so small that any disk 4 with 4nd # @ and diam 4 < 45
should satisfy 4 ¢ A\ W,, n|, is injective, and 7(4) = p(°R(G)).

By Lemma 5.6, for sufficiently small 6(0 < é <n) the following holds: if a
disk 4 with diameter <4 has nonempty intersection with & = JdW, then
diam (W\ W) < n where W, is the connnected component of W\ 4 containing W;.

Now let 4 be an arbitrary disk centered at z,.

Case 1. And=0@.

In this case, arbitrary two points in W\ 4 can be joined by a path in W\ 4.

Case 2. And # @ and diam 4 < ad.

Since 4,,,nd # @ and diam 4,,, <d(<n), 4,,,nW, =@ and diam (W\ W) <n
where W, is the component of W\ 4 containing W;. Set 4' = {zeC; |z — z,| < 21},
then clearly W\ W, = 4’ and 4,,,< 4. Since diam 4’ = 4n, 4' must satisfy that
A' < A\W,, n|,. is injective, and that n(4') = p(°Q(G)).

Let V be a connected component of p~!(n(4'), then p|,: V—on(d) is a
biholomorphic map for n(4') is simply connected and n(4') = p(°2(G)). Since
7 is injective in 4, f:= (ply) ' om: 4" > V is a conformal homeomorphism. Now
we apply Lemma 5.4 for fl4,,,, then we obtain that there exists a disk 4 such
that f(4) = 4 and 4. < f(4,,,).

Fix a point z,eW,n(4'\ 4,,,). Suppose that there exists a point z, in
(WAWo)\ 4y, (= 4). 3

We denote by T the component of W\ 4 containing z,, then clearly Tn W, =
@ and Tc 4. Since Tc 4,0 (T)c Vnaf(d'nW\4)=VnaD\[f(4)), so we
obtain that df(T) < d(D \ f(4)), which implies that f(T) is a connected component
of D\ f(4). _

On the other hand, w;=f(z))ef(4'nW\ 4,,,)=VnD\f(4,,) <D\ 4¢
(j = 1, 2), thus Proposition 4.1 guarantees that w, and w, are connected by a

Proof of Lemma 5.7. Let 0 <a < 1 such that C = , where C is the
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path in D\4 <= D\ f(4). Since f(T)is a component of D\ f(4) and w,ef(T), w,
must be in f(T) too, i.e., z, € T, which is a contradiction. Therefore we conclude
that (W\ W)\ m =0, i.e., W\ A_l/a < W,, which implies that any two points
in W\ 4,,, are joined by a path in W, = W\ 4.

Case 3. And # @ and diam 4 > ad.

Let M=1+ 2d_1ar6n_W(> 1/a), then 4,, > W. Thus, trivially it holds that
a

any two points in W\ 4, can be joined by a path in W\4.
In any cases, we have proved that any two points in W\ 4,, can be joined
by a path in W\ 4. Now the proof is completed. Q.E.D.

Combining Lemma 5.5 and Lemma 5.7 with Theorem 2.9, we can immediately
obtain Thereom 5.1.

§6. Existence of a topological involution of R w.r.t. dR,

In this section, chiefly we shall be concernd with the following result, which
is a crucial part of the proof of our main theorem.

6.1. Theorem. Let G be a Schottky group of rank N(=0) and p: 2(G) —»
R:= Q(G)/G the natural projection. Suppose that R, is a proper subdomain of
R such that D = p~Y(R,) is a simply connected domain and that 0R, consists of
mutually disjoint simple closed curves. Let f:H — D be a Riemann mapping of
D, I" the Fuchsian group defined by I'=f"'Gf and y: I — G the isomorphism
defined by x(y)o f=fov for all yer.

Then f can be extended to a homeomorphism f :CoC satisfying that
x() o f = f ovy. In particular, D = f (H) is a Jordan domain.

To prove Thorem 6.1, the following proposition comprises the key step.

6.2. Proposition. Under the same hypothesis of Theorem 6.1, there exists a
topological involution J of R with respect to 0R,, which can be lifted. More
precisely, J: R — R is an orientation-reversing homeomorphism such that J(Ry)N R,
=0, Jlsr, = 1dsr,, J o J = idg and there exists a homeomorphism j: Q(G) - Q(G)
which satisfies that poj=Jop, jlapiaw) = idop\aes JoJ =idgg and that
joL=Loj for all LeG.

6.3. Remark. By Proposition 6.4 below, the above lift j: Q(G) - Q(G)
naturally extends to a self-homeomorphism of C, and then j|,p = id,p.

Proof of Theorem 6.1. First remark that the conformal map f:H - D
naturally extends to a homeomorphism f: H\ A(") - D\ A(G) by the proof of
Corollary 5.2.

Let j: 2(G) —» 2(G) be the involution satisfying the statement in Proposition
6.2, then we define f~: Q(I') - 2(G) by the rule
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5 { f on H\ A(I)

jOijO on C\ﬂ’
where j, denotes the conjugation map z+z.

Since the limit sets of Schottky groups are totally disconnected, it suffices
to prove the following purely topological proposition, which essentially follows
from the fact that for any plane domain Q, the Kerékjarto-Stoilow compactifica-
tion of  is homeomorphic to the quotient space 2/~ obtained by collapsing
each boundary component of € in C to one point (with the quotient topology).

6.4. Proposition. Let E,, E, be totally disconnected compact subsets of C,
and set Q; = C\E; for i =1,2. Then, any homeomorphism f: Q, - Q, (if exists)
uniquely extends to a homeomorphism f: C — C.

Sketch of the proof of Proposition 6.4. Let ze E;. By the Zoretti theorem
(cf [N: p. 109]), we can take a nesting sequence a,, n = 1, 2,... of Jordan curves
in Q, shrinking to the one point z. Then {f(x,)} is a nesting sequence of the
Jordan curves shrinking to the exactly one point, say, w. Thus we can assign
f(2) as the limit point w of f(x,) for ze E,. Defining f =f on 2, = C\ E, we
have a homeomorphic extension f :C->C of f. Q.E.D.

Now, our only task is to prove Proosition 6.2! As a preparation, we now
state general results about relations between geometric properties of covering
spaces and algebraic ones of the fundamental groups. The proof of these results
is straightforward, so we shall omit it. Suppose that p: Q- R is a normal
(= Galois) covering between Riemann surfaces (or, more generally, manifolds).
Let R, be a subdomain of R and i:: Ry —» R denote the inclusion map. Pick a
point a, from R, and z, from 2 with p(z,) = a,. The inclusion map i: R, —» R
naturally induces a homomorphism z,.: 7, (R, ao) = 7, (R, ao). Let A: n,(R, ap) =
G be the monodromy homomorphism with respect to z,, where G is a covering
transformation group of p: Q2 > R. Namely, g = A([«]) for geG and [a]e
7:1(R, ap) if and only if the final point of the lift @ of a with initial point z,
coincides with g(z,).

6.5. Proposition. (1) Any one of the following implies the others.
(1a) Each component of p~'(R,) is simply connected,
(1b) Ao, is injective,
(1c) 1, is injective and 1,(n,(R,, ap))Nker 4 = 1.
(2) Any one of the following implies the others.
(2a) p~'(Ro) is connected,
(2b) Ao, is surjective,
(2c) m,(R, ap) = ker A-1,(m,(Ry, ag)).

6.6. Corollary. The following conditions are equivalent to each other.
(a) p (R, is a simply connected domain,
(b) Aoi,:7m(Ry, ap) = G is an isomorphism,
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(€) 1,: 7 (Ro, ag)s T (R, ao) is an embedding and m,(R, ag)=ker A xn;(R,, ao)
(semi-direct product).

We now return to the case we have considered, ie., 2= Q(G) and
p: 2> R=2Q(G)/G is a Schottky covering. Since p~'(Ro) =D is a simply
connected domain, by the Corollary 6.6, it turns out that the homomorphism
1,: 7y (Ry, ag) = my(R, ap) has a cross-section s: 7,(R, ag) = 7,(Ro, ao), €.8., $ =
(Ao1,)”' oA Through the natural homomorphisms h: 7,(R,, ao) = H,(R, Z) and
hg: m(Ry, ag) = H,(Ry, Z) (Hurewicz homomorphisms), 1, and s induce homomo-
rphisms 14: H (R, Z) > H,(R, Z), sy: H{(R, Z) - H,(R,, Z) of the first homology
groups, which make the following diagram (6.1) commute. Here we should
remark that the kernel of the Hurewicz homomorphism is the commutator
subgroup of the fundamental group.

71 (Ro, a) — ni (R, ag) — n1(Ry, ap)

©.1) ho| il ho|

Hi(Ro, Z) = H\(R, Z) = Hy(R,, Z)
Since sygo 1y = (s 1,)y = idy, (r,.z)» W€ Obtain the following

6.7. Proposition. The homomorphism 14: H,(Ro, Z) — H,(R, Z) induced by
the inclusion map 1: Ry — R is injective.

By use of the proposition above, we can show the following preliminary

6.8. Lemma. The exterior R, = R, of R, is homeomorphic to R,.

Proof. First, we recall that the Schottky group G is a free group of finite
rank N. Next, let (g, 0, m) be the topological type of Ry, i.e., R, is a genus g
compact surface (without punctures) with m mutually disjoint closed topological
disks removed. As is well-known, the fundamental group =,(R,, *) is a free
group of rank 2g + m — 1. Now, Corollary 6.6 yields that 7, (R, *) is isomorphic
to G, thus N=2g+m— 1.

For a while, suppose that R, is connected. Let (¢9', 0, m’) be the topological
type of R,, then clearly m =m' and g + g + m — 1= N since R is of genus N
compact surface and R = ITO U ITI, thus ¢’ = g which asserts that R, and R, are
of same topological type (g, 0, m). So, we have only to prove the connectedness
of R,.

Let ¢,,...,c,, be boundary loops of R, which are consistently oriented.
Denote by C,,...,C,, the homology classes of c,,...,c,, in Ry, respectively. Here,
notice that H,(R,, Z) has A,, B,....,A,, B, C,,...,C,, as a generator over Z with
the sole relation C; +---+ C,, =0, where 4,, B,,...,A4,, B, denote fundamental
cycles cutting handles of R,. Suppose that R; was disconnected. Let R; be a
connected component of R;, then R; had some boundary components, say,
Cy,...,cp wWith 1 <l<m. Let C/=14(C) be the homology class of c; in R, then
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Ci+--+C=0since C; +--+C/=[c; +-+c]=[-0R{]1=0in H(R, Z).
By Proposition 6.4, i4: H;(Ry, Z) - H (R, Z) is injective, so we obtain an extra
relation C, + --- + C, = 0 which is a contradiction. Q.E.D.

6.9. Proposition. Under the same hypothesis of Theorem 6.1, we have a
system of disjoint simple closed curves {¢,,...,{x} on R, which satisfies the following
conditions::

(@) p:R2(G)—> R is the highest covering which lifts ¢; to a closed loop for
i=1,...,N,

(b) each ¢; transversely intersects OR, at exactly two points, and

(¢) Ry=Ro\UM,7; and R;=R,\UN ¢ are both simply connected
domains, where Ry = R\ ITO.

Proof. Let (g, 0, m) be the topological type of R,, then N =2g+m — 1 as
we have seen before. Let c,,...,c,, be boundary comopnents of R,, or
equivalently, of R,. Then there exist mutually disjoint simple closed arcs u,,...,uy
on R, as follows (see Fig. 6.1):

(i) whole u; is contained in R, except its endpoints,

(ii) for i=1,...,m — 1, u; connects ¢, with ¢;,

(ii)) fori=m,...,m+ 2g — 1 = N, y; starts from ¢,, and returns to c,,, and
(iv) Rj:=R;\UN, u; is connected.

In order to advance the proof, we require several lemmas as the following.
6.10 Lemma. R} is simply connected.

Proof of Lemma 6.10. Let X; denote the compact sufrace (w_ith boundary)
which is obtained by cutting R, along u,U---Uu;. (We set 2= R;.) Let x(2)
denote the Euler characteristic of a compact surface 2 with boundary, that is

x(2) = #{vertices} — # {edges} + # {faces}

for an arbitrary triangulation of X. Further remark that x(X,,)=2—-29—m,
where X, represents a compact orientable surface of genus g with m

Fig. 6.1. case (g, 0, m)=(2, 0, 3)
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boundaries. Because X, is obtained by cutting X,_, along u;, we have
1(Z)=x(Z;_;)+ 1 fori=1,...,N. Summarizing these equalities, we obtain that

1EN) =x(Zo)+ N=2-29g—-m+N=1
Therefore R} must be homeomorphic to the unit disk. Q.E.D.

6.11. Lemma. p~'(R,) is simply connected. In particular, the restriction of
p to any component of p~'(R,) is a universal covering of R;.

Proof of Lemma 6.11. p~'(R,) is the complement of the connected set D,
therefore the above statement is clear. Q.E.D.

Proof of Proposition 69 (continued). Let R} be connected component of
p '(Ry). By Lemmas 6.10 and 6.11, the restriction map p|,;;:/R\’l—>R'1 is
bijective. Let £ denote the closure of 1?1

Now, we can take a simple closed curve w;: [0, 1] — R, which starts from
one side of u; and ends to another side of u;, and which satisfies that
w;((0, 1)) = R;. Here, we should remark that for i=1,...,m— 1, w; is freely
homotopic to the boundary curve ¢;. Let w;: [0, 1] > Q2(G) be the unique lift
in £ of w, and L, be the unique element of G with W;(1) = L;(W;(0)). Clearly
w; is a homotopically nontrivial loop in R,, so that L;# 1 by virture of
Proposition 6.5 (1) and Lemma 6.11. Let u; be the unique lift of u; which
passes through w,(0), and set u; = L;(u). Then, p~'(u)nZ = u;* Uu; and
u nu; =0 (see Fig. 6.2).

Let, for i =1,...,N, 6;" (resp. d;) be the geodesic curve in H which connects
images a;", b;* (resp. a;, b;") of endpoints of u; (resp. u;) under f~!; that is,
#% is the semi-circle in H perpendicularly intersecting dH = R at a;* and b*. Set
vf = f(6F) and ¢F =uFfuv?® for i=1,...,N. Then it is obvious that /% are
Jordan curves in Q(G) and L,(¢;") = ¢; by construction. Furthermore, ¢, ¢ ,...,
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¢y are mutually disjoint. Indeed, since v¥ transversally intersects v at most
one point for other uf while u* nuf = @ (here, possibly with different signature),
if some /F intersects other £, /3 transversally intersects £ at exactly one point,
this is a contradiction.

We shall denote by Ext £* the component of C\/F which contains R,. By
definition, L;(ExtZ;")nExt¢; =@ for i=1,...,N, and so the subgroup G,:=
(L,,...,Ly) of G generated by L,,...,Ly is a Schottky group of the same rank
N and W:= NN, (Ext/ nExt#;7) is a fundamental domain of G,. Here we
should note that WnoD = 8 \ (uf Uuj U---Uuy) consists of finite number of lifts
of some parts of boundary curves c;,...,c,, therefore, WnoD < Q(G). As clearly
W\ oD c Q(G), we have W< Q(G), therefore 2(G,) = 2(G). On the other hand,
trivially 2(G,) = 2(G), thus we conclude that Q(G,) = 2(G). Since Q(Gy)/ G,
and R = Q(G)/G are of the same genus N, if N # 1 the Riemann-Hurwitz theorem
implies that the induced covering map Q(G,)/G, = 2(G)/Gy — 2(G)/G must be
univalent, in other words, G = G,. In case N = 1, there exists an element A€ G
and a natural number n such that G = (4> and L, = A". Since L, covers a
simple closed curve w,, n should be 1, therefore G = G,. In any case, £;:= p(£{)
for i=1,...,N have all the disired properties, by the construction above. For
example, Ry is known to be simply connected domain by the proof of Lemma
6.10. The proof of Proposition 6.9 is now completed. Q.E.D.

Proof of Proposition 6.2. Let £,,...,{y be a system of mutually disjoint
simple closed curves on R as in Proposition 6.9. Set Ry = Ro\UM,¢; and
R, = R, \UN, ¢; are both simply connected domains, where R; = R\ R,. Let
W be a component of p~'(R\ (U~ ,7¢;), then W is a 2N-ply connected domain
with boundary curves £, ¢7,....{5, where 7 is a closed lift of ;. We denote
by L; the unique element of G which maps ¢ to ¢;. Let R; be the connected
component of p~!(R;) which is contained in W and let X, be the closure of R;
for k=0,1. Then, X, seems as a 4N-gon with 2N sides ZfnZ, (i=1,...,N)
and 2N sides which are lifts of some parts of dR,. Since the order of /¥ nX,
in 0%, well corresponds to the one of /fnX, in dX,, we can obtain an
orientation-reversing homeomorphism J,: 0Z, » 0%, with the following two
properties:

(1) J,=id on Z,ndD = X, naD,
(2 JooL;=L;oJ, on Zone¢i for i=1,...,N.
As X, and X, are Jordan domains, we can extend J, to a homeomorphism
J,: 2y — X, with Jilsgo = Jo. By Property (1), we can further extend J, to an
orientation-reversing homeomorphism J,: W— W by the rule:
7, = {.Zl on X,
Jit on X,.

Noting that J,oL;=L;oJ, on ¢} for i=1,..,N, we extend J, to a
homeomorphism J: Q(G) —» 2(G) as the following:
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J=LoJ,oL™! on L(W) for all LeG.
By construction, J satisfies the following conditions:
(a J(D )nD @ and J =id on dDNQ(G),
b) -1 =idg),
Jo

—_

(c) L= LoJ for any LeG.
Because of (c), J descends to a homeomorphism J: R —» R with Jop= poj,
which has the desired properties. Q.E.D.

In order to complete the proof of Theorem 2.1, we have only to show the
following

6.12. Theorem. Let G be a Schottky group of rank N(=0) and p: 2(G)—
R:= Q(G)/G the natural projection. Suppose that R, is a proper subdomain of
R such that D = p~'(R,) is a simply connected domain and that 0R, consists of
mutually disjoint quasi-analytic curves. Let f: H— D be a Riemann mapping of
D, I' the Fuchsian group defined by I'=f~'Gf and y: ' - G the isomorphism
defined by y(y)of =foy for all yel.

Then f can be extended to a quasiconformal homeomorphism f:€C-C
satisfying that x(y) f = f~ oy. In particular, D = f (H) is a quasidisk.

Proof. By Theorem 6.1, f can be extended to a homeomorphism f,: C —» C
satisfying that x(y)o fo = fooy. Let F, denote a homeomorphism from S =
Q(I')/T onto R induced by f,: Q(I') —» Q(G). Since Folsy: So = Ry is conformal,
where S, = H/I', and 0R,, consists of mutually disjoint quasi-analytic curves, F|s,
can be extended to a quasiconformal mapping F, on a neighborhood U of §,
such that F, is difffomorphic in U\ S,. Here, we used the well-known fact that
a quasiconformal map from the unit disk 4 onto a quasidisk can be extended
to a quasiconformal self-map of the whole plane C whose restriction to C\ 4 is
real-analytic (for example, by the Ahlfors-Weill extension). Then, it is easily seen
that there exists a diffeomorphism F: S\ S, —» R\ R, which coincides with F, on
some neighborhood of 0S, and which is homotopic to F,ls\5, by a homotopy
that fixes 0S, pointwise.

We extend F to a homeomorphism from S onto R by defining F = F, on
SO, then F becomes quasiconformal and F ~ F, in S. Since F, can be lifted to
fo, F also can be lifted to a homeomorphism f Q(I')—> Q2(G) such that
y(¢)of=foy for all yel. By Proposition 64, f naturally extends to a
homeomorphism of C, which is denoted also by f Since F:S—R is
quaswonformal f is also quasiconformal on Q) e C\R. On the other hand,
R is a quasiconformally removable set, thus f must be quasiconformal on the
whole plane. The proof is finished. Q.E.D.

Proof of Theorem 2.1. Let @elntS(I'). Then G = y®(I") is a Schottky
group by Lemma 2.3 and Maskit’s characterization theorem, and R,:= f*(H)/G
is a proper subdomain of R:= Q(G)/G with quasi-analytic boundary by Corollary
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5.2. Now Theorem 6.12 implies that f® can be extended to a [I'-compatible
quasiconformal homeomorphism f of C, which means that ¢ T(/"). Thus we
have proved now that Int S(I") = T(I'). Q.E.D.
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Added in proof:

The author recently learned from Professors T. Soma and K. Oshika that Lemma 6.8 directly follows
from the theory of I-bundles (see J. Hempel, 3-manifolds, Ann. of Math. Stud., Princeton Univ. Press
(1976)).



