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§ I. Introduction

Let F  be a n  arbitrary Fuchsian group acting on the upper half plane H =
{z e C; Im z > O } . W e  d e n o te  b y  S (F ) th e  s e t  consisting of the Schwarzian
derivative Sf  of all the univalent meromorphic functions f  on H with f  o  y = x (y ) f
on H  for some group homomorphism  F  M ob. T hen  it tu rns out that S(F)
is a  bounded closed subset of the complex Banach space B,(H , F) (see §2 for its
precise definition). It is an interesting matter to investigate how (the Bers model
of) the Teichmiiller space T (F ) is embedded in S (F ) .  Generally, T (F ) g  S(F)
h o ld s . In fact, first G ehring has show n that T(1) g S(1) in  [7 ] , a n d  la ter the
author proved in [14] th a t  T (F )  S (F )  for any Fuchsian group F  of the second
kind. M oreover, recently K. Matsuzaki showed in [9] the existence of certain
infinitely generated Fuchsian groups F  of the first k ind such that T (F )  S (F ) .
But, it is  s till a  difficult problem to decide whether T (F ) =  S (F ) fo r  a  finitely
generated Fuchsian group F  of the first kind. (W e rem ark that this problem  is
equivalent to  th e  B e rs  conjecture: any b-group is a  boundary group of the
Teichmiiller spaces.)

On the other hand, Gehring has shown in  [6] that Int S(1) = T(1). Further-
more 2uravlev showed in  [17 ] th a t T (F ) is  the zero component of Int S (F ) for
a n  a rb itra ry  F u c h s ia n  g ro u p  F .  T h u s , it  is  n a tu ra lly  c o n je c tu re d  th a t
Int S (F ) =  T (F ) fo r  a n y  F .  I n  th is  direction, Shiga proved in  [1 3 ]  th a t  the
above conjecture holds if F  is finitely generated Fuchsian group of the first kind,
equivalently, if B 2 (H, F )  is finite dimensional.

T h e  m a in  th eo rem  i n  t h i s  a r tic le  (T h e o re m  2 .1 )  is  t h e  cla im  that
Int S (F ) =  T (F ) for any Fuchsian group F  uniformizing a  com pact (bordered)
Riemann surface with nonempty boundary, in  other words, for finitely generated,
purely hyperbolic Fuchsian group F  of the second k in d .  In  order to prove this
theorem , w e shall u tilize  G ehring 's m ethod i n  [ 6 ]  with several localization
techniques for overcoming difficulties caused by th e  g ro u p  a c t io n . Here we
rem ark that our proof does not depend on 2uravlev's result.

The proof of the main theorem divides into several steps as fo llow s. In §2,
we prepare terminologies and notations for later use, and state the main theorem
and  som e lem m as. L e t F  b e  a n  arbitrary Fuchsian group, ço E Int S (F)  and f
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b e  a univalent function such that S i . = cp. T o  sa y  th a t c p  e  T (F), w e have to
show  essentially that D = f (H )  i s  a  quasid isk , o r equivalently, D  is  a  locally
connected John domain (if D  is bounded).

In §3, we will show that D is locally connected, but "locally" in Q(G) where
G = f 1 F f  (Proposition 3.1). Roughly speaking, in  the "island" D, there is no
v e ry  d e e p  b a y .  I n  f a c t ,  i f  su c h  a  d e e p  b ay  ex is ts , o n e  can  co n stru c t a
G-equivariant meromorphic m ap g  on  D  with small Schwarzian which shuts its
in le t ( th u s , is  n o t univalent) by  bending D  a  little , a n d  th is  w ill le a d  to  a
c o n tra d ic tio n . A s  a  corollary o f  th is  re su lt , w e  se e  th a t  aD = a(t\D), in
particular, t \ D  0 ,  for any  yo e Int S(F).

In  § 4 , w e  a lso  see  tha t D  is  a  John  dom ain , a t least "locally" in  Q(G)
(P roposition  4 .1). R oughly  speak ing  aga in , there  is  n o  peninsula so m uch
constricted in  th e  island D .  In  fac t, if  such a  peninsula, one  can construct a
G-equivariant meromorphic m ap g  o n  D  with small Schwarzian which touches
the opposite shore of D by lengthening a  narrow part of the peninsula, and  this
also w ill lead to a contradiction.

In  both steps, we shall accomplish the construction of g  as follows: first, we
construct a G-equivariant quasi-regular (in fact, quasiconformal locally, b u t not
necessarily injective) map h with small deformation which has the same properties
as g  except the holom orphy. By an  appropriate construction of h , the Beltrami
coefficient tt of can be well-defined, so we can choose w" . h  as g ,  where w"
is  a  p -q c  m ap  o f  t  (here, fo r exam ple, ,u w as extended to 0 in h ( D ) c ) .  F o r
estim ation of the norm  of the Schwarzian derivative o f  e  .  h , we shall utilize
the "local norm  technique" as in [16].

In  § 5 , fo r  a  F u c h s ia n  group uniformizing a  com pac t bordered Riemann
surface with nonempty boundary, we prove that the boundary of DIG  in  S2(G)/G
i s  a  d isjo in t un ion  o f quasi-analytic curves by invoking th e  annular covering
argum en t. Thus, in particular, the induced conformal map  F :H / F —oD /G  by f
can be naturally extended to a homeomorphism H /F  —0 D I G .  Furthermore, in
§6, F  turns ou t to be extended to a quasiconformal m ap P: S 2 (F)/ F —o S 2 (G)/ G
which can be lifted to a quasiconformal map 1: Q (F) - 0 S 2 (G ) .  This fact follows
essentially from the existence of a G-equivariant quasiconformal reflection with
respect t o  D. S in c e  f may be continued to a quasiconformal self-map o f  t ,  it
has show n that yo = S f e T(F).

Finally, the  author w ould like to  express his sincere gratitude to  P rof. M.
Taniguchi for encouragement and worthy advices.

§ 2 .  Preliminaries and the main theorem

In  this section, we shall fix the terminologies needed below and state related
facts and  the  m ain  th eo rem . A s  a  general reference, we refer to the  textbook
[10] by S. Nag.

Projective structures on a Riemann surface. Let R  be a  hyperbolic Riemann
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su rfa c e  a n d  p : H --+ 12 b e  a  h o lo m o rp h ic  universal covering o f  R , where
H  =  1z E C; 1m z > 01 is the upper half p lane . A  projective chart on the Riemann
surface R is a  complex chart on  R  such that the transition functions are (locally)
restrictions of Möbius transformations. Two projective charts on R are equivalent
if their union is also a  projective chart. Equivalence classes of projective charts
o n  R  are called projective structures o n  R.

Let o-  be a projective structure on R represented by a chart {tP OE : UŒ—' l; aeA}.
Set CIŒ := p -

1 (UŒ), and write tTi OE =  t/J„ p o n  0 0E fo r a e  A . Then (ÛOE)Œ E A is  an open
covering of H . D e fin e  C o  =  o  1  o n  i/Jp (UG, n Up ), then C o  i s  a restriction of
Möbius transformation on each component of 0,g (IJŒ n Up ), by the very hypothesis.
And we have

(2.1) t/;„ = C olf i o n  (7 OE n

for any a, la e A.
Here, we recall som e o f  th e  properties of the Schwarzian derivative. The

Schwarzian derivative S 1  of a non-constant meromorphic function f  on a plane
domain is defined by

S f f 2 1  (  )  2

S1  is holomorphic at a point if and only if f  is locally schlicht (= locally univalent)
a t  the  po in t. A nd , S f  =  0  o n  a  domain D c  'e  if and  only if f  is  a restriction
of a M öbius transform ation. Further, if f  and g  are meromorphic functions and
if f o  g is defined, then the following important formula (the Cayley identity) holds:

(2.2) Spg = (54 o g (g') 2 + Sq .

By the above properties and (2.1), we obtain that

S- = S on Cia n 0/3

for any a, 13eA . Thus a holomorphic function p : H C  is w ell-defined  by

o n  0„

for any Œ . M oreover, by the relation (2.2), w e  can  see  tha t the holomorphic
function (p satisfies the following functional equations:

(49 ° Y) • (Y')2 =

f o r  all y e F ,  w h e re  T  < M o b  i s  t h e  covering  transform ation g r o u p  of
p: H - 4 R .  The above cp is called a  holomorphic quadratic dif ferential for T  on
H . W e  w ill  d e n o te  b y  Q(H, I ' )  t h e  s e t  o f  a l l  the  holom orphic  quadratic
differentials for T  o n  H.

Conversely, le t a  h o lo m o rp h ic  quadratic differential ço for T  o n  H  be
given. Consider the following homogeneous linear ordinary differential equation:
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1
(2.3) y" + —  y  0 o n  H.

2

Since H  is simply connected, there exists a  pair of fundamental solutions (Yo,
o n  H  uniquely determined by the initial condition

(2.4) Y010 = 0 , Y[310 = 1 ; Y110 = 1, Y'110 = O.

N oting that y„!.y , — y o y, 1, w e obtain that P°:= y 0 /y 1 sa tisfies th e  following
conditions :

(2.5) Sf, = (so on  H ,

(2.6) f`P(z) = (z — i) + 0(1z  — il 3 ) a s  z i = 1.

It shou ld  be  rem arked  tha t PP: H is uniquely determ ined by th e  above
conditions (2.5) and (2.6).

L e t  y E F b e  re p re se n te d  b y  y(z) —
az  + b
cz + d  

f o r  so m e  
( a  b )

c  d  
ESL (2, C).

Conventionally, we write (y) - 
1 / 2  

C Z  ±  d , then Si; = (yi . y)(y r  1/2 b eco m es a
solution of (2.3) a g a in . (jï;  m ay be considered a s  th e  analytic continuation of
the solution yi  a lo n g  w ith  a  pa th  from  i  t o  y (i). ) Therefore Si ° a n d  j  a r e
uniquely represented by linear combinations of yo a n d  y1 a s

(2.7)
= Ay o + By,

= Cy, + Dy i ,

A  B
where A, B, C and D are constants. Since "j3 —  j31 ( SL (2, C).

A z + B D
We denote by zg' (y) the Möbius transformation , which is independent

Cz + D
of the choice of signature of (yr  l  ' 2 . The group homomorphism F  Mob
is called a  holonomy homomorphism associated w ith cp. By (2.7), w e have the
following transformation formula for f 9 :

(2.8)f c o  y  = (y) f (P for a ll  y e F.

Such a  meromorphic m ap f`P a s  51 , = (,9 is called a  developing map o f cp, and
also the pair (PP, e )  is called a  deformation of the  Fuchsian group F.

In  this article, we will call cp a  schlicht projective structure if its developing
m ap f "  is  schlicht ( = univalent) in H .  L et S (F) denote th e  se t o f  totality of
schlicht projective structures for F on H .  The Nehari-Kraus theorem states that
if PP is  schlicht in  H  then

11(P II = sup ( P ( z )  I (2 Im z)26 .
zeH

So it is na tura l to  consider a  complex Banach space 132 (H, F) = { cpeQ(H, F);
II4H  < '30 1. Of course S ( F )  B 2 (H, F).
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By Hurwitz's theorem, it turns out tha t S (F) is closed in B2 (H, F).
On the other hand, S (F) is closely related to the Teichmiiller space T(F)

of F, where (the Bers m odel of) the Teichmiiller space T (F) of F  is defined by

T (F) = { 9 eQ (H , F); f g can be extended to a F-compatible
quasiconformal homeomorphism of

where we say that f  is  F-compatible if f  y  o f -
l e M ob for all y E T.

I t  i s  a  w ell-know n fact that T(r) i s  a  bounded connected open set of
B2 (H, F ) .  C learly  T ( F )  S ( F ) ,  and it is  c o n je c tu re d  th a t  T (F) = Int S(T),
where Int S (F) denotes the interior of S (F) in the Banach space B 2 (H, F).

Now we state the main theorem, which is a generalization of Gehring's result
in [6].

2.1. Main Theorem. I f  F  is a finitely generated, purely hyperbolic Fuchsian
group of  the second k ind, then T (F) = Int S(F).

2.2. Rem ark. For a Fuchsian group F acting on H, the following conditions
are mutually equivalent :

( i ) F  is finitely generated, purely hyperbolic and of the second kind,
(ii) F  is  a Schottky group,
(iii) F  is a uniformizing group of a compact bordered Riemann surface with

nonempty boundary, more presicely, F  is  the covering transformation
group o f a  holomorphic universal covering p: H  R , where R  is  a
compact Riemann surface of genus g  ( >  0 )  with m utually closed
topological disks D  ,  ,  r)„, removed (m > 1).

In case of (iii), w e say that R  is of conformal type (g, 0, m), and we should
note tha t F  is  a free group of rank  2g + m  - 1.

In the sequel, we are mainly concerned with the properties of a point in
Int S (F) fo r an arbitrary Fuchsian group F , more precisely, the shape of the
domain D  D4' = f`P(H) for 9 e Int S(F).

First, for 9 e S (F ) , the holonomy homomorphism ) (
1
'  :  F - * M o b  is  injective

and G  =  ( F )  <  Mob acts on D = f`P(H) discontinuously, therefore D c  ( G ) ,  in
particular, G  i s  a  K leinian group. Furthermore, fo r yo I nt S (F ) , : F - G
enjoies the following property.

2.3. L em m a (cf. [ 1 5 ] ) .  For y9 E Int S (F), the holonom y  hom om orphism
: F-+ G = x`P(F) is a  type-preserving isomorphism.

P ro o f .  First, w e rem ark that the mapping 91-■ tr 2
 x ( v )  is holom orphic on

B2 (H, F ) ,  where y  is  a  fixed element o f F  and tr 2  g = (a + d)2 if th e  Möbius

transformation g  is represented by 
g (z )-  az  + b  

with ad  -  be = 1.
cz  + d

If y  is parabolic or elliptic, i.e., tr 2  y  = 4cos 2  gh  for some rational number g,
then tr 2  x`P(y) = 4cos 2 cpr for 9 e T (F) by quasiconformal homogeneity o f T(F).
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Since T (F ) is  open in  B 2 (H, F ),  th e  identity theorem implies that tr 2 e (y) =
4cos 2 gn for all e  B , ( H ,  F ) .  Thus f  preserves types elliptic and  parabolic.

Finally, let y e F  be hyperbolic. Since f  i s  injective for q e Int S (F ), f (y )
should not be elliptic. Suppose that f ° ( y )  becomes parabolic, i.e., tr 2 e°(y) = 4,
for some 9 0 ,  the identity theorem produces again that tr 2 e (y )  is  a nonconstant
map on Int S(F), so the image of Int S(F ) under this map is open neighborhood
of 4 . In  particular, for sufficiently large n e N there exists a  point (pi in  In t S(F)

such that tr 2 et(y ) = 4cos 2 —1r , which is a contradiction.

2.4. Remark. T h e  p roof o f  th e  above lem m a in  [1 5 ]  re lie s  u p o n  the
).-lemma. T h e  author has learned the idea in  the  above proof from H. Shiga.

Hyperbolic sup n orm . F o r  la ter use, we shall fix several notations in the
m ore general s itua tion . L e t D  b e  a  hyperbolic simply connected domain with
the Poincaré metric pp (z)Itizi of negative constant curvature — 4, and  le t G  be
a  K le in ian  g roup  a c tin g  o n  D  ( ,  w hich is not necessarily  a  com ponent of
Q (G )) .  The complex Banach space B,(D, G) is defined as the set

D  C : h o lo m o rp h ic  map; ( 9  1 ) (0 2 =  9  for all Le G , H P D  <  1 ,

where 11 (p II D  = S U P zeD I 9(z)1 v(z)- 2 . If G  is  the trivial group, we write B2 (D, G)
sim ply by B2 (D). Let f :  H  D  b e  a  conformal m ap, th e n  b y  the  conformal
invariance of the Poincaré metric, we have

(2.9) 1 1 ( 9  f ) ( f ) 2 11H = II 49 11D fo r  9 e B2 (D).

G-Schwarzian dom ains. U nder th e  above preparations, w e shall sta te  a
characterization of such a  domain D  as r '(H )  obtained from some 9e Int S(F).

2.5. Lem m a. L e t  F  b e  an  arbitrary  Fuchsian group ac ting  on  H .  For
9 e S (F ), 9  belongs to Int S (F ) if  an d  only  i f  th e  dom ain D = fP (H ) h as  the
f o llow ing  property : T here  ex ists  a p o s itiv e  c o n s tan t c >  0  su c h  th at an y
non-constant meromorphic m ap g: D—> t w ith Sg eB 2 (D ,G ), m ust be univalent in
H , where G = ;M T ) and B 2(D, G)E G B 2(D, G); D <

W hen a K leinian group G  acts o n  a  hyperbolic domain D  (not necesarily
simply connected), D is called a  G-Schwarzian domain with constant c if the above
property holds.

P ro o f . By (2.2) and (2.9) we obtain the equality

S go 11H = S 1711D,

which implies what we need here. Q .  E .  D .

N ext w e refer to  the local quasiconformal homogeneity of Int S (F ), which
plays an important role in  § 4 . T h e  proof of the following proposition is deeply
indebted to a  group equivariant version of the )-lemma.

Q. E. D.



Schlicht projective structures 703

2.6. Proposition ( [ 1 5 ] ) .  L et V be a  connected component o f  Int S (F ) .  For
any (p i , (p2 e V , there exists a  quasiconformal self-map F o f  C' with the following
properties:

(1) f 2 = F o n  H,
(2) x(P2 (y) = F ox`Pl(y). F - 1  o n  t  f o r all y e F.

A n  estimate o f  t h e  hyperbolic sup norm . I n  what follows, it becom es
important to estimate the magnitude of the hyperbolic  sup  norm  (P IID, and  so
w e now  give a  m ethod to controle th e  no rm  by  th e  another (relatively) local
data e a sy  to  tre a t. Let A e [1, cc) be  a constant and D  a  proper subdomain of
C .  Define g A (D) by the collection of all disks B(zo , r) = {z e C; z — z o l < r} such
that B(zo , Ar) c  D.

In  th is article, an orientation-preserving homeomorphism (or, non-constant
continuous map) f: D, —* D 2 shall be called, conventionally, a  k-quasiconformal
m ap (or, k-quasiregular m ap, respectively) where k e [0, 1) is a constant if f  has
locally  /2-derivatives such that lai fl<kla z j I  almost everywhere in  D , .  A
quasiconformal m ap is often called a  qc  m ap , fo r sho rt. A nd , we denote here
by p [ f ]  the Beltrami coefficient OFf I ez f  of quasiconformal map (or, quasi-regular
map) f. W e rem ark  tha t, since  az f  O  a . e . ,  p [ f ]  is w ell-defined. Thus, a
quasiconformal map f  is k-qc if and  only if  il i[f]11 0„ We should remark

that such an  f  is ordinarily called K-quasiconformal where K — 
1 + k

1  —  k  

e [1, co),

a n d  this term inology has a  advantageous property that the com position map
f , .  f 2 i s  K,• K 2 -qc if f ,  is K 1 -qc and f 2 is  K 2 -qc . W ith  these  notations, we
have the following

2.7. Proposition (c f. [2 ], [16]). L e t  D  be a  simply connected hyperbolic
subdomain o f  C, A  >  1  an d  ke [0 , 1) be constants, and f  be a non-constant
meromorphic function on D .  If  f1 , can be extended to a  k-qc map o f  t  f o r any

e.9,(D), then < 96kA 2 .
Conversely, if IISAD 2 k A 2  then f1, can be extended to a  k-qc map of t

f o r any 4 eg,(D).

Bers projection. T h e  m easurable  R iem ann m a p p in g  th e o re m  d u e  to
Ahlfors-Bers claims that, fo r  y e  L '(C )  with <  1 ,  t h e r e  e x i s t s  a unique
quasiconformal homeomorphism of  C , deno ted  by  e, such that O F w" = pOz w"
a.e. and 0(0) = 0, w "(1) = 1, w (cc) = co.

L e t  G  b e  a  K le in ia n  g ro u p  a c t in g  o n  a n  o p e n  s e t  D C .  W e  set
E = C \D. L"(E, G) and  M(E, G) denote the complex Banach space ty E L (C );
y  =  0  o n  D,(po L)•L' I =y  a . e .  f o r  a l l  L e  G I  a n d  its o p en  u n it b a ll,
respectively. If  G =  1, we shall write  L (E )  =  L (E ,  1) and  M (E )=  M (E , 1) for
simplicity.

F o r  pc M(E, G ), b y  the  au tom orphy  o f p, ve conjugates G  to another
Kleinian group, i.e., w"G(w") - 1  <  M o b , and W D  is conform al since p = 0  on
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D .  A s a  result, the  Schwarzian derivative of re 1, is well-defined and turns out
to  b e  a  (bounded) holomorphic quadratic differential fo r G  o n  D .  Particularly,
when D  is simply connected domain of hyperbolic type, we denote by 0„(1.1) the
Schwarzian derivative of W D , and which is called the (generalized) Bers projection
of ge M(E, G ) .  A s is w ell-know n, D: M(E, G) -4 B,(D, G) is  holomorphic and
its differential at the origin is represented a s  a n  integral operator (cf. [15]):

do OD [y] (z) = — 
Th J I  

1 4 °  g d r i +
E (C Z)4

fo r  every v e L'(E, G ) .  I n  t h e  special case  th a t  D = H , OH  i s  the original
Bers projection and its image 0,(M(H`, G)) is the Teichmfiller space T(G) of the
Fuchsian group G.

A s a  corollary of the m ain theorem, we can verify the  following:

2.8. Corollary. L et D  be a  simply connected subdomain o f  t . o f  hyperbolic
ty pe and E  its com plem ent. Suppose that a S chottk y  group G  acts on D . T hen
the following conditions are equivalent to each other:

(1) do OD : L  ( E, G) B2 (D, G) is surjective,
(2) do OD : Lc° (E)—> B2 (D ) is surjective, and
(3) D  is a  quasidisk.

P ro o f . A s the claim (2)-4, >(3) is a  special case G =  1  of (1)-#>(3), it suffices
to prove (1)<#43). The part (3) ( 1 )  is a direct consequence of the submersivity
of the generalized Bers projection (cf. Bers [3], Earle-Nag [ 5 ] ) .  Thus we have
only to prove that (1) implies (3). First observe that if do OD : L '(E , G) —> B2 (D, G)
i s  surjective th e n  OD (M(E, G )) i s  a  neighborhood o f  0  i n  B2 (D, G ) (see, for
instance, [ 1 ]  Proposition 2.5.9), th a t  is ,  D  i s  a  G-Schwarzian dom ain. L et
f :  11 D  b e  a  R ie m a n n  m apping  function  o f  D  a n d  go its Schwarzian
derivative. Then, the above observation shows that cp e Int S(F ) where F denotes
the Fuchsian group f  ' G f .  Here we may assume that f  =  f`P . Since x9  : F —> G
is a  type-preserving isom orphism  by L em m a 2 .3 , F  is a l s o  a Schottky
g ro u p . (H e re  n o te  t h a t  Schottky g ro u p s a r e  characterized a s  t h e  finitely
genera ted , pu re ly  loxodromic f r e e  K leinian g r o u p s  b y  M askit's  theorem
[ 8 ] . )  Therefore Theorem 2.1 produces that Int S (F ) =  T (F ).  T h u s  w e  have
s h o w n  th a t  e T (F ), in particular, D = f 9 (H) is  a  quasidisk. Q. E. D.

Quasidisks. Finally, we shall m ention a characterization of the  quasidisks,
where we recall that the  quasidisk is defined as an  im age  o f the  un it d isk  (or
the upper half plane) under a  quasiconformal self-map of C .  Before stating the
result, we shall define a distance ("path diameter distance" w.r.t. the  Euclidean
metric) S, on any open subset D o f C . F o r  given two points z1 , z2  in  D, we set

SD (z,, z 2 ) =  inf diam a,
a= D

where th e  infimum is taken  over th e  paths a  connecting z , a n d  z2 i n  D  and



Schlicht projective structures 705

diam a=  sup 2 lw1 — 14' 2 -  If z ,  and 2. 2 d o  not belong to the same component1 
of D, we define 6,(z,, z 2 ) =  co. As is easily seen, (5,, satisfies the axiom of distance
except that (5,, possibly takes the value co. In particular, SD  is certainly a distance
on  D  if D  is a  dom ain, and (50 (z 1 , z2 ) > Iz 1 — z2 1 by definition.

A  bounded sim ply connected dom ain D  is  c a lle d  linearly  connected if
6D (z,, z 2 1  fo r any  z 1 , 22 ED , o r  equivalently, fo r  a n  arbitrary disk
A , any two points in DnA can be connected by a  path in  D n A A ,  where C  and
A  is  c o n s ta n ts  (  1 )  depending only o n  D  a n d  A ,  denotes {lz — z 0 1 < A r} if
A = flz — z0 1 <r} .  I t  i s  w o r th y  to  k n o w  th e  fa c t th a t  a  linearly connected,
bounded, simply connected domain is always a Jordan domain (see Theorem 3.3
below).

A  bounded simply connected domain D  is called a  John dom ain if, for an
arbitrary disk A , any tw o points in D \ A , can be connected by a  path in  D\A,
where A  is  a constant (>  1) depending only o n  D.

2 .9 .  Theorem (cf. G e h rin g  [6 ], P o m m e re n k e  [1 2 ]) . A  bounded simply
connected domain D  is  a  guasidisk if  and  only  i f  D  is a  linearly connected John
domain.

§ 3 .  The first construction of non-univalent meromorphic map with G-invariant
small Schwarzian

In this section, we shall proceed in a general situa tion . L e t G be an arbitrary
Kleinian group, D  be a G-invariant hyperbolic plane domain and p: Q (G) - + R =
Q(G)/G be  the  natural p ro jec tion . Here we should rem ark that D c f2(G), for
e \ D  is a  G - in v a r ia n t  c lo se d  s e t  c o n ta in in g  a t  le a s t  th re e  p o in ts , thus
'e\D  D  A (G ). In  this section, it  is  o u r m ain job to  prove the following

3.1. Proposition. Suppose that a Kleinian group G acts on a simply connected
plane dom ain D c  C  o f  hyperbolic t y p e .  I f  D  is  a  G-Schwarzian domain with
constant e>  0, the following is valid f o r an  appropriate constant B >  1 depending
only on E: f or an  arbitrary  A e 9 B (S2(G)) such that p1, 8  is  injective, any two points
in AnD can be joined by  a path  in  AB n D.

Before stepping into th e  proof o f  th e  above proposition, w e  sta te  a  few
corollaries.

3.2. Corollary. I f  a  hy perbolic sim ply  connected p lan e  dom ain  D  is
G-Schwarzian f o r som e  Kleinian group G  acting o n  D , an d  if  A ( G )  OD then
ap= OD* where D* is  the ex terior o f  D .  In particular, D* 0 0.

Proof  o f  Corollary 3.2. Since alw ays  A (G ) c OD, the hypothesis implies that
there exists a point z 0  i n  D \ A (G) = ap n 52 (G ) .  The limit set A (G) is contained
in the closure of the orbit G • z, of z„, and on the other hand, G • z, is contained in
3DnS2(G), thu s w e  ob ta in  tha t A (G )c  G z 0  O D n ,Q (G ) .  A s a  consequence,
we h av e  ODno(G ) = aD . Clearly, OD* c  OD, so it is sufficient to prove that
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ODni2 (G) c ap . .  If not, since the free regular set °S2 (G) = Q (G)\ {elliptic fixed
points of GI has at m ost countable com plem ent in  Q (G ), there exists a point
wo  e ap n°0 (G)\ no '. Pick and  fix another point w , in  a D .  Then, since w o  e
Int fin °Q(G), there exists an injective d isk  A  with center w o  a n d  ra d iu s  r > 0

such that A  c b and w, 0 A .  Now we take a  sufficiently large n so that sin —7( <
1 r n

,  a n d  s e t  e • = exp 
( 2 i r t j )

 +  w ,  fo r  j  = 0, 1,..., n. T h e n  ei eaA 1 1 2  a n d
4B j 2 n

g r
lei + ,  — ei l = r sin <   for j  = 0, 1,...,n  — 1. Since ei  c 4  c  5, we can choose

n 4B
a point ai e D  such that la • — e d < —

r  

for each j  =  1 ,...,n , and set a ,  = a „.  Then

a
P —

(i ,a i , , e B  e •  
r

an d  th e  d isk  B(e A,i,r1 2 )  is included in the injective disk ,
 2B

so Proposition 3.1 guarantees the existence of a path Ti c B (e i ,r12)nD  connecting
a;  a n d  a i  + , ( j  = 0, 1, ... , n — 1). T h e re fo re  y = U71,1 y i  i s  a  c losed  pa th  i n  D
separating wo  f ro m  w ,, which contradicts the connectedness of at). Q. E. D.

B y  t h e  next characterization o f  J o rd a n  dom ains, w e  ob ta in  a  further
information about G-Schwarzian simply connected domains.

3.3. Theorem (Newman [11] Chap. VI, Theorem 14.1 and Theorem 16.2). A
hyperbolic simply connected domain D  c  t  is  a Jordan dom ain i f  and only  if  D
is uniformly locally connected, more precisely, f o r any positive number E there exists
a positiv e  n  such that, f o r all pairs of  points x , ye D, d(x , y ) < n  implies that
6D (x, y ) < y , where S D denotes the "path diam eter distance" w ith respect to  the
spherical metric d  o f  C.

3.4. Corollary. L et D be a hyperbolic, G-Schwarzian, simply connected plane
dom ain f o r  som e K lein ian group G  a n d  D ' a  Jo rd a n  dom ain such that
0(D nD') °Q (G ), w here °Q  ( G )  deno tes t h e  f re e  reg u lar s e t  o f  G ,  i. e.,
°Q (G) = 52(G)\{ elliptic f ixed points o f  G } .  Then, each component o f  D nD ' is a
Jordan domain.

Proof  of  Corollary  3.4. S in c e  D n D ' is simply connected, it suffices to show
that each component of D n D' is uniformly locally connected, by Theorem 3.3. By
Corollary 3.2, we can assume th a t D  and  D ' a re  both  bounded dom ains. Let
0 < y <diam eDn ED'. S ince  som e compact neighborhood of 0(DnD') is contained
in free regular set of G, Proposition 3.1 yields that there exists a positive such
that S D (x, y) < v /2  for any x ,y e D n D ' with 1 x — y1 <

O n the other hand, Theorem 3.3 implies that there exists a positive /12 such
that 6 D ,(x, y) < /2 f o r  any x, y e D ' with lx — y l < 172 .

Let D , be a component of D nD ' and x, y eD, with lx — yl< no = min {rh, ri 2 }.
Then, there exist paths 7 ,, 112 f ro m  x  to  y  such  tha t 7, D, 72 D ' a n d  that
diam y i  <  e/ 2 . And, since D I is connected, there exists a  path  y ,  in  D , from x
to  y. Since D  and  D ' a re  both simply connected,  Y i  is hom otopic  to  y o  i n  D
and  y2 is hom otopic  to  y ,  in  D ', and so Y i  is  hom otop ic  to  y2 in D  u D'. Let
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y denote the closed curve y , • yj i , then y  is null homotopic in (OD n O M '.  Since
diam y <e  < diam OD n OD', y  bounds no points of OD n OD' And therefore y  is
null homotopic in \(0DneD')=(A \ OD)U(4\aiy), where A  = tzeCHz —  x  <
e/21 . (Remark that yi  c  A.)

Therefore by Alexander's lemma (to be stated below) x  and y are known to
be connected by a pa th  y3 in  (A \amn (A \ a ly )  A \(aDu a y ) .  Since y3 c  D,
and diam y, < diam A  = E , i t  is proved that D , is uniformly locally connected.

3.5. Alexander's lemma (cf. Newman [1 1 ]). L et 0 1 a n d  0 2 b e  open sets
in C .  Suppose that x, y e ° ,  n 0 2  are connected by paths y, in O. (i =  1, 2). Then,
if  "Y1 u y2 is null homotopic in 0 1 u0 2 , x and y are connected by a path in 0 1 n 0 2.

As the final corollary, we state a rather technical lemma which will be used
in 5.

3.6. Lemma. Under the  sam e hypothesis o f  Proposition 3.1, le t  w, b e  a
point of  OD n °S-2(G) and A  ° Q (G )  an  injective disk  centered at w0 . Then there
ex ists a  connected open neighborhood V o f  w, in  A  such that Vn D is connected.

P ro o f . Consider the disk  .4, /„eg„(S2(G)), where B  is  the constant which
appeared in Proposition 3.1. Let W be  a connected component of A nD  which
includes a point in n D .  Then, by Proposition 3.1, i i ,n D  c  W . Therefore,
we can adopt A l/ ,,LI W a s  a neighborhood V Q.E.D.

P ro o f  o f  Proposition 3.1. W e ch o o se  B > C  >1 s o  t h a t  B > 6C and
C > 9 + 2" • 3 3 /e. For some disk A = B(z 0 ,  OE gdS2(G)), suppose tha t 1,1 „ is
injective and tha t tw o  points z1 ,z 2 e4 nD  cannot be connected by any path in
Ac nD (see Fig. 3.1). Let Di  b e  the connected component of Ac  n D containing
zi  ( j  =  1 , 2 ). N o tin g  th a t  D, nD 2 = 0  b y  the hypothesis, w e can choose a
component of 0,41,\D1 , say J, containing a point of D 2. T h e n  the closed interval
/ =  0.61c \J has the following properties:

(1) D i  n 0,61c  c  I,
(2) D2 n (/ \ =  0 , and
(3) 01 OE OD,

where 01 denotes the set of endpoints of I.
Furthermore, interchanging D , and D 2  if necessary, we may assume that

(4) I/1 < — 10 Acl2

where denotes the arc length.
W e assign the anti-clockwise orientation t o  /  w ith  in itia l point wc,  and

terminal point w1 . In the following, we frequently utilize an auxiliary Möbius

transformation Q(z) — z 
— W0

,  which m aps w0 , w , t o  0, oz), respectively. First,
z — IN1
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w e rem ark  tha t th e  quantity A =Q(z 2)1Q(z i )
principal value o- of log A , we have the next

3.7. Lemma.

l a l  

4 1w0 — w1 1 (  8 C   )
(C—  1) 2 r (C—  1) 2 )

is  n e a r  to  1. Precisely, for the

8
and

C - 1

Proof  of  L em m a 3.7. If we set u — 
Z 2  -  Z 1 

and
Z 1  -  W

o

v =
Z 2  -  Z1

 then we have
z1 — w 1

2 (  1 21w0 — andlul, lvl < lu vlC — 1 2 (C — 1)2 r

lal =
1 + u

log
1 + v

 

CV c k
j u 1 +

< 2 f  1 4 1 =  2114 — vl 
41w0  —

(C — 1)2 rru,v]

   

Similarly, we have 2(1/41 + c 8
 l • Q.E.D.

Let co = Im o- =  a r g  (10) 1 10- 1<m14) and  0, be  a n  angle of the  ray  Q(I)
with the positive real line, i.e. , Q (I)=  { re°  ; 0  r c o l .  In  order to construct
a  tame deformation such that its images of z1 a n d  z2 coincide, we first define a
m ap  I' : " e. b y

z e x p  
n / 4  +  0

 a

)

n/4 —
Az

z e x p  
5 7 r / 4  — 0

 a

)

n/4

( —  n/4 O< —co)

(— 0 <n)

(it 0 <57r14)

(5n/4 0 < 7n/4)

(z) =
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where z  = re ° ,  7 (0) = 0 , a n d  t(co) = c o , a n d  further set T=  Q 1  o  T . Q .
Then T (z ,)= z 2 a n d  we have the following

3.8. Lemma.
8

C
and T  are  qc homeomorphism o f  t*

— 9

P ro o f. If w e set

o-
{g/4 —  co

t = t(re i ( " ° )) = — 41(717r Or < 0 < 5g/4)
0 (otherwise),

t h e n  s : —  i r  
a 'T I a 

0 t + i 1 — it
t 

-   i
0

—  1 a.e. and we have an estimate It  <
Or

I a I 
g/4 — 101

8 1< 210-1 since 10'1   < < g/4 — —
1

. Therefore,
C — 1 4 2

(— g/4 < 0 < —  co)

s - 1 it

s  + 1 2 — it

i.e., ii[T ] I I = l III te l  00 c
8

 9  •

If we set

ti I a I8
2— Iti I C - 9

I/011 =

Q.E.D.

= 1z E C*; 00 — ir/4 < arg z < 0 0 1,

E y  =  { Z  C* ; 00  + arg z < 0 0 + g +

and Ei = Q 1 (E )  ( j = 1, 2), then we obtain the following.

3.9. L em m a. T(.4 c UE 1)OE/I c uE,UE 2 4 4 C (

P ro o f. T he first inclusion is  c lea r by  construction of T  Now we prove
the  second  inc lusion . W ith  a  suitable  norm alization, w e m ay assum e that
Ac  = B(0, 1) a n d  w, = =  ei "  (0 < (po < 7t). T h e  c o n d it io n  (4) implies that
0 < çm - 7(12. Thus we observe th a t E , is largest if 9 0 =  g /2 , in  tha t case

(3.1) E,OE B(1, 2) c B(0, 1 + 2) c B(0, 4) = /14c.

N e x t, w e  sh a ll c o n s id e r  E2. W e  m a y  assum e t h a t  co >  0 ,  f o r  otherwise
Ey =  0 .  W e need to calculate the radius p  and  the  center c < 0 o f  th e  circle

larg z  = 00 + co mod gl (see Fig. 3.2). The elementary geometry tells us that

p sin (90 — co) = sin (po ,

p cos (9 0 — co) = cos cp0 — c,

and the latter im plies that — c < p. By Lemma 3.2,
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41w 1 —w 0 8  s i n  T o( P o  < 
(C — 1)2( C — 1)22

since C > 5. So, (po  — ço0/2, and therefore p = sin q 0 /sin (cp, — co) sin ço0 /
sin (yo0 /2) = 2 cos (T0 /2) 2 .  T h e  above estim ate enables u s  to  deduce  tha t
E 2  B(c, p) B (0, p  —  c) B (0, 2p) c  B(0, 4) = A 4 c  A B .  T h e  p ro o f  is  n o w
completed. Q . E . D .

N o w , w e  sh a ll g o  t o  t h e  n e x t step. W e construc t a  locally injective
quasi-regular m ap h: D — › e a s  fo llow s. L e t  0 (z) =  (z) + i(g(z) + 00 )  b e  the
branch of log Q(z) in  D such that tj = 0 o n  I n D 1 , w here w e note tha t log Q(z)
h a s  th e  sam e im aginary p a r t  o n  In  D ,  b y  th e  property (1 ). T hen, clearly

— 27r < <  g ( z i ) > 0, g(z 2 ) < — 7r, and  I q(z1) — q(z2) — 21( = Im (71 8
A t first, we define h  o n  zl io D  by C — 1

i f  g(z) < — n/ 4,
h(z) = zT(z) i f  — n/4 < q(z).

Observe that tz E D; g(z) > — 
n

}  c A u E 1 , h(A B n D )  A B  and h = id on 0/1BnD
4

by L em m a 3.9. Since Ur..G L(AB)
continuous map o n  D  (denoted by

h (z )  = L o h '  L - 1 ( z )

z

By construction, h  satisfies the following.

(a) h  is  
C 

8
 quasi-regular,

— 9
(b) h o L = L o h  for a ll LEG,
( c )  h(z 1 ) = h(z 2 ),

i s  a  d isjo in t un ion , w e can  ex tend  h  t o  a
the same letter h) as follows :

i f  z E L(A B n D) for some LEG,
otherwise.

Figure 3.2.
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( d )  h(4,,nD) c  4 , ,  and  h(D \4 ,,)n4 B = 0.

And, a crucial point of the above construction is  the  validity of the following

3.10. L em m a. The Beltrami coefficient tt[h - 1 ] on h(D) of  the (local) inverse
o f  h  is well-defined, i.e., it is independent o f  a particular branch of  h - 1 .

Proof of  Lemma 3.10. By equivariance of the definition of h and the property
(d), it is sufficient to prove only o n  ZIB

•
 L e t

E3 = { z e4 B n D ;# h '( h ( z ) ) >  11, and

E 4  = 1z eA ,nD; O i h(z) 0 01.

First, h(E 3 ) T  ({ z  E  nD; —  nI4 < ri(z) < n}) n {z ELIB nD; — 2n < n(z) < — n I 4}
Q "({ — 27r < arg z < — 7r}), by definition of h. O n  th e  o ther hand, h(E4 ) OE

T({ — nI4 — w } )c  Q "(1 — n I 4  arg z  < 01), a n d  so  it  fo llo w s  th a t
h(E 3 )nh(E 4 )  =  0 ,  t h i s  show s th a t  a n y  b r a n c h  o f  11-

1 i s  holomorphic on
h(E 3 ). Thus, the  proof is finished. Q .  E .  D.

The above lemma says that the next definition :

o n  h(D)
o n  C \ h(D)

is well-defined a n d  t h e  properties ( a )  a n d  (b ) im p ly  th a t  !I e M(C, G )  and
8

( < 1). N o w , w e  d e f in e  a  q u asi-reg u la r  m ap  g: D - * b y
C — 9

g = w"` o  h , then  by  the  chain rule for quasi-regular mappings, we can see that
it[g] =  0 a.e . o n  D .  B y virtue  o f  Weyl's lem m a fo r  quasi-regular mappings,
g: D -+ t  is know n to be meromorphic, moreover property (c) of h  implies that
g (z ,)= g (z ,) , th a t  is ,  g  i s  n o t  univa len t. B y  th e  fa c t th a t ire  M(C, G),
transforms the Kleinian group G  to another one by conjugation, thus g  does so,
in  other words, Sg (z)dz 2  i s  G-invariant.

Finally, we shall give a n  estimate o f the  hyperbolic sup norm of S g which
will lead to a contradiction.

Before into the final step, we prepare some lemmas. The proof of the first
is quite elementary (see [16 ] Proof of Proposition 2.4).

3.11. Lem m a. For any  constant A > 1, the follow ing is v alid. If  4' E Q,(D)
'and if  LE Will satisfies that L(D) C then L(4')e 9„,(L(D)) where A ' —  A  + A

3.12. L em m a. L et E = { ZED; — n14<q(z)< —  w}  and A > 3 be a constant.
Then, f o r tre .9 ,(D )  s u c h  th at  4 ' E  0 0 , h  coincides w ith T  on S .

Proof  o f  L em m a 3.12. W e m ay assume th a t  A c  = B(0, 1). Suppose that
4' = B (c, p)Eg j ,(D ) satisfies A ' n E  0 .  T hen  c lea rly  — 5 n / 4  <  < r  w  on
4'. A n d  we note that

2
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2

Fig. 3.3.: Case 1.

(3.2) Ap —w (i = 0, 1)

from the assumption and  the  fact that WE 3D ( th e  property (3)). Pick a point
from n E, then lc — I  < P, K — w diam E  diam E, 2.1 i  and I < 1 +

, . / 2  b y  (3.1). H ence, A p  . 1 c — v t '1 l ic — C 1 + 1 - 1 4 ) 1 1 < p +  2 ,./2 , thus w e
.\ r2

have p <  
2

<  / Since Icl le —  +  ICI < p + ( 1 +  2), w e have that
A  — 1

c  B(0, I cl +  p) B(0, 1 + .\ /2 + 2p) c B(0, 6) c AB . T h u s  w e  n e e d  o n ly  to
p ro v e  th a t  A' n E ' =  0  w here  E' = Q - 1 ({z EC* ; — 5704 < arg z < — 3n/4}) =
Q- 1 (tzeC*; 3n/4 < arg z < 5n/41).

Suppose th a t  A' n E' 0 0. W e m ay  assume that Iw o —cl w, —  cl. Let
C , a n d  C 2  denote th e  circles (or lines) including circular arcs (or segments)
Vi = Q- 1 ({C; arg — 0o = — n/4 }) and y2 = Q- 1 ({C; arg — 00 = — 3n/4}), respect-
ively. H e r e  w e  note  tha t C 1 is necessarily a  circle, say C1 = tz; I z — al I = rd ,

by (3.1), whereas C2 is possibly a  l in e .  Further remark that, by assumption, Vi
and 7 2  perpendicularly intersect at the two points wo an d  w1 a n d  that yi n OA' 0
for j = 1, 2.

Let t th e  nearest point of C. t o  c for j =  1 , 2 . If  Ci e C i \yi , then
A p  lc —w0 I = dist (c, y) < p, this is im possible. Thus we conclude that C i e yp

and hence we have

(3.3) lc — = dist (c, yi ) < pf o r  j  = 1, 2.

N ow  let c; b e  the orthogonal projection of the point c  to  the norm al line
of C . a t  wo ( j 1, 2).
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Fig. 3.4.: Case 2.

Case 1 :  W =  Q - 1 ({C; — 3m/4 < arg — 00  < —  n/4 } ) is unbounded (see
Fig. 3.3).

In  this case, we have c j  — wo I < le  — < p  for j  =  1 , 2 . Thus we get an
estimate that

IC - WO1 = N/1C1 - W01
2  

+ 1C2 - W01
2  

<  1 2 P.

By (3.2), we have A p  <  2p, which is a contradiction.
Case 2 :  W  is bounded.
We may assume that c  is in  the  inside of C , and  in  the  outside of C2 (see

Fig. 3.4).
Then, as in Case 1, we know that

(3.4) wol < P.

Next, because I c — —  c1I+ Ic 1 — ail = Ic2 — wol + (r1 —  Ici — wol),
obtain that

(3.5) Ic1 — wol lc 2 — wol + ri — Ic — ail = Ic2 wol + le — Ci l <2p

by (3.3) and (3.4). So, by (3.4) and (3.5), we have

ic — wo l = N/ Ic i — w012 + le2 — w0 l2 < p.

Combined with (3.2), we can deduce that A p <.\/ - - p ,  which contradicts the
hypothesis that A > 3.

Proof of  Propositon 3.1 (continued). Here, we shall exam ine the local qc
extendability of h. Let A  > 6 and A e 9 A (D). If A n L ( E )  0  for some LEG, then
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'
'( z ) n E  ø and, by Lemma 3.11, L ( 4 ) E A (D ) where A ' =  

A +A
>  3.

2
S o ,  L e m m a  3 .1 2  im p lie s  th a t  h =  T  o n  L '  (A ) , i.e., h = L . h = L
. T . L '  on A .  From Lemma 3.8, we know that h I, can be extended to a k-qc

8
homeomorphism L . T . L - 1  o f  e ,  where k =

C — 9
Otherwise, A MUL E G  L (E )) =0, so  h is a restriction of a Möbius transforma-

tion o n  A .  Thus, in  any case, h I, can be extended to  a k-qc homeomorphism
o f  e. O n  th e  o th e r  h a n d , w "  is orig inally  a  g lo b a l k -q c  m a p , a n d  hence

1 + k'
h I, can be extended to a k'-qc homeomorphism of e, where 

1 — k'
(1  +  k ) 22 k 1 6 ( C  —  9)

By quite easy calculations, we have k' —
— k 1 + k2 (C  —  9)2 + 64

16
 th e re fo re  c o m b in e d  w ith  L e m m a  2 .7 , w e  o b ta in  a n  estimate
C — 9

16
Sg lID 96A 2 k' < 96 . 6 2   <  E.

C  -  9

From the first hypothesis, g  should be univalent on D, which contradicts the fact
that g(z 1 ) = g(z 2 ). Thus, z i  and z 2 EA nD must be connected by a  path in Ac ri D,
therefore, in  A B  n D.

§ 4 .  The second construction of non-univalent meromorphic map with G-invariant
small Schwarzian

I n  th is  section , w e  sh a ll m ak e  an o th e r  co n stru c tio n  of non-univalent
meromorphic map, which is, in  a  sense , a  dual o f  th e  o n e  in  § 3 . A t first, we
prove a  rather technical proposition, which holds for general Kleinian groups.

4 .1 .  Proposition. Suppose that a Kleinian group G acts on a simply connected
plane domain D c  C  of  hyperbolic ty pe and let p: Q(G) -+ Q(G)/G be the natural
projection. I f  D  is  a  G-Schwarzian dom ain w ith constant E > 0, the following is
v alid  f o r a n  appropriate constant C  > 1  depending only  o n  e :  f o r  each disk

e22Yc (f2(G)) such that E  Q (G )  and that plif is  injective where E = D\D , and
D0 is som e connected com ponent of  D\A, any  tw o points z0 , z 1 eD \A c  can  be
joined by  a path  in  D\A.

W e rem ark that D , is ordinarily the "m ain  body" of D\ 2i, precisely speaking,
the unique component of D O -  containing G-equivalent points.

P ro o f .  Let C > 5 + 2 1 0  . 3 . 5 2 / e  and assum e th a t A e 9,(Q (G)), D 0 a n d  E
satisfy th e  above hypothesis. Suppose tha t som e pa ir o f po in ts  z1 ,z 2 eD \A ,
c a n n o t b e  jo in e d  b y  a n y  p a th  i n  D \ J .  W e  d e n o t e  b y  Di  t h e  connected
component of D \ A  which contains zi  for j = 1, 2. By the assumption, D, 0 D2.
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L et I  b e  th e  closure o f  connected component o f  0 A \b-,  containing points of
n D2 . Obviously 0.61n L-12 c  1, a n d  0,61n c I  o r  0zl n 0  z 1  \  I° ,  where

I° = 1\01. Replacing I  by 0 4\1° and interchanging D , and D 2 if necessary, we
may assume that

(4.1) 0z1 n 04\10, 0,61n b- 2/ ,  a n d  0  n too

We assign the  anti-clockwise orientation to  I ,  and  le t w( ) , w , b e  the initial and
terminal point of I ,  respectively. Note here that w,e0D by construction. Now

—
we introduce a  Möbius transformation Q(z) = 

z W0
 .  L et a  b e  the principal

— VV1 8
value of log 2, where 2 = Q(z 2 )1Q(z 1 ). By Lemma 3.2, we know that 'al <  

— 1We define a  family o f quasiconformal m aps -7-;: e  for 0 t 1  b y  C

( — n / 3  ta ) (if/3 0 < 2n/3)z exp
ir/3

t,(z)—
z exp (ta)

(57T/3 — 0 )
taz exp

(2m/3

(47t/3

< 40/3)

0 <  5n13)
nI3

(0 < 0 <7113 o r  5n/3 0 < 27r)

where z = re " ° ) a n d  00  i s  a n  a n g le  o f  th e  ra y  Q (I) w ith  the positive real
line. Next, le t T, = Q - 1 o o Q for 0 < t <  1. By the same way as in the proof
of Lemma 3.8, we have the following

4f
4.2. L em m a. '7; and  T, are 

C — 5
qc homeomorphism of  f o r 0 < t  < 1.

L et 0(z) =  (z) + i(n(z)+ 0 0 )  be  a  branch of log Q(z) in  D  such  that ti = 0
o n  OD° n D (  I ° ) .  T h en  it is  c lea r  th a t — i <  <  2n  o n  D , n < O o n  Do U D2

and tha t n > n o n  D , .  First, define h 1(z) for z E E = D\D o  b y  the  rule

if (z )<  O ,
h,(z)= T,(z) i f  0 ri(z) < n,

Q - 1 (et aQ(z)) i f  n n(z).

N oting that 
U  L e G  

L(E ) is  a  disjoint union by assumption, next we extend h, to
a  m apping o n  U L e G L ( E )  ( s t ill  w r it te n  b y  th e  sam e no ta tion  h1) a s  follows:
h, = L . h, o L - 1  o n  L (E ) .  Since h(z)= z for any z E OE n D = 0D 0 n D by the choice
o f  1/, w e can  con tinuously  ex tend  h , b y  difining a s  t h e  id e n tity  m a p  on
D\U L E G L (E ) .  By (4.1), these quasi-regular mappings h,: D -* (0 t <  1) satisfy
the following conditions.

4t
(a) h, is   quasi-regular,

C — 5
(b) h, o  L =  L . h, for any  LE G,
( c )  12,(z,)= h 1 (z2 ) = z 2 , and
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( d )  h,(z) continuously depends on  (t, z)E [0, 1] x D.

N ow  w e le t  J = { t e [O, 1 ];  LEG\ {1} su ch  th a t h,(E)n L(h,(E)) 0 01, where
E° = Int E = D\150 .

4.3. Lem m a. Fo r any te [0, 1] \J, the following B eltram i coef f icient y, is
well-defined:

=  ii[h t -  1 ]li t

0

o n  h,(D),
elsewhere.

Proof of Lemma 4.3. Set E, = lz e D ;  7113 n (z ) <  27E/31 ( d ) .  Then, by
definition, h, is holomorphic off U LEG L(E1)• Therefore, it is sufficient to show that

(4.2) ht(Ei)f lh,(D\ El ) = 0.

Since h, = T, o n  d n E, h, is  injective in d nE, so w e have

(4.3) h,(E h,(.4 n E \ El ) = 0.

N o tin g  h e re  th a t  l arg (t,(z)/z)l arg (e)l =  t I Im al <  c 8t <  
7r/6, w e  have

arg (Q (17,(z))/Q(z)l < rtI6 for a ll z E E. H ence, w e obtain

(4.4) Q(ht(Ei)) g; 7r/6 < arg — 8 << 57r/61, and

(4.5) Q(h,(E\d)) {C; 57r/6 < arg — 80  < 137r/6}.

In particular, we have

(4.6) ht(E1)0 h,(E \ = 0.

By (4.3) and (4.6), we can see that

(4.7) h,(E 1 )nh,(E\ E 1 ) = 0.

Further (4.4) implies that

(4.8) ht (E,) n Do = 0

since Q(Do ) {C; —7r < arg < 0}. Noting that hi = id on D := Do \ U L E G  \I n  L(E),
we have the following equality

h,(D\ E 1 ) = h i (E\EOu h,(D o ) = h,(E\ E 1)U N u  ( U L E G \(1 1
1-(h,(E)))•

Combining h,(E i )n(u L e G \ { ,, L(h,(E))) = 0 with (4.7) and (4.8), we obtain (4.2), thus
we finish the proof. Q. E. D.

L e t re [0 , 1] \ J .  By properties (a) a n d  (b ), one  can  see  tha t jr, e M(C, G)

with II WI.,
4t

.  We define a  quasi-regular map g,: D - 4  't by g, = h,.
C — 5

Then, it follows that g, is meromorphic, for u[g,] 0  a .e .  Since g ,  L  = x ,(L ). g,,
where x,(L) = L . (w0 9 -

1 e M ob for a ll Le G, the Schwarzian derivative of
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is G- automorphic. Now we shall estimate II Sg ,Ilo•

4 .4 .  L em m a . L e t  A  >  5 , th e n  h, = 7 ; o n  A ' f o r an y  A ' Eg A (D )  with
SnE l O .

Proof  o f  Lemma 4.4. Let A ' = B(c, r)e 9A (D ) such that 4'11 E i 0  0 .  Then
it suffices to show tha t A ' c  A .  Suppose tha t A' A , then one and only one of
the following happens:

(1) i" nos 0 0  and Q'({(: arg — 0, = n/3})(1 ad' 0 0.
(2) (aA \I)nO S  0  0  and Q- 1 ( g: arg — 00 = 271/31)n OA' 0 0.

In  b o th  cases, there  are tw o circular arcs V i  a n d  y2 w i t h  the following
properties.

( y;  is a subarc of a circle C. centered at ai  with endpoints wo and w1,
(ii) yi  n OA' 0 0  for ] =  1, 2, and
(iii) V i intersects y2 a t  wi w ith  angle g/3 for i = 0, 1.

W ithout loss of generarity, we may assume that Iw o — cl 5_ I w1 — cl. Since
E A (D) and wo e OD we have

(4.9) Iwo — Ap.

N ow  let be  the intersection point of the circle C. and the ray starting from
a, and passing through c, where we should note tha t c a i  b y  (4.9). Moreover
by (ii) and (4.9), w e can see that Ci e yi  and lc — =  d is t  (c, y; ) < p, so we have
that

(4.10) I — wo I wo — cl — — c I > (A — 1)P.

Let m;  be  the midpoint of yi , tha t is, mi ey;  such that m  — w 0 1 = I In; — w11. BY

Fig. 4.1.
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th e  property (iii), th e  elementary geometry te lls us that L m 1 wo m2 = 7r/6. Set
0  =  L  Wo C2 e(0, tr), then we can verify that

(4.11) 0 7r/6.

Indeed, this is evident if  the  region W bounded by y, uy2 i s  covex. Next,
we consider the case th a t W is not convex . We may assume that m2 is contained
in  the  inner domain of the circle C , (see Fig. 4.1).

L et t/7i  = L e(0, n) for j  = 1, 2. Then 0, = L m i a i c L  m1 a2 c = 02 .
Noting that L m i w j i = iJi /2, we have tha t 0 = 7r/6 + (0, — 0 2 )/2 > 7r/6.

N ow  the cosine formula says that

IC1 C2I2 = w012 IC2 — W012 — 2 — wol IC2 — wo l cos 0

ICI — w0l2 +  1C2 — W012 — 2
K1 — W011C2 Wo COS 7E/6 (by (4.11))

> (A — 1)2 p2 (2 — 0 ) (by (4.10)).

O n  th e  o ther hand , K i — l4  — c I + IC2 — c < 2p, so w e obtain that

N/2 — — 1)p < 2p, tha t is, A  < 1 ± 21.1 2 _ NA <  5 . This contradicts the
assumption that A > 5. Q. E. D.

Pro o f  o f  Proposition 4.1 (continued). T a k e  a  num ber A  > 1 such that
A  + A -

A ' =  > 5. L e t  A' e .g ,(D ). I f  A' n ( ULEGL(Ei)) = 0 ,  th en  h is a
2

restriction of a Möbius transformation by  constrution. If  A' n(U LEG L(E1)) 0 0,
then

A' n L -  1  (E i )  0  0  for some LE G.

Since L(zonE l 0 ,  Lemma 3.11 a n d  Lemma 4.4 yie ld  tha t ht =  7 ; o n  L(A'),
hence ht = L - 1  . ht . L = L - 1  . T, . L  on A '. C onsequently , 171 14 . can be extended

to  a  
 4 t

qc m ap by L em m a 4.2. In  any  case, h,l,„, can  be  ex tended  to  a
C — 5 4t

global k-qc m ap, where k  = . B ecause et is originally a  k-qc m ap, gl,,
C — 5 1 4 _ k , (  1  +  k  )2 2 k  

can be extended to a  k'-qc map, where  . Since k' —  <
8t1  —  k ' 1 — k 1 + k '

2k — , by Proposition 2.7, we obtain an  estimate
C — 5

8t
Sg ,IID 96A2 k' < 96A2

By assumption o n  C, w e h a v e  Sg , IlD< e  if w e take A  = 10, for exam ple . Let
f : H D  be  a  Riemann mapping of D, then the above implies that Sg ,o f  belongs
to  the ball centered at ,S1  of radius e in  B2 (H, F) where F  =  f  G f .  Remarking
here the ball above is contained in S (F) by the assumption on D, we can deduce
from Proposition 2.6 that there exists a global qc extension (j,: t  of g, such
tha t 4i . L = x ,(L). "if, o n  t ' for a ll L e  G . (Or, by utilizing a  group equivariant

C — 5
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version of the ultimate 2-lemma due to Slodkowski (cf. Earle-Kra-Krushkal [4]),
w e  h av e  d irec tly  th is resu lt.) T herefore  h, a ls o  h a s  a  g lobal qc  ex tension

4„ in particular, the next lemma follows.

4.5. L em m a. F o r a n y  te [0, 1] \J, h,: D  'e  c an  b e  e x te n d e d  to  a
homeomorphism h, o f  t  commuting with G.

N ow  suppose tha t J = 0, then the  above lemma implies that h1 : D —+ t is
injective, which contradicts the  property  (c). So, J  m ust be  nonem pty . L et to

be the infimum of J. Since J is  open in (0, 1], we rem ark that t0 e[0,1]\J, in
particular Lemma 4.5 is applicable to  to . L et t„ (n = 1, 2, ...) b e  a  sequence in
J converging to t o. A s tn eJ,

(4.12) h,,,(E -)n h in (L (E )) 0  for some L„EG \

Suppose tha t there  ex ists an L E G \ s u c h  t h a t  L=  L„ fo r  infinitely many
n's. Then, b y  th e  property (d ) and  the  fact that S2 (G), (4.12) forces that

fi,(L(E)) 0, which is impossible because E  L (E )=  0  and  h1 0 : e  is
injective. Thus, w e m ay assume tha t L„ is  a  d istinct sequence in  G \ { 1} . In
this case, as is easily seen from (4.12), Ti to (E)n A (G) 0 ,  which is contradictory
to  the fact that k n A(G )= 0  and  tha t itt o (A(G)) =  A(G).

I n  a n y  case, contradictions are deduced, which implies th e  falsity of the
assumption that z 1 , z 2  E D\ ti c  cannot be joined by any path in  D\ I. Q.E.D.

§ 5 .  The boundary of Ro =  D IG  is a disjoint union of quasi - analytic curves

L et F  be  a n  arbitrary Fuchsian group and cp E Int S (T ) .  W e denote by R
the (possibly disconnected) Riemann surface Q(G)/G where G =  e (F ).

In  this sectoin, we shall study the relative boundary OR, of the subdomain
Ro  =  DIG = f 9 (H)/G in  R .  Our main aim here is to prove that OR ° is  a disjoint
u n io n  o f  quasi-ana ly tic  curves under t h e  su itab le  hypothesis, w here  the
quasi-analy tic curve m eans the quasiconform al hom eom orphic im age of the
circle. T o  t h i s  end, w e recall a  n o tio n  o f  th e  annular covering. L e t  /  b e  a
homotopically nontrivial simple closed curve i n  a  hyperbolic Riemann surface
R .  Let n: H  R be  a holomorphic universal covering o f R, and  y a n  element
of the  covering transformation group F, < M ob of i t  which covers cc, i.e., the
terminal point of a lifting curve it of cc with respect to  it equals to  y(z 0 )  where
z , is  the initial point of (Z.

A s  is  e a s ily  seen , the  quo tien t R iem ann  surface  H /< y>  is conformally
equivalent to a n  annulus A  = {z E C ; c  < Iz l<  1}, w here 0 < c  <1  satisfies the
relation cosh (e/log c) =1tr y1/2, which is not so significant below.

Let ni : H —> A  be a holomorphic covering with the covering transformation
group <y>. T he  induced holomorphic covering map g = gOE : A  R  such that
it = g o n i  i s  c a l le d  a n  annular cov ering w ith  respect t o  cc. B y  construction,

= iv1 (Fx) is  the unique closed lift of a, in  other words, any other lift of a  than
di is not closed. U sing the  tool above, we shall prove the following result.
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5 .1 .  Theorem. L e t  F  h e  an  arbitrary  Fuchsian group of  the second kind
acting on the upper half  plane H .  For 9eInt S (F), le t  G  = ( F ) ,  D  =
R  = Q(G)/G, and R , = D I G . I f  a connected component a  of  OR , is com pact and
contains n o  branch p o in ts  o f  th e  natural projection p: Q(G)— > R, then a  i s  a
quasi-analytic curve and  a one-sided boundary component.

5.2. Corollary. In particular, when F is a finitely generated, purely hyperbolic
Fuchsian group of  the second k ind, the relative boundary a R ,  o f  R , is a disjoint
union of  f initely  m any  quasi-analy tic curves, an d  thus th e  conform al m ap PP:

R , induced by H  D, cpeInt S (F), naturally  extends to a homeomorphism
S, R 0 ,  w here S , = H I F a n d  S ,  is its c losure in  S  = Q (F)IF, in  other

words, fP:H-- 19 naturally extends to a homeomorphism f 9 : H\A (F)— > 5\A(G).

Pro o f  o f  Corollary  5.2. B y  the hypothesis, R  i s  compact, th u s  so  is
OR0 . Therefore the former part of the above assertion directly follows from
Theorem  5.1. In particular, as( )  a n d  R ,  consist o f m utually disjoint simple
closed curves, therefore the latter part can be deduced from the general version
of the famous Carathéodory theorem. Q .  E .  D.

In order to prove Theorem 5.1, first we need the next

5.3. Lem m a. In addition to  the hypothesis in  Theorem 5.1, f urther assume
that F has in f in ite ly  m any  e lem ents. T hen, there ex ists a c e rtain  exhausting
sequence (R n ),T=, o f  R ,  w ith the following properties:

( 0 )  each R „ is a subdom ain of  R o ,
(i) R i  R  2  •  •  •  n c ° =  1  R. = Ro,
(ii) each a n = OR„nR 0  i s  a hom otopically  non-triv ial sm ooth sim ple closed

curve which is freely homotopic to any other a., and moreover if  R  is not
biholomorphic to the punctured plane C* then an is not hom otopic to any
puncture of  R ,

(iii) every limit point of (a„),T= 1 is contained in a, and
(iv) R , \ R ,  contains no branch points of  p.

Proof  o f  Lem m a 5.3. First we shall show tha t a is  open in OR0 ,  in other
words, V nOR , = a for some open neighbourhood V  of a in R .  In fact, let T
b e  a  relatively compact neighborhood o f a  w ith sm ooth boundary such that
T c  °R  := °Q(G)/G and t h a t  aT n0R 0 = 0 ,  th e n  i t  s u f f ic e s  to  show that
T ,:= Tn R ,  consists o f finitely many components each o f w hich has at m ost
finitely many boundary components, i.e., T , is a finite union of surfaces of finite
topological type. Here, we should note tha t a Riemann surface X  is  of infinite
topological type if and only if there  is an infinite family of mutually disjoint,
homotopically independent simple closed curves yi  ( j  = 1, 2,...) in X .  (We call

y 2 , . . .  is  homotopically independent when each I) ;  is not freely  homotopic to
any  y , for k  j  n o r  null-homotopic.) Let ' = {y  . . . . . y} b e  a finite family of
mutually disjoint, homotopically independent simple closed curves in T0 . Then
each y i  is  no t null-homotopic in T, too. O therw ise, yi  bounds a topological disk



Schlicht projective structures 721

A  i n  T , a n d  furthermore, ,fi = AnaR0 0 0  f o r  yi  i s  n o t  null-homotopic in
To . S i n c e  A  is  s im p ly  connec ted  dom ain  a n d  s ince  A c °R, 1313: A  - +A  is
biholomorphic, where 5 is  a  component of p -

1 (z1). Thus, a 2  52(G) separates
:= (/3 13) OD from D \ f l ,  th is contradicts the  connectedness of D. S o

we have seen that yi  is  n o t  null-homotopic in  T.
Next suppose th a t yi  is freely homotopic to  yk f o r  some k  j  in  T. Then

yi  a n d  yk b o u n d  a  topological annulus (ring domain) A  in  T  Since yi  is  n o t
freely homotopic to  yk i n  To , fl:=  A nal?, 0  0 .  Moreover, fi separates yi  from
y„ in  A .  Indeed, if not, there exists an  arc  6 in  A\fl connecting I) ;  a n d  yk ,  then
A\6 is simply connected and contains a  nonempty subset ft of OR0 , which leads
to  a contradiction in the same way as in  the  above.

Further suppose th a t y;  is freely homotopic to  yk,  for k' j ,  k  in  T  Then
similarly yi  a n d  y„ bound  a  topological annulus A ' i n  T , a n d  fl' :=  A' n
separates yi  f ro m  y ,  in  A '.  B ecause  A naA' = y i ,  w e have A  A ', A ' c  A  or
An A' =  0 .  I n  a n y  case, /3 u devides Ro  into tw o pieces, w hich contradicts
the connectedness of Ro .

Thus w e conclude that each yi  is  free ly  homotopic i n  T  to  a t  m o s t  one
other curve. So w e can renum ber (6 = { y1y , }  so  tha t yi  is freely homotopic
to  ys , , , i  i n  T for j  =  1 ,...,s  and  tha t ys + i  is not freely  homotopic in  T to any
o th e r  c u rv e  yk f o r  j  = t, w here integers s, t > 0 satisfy 2s + t =  I. In
particular, fy i y s + ,1 is a  family of mutually disjoint homotopically independent
simple closed curves in  T

O n  th e  o th e r  h a n d , a s  is w ell-know n, a  R iem ann  su rface  X  o f  finite
topological type (g, 0, m) has at most 3g — 3 + 2m mutually disjoint homotopically
independent simple closed curves if  (g, m) (0, 0), (0, 1), (1, 0). Therefore, I =
2s + t 2 (s  +  2(3g — 3 + 2m) if  T is of topological type (g, 0, m), hence I is
bounded . T h is  m ean s th a t To s h o u ld  b e  a  finite un ion  of surfaces of finite
topological ty p e .  Thus, w e have proved that compact component a  o f  aRo is
always isolated in  aRo .

Let po : ( T )  —>S  =  (T )/ F be the natural projection, and F: So =  po (H)
Ro t h e  con fo rm a l m app ing  induced  by  f =  PP: H —> D .  F r o m  t h e  above
observation, w e can  take  a  curve [0, 1] —* (G) su c h  th a t -fi([0, 1)) D  and
fi(1)ep - 1 (a). Let fio := f fi: [0, 1) -4 H , then w e know  that 'fio (t) has a limit,
say fi0 (1), a s  t I (see, for example, Pommerenke [12] Proposition 2.14).

Clearly S0 (1 )e  n  Q (T ) ,  and le t /  be  the connected component of fi n Q (F )
containing fi0 (1). Now we shall show that the stabilizer H  of I  in F is generated
b y  a  hyperbolic o r  parabolic  e lem ent. (H ere w e rem ark that the latter case
happens only when F  is generated by a single parabolic element.) Otherwise, H
must be  trivial, and so  po  i s  injective on a neighborhood V of I. Thus we can
select a sequence (4) ,  of sim ple arcs in Vn H w ith the same end points as I
such that E D  E= T., „ is the region boundedD En+1111 =  1, 2, ...) and ( .1. 473 -  1
by /  / .  First, we rem ark that the cluster set C = F(po(E„)) is contained
i n  aRo . N o w , w e  c a n  c h o o se  a  c o m p a c t neighborhod W  o f  a  such that
awnaRo = 0 .  Here, F(p o (I ,)) is not relatively compact in R and 0 0 fi 0 ([0, 1))
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n/„ p0-
1 (F -

1 (Wn Ro )) fo r sufficiently large n , therefore we m ay pick a point
Qfl eF(p 0 (1„))n OW for large n. Because W  is compact, we may assume tha t Q„
converges to  a point QeaW . On the other hand, Q eC  c Ro , which contradicts
the fact a Wn aR 0 =  0 .  Thus, we have proved that H = S tab ,(/)  is generated by
a  hyperbolic o r parabolic element yo . Let (1„)„̀°_ 1 b e  a  sequence of circular arcs
(or horocycles) i n  H  w ith  th e  sam e e n d  p o in ts  a s  I  s u c h  th a t  E „  E n + ,
(n=  1, 2, „.), and  nn-_, E„ = 0 , where E„ is  the  region bounded by i n u /. T h e n
R:= R o \F(p o (E„U 1 „)) is  a  desired exhaustion of R o f o r  sufficiently large n.

Q. E. D.

Proof  o f  Theorem 5.1. W e  s h a ll p ro v e  in  th e  ca se  th a t  F  is  a n  infinite
g ro u p . (W hen F is finite, R  =  F  =  t  by the  Riemann-Hurwitz formula, thus
the proof is much easier.) M oreover, we may assume tha t R is hyperbolic . In
fact, even if not, taking a  sufficiently small closed disk E  R such that En R, =
0  (see C orollary 3.2), w e have o n ly  to  replace R  b y  th e  hyperbolic surface
R' = R\ E .  Therefore we assume that R is hyperbolic and F  is an  infinite group
in  the  sequel.

Let R„, cç7 (n =  1, 2,...) be as in  Lemma 5.2 and A  =  te < }z1  < 1} R be
an annular covering with respect to a n . (R em ark  tha t for freely homotopic curves,
w e can take the same annular covering.)

Denote by (i t, the unique closed lift of an v ia  n  and let 14;, U = {z; zI <  1}
b e  a  Jo rd a n  dom ain bounded by a n . C o m p o sitin g  th e  m ap  z c / z  t o  n  if
necessary, we may assume th a t  W  c  W ,, for all n>  1, here we should note that
c>  0  by  L em m a 5 .3  (ii) . Set W = W „  a n d  â =  Ana W . C learly, n ( i ) c  a.
W e shall show tha t the  restricted m ap 7r: 64 a  is  a homeomorphism.

Let w o b e  an  arbitrary point of Œ. By Lem m a 3.6, there exists a  connected
open neighborhood V of w o such that Vn Ro  is connected, Vn R i  = 0, Vn(aRo\l)
= 0 and th a t V is contained in  a  topological disk V in  ° R .  Now we claim that
there exists a (unique) component 1/0 o f  n -

1 (V) with the following conditions :

(1) Vo n ô t0 0 ,
(2) (n - l (V)\ Vo )nci = 0,
(3) Vo nn - l (oc) = Vo n6C.

To prove the above claim, we first remark that n,:=  nl w \ vr,,: W\W, —*Ro \ k v ,

is b iholom orphic . Let 1;3,  b e  a  component o f  n i (V ) containing a  p o in t o f
n i-

i (Vn R0 ). Then Vo  n ( W \ -147
1 ) = n i-

i (vnR o )  because V n R0  is  c o n n e c te d . In
particular, (n -

l (V)\Vo )n (w \  wo = 0 ,  th u s  th e  c o n d itio n  (2 )  follows. Since
:=  7riv

 170V  is biholomorphic, we have

rc '  (a) n vo = 7r(7, i (a n V) = n ( 3 R 0 n V) =  7C(-,T 1 (Ro  n V)n Vo

a 7 r 1 (Ro  n V) n Vo =  a(Vo  n (W\ Wi ))n Vo

=awnvoV o ,

where we use the fact that V, n w, = 0  thus (3) is proved. B y the condition (3),
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Co := 1(W0)e Vo n (a) 6i, which implies (1), a n d  a s  a  by-product we obtain
that a  =  n(c2). Moreover, condition (3) yields the injectivity of n ;:  — > a , therefore
we have proved that a is  a homeomorphism.

W e shall continue the  proof of Theorem  5.1. Since n is  a  conformal map
in  a  neighborhood of 6c, it is sufficient to prove that 6( is a  quasi-circle.

H e re  w e  m e n tio n  a  lem m a w hich  is  a  d irec t conclusion  of the  K oebe

distorsion therem : a
a

(z)1
2  

for 1z1 = a <  1 if f  is  univalent in
(1 + a) 2

( 1  —  a )

the unit disk and f(0) = f ' (0) — 1 = O.

5.4. L em m a. L et f  be a  conformal mapping from a  disk A  into C .  For
(1 — a) 2

K >  1, le t a e (0, 1) satisfy the equation K — . Then there exists a  disk
4a5 such that f (41a ) and 7 1 K  f (A).

First, we shall show  the following lemma.

5.5. L em m a. T he domain W constructed above is linearly connected.

Proof o f  Lemma 5.5. S in c e  6i =  aw. A  is compact, there exists a positive
constant (5 < diam W w ith the  following property : if  a  d isk  A  with diam A <
had a nonempty intersection of 6i, then A  A\ (n -  (0 R o ) \ erc) and  n is  injective
in  A.

(1 — a)2

Take 0 < a <  1 satisfing the equation B —  where B is  the constant
4a

which appeared in  P ro p o stio n  3 .1 . L e t A  b e  a n  a rb itra ry  d isk . I n  order to
prove linear connectedness, we shall consider several cases.

Case 1 . A n 6( = O.
In  this case A  OE W o r A n W = 0, so any tw o points in A n W can be always

joined by a  path  in  A n W
Case 2. Anei 00 a n d  d ia m  < ab.
T hen A l a A ,  Cili a n (7r -  (aR0 )\) = 0, a n d  n  i s  injective in A 1 1  b y  the

choice of b.
Let V be a  connected component of p ' (n (A  l a )). Remark that p is injective

in  V  because p is  a  covering m ap a n d  n(A " a )  is sim ply connected. N ow  w e
apply Lemma 5.4 to the  conformal mapping f =  (1)10 -

1 o n: d il a —> V  T hus w e
know  that f (A) 2 a n d  5 ,  f(61 11a) =  V  Q (G ) for s o m e  d is k  2 . Then, any
two points in f (A) n D can be joined by a path in 5B  n D, so in  V n D by Proposition
3.1. Since f (A  Ia n W) = f (61 I  f a ) n D  vn D by the condition 4 110 n (n (0 R 0 ) \ ei)
= 0, any two points in An W = f -

 1 (f (A ) D) can be joined by a path in A  n W.

Case 3. A n6i00  and diam .61 > ab. If  w e se t M  =  1  +  
2  d i a m  W

(> 1/a),
ab

th en  A m  W  T h u s  a n y  tw o  p o in ts  in  AnW  c a n  b e  jo in e d  b y  a  p a th  in
Am nW = W

Hence, in  any  case, arbitrary tw o poin ts in  A n W  can be jo ind by a  path
in A M fl W, thus W is linearly connected. Q. E. D.
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By Lemma 5.5, in particular, W  is  a  bounded Jo rdan  dom ain . We should
rem ark that w e have proved Lemma 5.5 without results in  §4 . A s fo r Jo rdan
domains, we m ention the next elementary fact, which follows from the  uniform
continuity of a homeomorphic parametrization S 1 aw and  its inverse map.

5.6. L em m a. L e t W be a  bounded Jordan dom ain in  C  and ;I any positive
num ber. T hen there ex ists a  positive constant w ith the property  that, f o r any
cross cut y  o f  W w ith diam y < (5, it holds that

min {dim  W 1 , diam W2 } <

where W, and W2 are  two components of  W \ y .

By the help of Lemma 5.6, secondly we shall show the following lemma.

5.7. L em m a. W is  a  John domain.
( 2

Proof  o f  Lemma 5.7. Let 0 < a <  1 such that C  
( 1 0

,  where C is the
4a

constant in  the  statement of P roposition  4 .1 . Since a A  is  compact, we can
choose a positive n > 0 so small that any disk A  with in ei 0 0  and diam A  <
should satisfy A c : A \  l ,  Tcl, is injective, and n(A) p(12(G)).

By Lemma 5.6, fo r sufficiently small (5(0 < < II) th e  following holds: if a
d is k  A  w ith diam eter < h a s  n o n e m p ty  intersection with ei = 8 w, t h e n
diam (W\ <  ri where W, is the connnected component of W\ A containing W1 .

N ow  let A  be a n  arbitrary disk centered at z o .
Case 1. A n  =  0.
In this case, arbitrary two points in W\ A can be joined by a path in W \
Case 2. A n 0  and diam A < a(5.
Since Z1, 1,,n6(00 and diam A, ja < 6(<g), A i i a fl W1 = 0  and diam (W\ W,D ) <

where W, is the component o f  W  A containing 1/1/1 . Set A' = IzeC;lz — z 0 l < 2 0 ,
then clearly -1,1-/\ W0  c  A ' and A c  A '. S ince  d iam  A ' = 4q, A ' must satisfy that
A ' c  A  W1 , 7L IA, i s  injective, and tha t n(A') p(°S2 (G)).

L e t  V  b e  a  connected component o f  p - 1 (n (S )), then pl y  : V —> n(A) i s  a
biholomorphic m ap for n(A') is simply connected a n d  n (A ') c p(°52(G)). Since
n is injective in A ', f :=  ( P l v )  o n: A' —* V is a  conformal homeomorphism. Now
we apply Lemma 5.4 for f I A  / a ,  then we obtain that there exists a  disk A-  such
that f (A) c  5 and 5 ,  f (A ,

F ix  a  p o in t  z i eWo n(A' \ 4 11a ). Suppose tha t there  ex ists a  p o in t  z ,  in
(W\ \ A i j a ( c  A ') .

We denote by T the component of W\ A containing z 2 , then clearly Tn Wo  =
0  a n d  T c  A '. S in c e  T c  A', Of (T) c V n Of (A' n  W \  =  Vn 0(D\ f (4)), so we
obtain that Of (T ) O (D \  f (A)), which implies that f (T ) is a connected component
of D \f(2 -1).

O n  t h e  o th e r  hand , w i = f (z i ) E f (A' n W\ d i i a ) =  VnD\f(A i k ,) c D\
( j  = 1, 2), thus Proposition 4.1 guarantees that w , and w 2 a r e  connected by a
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path in D \ I  D \ f  (2 1 ).  Since f (T ) is a  component of D \f (A) and w2 e f (T), w
must be in f (T )  too, i.e., z, e T, which is a  contradiction. Therefore we conclude
that (W  W0 ) \ A , i6  =  0 , i.e ., 

W i i a
 c  W0 ,  which im plies that any two points

in  W  A , /„ are joined by a  pa th  in  Wo  W \2 1- .
Case 3. Anszoo and diam A > a(5.

L et M = 1 + 
2 d i a m  W

(> 1/a), then  A ,  W  Thus, trivially it holds that
a6

any tw o points in W \ A m can  be  jo ined  by  a  path  in W \  A.
In  any cases, we have proved that any two points in  W  A ,  can be joined

by a  path in  W O .. N ow  the  proof is completed. Q. E. D.

Combining Lemma 5.5 and Lemma 5.7 with Theorem 2.9, we can immediately
obtain Thereom 5.1.

§6 . Existence o f a  topological involution of R  w.r.t. 3 R 0

In  this section, chiefly we shall be concernd with the following result, which
is a  crucial part of the proof of our m ain theorem.

6.1. Theorem. L et G  be a S chottk y  group o f  rank  N  0) and p: Q(G) -+
R:= Q(G)/G the  natural projection. S uppose that Ro i s  a  proper subdornain of
R such that D = p - 1 (R 0 )  is a sim ply  connected dom ain and that OR , consists of
mutually  disjoint sim ple closed curv es. L et f :  H —> D  be a  Riemann mapping of
D, F  the  Fuchsian group def ined by  F = f - 1 G f and  z :  F  G  th e  isomorphism
defined by z(y) o  f = f oy f o r all y e r .

T hen f  c an  b e  e x te n d e d  to  a homeomorphism : t  satisfy ing that
z(y). 1 = f  o y. In  particu lar, D  = f (H) is a Jordan domain.

To prove Thorem 6.1, the  following proposition comprises the key step.

6.2. Proposition. Under the same hypothesis o f  Theorem 6.1, there ex ists a
topological involution J  o f  R  w ith respect to Ro ,  w hich  can  be  lif ted . More
precisely, J: R -+ R is an orientation-reversing homeomorphism such that J(R o )n Ro

= 0, JI, R 0  = id R 0 , J  o  J = id ,  and there ex ists a  homeomorphism j: S2 (G) —> Q (G)
w h ic h  satis f ie s  th at n i J t o o i  I° =  ° ,OD\A(G) id O D \ A (G ) , j  ° i d o ( G )  a n d  that
j  L =  L . j  for all L e G.

6.3. Rem ark. B y  Proposition 6 .4  below , th e  above  lift j :  ( G ) 2 (G)
naturally extends to a  self-homeomorphism of t ,  and  then p a,  = id„.

Proo f  o f  Theorem  6.1. F irs t re m a rk  th a t th e  conform al m ap f :  H  D
naturally extends to a  homeomorphism f: fi \ A(r) A(G ) b y  the  proof of
Corollary 5.2.

Let J: ( G ) (G) be the involution satisfying the statement in Proposition
6.2, then we define f :  Q (F) Q(G) by the rule
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f = {f

J ° f  °Jo

o n  H \ A (T )

o n  C \ H,

where j ,  denotes the conjugation map z
Since the  lim it sets of Schottky groups a re  totally disconnected, it suffices

to  prove the  following purely topological proposition, which essentially follows
from the fact that for any plane domain Q, the KerékjArt6-Stoilow compactifica-
tion of Q is  homeomorphic to  the quotient space 0/ — obtained by collapsing
each boundary component of Q in Ê  to  one point (with the quotient topology).

6.4. Proposition. L et E 1 , E 2  be totally  disconnected compact subsets o f  t ,
and set Q. =  \ E i f o r i =  1, 2. Then, any homeomorphism f: Q 2  ( i f  exists)
uniquely  extends to a  homeomorphism C.

Sketch of  the proof  of  Proposition 6.4. Let z e  E , .  By the Zoretti theorem
(cf [N : p . 109]), we can take a  nesting sequence ot„, n = 1, 2,... of Jordan curves
in  Q , shrinking to the one point z. Then { f(a„)}  is  a  nesting sequence of the
Jordan curves shrinking to the  exactly one point, say, w .  Thus we can assign
7(z) as the  lim it point w of f (otn )  for z e E 1 . D e f in in g  f  = f  o n  Q, = C  \ E 1 w e
have a  homeomorphic e x te n s io n  : Ê  Ê  of f. Q. E. D.

Now, our only task is to  prove Proosition 6.2! A s a  preparation, we now
state general results about relations between geometric properties o f  covering
spaces and algebraic ones of the fundamental groups. The proof of these results
is straightforw ard, so w e shall o m it it . S u p p o se  th a t  p :  Q  R  i s  a norm al
(= Galois) covering between Riemann surfaces (or, m ore  generally, manifolds).
Let R ,  be a  subdomain of R  and t: R , R  denote the  inclusion  m ap. Pick a
point a ,  from R , and zo from  Q with p(z 0 ) =  ao . The inclusion m ap t: R
naturally induces a  homomorphism : T C  1(R 0, a0 ) —■ ni (R, a0). Let A: n i (R , (0 -4
G  be the monodromy homomorphism with respect to  zo , where G  is a  covering
transformation g ro u p  o f  p: Q -4 R .  Nam ely, g =  A([oc]) f o r  g  G  and [Œ ]e
7E1(R , a( ) )  if  a n d  only if the  fina l po in t o f the  lift Ft o f  a  w ith initial point z,
coincides with g(z o ).

6.5. Proposition. (1) A ny  one of  the following implies the others.
( l a )  Each component o f  p - 1 (R 0 )  is simply connected,
( l b )  A . t ,  is  injective,
( l c )  1, is  injective and 1.(n,(R o , tic))) n k e r  =  1.

(2) A ny  one of  the following implies the others.
(2a) p - 1 (R 0 )  is connected,
(2b) 1 .1 *  i s  surjective,
(2 c )  n i (R, a 0 ) =  ker A • 1,(7t,(R o , a0 )).

6.6. Corollary. The following conditions are equivalent to each other.
(a) p - 1 (R 0 )  is  a  simply connected domain,
(b) ni(Ro, a 0 )-4  G  is an  isomorphism,
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(c) 7T1(R0, a0 )g lt 1 (R, a0 ) is an embedding and 7 1 (R , ao )= k e r  >47t1(R0, a0 )
(semi-direct product).

W e  n o w  r e tu r n  to  the case w e  have considered, i.e ., Q  =  S2(G) and
p: R  = Q ( G ) / G  i s  a Schottky covering. S ince p - 1 (R 0 ) = D  i s  a  simply
connected domain, b y  the C orollary 6.6, it turns out th a t  the homomorphism

n 1 (R 0 , n,(R , ao )  has a  cross - section s: n,(R , a 0 ) —> n1 (R 0 , ao) , e .g ., s =
(A o  t.) - 1 A .  Through the natural homomorphisms h: n,(R 0 , a0 ) —> Z) and
h0 : tr 1 (R 0 , H1(R0, Z) (Hurewicz homomorphisms), 1, and s induce homomo-
rphisms 1# : H, (Ro , Z) Z ) ,  s# : H ,(R, Z) Z )  of the first homology
groups, w hich m ake the following diagram (6.1) commute. Here we should
rem ark  tha t the kernel of the Hurewicz homomorphism i s  the commutator
subgroup of the fundamental group.

ni(R o, a 0 ) R  a 0 ) a0)

(6.1)
h o i hi h o i

H ,(R 0 , Z) H ,(R, Z) 1-11(RØ, Z)

Since s #=  ( s =  H (Ro , z), we obtain the following

6.7. Proposition. The homomorphism t # : H 1 (R 0 , Z) 1-11 (R, Z ) induced by
the inclusion map R „  R  i s  injective.

By use of the proposition above, we can show the following preliminary

6.8. L em m a. The ex terio r R , = R , o f  R , is homeomorphic to R o .

P ro o f .  First, we recall that the Schottky group G  is a free group of finite
rank N .  Next, let (g, 0, m) be  the topological type of Ro ,  i.e ., R , is  a genus g
compact surface (without punctures) with m mutually disjoint closed topological
disks rem oved. As is well-known, the fundamental group n i (Ro , * )  is  a free
group of rank 2g + m —  1. Now, Corollary 6.6 yields that n i (R o , *) is isomorphic
to  G, thus N  = 2g + m  — 1.

For a while, suppose tha t R , is connected. Let (g', 0, m') be the topological
type of R 1 ,  then  c learly  n=  m ' and  g + g' + m  — 1 = N  since R  is  of genus N
compact surface and R  = R 0 U  R ,, thus g' = g which asserts that R o and R , are
of same topological type (g, 0 , m ) . So, we have only to prove the connectedness
of Ro .

Let c„,...,c m  b e  b o u n d a ry  lo o p s  o f R ,  w hich are consistently oriented.
Denote by C m  the homology classes of c1 , . . . , c .  in Ro , respectively. Here,
notice that H i (R o , Z) has A 1 , B 1 ,..., A g , B g , C ,,...,C „, as a generator over Z with
the sole relation C , + • • • + C m  =  0 , w here A ,, B ,,...,A g , B g  denote fundamental
cycles cutting handles of Ro . Suppose tha t R , was disconnected. Let R  b e  a
connected component of R 1 , then  R ', had  som e boundary  com ponen ts, say,
c ,„. . ,c ,  with 1 < m .  Let Ci = /# (C i)  be  the homology class of ci in  R , then
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C, + ••• + C; = 0  since Ci + ••• + Ci = [e l  + ••• + = [ -  au =  0  in Z).
B y Proposition 6.4, 1# : H,(R o , Z) H  ,(R , Z ) is  injective, so w e obtain an extra
relation C, + ••• + C, =  0  which is a contradiction. Q. E. D.

6 .9 .  Proposition. Under the  sam e hy pothesis of  T heorem  6.1, w e hav e a
system of  disjoint simple closed curves { (,,...,e N } on R, which satisfies the following
conditions:

(a) p: t2(G)—  R  is  the highest covering which lif ts e i t o  a  closed loop for
i = 1,...,N,

(b) each e i transv ersely  intersects R0 at ex actly  tw o points, and
(c) R  =  R 0 \W I

= 1 e ,  and R =  R 1 \(j i
 = l e , a re  both sim ply  connected

domains, where R , = R\ R o .

P ro o f .  Let (g, 0, m) be the topological type of Ro , then N = 2g + m —  1 as
w e  h a v e  se e n  b e fo re . L e t  c„,...,c m  b e  b o u n d a ry  c o m o p n e n ts  o f  Ro , or
equivalently, o f  R „ . Then there exist mutually disjoint simple closed arcs
o n  R , as follows (see Fig. 6.1):

( i ) whole u, is contained in  R , except its endpoints,
(ii) for i =1,...,m  —  1, /4• connects cm  w ith  c1 ,
(iii) for i = m,...,m + 2g —  1 = N, u, starts from cm  and returns to c m , and
(iv) R,:= R 1 \W 1_

1
u, is connected.

In  order to advance the  proof, we require several lemmas as the following.

6.10 Lem m a. R i  is simply connected.

Proof  o f  Lem m a 6.10. Let E , denote the compact sufrace (with boundary)
which is obtained by cutting R , along u, u ••• u u,. (We set E 0  =  . )  L e t  x(E)
denote the Euler characteristic of a compact surface E  with boundary, that is

X(E) = # {vertices} — # {edges} + # {faces}

fo r an  arbitrary triangulation of E .  Further rem ark that x(Eg ,„,) = 2 — 2g — m,
w here  E g ,„, represents a  c o m p a c t o r ie n ta b le  su rfa c e  o f  genus g  w ith  m
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boundaries. B ecause E i i s  o b t a in e d  b y  c u t t in g  E i _ ,  a lo n g  ui , w e  have
z(E i) = x (E  ,)  + 1 for i = 1, N . Summarizing these equalities, we obtain that

x(E ) =x (E O ) +N = 2 - 2g —m+ N = 1..

Therefore R i must be  homeomorphic to  the unit disk. Q. E. D.

6 .1 1 . Lemma. p - '(R ,) is sim ply  connected. In particular, the restriction of
p  to any  com ponent o f  p - 1 (R 1 )  is a  universal covering o f  R 1 .

Proof  o f  Lemma 6 .1 1 . p '( R , )  is  the  complement o f the  connected se t r) ,
therefore the above statement is clear. Q. E. D.

Proof  of  Proposition 6.9 (continued). Let R , be connected com ponent of
p -

i (R 1). B y L em m as 6.10 a n d  6.11, th e  re str ic tion  m a p  p li ; : Ri R i  is
bijective. L e t denote the  closure of R .

Now, w e can take a sim ple closed curve wi : [0, 1] R , which starts from
o n e  s id e  o f  ui a n d  e n d s  to  a n o th e r  s id e  o f  u1, a n d  which satisfies that
wi ((0, 1)) c R .  H e r e ,  we •should rem ark  tha t fo r  i = 1,...,m  — 1, w i is freely
homotopic to  the  boundary curve ei . Let [0, 1] —> Q (G ) b e  the unique lift
in of wi a n d  L i b e  the unique element o f  G  w ith Wi (1) = L i (Wi (0)). Clearly
wi i s  a  homotopically nontriv ia l loop  i n  R I ,  s o  th a t  L i1  b y  virture of
Proposition 6.5 (1) a n d  Lem m a 6 .1 1 . L e t 4  b e  the  un ique  lif t o f  ui which
passes through i , ( 0 ) ,  a n d  s e t  ui-  =  L ( u ) .  T hen , p -

1 (ui )n = u i+ u u i-  a n d
n uï = 0  (see Fig. 6.2).

Let, for i =1,...,N , i3 (resp. i5 i- ) be the geodesic curve in  H which connects
images a , * ,  b, (resp . a , , b i- )  of endpoints o f 4 - (resp. u i- )  under ; th a t is,
i5i± is the semi-circle in H perpendicularly intersecting OH = R a t ai

±  a n d  bi-' .  Set
vi

±  = f ( ô )  a n d  e i± —1.4uv i±  fo r  i = 1, N  .  T h en  it is  o b v io u s  th a t e;±  are
Jordan curves in S2 (G) and = t  by construction. Furthermore,

el

Fig. 6.2.
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a re  mutually disjoint. Indeed, since v transversally intersects v,,±  a t  m o s t
one point for other u  w hile u  n  u ,,  =  0  (here, possibly with different signature),
if som e t intersects other  t r a n s v e r s a l ly  in t e r s e c t s  1 , ,  at exactly one point,
this is a contradiction.

We shall denote by Ext t i± the component of t' \ t w h ic h  c o n ta in s  R',. By
definition, L i (Ext 6+) n Ext e r =0  fo r  i =  1 ,...,N , a n d  s o  th e  subgroup G0 : =
<L,,..., L N >  of G generated by L 1 ,  , . . ,  LN i s  a Schottky group of the same rank
N  a n d  W:= f l 1 (Ext ei+ nExt )  is  a  fundamental domain o f  Go . Here we
should note tha t Wn OD = o f \ U uj U • • • U u,) consists of finite number of lifts
of some parts of boundary curves therefore, VT/n OD c  Q  (G ) .  As clearly
ITV\ O D  Q (G), we have FV Q (G), therefore 52 (Go ) Q  (G ). On the other hand,
trivially 52 (Go ) Q (G), thus we conclude that  Q(G 0) = Q  (G ). Since Q(G 0 )/G0

and R = Q(G)/G are of the same genus N, if N  1  the Riemann-Hurwitz theorem
implies that the  induced covering map  Q (G 0 )/G 0 = Q(G)/G o  Q (G )/ G  m ust be
univalent, in other words, G = Go . In case N = 1, there exists an  element A e G
a n d  a  natural num ber n such  tha t G = <A> and  L, = A " . Since L , covers a
simple closed curve w 1 , n  should be 1, therefore G = Go . In  any case, t i :=
fo r i =  1 ,...,N  have a ll the  disired properties, by the construction a b o v e . For
example, RO is known to be sim ply connected dom ain by the  proof o f Lemma
6.10. The proof of Proposition 6.9 is now completed. Q. E. D.

Proof  o f  Proposition 6.2. L et e i ,...,e , b e  a  system o f  mutually disjoint
simple closed curves o n  R  as in  P roposition  6.9. S e t RO = R o \ u ' _ , e ,  and

= R ,\  upr_ ei a r e  both simply connected domains, where R, =  R\ R o . Let
W b e  a  component o f p -

1 (R \ U 1 ( i) ,  th en  W is  a  2N-ply connected domain
with boundary curves  ( i

f , ,  where i s  a  closed lift of 6 .  We denote
by L i the unique element of G which maps t i+ to  t .  L e t  R k'  be the connected
component of p - '(Rk) which is contained in  W and le t Ek b e  the  closure of Rk
fo r k = 0, 1. Then, Ek seem s a s  a  4N-gon w ith 2N sides ei± nE k ( i =  1 ,...,N )
and 2N sides which are lifts of some parts of aR0 . Since the  order of 1,-1- nio
i n  az o  w e l l  corresponds t o  th e  o n e  o f  ei± nE , i n  0E 1 ,  w e  c a n  o b ta in  an
orientation-reversing homeomorphism :70 : az o , a E ,  w ith  th e  following two
properties :

(1) J o = id  o n  Z o nal) = E,naD,
(2) J o L i = L i . J o  o n  E. , n ei+ for i = 1 ,..., N.

A s E ,  a n d  E ,  are  Jo rdan  dom ains, w e can extend Jo t o  a  homeomorphism
J1 : E ,  E, with :id a E o  --= J o . B y  P ro p e r ty  (1), we can further extend J 1 t o  an
orientation-reversing homeomorphism 72: W - > ITV by the  rule :

j i o n  E ,

o n  E 1 .

N o tin g  th a t  J 2 L L .  J  o n  ei+  fo r  i = N ,  w e  e x te n d  J , t o  a
homeomorphism J : Q  (G) Q (G) as the  following:

52



Schlicht projective structures 731

=  L . 52 . L - 1 o n  L ( W )  f o r  a ll Le G.

By construction, J satisfies the  following conditions :

(a) J(D)n D  = 0  and S  =  id  o n  OD n Q (G),
(b) = id o (G ) ,
(c) J  o L  = L . .7 for any Le G.

Because of (c), S  descends t o  a homeomorphism J: R R  w ith  J o  p = p o  5,
which has the desired properties. Q. E. D.

In  order to complete the  proof of Theorem 2.1, we have on ly  to  show the
following

6.12. Theorem. L et G be a Schottky  group o f  rank 0) and p: Q(G) - *
R:= Q (G )IG  the natural projection. Suppose that R , is  a  proper subdomain of
R such that D = p - 1 (R 0 )  is  a  simply connected domain and that OR , consists of
m utually  disjoint quasi-analy tic curves. L et f :  H — ■ D  be a R iem ann mapping of
D , F  the  Fuchsian group def ined by  F =  f - 1 G f and  x: F -+ G  th e  isomorphism
defined by x(y ). f = f oy f o r all ye F.

T hen f  c an  b e  e x te n d e d  to  a  quasiconformal homeomorphism j:
satisfy ing that x(y). J = J o y .  In particular, D = 1(H) is a  quasidisk.

P ro o f . By Theorem 6.1, f  can be extended to a homeomorphism 10 :
satisfying that x(y).10 =  f o .  y. L et F o d e n o te  a hom eom orphism  from  S =
Q (T )/ F onto R induced by f : Q (F) ( G ) .  Since F 0 0 : - + R, is conformal,
where So =  H /F , and OR, consists of mutually disjoint quasi-analytic curves, Fo Is 0

can be extended to a quasiconformal mapping F ,  o n  a  neighborhood U  of g o

such that F , is diffeomorphic in  U \  go . Here, we used the well-known fact that
a quasiconformal m ap from  the  un it disk A  onto  a quasidisk can be extended
to  a quasiconformal self-map of the whole plane C  w hose  restriction to  t\  4  is
real-analytic (for example, by the Ahlfors-Weill extension). Then, it is easily seen
that there exists a diffeomorphism  F : S\S" „ R\ ko which coincides with F 1 o n
some neighborhood o f OS , and  which is hom otopic to F 0 15,4 ° b y  a homotopy
that fixes OS0 pointwise.

W e extend F  to  a homeomorphism from S onto  R  by defining F  =  F , on
go , then F  becomes quasiconformal and F  F ,  in  S. Since F , can be lifted to
f 0 ,  F  a ls o  c a n  b e  l i f t e d  to  a homeomorphism  f :  S2(F) - 2 (G ) such that
x (y ).1=loy  f o r  a l l  y e  F .  B y  Proposition 6.4, J  n a tu ra lly  e x te n d s  to  a
h o m e o m o rp h ism  o f  t , w h ic h  is  d e n o te d  a ls o  b y  1. S in c e  F :  S  R  is
quasiconformal, f  is also quasiconformal on  Q (F ) OE t \ i i .  O n the  other hand,

is  a quasiconformally removable set, thus f  m u s t  be quasiconformal on the
whole p la n e . T h e  proof is finished. Q. E. D.

Proo f  o f  Theorem  2.1. Let yo e Int S (F ) .  T h e n  G = x`P(F) i s  a Schottky
group by Lemma 2.3 and M askit's characterization theorem, and R o := fP(H)/G
is a  proper subdomain of R:=Q(G)/G with quasi-analytic boundary by Corollary
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5.2. N o w  T h eo rem  6.12 im p lie s  th a t p 9  c a n  b e  e x te n d e d  to  a  F-compatible
quasiconformal homeomorphism f  o f  t ,  w h ich  m ean s th a t p  e  T (F). Thus we
have proved  now  tha t Int S(F) T ( F ) .  Q.E.D.
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Added in  proof:
The author recently learned from Professors T. Soma and K. Oshika that Lemma 6.8 directly follows
from the theory of 1-bundles (see J. Hempel, 3-manifolds, Ann. of Math. Stud., Princeton Univ. Press
(1976)).


