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1. Intfoduction

Let D be a domain spread over the complex plane C with C® smooth
boundary 0D. Suppose that D has a nono-trivial cycle 7. Then there exists a
unique L? harmonic differential ¢ on D such that [, w= (w, % 0)p for all C*

closed differentials w on D. We put ﬂ=|| ol5. Then * ¢ and u are called the
reproducing differential and the harmonic module for (D, y) (see L. V. Ahofors
[2]). The geometric meaning of # was originally studied by Y. Kusunoki [6]
and R. Accola [1]. We now let the domain D (t) over C and the cycle y(t) €D
(t) vary C® smoothly with a complex parameter ¢ in a disk B={|¢{| <7}, where
D(0) =D and 7(0) =7. For any t€B, we have the reproducing differential % ¢
(t, z) and the harmonic module g (t) for (D (t), r(t)), so ¢ (t) is a function on
B. Weputwl(t,z)=c(t z)+ikolt z)=f()dz |w|t 2) =|f¢ 2)|, and

%=%de for zED (t). We here put D= U ,e5(t, D(t)) and0D = U ;5 (¢, OD

(t)). Thus D is a complex 2 dimensional domain spread over B X C. Let
¢ (t, z) be a defining function of 09, that is, ¢ (t, z) is a C® function in a
neighborhood ¥ of 09 over B X C such that D NY¥ (resp. 89) = {p <0 (resp.

=0)} and %f*O on 09. We define, for (¢, z) €09,

w9 =22 /|92

0z X
_[9%¢ |d¢ 0%¢ QQ_Q | () 003
ka8 2)—[ataf 32 zm[afaz o 0z T azaz]/ 51 (1.1

Note that neither k; (¢, z) nor k;(t, z) on 09 depends on the choice of ¢ (¢, 2).
In [4] we call ky (¢, 2) the Levi curvature of 0D at (t, z), and proved the follow-
ing variation formulas:

at zf kit 2) | Pt 2)lde]
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*u(t) _ || 0w 2 1
OtoF _‘ oF ( D(t>+ 2J anw (t, z) " w "2 (t, z) |d2|-

(See also F. Maitani [8], M. Taniguchi [9], and [12]). So, if @ is pseudocon-
vex, then ,u(%) is a superharmonic function on B.

In this paper we study the case of R% Let D be a domain in R® bounded
by a finite number of C* smooth boundary surfaces 0D. Suppose that D has a
non-trivial i-cycle 7; (i =1 or 2). By H. Weyl [11], there exists a unique L?
harmonic i-form % Qs_; on D such that

= (w, *Qs_;)p for all C* closed i-forms @ on D. (1.2)

We call % Qs;_; and y; = || Qg-;"f; the reproducing i-form and the harmonic
i-module for (D, 71:). Note that Qs_; is C* smoothly extended up to dD. We

write, on D,

Casei=1: Q= dyAdz+a dzA\dx+asdxANdy =a(x) + *dx
Casei=2: Qi=aidxtazdytasdz =a(x) *dx

where dx= (dx, dy, dz). By (1.2), a(x) and a(x) restricted on @D are normal
and tangential, respectively. At any x € 8D such that @ (x) #0 (where the set
{x€0D|a(x) =0} is real one dimensional at most), we shall use notation:

_al)
€q, (x) - " a(x) " f (]. .3)

which is called the tangent vector field on 0D associated with Q.

Now let D(t) CCR® and 7;(t) €D (t) vary C® smoothly with a real para-
ment ¢ in an interval I= (—p, p), where D (0) =D and 7;(0) =7:. For any t€I,
we have the reproducing i-form * Qs_; (¢, x) and the harmonic i-module g; (¢)
for (D(t), 7:(t)). When we write Qi (t, x) =a (¢, x) * dx, we define | Q; |2 (¢, x)

=|a, x) |?(=0), and 6(%1 (t, x) = aa? dx. Analogously, we define || Q, [? (¢,

09,
x) and ot (
(t)) in the product space I X R® and put 09= U ,c;(t, D (t)). Let ¢ (t, x) be a
C® defining function of 89 in I X R® Instead of the Levi curvature k, (¢, x) in

(1.1), we introduce two kinds of curvatures K, (¢, x) and K (e, t, x) of 0D as
follows: First let eER® with | e |=1. For (¢, x) €09, we put

_1 od¢ -
= 1.4
K (t. x) " V " ot ( )
1 [0%¢|op|* , 0% O¢ D¢ , |0¢|*d*¢
Le(t, x) = Ve ||3{6t2|59| ~%oide ot de [ ar aez}' (1.5)

where V = (0/0x;) i—123 and 0'¢/0e’ = [0’ (t, x+se) /0s') s=0 (=1, 2). We
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note that neither K; (¢, x) nor Le(t, ) on 89 depends on the choice of ¢ (¢, x).
Next, let {e), ez, es} form an orthonormal base of R%. We put

KALx%=L&0x)+L&0x)+L&0x)

(Ge1vor- 22{%%79%5:?{ ueil

(1.6)

1 V I?

where A= 23.,0%/0x%. Thus, K, (t, x) is independent of the choice of {e;, e,
es}. In [7] we call K;(t, x) the (real) Levi curvature of 09 at (¢, x). Finally, let
e be a unit tangent vector of the surface dD (t) in R® at x, and denote by n the
unit outer normal vector of 0D () at x. We put € =nXe and define

Ki(e t,x) =Le(t,x) —Le (t, 2) +Ln(t, x). (1.7)

We denote by dS; the Euclidean surface area element of 0D (¢t) at x. Then we
shall show the following variation formulas for tE1[:

Theorem 1.
M L Kot ) Q2 22, x)dSs (1.8)
Timlt) _,) 00 692 Rolea t, 01 QP (¢, DaSe (1.9)
dt D(t) aD(t)

Theorem II.

dipolt) f Ki(t, 0 @ ¢ 1ass (1.10)

d2#2 (t) —_ 2l| an
dt?

Kz (t, x) Il Ql "2 (t, x)dSz (]. .11)

pw  Japw
Since Theorem II can be proved by the combination of the ideas in papers
[4] and [7], we give its brief proof in §4. On the other hand, to prove
Theorem I, we need a new idea (relevant to the notion of equilibrium surface
current density introduced in [13]), which will be precisely discussed in §5.
In §6 we shall apply Theorems I and II for the z-axially symmetric domains to
show the variation formulas related to the norm of functions which satisfy the
following Stokes-Beltrami partial differential equations (see E. Beltrami [3]):
Ou 0w 10u

+

PYRNPW R P

The author appreciates the referee for his careful reading the manuscript
and his comments.
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2. Electromagnetic meaning of harmonic modules

Let D be a bounded domain with C® smooth surfaces 2. (=0D) in R® We
put D’=R3\D, where D=DUdD. For i=1, 2, we write

C7 (D) (resp. C5o(D)) =the space of C* (resp. C%) i-forms in D

72 (D) =the space of C* closed i-forms on D
H; (D) =the space of L? harmonic i-forms in D.

We also denote by B; (D) or Zi (D) the closure of dC10(D) or Z7 (D) in the

space L#(D) of L? i-forms in D. Then Weyl's orthogonal decomposition
theorems in [11] hold:

L3(D) =Z;(D) + %Bs_;(D), Z;(D)=H;(D)+B;(D). (2.1)

Let w; €ECT (U), where UD D 2. If all theree coefficients of w; vanish on 2,
we write w;=0 on 2. If the restriction w;|s of w; to the surface 2 is 0 as an
i-form on 2., we write w; =0 along 22. As an analogue to Ahlfor’s definition
[2], we put

Hio(D) ={ wE€H; (D) |w is of class C* on D and w=0 along 2 }.

Concerning the reproducing (3 —i)-form % Q; for (D, 7s5_;), we see from
(1.2) and (2.1) that Q;€H;, (D).

Let us study the static electromagnetic meaning of Q; and g; by simple ex-
amples:

[I] For b>a>0, let 22 be a solenoid of torus type. That is, consider a
circle C={(x, z) = (b—a cos®, a sing)|0<$<2x} in the (r, z) -plane with x>
0. We rotate C around the z-axis to obtain the torus 2. We use cylindrical
coordinates [r, 8, z] of R% Then the solenoid is the torus 2 equipped with
equilibrium surface current density on 2

j(x)d51=ﬁ(z cosl, z sinf, b—r)dS;,
where dS; denotes the surface area element of > at x (see [13] in detail). We

denote by D the solid torus bounded by 2 in R® From Biot-Savart's law, the
solenoid 2. induces the static magnetic field in R\ X:

B(x)—rot<4nf ly— x|| ) f||y x"3><](y)d5y

By use of the symmetry of 22, we obtain

B(x) = [ 2}1'7( sinf, cos, 0) for x€D
0 for x€D’.
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The magnetic energy of B is defined by

| B (x) ”fp:f (271'7) {(—sin6) 2+ (cos6) % dvz=b—4/b*—a?.

Now consider a circle 71=1{(b cos 6, b sin 6, 0)| 0<6<27x} in D. We thus
have the reproducing 1-form % Q;=a (x) * dx and the harmonic 1-module U
for (D, 7’1). Then we have the relationship between the harmonic 2-form Q.
and the magnetic field B:

Proposition 2. 1. ax)= B(x) . nD, m=

1
1B (x) | 1B () g
Proof. We put 7(x) = (2r) 7' (—sin 6 dy Adz+cos 0 dzAdx) and p(x) =—
(2m) ~*(log #) dz in D. Hence, 7(x) =dp (x),d *p (x) =0 in D, and *7=d8/271
€7y (D). Let VweZy (D). We put Co:={(r, 2) = (b—a cos ¢, a sin ¢)| 0<¢
<2m}. For V (r, z) €C,, we take a circle on 0D: 75={(r cos 0, r sin 6, a sin

¢) €0D| 0<0<27}. Since [r= [,, w by 7s~71 on D, we have

(w, *‘L‘)D=—j; w/\p=%fCo {fn w] logrdz=[frl a)] (b—+/b%>—a?).

Therefore, % Q,= * /|| B(x) ||}

r, by which Proposition 2.1 follows.

[II] For b>a >0, let D be a condenser of shell type. That is, DC CRS3 is
a domain between two concentric electric conductors K, = {| x| <a} and K,=
{||x “ 2> b} with charge+1 and —1, respectively. Hence, 8D =C,—C, where C,,
G={lx] =a, b}. By Coulomb’s law, their equilibrium density distribution

47;2 dSz on C,
P(x)dSJ:: 1
W dSz on Cp

induces the static electric field E in R®\2 such that

E=Y (g o o Trar 1P 048) =g ), T R e WS,

c—ca | y—x| cr—Cal y—x P
By simple calculation we obtain

X
E<x>=[4n T
0 for x€D’.

_L(l_l>
dv’_47c a bl

for x€D

The electric energy of E is defined by

lew k=1, |
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Now consider the positively oriented sphere 72={|x | = (@ +b) /2} in D.
Then we have the reproducing 2-form % Q,=a (x) + * dx. Then we have the
relationship between the harmonic 1-form Q; and the electric field E:

s E (x) : 1
Proposition 2. 2. alx) =" inD, =
1EG) & “TTEG)
Proof. We put 7 (x) = (dr |2 |IF) "Xy 5 dxi and u () = — (rfx ) .

Then 7(x) =du (x) EH, (D). Let Yw<€Z5y (D). Since 2~ x| =a} ~{|x| =
b} on D, we have

— __1 (1 =(l_l>
(w, *7)p j;d(uw) yp aD"x”w PE Tzw.

Therefore, % Q,= * 7/|| E (x) |%, by which Proposition 2.2 follows.

3. Smooth variatios and Levi curvatures

Let I= (—p, p) CR. Given any set 4 in I X R®, we put G (t):= (xR,
x) €9} for each t E1. We call G (t) the fiber of 9 at t. Now consider a 4 dimen-
sional domain 9 in I X R® such that D (t) #0 for any t €. We denote by 09
the boundary of 9 in I X R®. We regard 9 as a variation of domains D(¢) in R?
with parament t€], and write

D:t—D(), t<l

Assume that there exists a C®~function ¢ (¢, x) defined in a neighborhood ¥ of

0D in I XR? such that (1) DNY¥V={(t z) €E¥]pt x) <0}, DO NV()=&e

V)|t x) <0} for t€I, (2) Volt, x):=(%fj>_ 123(t, x) #0 for any x € 0D
i/ 1=1,2,

(t). Then we say that @ is a C* smooth variation, and @ (t, x) is a C* defining

function of 09. By (3), @D (t) for each tE€1 is C® smooth in R®. We thus have

o= Jtow). so=|Jwaw).

tel tel

In Introduction we defined quantities Le (¢, x), K2 (t, x), K2 (e, t, x) on 0D. We
shall represent these by means of usual normal curvatures. Let P= (¢, x) €99.
First, we denote by mp the unit outer normal vector of the 3 dim. surface 09
at the point P in I X R3, We consider the 2 dim. plane 7; ,, in I X R?® which pas-
ses through P and is generated by the 2 vectors {(1, (0, 0, 0)), np}. We denote
by v, the unit tangent vector of the 1 dim. curve 7t ., N 09. Thus,

;}*: =the normal curvature of 09 for v; at the point P (3.1)

t

is deternined, which is called the t-normal curvature of 09 at P. Next, from x €
oD (t) CR®, we denote by n, the unit outer normal vector of the 2 dim. surface
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09 (¢t) in R? at the point x and, by Tz (=T (¢t)) the set of all unit tangent vec-
tors of @D (t) at x. Thus, for any e= (e, e3, e3) ETx,

1

0 : =the normal curvature of dD () for e at the point x
e

3

V(1 ey

-Zl<" Vol axiaxj>(:.z) ¢iej (3.2)
1,)=

is determined. Finally, we denote by H and K the mean and the Gaussian curv-

atures of aD (¢) at x:
=l(i L) 11
=3 p1+pz K 01 02’

wehre 1/0; (1 =1, 2) are the principal curvatures of D () at x such that
1/0:21/p,.

Proposition 3. 1. It holds for (t, x) €E09D,

K. (¢, x)zp for eET,

Le (t, X) ‘ (3.3)

A+K,(t, x)%)%2 pi for e=n;.
t

Proof. Since both sides are invariant under the Euclidean motions, we
may assume that (¢, x) = (0, 0) and n; (=n) = (0, 0, 1). Hence, 89 near (¢, (x,
3, 2)) = (0, 0) is represented in the form z=¢ (¢, (x, y)) where ¢ (0, (x,y)) =0
(x2+9?%), so that @ (t, x) =z— ¢ (¢, (x, y)) is a defining function of 3% near (0,
0). In case eET;, we may assume e= (1, 0, 0). By direct calculation, we have

K,(0,0) =—%;‘Q, i: —%%, p, E?/(l-l—(—Q) )3/2

evaluated at (0, 0). Proposition 3.1 follows by these formulas.
Let (t, x) €09 and eE€T,. We put n:=n, and €:=n; X e€T,. We can
consider the normal curvatures 1/p, and 1/p. of the surface 0D (t) for e and

€ at x, respectively. Concerning K, (¢, x) and I?z (e, t, x) defined by (1.6) and
(1.7) we have from (3.3).

K0 =1+ 0 0D K60 (+o0) 3.9

Rale,t.0) = (1HK (.09 L+K, (6 0)° (pe ) 69

=K, (t, x) — 2K, (¢, x)z?)e—’. (3.6)
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We shall study the geometric meaning of K, (¢, x) and K> (¢, x). Let xo€ 0D
(0) and let Cz: x=x(t) for t €I be the orthogonal trajectory passing through
xo of the family of surfaces {0D (t)},e;. Namely, x =x (t) is the solution of the
following differential equation in I:

xX= _Kl(t, x)nz with x(O) =xo0, (37)

where we put n;=nz« and X=dx (t) /dt. Therefore, if we put G/D®= (t, oD

(t)) and 6:0= Uier (t, Cz (t)) in I X R?, then we have the following two coor-
dinations of 09:

6@=U6/Dm= U 6:0 such that E;J_G/DW

tel Zo€AD(0)

for Vt€I and Y% €0D(0). By simple calculation we have
La(t,x (1) =K, (L, x () for t€1,

so that ¥=—Ln(t, x) nz—K: (t, x) (0nz/0t) on I. Since nz L (8nz/dt) on Ca, it
follows from (3.7) that

K x)=—x1) *n;, Lo(t,x)=—x() * ns.

We assume % (t) #0, and denote by s the arc length of Cy, such that ds/dt>0.
We put x? =d'x/ds' (i=1, 2), and define &= £ 1 according to X' = Fn,. In
general, +1 changes to + 1 along the envelope of the family of surfaces {0D

() }ser. Since Xx= (ds/dt) x' and = (ds*/dt?) x'+ (ds/dt)? x”, it follows from
x" L n, that, for Ve€Ty,

_ Q)zL , _(d_8>2_1_ _ 4
Le (tv x) - (dt pe: Le (tv x) - dt pe, ’ Ln (t’ x) =€ dt ’

ds

K, (t, x) =€ At

_ s (d_s>2
Kz(t,x)——edtz-l-Z ) H@ 5.

We give sufficient conditions for which K (t, x) or K, (¢, x) =0 on 09.

Proposition 3. 2. 1. If D is a convex domain in R*, then K, (t, x) =0
on 09.

1 4
BT >
2. (@) If o _SﬁlHl on 09D, then K, (t, x) =0.
() If piz%,/m—f( on 0D, then K, (e, t, x) =0 for all eETs.
t

Proof. If D is convex in R* then Le (¢, x), Le (t, x), and Ln (t, ) =0 on
09, by which 1 follows. By (3.4), we have

—i 2\ 3/2 2\ 3/2 l__4_
Kz—p'(l-l-Kl) +2K2H> (1+K3) [pt £|H|},
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by which 2 (a) follows. By (3.5), we have
k"zz (1 +K§) 3/2 L_L<i_i)]'

by which 2 (b) follows.
The following proposition will be useful in this paper:

Proposition 3. 3. Let u(t, ) be a C® function in a neighborhood ¥ of
09 in I XR® such that 0D (t) € CV (t) CR? for each tE1. Assume that
(1) u(t, x) =const. ¢ on each component of 09D,
(2)  For any fixed tEI, u (t, x) is harmonic for xEV (¢).

Then it holds for (t, x) €D such that %(t, x) #0,

QK (1 0) 2 (3.8)
oo @I EEME). o

Proof. Let (to, %) € 09 at which 0u/0n; # 0. Say, (0u/0nz) (to, x0) > 0.
Then, from (1), (u (¢, x) —¢) in ¥ is a C® defining function of 09 near (o, xo),

and g,l: =|Vull at (t, x0). So, definition (1.4) of K; (to, o) implies (3.8).

Further, since —/—= cos 0, where 6; is the angle between nm; and the
axg' anx

x;-axis, we have

22{%; aata';, o, g:,]_a%(%y at (to, xo).

So, formula (1.6) of K, (t, x) under condition (2) implies

K5 (to, x0) = {aa?: aanuI agx (%)2]/(3:2)2 at (to, %o),

by which (3.9) follows.

4. Proof of Theorem II

Let DC CR? be a domain bounded by C® smooth boundary surfaces oD.

We denote by {Cj},-1,..q the boundary components of D, so that 0D = 29_,C;.
Then D carries the harmonic function %;(x) such that

1 on Cj

uy ) = [ 0  on OD\C;j.

We call u; (x) the harmonic measure for (D, C;). Let 7; be a 2-cycle in D such
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that 7;~C; (homologous) on D, and denote by * Q;(x) and g, (t) the reproduc-
ing 2-form and the harmonic 2-module for (D, 7;). By Stokes formula we then
have Q; (x) =du;(x) on D.

Let 9: t— D (t), tEI be a C® smooth variation. For each t €I, we denote
by {Cj(t))}j=1..4 the boundary components of the domain D (¢) such that oD
(t) =229-,C;(t), and by u;(t, x) the harmonic measure for (D (t), C;(t)). Let T2
(t) be a 2-cycle in D (t) which varies smoothly with t €I in . Therefore, 7,
(t) ~ 29-m;C;(t) on D(t), where n; are integers independent of t €1. We de-
note by %, (t, x) the reproducing 2-form for (D@, T2 (t)). We have Qi (t, x)
=dU (¢, x), where U(t, x) = 29-mju; (t, x). Let us prove (1.10) and (1.11). It
suffices to prove these at t=0. Since 09 is C* smooth, we find a small interval
Io(CI) centered at O such that, for any tE€1,, U(t, x) is harmonic on D (0) and
72(t) ~72(0) in D(0) UD(¢). Then

pO= *2D=@ ), 00 )o0=[ Ul *w0 . @.2)

After differentiating both sides with respect to t, k(=1, 2) times, we put t=0
to obtain

_[.t_ 0%Q, . . _ 0kU
2t20)=(Z80,0), 200.)), = [, EL 0.0 %000, 4.3)

Since U(t, x) is const. on each component of 89, it follows by (3.8) that

au
ot

Note that *dU (0, x) = aU;}? x) ===, along oD (0). Applymg (3.8) for k=1, we

=K, (t, x)gn—i on 09.

thus obtain

W)= [ K0.0(3L0.0) ds.

oD(0)

Since|l Q, | (0, ») = (WY on aD (0), we have (1.10). To prove (1.11),
we get by (3.9)

S =) (5N 5 (5)1G,) oo

Applying (4.3) for k=2, we obtain by Stokes formula

)= [ 0.0(320.0) ase+ [ (G 0.0) as.

dt?
—f K50, 2)|| Q[ (0, x)dSz-i-f ( (o, x)) dvg.
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69 1

Since A( )(O x) =0 and (0, x) d( )(O %) on D(0), the last integral

is equal to

BB+ B+ a3 ol ]

which proves (1.11).

b’

Corollary 4. 1. If Kx(t, x) 20 on 0D, then l12+t) is a concave function

on I.

Proof. Assume K (t, x) =0 on 09. Then, (1.11) implies y" (¢) >2|l ||D(,>,
00, |2

< —_) >
and (4.3) implies |1 () | <p (8) " o Hence, (ﬂz(t)) >0.

5. Proof of Theorem I

Let D: t—D (), t €1 be a C® smooth variation and let a 1-cycle 71 (t) in D
(t) vary smoothly with parament t €I. For tEI, we denote by % Q;(t, * ) and
¢ (t) the reproducing 1-form and the harmonic 1-module for (D (¢), 71 (t)).
Let us prove (1.8) and (1.9). It suffices to prove these at ¢t = 0. We may
assume that each 71 (t) is a C* closed curve in D (t). Like in [13] we need a
rather concrete costruction of the 2-form Q(t, x). We first take the u-axially
symmetric solid torus G:=L X A in the (u, v, w) -space R® such that L = {|u
|<1}, and 4 = {1/2 <J/v*+w? <2}. In G, we take the circle Co= {(0, cosb,
sinf) [0<6<27x} and the rectangle So=L X {(v, 0) €EA[1/2<v <2}, so that So
X Co (intersection number) = 1. We here construct C* functions x () on L
and ¢ (v, w) on A such that

0 on [—1, —1/2] 0. ) {O on 1/2</v*+u?<2/3
v, w) =
1 on [1/2,1] 1 on 3/2</v?+u? <2,

and put do=dx (u) Ade (v, w) €Z5(G). We next take a tubular neiborgood G
of 7,(0) in D(0). We find an interval I, centered at O such that 7, ({) CGC C
D (t) for all tE€I,. So, we may assume 7 (t) =7, (0) for any tEI, We may also
assume that G admits a C* (orientation preseving) transformation T: GG
with T (71(0)) =Co. We denote by T # 0o the pull back of the above go by T, so
that T# 0, €25 (G). If we set 6(x):=T# 0, (resp. 0) in G (resp. R3\G),

then 6 (x) €25 (R®). Note that 6(x) is independent of t €1, Fix t &I, Then we
obtain

70 =]

(w,*&)pm=f mw for V € ZT’(D (t))
7
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Therefore, when we regard & as an element of Z; (D (t)), the harmonic 2-form

Q, (t,+) on D(t) is the orthogonal projection of & (x) to H, (D (t)) in the
second formula of (2.1):

6()=Q:(t,x) F7(t, %), (5.1)

where Q, (¢, x) €EH,(D(t)) and 7(t, x) €B, (D (t)). Note that Q,(¢t, x) + 7 (¢, x)

=0in D () \G. Since Q,(t,*) €EHy (D (t)) for each t €I, we have from
Theorem 5.1 and Lemma 5.2 in [13] the following fact: We find a neighbor-
hood V (¢) of 0D () in R3 such that

1. Q¢ -)€EH, (D) UV(t)) and there esists a unique & (¢, ) €ECY (V
(t)) such that

(i) dd(t,+)=Q(t ) inD@E)UV(), (i) o4(t, -)=0in V(t),

(i) A +)=00naD({t).
We call 4(t, + ) the vector potential of Qz(t, * ) with boundary values 0 in V(t).

2. There exists an element ¢, (¢, + ) €ECT(D(t)) €CL(V(t)) such that

G(+)=Q,(t,*)+dort,*) inDH) UV () (5.2)
A, )+a(t)=0in V(). (5.3)

Since 89 is C® smooth, we may assume that the neighborhood V (t) of @D (t)
is independent of t €1, and so is D (t) UV (t) (if necessary, take a smaller in-
terval I, centered at 0). We thus put V=V (t) and D=D (t) UV (¢) for tE1,.
Hence, Q. (¢, %) is of class C® for (t, x) EloX D. Let k=1, 2. Since & (x) does
not depend on t €1, we have from (5.2) and (5.3)

0*Q, 0%y . T

W(L’)‘i‘d(ﬁk—)(t.')—()m D(2D(0)) (5.4)
—akd(,-)+——ak"‘ (t,+)=0in V(20D(0)). (5.5)
ot* ot*

It follows from (i) and (i) for & (¢, * ) that

d%%)@~ﬁ>{g%myaw=omv (5.6)
5d(ﬁa"t%) t. - )=—(§T';592) (t.-)=0inD. 5.7)

We put

A=) A dxin V. a6)=),al )dninD (6.8)

i=1 i=1

Then conditions (i), (ii) and (i) of & (¢, + ) are written into
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Qe )= ) (4i—AD (. dxiAds in V (5.9)
Z%ﬂ )=0in Vv (5.10)
A (¢, *)=0o0n oD (1), (5.11)

where A1(, ) =241, +) (1<i,7<3). Note that Add = (40— 04) d = —0Q;=
J
0, so that each A;(t, x), i=1, 2, 3 is a harmonic function for x€ V. Given any C®

1-form w=2}.;adx; in a domain of R? we conveniently put Va):=Z(Va,~)
i=1

3 3

dr; and |Vo | &)= Z |Va; &) |F= Z (%)2 (x). By direct calculation we
i-1 Pari

have

Ao ke) =217 026 + ) (@da) »)) (5.12)

IVoF@=lioF@+ldolt@+2 ) (dfai—ale)) (), (6.13)

1<i<;<3

where a}=%(l£i,;‘£3). By (5.9), (5.10), and (5.11) for &, we also have
]

| Q. l2¢ x) =V %) ondD(). (5.14)
We shall show the following foumula: _
3
g 6"A,- GA,
ik ~(0) fa D«»{ Sk one anz](m dS;. (5.15)

i=1

In fact, since 71(t) ~7:(0) in D and *Q,(t, - ) €H, (D) (cZ7(D(0))) for any
t€l,, we have

p (1) = f * Q, (¢ f Q. )A%Q,(0, - ).

Differentiate both sides with respect to ¢, k times, and put t=0. Then we have

—d;‘ﬁ—() fm)aag,fz(o ) A*Q,(0, - ) by (5.16).

- 0oy )
— Jro (at" 0.+ ) A %2 (0, )>by (5.4)

= (0 YA %Q,(0,+) by (5.5).

aD(0) at k
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On the other hand, from (5.8) and (5.9) the integrand is written into

) Ax2,0.9=Y 2410 )5, on a0 (),

ot*
i=1
where
Sl=—(—a§—2 55)4,1)(1 /\dx-l—(%—a—s)dx/\dy etc. on dD(0).
Vo4, _ _
Since (5.11) implies dA; (0, ) = o dx; =0 along @D (0) for j=2, 3, we
i=1
have
0A, 04, 04, aA3) _0A,
N ayd/\dx-i-ad/\d (6+0 dyNdz= andSI

for x €0D (0). Similar results hold for S, and S;. We thus obtain the desired
(5.15).

By applying (3.8) to A;(t, x), we have

0A; 0A;
ot Ong
Consequently, (5.15) for =1 and (5.14) imply foumula (1.8) at t=0.

Let us prove formula (1.9) at t=0. Since A4; (¢, x), i=1, 2, 3, is harmonic
for x€D(t), we can apply (3.9) to A;(t, x) and obtain

aaﬁ Si=kal ) (B 4o (%) on 02

=K,(0,x)|VA; 0, x) |2 on oD (0).

0,7)

Formulas (5.15) for k=2 and (5.14) imply

. . 2 _0 [| o]
o= K0 2P0 Dase+ [ -

Jas.

=[+]. (5.17)

For the sake of simplicity, given any function f (¢, x) or any i-form (¢, x) of
class C! for (¢, x) €EI,X G, where I, is an interval centered at 0 and G is a do-
main in R3, we write

r=20,0, o=220.2, lo =1%o 2.

By (5.4) we replace & in J by —oi. Since i €EC™ (D), it follows from Stokes
formula that

« |12
=[ doilys— [ Aloilan.
x Do)

aD(0)
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3

=2 [ 1Vai lav.+ j; (0){Za;Aa,’]dv,) by (5.8) and (5.12)

i=1

=2(h+/2). (5.18)

Note that the surface integral J is uniquely determined by & (¢, +) but the
volume integrals J; and J» depend on the choice of extension a (¢, * ) into D (¢)
(determined by (5.3)). Since Ao;= (d6—0dd) o1 =ddo; from (5.7), the integ-
ral J, (involving derivatives of the second order for x, y and z of 07) is writ-
ten by means of derivatives of the first order of oy as follows:

jzzf Agi A\ *o;=f (dd) o1 N\ * a7
D(0) D(0)
=fm{d (001 A * o7) —doi Nd * 07}

= doi N\ * o7 — f I 607 IPdv,
) D(0)

aD(o
== f 601 [Pdvs by (5.6).
D@

By (5.18), we thus have
htk= [ A7 oi =1 6oi Dav.
D)

=j;(m{||d0f I2+2 2 ((a) " (@) *— (@) (a)) ')}dvz by (5.13)

1<i<j<3

=I9ilo+z ), [ (@) @) =) @) )by 6.4)
1<i<j<3
=[ Q; [ho+2 Z Lyj.
1<i<;<3
If we put k=1{1, 2, 3}\{i, j}, then we have the following representation of the
volume integral L;; by menas of the surface integral of A; on dD (0):

Ly=—smn(i.i. 0 [ K0 x)z{?—aﬁj (?—aﬁ;)—a—“‘;d(%n"‘—;)}/\dxk. (5.19)

In fact, since _[;D(o) A;i(dA;) Ndx+A; (dA;) Adx,=0, it follows that
Ly=—sgn(i,j, k) f dajNdaj Ndxy
D(0)
=—sgn(i,j, k) famm a;i(daj) Adx; by Stokes formula
1 .. . . . .
=—sgn (3,7, k) LD(O)M; (dA;)) —A;(dAQ)} Adxx by (5.5).

From (3.8) and (5.11) we have
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A;=K,(0, x) g’:i on aD (0)

4Ai= (K, (0, 1)) 22 0A; K, (0, 2)d (gni) along 3D (0)

By substituting these into the above formula, we immediately obtain (5.19).

We put, for x€0D (0),
1(Get) =Gt (G} nase, .20

E0.0= ) senij k) [2q
which is a 2-form on @D (0) such that L;= — K. (0, x)25(0, x). From

1<i<j<3

I
aD(0)
(5.17) it turns out

d’py _ ‘ 0Q, 2 2 =
dt? I+2{ ot 0, ) D(O) 2 aD(0) K1 (0, %)* 50, x)}
2
2‘ 2% 0 0" + f (K, 0, )| Q2 [ (0, x) dSs— 2K, (0, )2 £(0, x))
D(0) 8D(0)

By (3.6), it now suffices for (1.9) to prove
£(0, x) =;1—,|| Q, |2 (0, x)dS; for x €D (0), (5.21)

where 1/0, is the normal curvature of the surface @D (0) in R? for €'g, (=eq,
Xng) at x.

To verify (5.21), let € @D (0). We many assume xo=0€ 0D (0) and ng,
=(0, 0, 1). Thus, @D (0) near 0 in R? is given by

z2=¢ (x, y) where ¢(x, y) =0 (x*+y?). (5.22)

To avoid the ambiguity we write Xx= (x, y, 2) = (x1, 12, 3) and 0= (0, 0, 0) in
R3. We simply put Q;(0, x) =Q,(x), £(0, x) =5(x), and A4;(0, x) =A;(x). By
(5.11), we have

Ai(x)=fi(x) (z—¢(x,y)) for xEU, (5.23)

where U is a neighborhood of 0 in R® and f; € C® (U). It follows from (5.9)
and (5.10) that

VA (0)=1(0,0£(0)) where f3(0) =0
Q:(0) =—£2(0)dy Adz+£,(0)dzAdx.

Hence, || Q: [?(0) =1 (0) 2+ (0)2 and
( —£2(0), /1(0), 0)

eq,(=e)=

Q.10 ||
e'n,(=e)=(el,ez,es)=m(f1(0).fz(0),0). (5.24)
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By (5.22), 0~ (= (x.3)) =1 at x=0. By (5.23), 2A%(0) =/, (0). We care.
fully have

dz=0,d[a%(z—¢(x.y)}=0 (aA) =df;
along 9D (0) at x=0. Since f3(0) =0, it follows from (5.20) that

EO =), sanlij. &) (idfi=fr df) o di

1<i<;<3
__<f2 %‘*‘fl %) 0 dx/\dy (5.25)

On the other hand, equations (5.10), (5.11), and (5.23) imply

(3%>(z—¢(x.y))+f1(x)< %;Q)ﬂz(x)( —Q>+f3(x)—0f0rer

j=1
After defferentiating both sides with respect to x or y, we put x=0. It follows

from $(0, 0) =220, 0) =%y@(o, 0) =0 that

— _Q 0% 0’¢p , . 0°¢
S i Bt Y

evaluated at x=0. We substitute these into (5.25) and obtain

6x

z0=={#58+2nn 3 b 4n )  ane

SAORTAULIIGE a—Qntz(elezﬁﬁf’—ﬂ 92 08) pdxdy by (.20

Ox? Oxdy 2} 00
=] Q. [(0) idx Ady by (3.2).

Since dS; =dx Ady at x=0, (5.21) is proved. Formula (1.9) is completely
proved.

By (5.16) for k=1, it holds |u1(0) |?<p, 0)'

implies

092,

o)

D(0)

. Thus, (1.9)

Corollary 5.1.  If K, (e, t, x) =0 on 0D for all eET, (=T (t),), then

ﬂl—l(t)— is a concave function on I.

=0

6. Examples related to —- O Oy %%

w2 oy?

We use the cylindrical coordinates x= [r, 6, z] in R® so that
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*dr=r dONdz, *d0=% dz/A\dr, *dz=v dr\d @ 6.1)

and dzAdr=drdz>0. We consider the half-plane II and its boundary oII:

N={{=(r, 2)|0<r<+o0, —00<z< + o0}
Il={(0, z)| —c0 <z< + 0},

We identify II with the half (z, z) -plane 7+ in R® with x>0 by (r, z) = (x, 2),
and use the simple notation x= [, 6, z] = [{, 6] ER®. Given a set KTz, (=II),
we denote by €K the z-axially symmetric set in R® obtained by rotating K
around the z-axis, namely, K> ={[{, 0]|{€K, 0<0<2x}.

We shall give explicit formulas of the reproducing i-form % Qs_; (x) for
some examples (D, 7;), where D is a z-axially symmetric domain. Let K C CII
be a double connected domain bounded by two C® smooth closed curves Co
and C, such that 0K =C,—C,. We set K'=II\K, which consists of the bounded
component Ko such that 0Ko=C, and the unbounded one K such that 0K;= —
C, in IL. For =0, 1, we define the z-axially symmetric sets:

D=<KK», X,=<XC;», XZ=0D=2;—22,

so that D’ (=R3\D) consists of a bounded solid torus Dy= € Ky> with 0Dg=
>0 and an unbounded domain D;= € K;> U {the z-axis} with dD;=—2,. We
draw a closed cycle 71 in K such that 71~C; on K, and make a closed surface

72:= <71, which is homologous to > on D. For i=1, 2, we have the repro-
ducing i-form % Q;_; (x) and the harmonic i-module g, for (D, 7).
We here consider the following two differential operators 4* in II:

0> L, 02 .10
£+-0 , 0 10
A= o
and construct two C® functions v* ({) =v* (r, 2) on K which satisfy
0 onC
A*v*=0 in K, v () ={ ’ (6.2)
1 on Ci.

Such functions v* (r,z) are uniquely determined. Differential equations in
(6.2) are called Stokes-Beltrami equations and studied in E. Beltrami [3], A.
Weinstein [10], R. Gilbert [5], etc..

Remark 6. 1. The operator A" is associated with A4~ in the sense
that, if a C? function u ({) satisfies A*«=0 in a simply connected domain X in
I1, then there exists a v ({) €EC?(X) satisfying Av=0 in X such that

Ou_ _10v Ou_10v

o rdz 0z ror

Remark 6. 2 Let XC CII be a domain with smooth boundary and let
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(0, g(8) €C?(X). If we define

o= [ (L LI e | fl:= (s o

then we have

0
{f, @ +x= o r*‘fﬁds;—j;r‘“f Atg dvdz. (6.3)

Using notation (6.2), we have the following expressions of the above * Q;
and i; (1=1, 2):

Thorem 6. 1. It holds for any x= [, 6, z] €D

1 ov~ o~
*Q,(x) = dr———3—dz
( 0z or ) 6.4)
%"v_ |2 x
+ +
* Q) (x) =r(%dr—%dz) Nd6 (6.5)

U= 271'” v* ||-2+K

Proof. We put % w; (x):=+"'(vzdr—vydz) on D. By simple calculation we
have d % w,=—7"'(47v")drAdz=0, so that *w, €27 (D). By (6.1) we have
w,=v;d0ANdz—v;dr AdO= —d (v=d6). For any 6y 0<6,<2m, we put C(6p):

=231N{6=06,}, which is a 1-cycle homologous to 71 on D. Let V 6 € Z7 (D).
Then we have

(o, *wz)D=L—d (v‘dﬁ/\0)=j;D v‘(a/\d0)=fn oAdb

2r
- a)da—zﬂffﬂa

Hence, * Q,= % w,/2m, which proves (6.4).

To prove (6.5), we put * w,=r(v}dr—vidz) AdO on D. We thus have d
¥ w;= (4**)dr AdOAdz=0, so that * w, € Z§ (D). Note that w, =dv* by
(6.1). Let Yo<€z3 (D). Since 21~72 on D, we have

(0', *wl)sz U+O'=f sz [0}
aD P 72

Hence, * w,= * Q,, which proves (6.5).

Now let I= (—p, +p) CR?® To each tE€I, we let correspond a domain K
(t) € CII bounded by two C® smooth curves C; (t) and Co (t) such that 9K (¢)
=C; (t) —Co(t). We assume that 0K (t) varies C® smoothly with ¢t €I in II. In
the 3 dimensional space I X II we put
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#=U k), ax=UJ ¢ ok®).

terl tel

We thus have a variation 4 of domains K (t) in I with parameter t €I such
that

Ht— K@), tEL
For each t €1 and =0, 1, we consider the z-axially symmetric sets in R
DB)=<K®)», Z;0)=<C;)>», ZB)=0oD@)=2:(t) —Zo(t).

In the 4 dimensional space I X R® we put

2=J D), 02= ¢ D).

tel tel
We thus have a variation of domains D (t) in R® with parameter ¢t €1 such that

D:t—D(t), tEIL

Now take a closed curve 7, (¢t) in K (t) such that 7, (t) ~C;(t) on K(t) and 7,
(t) varies smoothly with t €1 in II. We consider the 2-cycle 72 (t): =<7, (t) >,

which is homologous to 21 (t) on D (t). For any t €I we have the reproducing
i-form % Qs ; (t, x) (i=1, 2) and the harmonic i-module g; (t) for (D (t), 7

(t)). By Theorem 6.1, it holds for any x=[{, 8] =[r, 6, z] ED (t)

*Q, (¢, x) =2Lm(v;d7—v;dz) *Q,(t, x) =rwidr—vidz) NdO
) (6.6)
pa(t) =or o= |2 ke 2(t) =27 [|v* ke
where v* (t, {) are C® functions for {€EK () such that
0 on Co(t)
A**(, ) =0in K(¢), *t, 0= 6.7
26 0=0nK®, we0={ """ 6.7)

Let us apply (1.9) and (1.11) for g, (t) and g, (t), and study what these
formulas are reduced to in this special case. We take a C* defining function ¢
(t, ) =o(t, (r,2)) of A defined in a neighborhood U of 04 in I XIL Then ¢
(t, ©) necessarily becomes a C® defining function of 4 (independent of 6).
Fix any point po= (to, {o) = (to, (ro, 20)) EIH. We denote by Ry the unit outer
normal vector of the 2 dim. surface 0 at p,. We consider the 2 dim. plane
TT,n,, which passes through the point po and is generated by the 2 vectors {q,
(0, 0)), np) in IXII, and denote by ¥, the unit tangent vector of the 1 dim.
curve 7,,, NOK at po. We thus have

%—:=the normal curvature of the surface 34 for U; at the point po,
t
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which is called the t-normal curvature of the surface 0X at po. In the half plane
II we denote by = (§, 1) the unit outer normal vector of the 1 dim. curve 0K .
(to) at the point {o, namely,

(&, n)_<”—7ﬁ>uo& where V(p=<%‘:i,%(z£).

Thus, §:= (n, —€&) is the unit tangent vector of 0K (to) at {o. Therefore,

%: = the normal curvature of the curve 9K (t,) for § at the point {o
S
is determined. By simple calculation, we have
1 1
— = ( 20,60+ @2 2) (68)
||V(p||¢n ©rebN T Q2§
1 _ 1 (0ullV ¢ [P —2¢: (@irk+0em) |V @ |+
FRY) 3z X 6.9)
o etV o) + 0 (9rE? =200+ ucn?)

where the right hand sides are evaluated at (to, {o). By (1.3) we defined the
tangent vector field egq, (to, ) on 2 (t,) associated with Q3 (to, ). We consider
the particular points x € 2 (to) such that x=x¢= [{o, 0] = (ro, 0, 20) € 2 (to) N
I1(=0K (t,)). We simply put {eg, (to, x0), €', (to, x0), Nz} = e, €, n}, where nz,
denotes the unit outer normal vector of the surface 2 (to) at the point xo in R?,

and eg, (to, x0) =Nz, X €q, (to, %0). It follows from (6.6) and (6.7) for v~ that
e=(n,0 -8, €=(0,10), n=(£0n).

Since e and €’ are unit tangent vectors of the surface X (t,) in R? at xo, we
have the normal curvatures 1/p0, of 2 (t,) for e and € at x,, respectively. By
(3.1), we also have the t-normal curvature 1/0; of the surface 99 in I XR?® at
the point Py = (to, %0). Since each 2 (t), t €I is obtained by rotating 0K (t)
around the z-axis, we have by direct dalculation

1.1 1.1 1_¢ ( 1 Q@)

— ==, — ==, = K B =\Te -1 .

Pe Os Ot Ot P 1o 1 (to, %0) ||Vg0 | 0t /oo (6.10)
By use of (6.8) and (6.9) we substitute these into (3.5) and (3.6) and
obtain

K, (to, x0) = k3 (to, o), ff‘z (€1, to, x0) =kz (to, Co),

where

k3 (to Go):=

[_9‘1”7 e— 2[ M_@Q_Q ‘
ot? atar ot Or;

a%g).

We here put (r, 72) = (r, z2) and evaluate the right hand side at (t,, ).
Futher, let Vx= [, 6] = (ro, 6, 20) €D (t,), where 0LV §<27x. Namely, x is

I V I
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the point in R? obtained by rotaiting xo = [{o, 0] € 6K (to) positively with
quantity 6 around the z-axis. Then, using again the symmetry of D (t) with re-
spect to the z-axis, we see that

K; (to, x) =K, (to, %0), Ez (eq, to, 1) =kv(e£z;. to, %o).

It follows from (6.6) that the variation formulas (1.9) and (1.11) are re-
duced to

Corollary 6. 1.

;—:2{"1)i (t, - )”i,xu)] =2"0v7:(t’ ")

:K(t)+j;K(t) ki (¢, ©) a 14% 03 0 |dCl

This concrete corollary will be useful in future for the study to find the
view point from which the variation formulas (1.9) and (1.11) are unified.
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