Variation formulas for harmonic modules of domains in \mathbf{R}^{3}

Dedicated to Professor Yukio Kusunoki on his 70th birthday
By

Hiroshi Yamaguchi

1. Introduction

Let D be a domain spread over the complex plane \mathbf{C} with C^{ω} smooth boundary ∂D. Suppose that D has a nono-trivial cycle γ. Then there exists a unique L^{2} harmonic differential σ on D such that $\int_{r} \omega=(\omega, * \sigma)_{D}$ for all C^{∞} closed differentials ω on \bar{D}. We put $\mu=\|\sigma\|_{D}^{2}$. Then $* \sigma$ and μ are called the reproducing differential and the harmonic module for (D, γ) (see L. V. Ahofors [2]). The geometric meaning of μ was originally studied by Y. Kusunoki [6] and R. Accola [1]. We now let the domain $D(t)$ over \mathbf{C} and the cycle $\gamma(t) \subset D$ (t) vary C^{ω} smoothly with a complex parameter t in a disk $B=\{|t|<r\}$, where $D(0)=D$ and $\gamma(0)=\gamma$. For any $t \in B$, we have the reproducing differential $* \sigma$ (t, z) and the harmonic module $\mu(t)$ for $(D(t), \gamma(t))$, so $\mu(t)$ is a function on B. We put $\omega(t, z)=\sigma(t, z)+i * \sigma(t, z)=f(z) d z,\|\omega\|(t, z)=|f(t, z)|$, and $\frac{\partial \omega}{\partial \bar{t}}=\frac{\partial f}{\partial \bar{t}} d z$ for $z \in D(t)$. We here put $\mathscr{D}=\cup_{t \in B}(t, D(t))$ and $\partial \mathscr{D}=U_{t \in B}(t, \partial D$ $(t))$. Thus \mathscr{D} is a complex 2 dimensional domain spread over $B \times \mathbf{C}$. Let $\varphi(t, z)$ be a defining function of $\partial \mathscr{D}$, that is, $\varphi(t, z)$ is a C^{ω} function in a neighborhood \mathscr{V} of $\partial \mathscr{D}$ over $B \times \mathbf{C}$ such that $\mathscr{D} \cap \mathscr{V}$ (resp. $\partial \mathscr{D})=\{\varphi<0$ (resp. $=0)\}$ and $\frac{\partial \varphi}{\partial z} \neq 0$ on $\partial \mathscr{D}$. We define, for $(t, z) \in \partial \mathscr{D}$,

$$
\begin{align*}
& k_{1}(t, z)=\frac{\partial \varphi}{\partial t} /\left|\frac{\partial \varphi}{\partial z}\right| \\
& k_{2}(t, z)=\left\{\frac{\partial^{2} \varphi}{\partial t \partial \bar{t}}\left|\frac{\partial \varphi}{\partial z}\right|^{2}-2 R\left\{\frac{\partial^{2} \varphi}{\partial \bar{t} \partial z} \frac{\partial \varphi}{\partial t} \frac{\partial \varphi}{\partial \bar{z}}\right\}+\left|\frac{\partial \varphi}{\partial t}\right|^{2} \frac{\partial \varphi}{\partial z \partial \bar{z}}\right\} /\left|\frac{\partial \varphi}{\partial z}\right|^{3} . \tag{1.1}
\end{align*}
$$

Note that neither $k_{1}(t, z)$ nor $k_{2}(t, z)$ on $\partial \mathscr{D}$ depends on the choice of $\varphi(t, z)$. In [4] we call $k_{2}(t, z)$ the Levi curvature of $\partial \mathscr{D}$ at (t, z), and proved the following variation formulas:

$$
\frac{\partial \mu(t)}{\partial t}=\frac{1}{2} \int_{\partial D(t)} k_{1}(t, z)\|\omega\|^{2}(t, z)|d z|
$$

$$
\frac{\partial^{2} \mu(t)}{\partial t \partial \bar{t}}=\left\|\frac{\partial \omega}{\partial \bar{t}}(t, \cdot)\right\|_{D(t)}^{2}+\frac{1}{2} \int_{\partial D(t)} k_{2}(t, z)\|\omega\|^{2}(t, z)|d z| .
$$

(See also F. Maitani [8], M. Taniguchi [9], and [12]). So, if \mathscr{D} is pseudoconvex, then $\frac{1}{\mu(t)}$ is a superharmonic function on B.

In this paper we study the case of \mathbf{R}^{3}. Let D be a domain in \mathbf{R}^{3} bounded by a finite number of C^{ω} smooth boundary surfaces ∂D. Suppose that D has a non-trivial i-cycle $\gamma_{i}\left(i=1\right.$ or 2). By H . Weyl [11], there exists a unique L^{2} harmonic i-form $* \Omega_{3-i}$ on D such that

$$
\begin{equation*}
\int_{r i} \omega=\left(\omega, * \Omega_{3-i}\right)_{D} \quad \text { for all } C^{\infty} \text { closed } i \text {-forms } \omega \text { on } \bar{D} \tag{1.2}
\end{equation*}
$$

We call $* \Omega_{3-i}$ and $\mu_{i}=\left\|\Omega_{3-i}\right\|_{D}^{2}$ the reproducing i-form and the harmonic i-module for $\left(D, \gamma_{i}\right)$. Note that Ω_{3-i} is C^{ω} smoothly extended up to ∂D. We write, on \bar{D},

$$
\begin{aligned}
\text { Case } i=1: & \Omega_{2}=\alpha_{1} d y \wedge d z+\alpha_{2} d z \wedge d x+\alpha_{3} d x \wedge d y & \equiv \boldsymbol{\alpha}(x) \cdot * d x \\
\text { Case } i=2: & \Omega_{1}=a_{1} d x+a_{2} d y+a_{3} d z & \equiv \mathbf{a}(x) \cdot d x
\end{aligned}
$$

where $d x=(d x, d y, d z)$. By (1.2), $\mathbf{a}(x)$ and $\boldsymbol{\alpha}(x)$ restricted on ∂D are normal and tangential, respectively. At any $x \in \partial D$ such that $\boldsymbol{\alpha}(x) \neq 0$ (where the set $\{x \in \partial D \mid \boldsymbol{\alpha}(x)=0\}$ is real one dimensional at most), we shall use notation:

$$
\begin{equation*}
\boldsymbol{e}_{\Omega_{2}}(x)=\frac{\boldsymbol{\alpha}(x)}{\|\boldsymbol{\alpha}(x)\|} \tag{1.3}
\end{equation*}
$$

which is called the tangent vector field on ∂D associated with Ω_{2}.
Now let $D(t) \subset \subset \mathbf{R}^{3}$ and $\gamma_{i}(t) \subset D(t)$ vary C^{ω} smoothly with a real parament t in an interval $I=(-\rho, \rho)$, where $D(0)=D$ and $\gamma_{i}(0)=\gamma_{i}$. For any $t \in I$, we have the reproducing i-form $* \Omega_{3-i}(t, x)$ and the harmonic i-module $\mu_{i}(t)$ for $\left(D(t), \gamma_{i}(t)\right)$. When we write $\Omega_{1}(t, x)=\mathbf{a}(t, x) \cdot d x$, we define $\left\|\Omega_{1}\right\|^{2}(t, x)$ $=\|\mathbf{a}(t, x)\|^{2}(\geq 0)$, and $\frac{\partial \Omega_{1}}{\partial t}(t, x)=\frac{\partial \mathbf{a}}{\partial t} \cdot d x$. Analogously, we define $\left\|\Omega_{2}\right\|^{2}(t$, x) and $\frac{\partial \Omega_{2}}{\partial t}(t, x)$. We consider the real 4 dimensional domain $\mathscr{D}=U_{t \in I}(t, D$ $(t))$ in the product space $I \times \mathbf{R}^{3}$, and put $\partial \mathscr{D}=U_{t \in I}(t, \partial \mathrm{D}(t))$. Let $\varphi(t, x)$ be a C^{ω} defining function of $\partial \mathscr{D}$ in $I \times \mathbf{R}^{3}$. Instead of the Levi curvature $k_{2}(t, x)$ in (1.1), we introduce two kinds of curvatures $K_{2}(t, x)$ and $\widetilde{K}_{2}(\boldsymbol{e}, t, x)$ of $\partial \mathscr{D}$ as follows: First let $\boldsymbol{e} \in \mathbf{R}^{3}$ with $\|\boldsymbol{e}\|=1$. For $(t, x) \in \partial \mathscr{D}$, we put

$$
\begin{gather*}
K_{1}(t, x)=\frac{1}{\|\nabla \varphi\|} \frac{\partial \varphi}{\partial t} \tag{1.4}\\
L_{\boldsymbol{e}}(t, x)=\frac{1}{\|\nabla \varphi\|^{3}}\left\{\frac{\partial^{2} \varphi}{\partial t^{2}}\left|\frac{\partial \varphi}{\partial \boldsymbol{e}}\right|^{2}-2 \frac{\partial^{2} \varphi}{\partial t \partial \boldsymbol{e}} \frac{\partial \varphi}{\partial t} \frac{\partial \varphi}{\partial \boldsymbol{e}}+\left|\frac{\partial \varphi}{\partial t}\right|^{2} \frac{\partial^{2} \varphi}{\partial \boldsymbol{e}^{2}}\right\} \tag{1.5}
\end{gather*}
$$

where $\nabla=\left(\partial / \partial x_{i}\right)_{i=1,2,3}$ and $\partial^{j} \varphi / \partial \boldsymbol{e}^{j}=\left[\partial^{j} \varphi(t, x+s \boldsymbol{e}) / \partial s^{j}\right]_{s=0}(j=1,2)$. We
note that neither $K_{1}(t, x)$ nor $L_{e}(t, x)$ on $\partial \mathscr{D}$ depends on the choice of $\varphi(t, x)$. Next, let $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$ form an orthonormal base of \mathbf{R}^{3}. We put

$$
\begin{align*}
K_{2}(t, x) & =L_{e_{1}}(t, x)+L_{e_{2}}(t, x)+L_{e_{3}}(t, x) \\
& =\frac{1}{\|\nabla \varphi\|^{3}}\left\{\frac{\partial^{2} \varphi}{\partial t^{2}}\|\nabla \varphi\|^{2}-2 \sum_{i=1}^{3}\left\{\frac{\partial^{2} \varphi}{\partial t \partial x_{i}} \frac{\partial \varphi}{\partial t} \frac{\partial \varphi}{\partial x_{i}}\right\}+\left|\frac{\partial \varphi}{\partial t}\right|^{2} \Delta \varphi\right\}, \tag{1.6}
\end{align*}
$$

where $\Delta=\sum_{i=1}^{3} \partial^{2} / \partial x_{i}^{2}$. Thus, $K_{2}(t, x)$ is independent of the choice of $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right.$, $\left.\boldsymbol{e}_{3}\right\}$. In [7] we call $K_{2}(t, x)$ the (real) Levi curvature of $\partial \mathscr{D}$ at (t, x). Finally, let \boldsymbol{e} be a unit tangent vector of the surface $\partial D(t)$ in \mathbf{R}^{3} at x, and denote by \boldsymbol{n} the unit outer normal vector of $\partial D(t)$ at x. We put $\boldsymbol{e}^{\prime}=\boldsymbol{n} \times \boldsymbol{e}$ and define

$$
\begin{equation*}
\widetilde{K}_{2}(\boldsymbol{e}, t, x)=L_{\boldsymbol{e}}(t, x)-L_{\boldsymbol{e}^{\prime}}(t, x)+L_{\boldsymbol{n}}(t, x) . \tag{1.7}
\end{equation*}
$$

We denote by $d S_{x}$ the Euclidean surface area element of $\partial D(t)$ at x. Then we shall show the following variation formulas for $t \in I$:

Theorem I.

$$
\begin{gather*}
\frac{d \mu_{1}(t)}{d t}=\int_{\partial D(t)} K_{1}(t, x)\left\|\Omega_{2}\right\|^{2}(t, x) d S_{x} \tag{1.8}\\
\frac{d^{2} \mu_{1}(t)}{d t^{2}}=2\left\|\frac{\partial \Omega_{2}}{\partial t}(t, \cdot)\right\|_{D(t)}^{2}+\int_{\partial D(t)} \widetilde{K}_{2}\left(\boldsymbol{e}_{\Omega_{2}}, t, x\right)\left\|\Omega_{2}\right\|^{2}(t, x) d S_{x} \tag{1.9}
\end{gather*}
$$

Theorem II.

$$
\begin{gather*}
\frac{d \mu_{2}(t)}{d t}=\int_{\partial D(t)} K_{1}(t, x)\left\|\Omega_{1}\right\|^{2}(t, x) d S_{x} \tag{1.10}\\
\frac{d^{2} \mu_{2}(t)}{d t^{2}}=2\left\|\frac{\partial \Omega_{1}}{\partial t}(t, \cdot)\right\|_{D(t)}^{2}+\int_{\partial D(t)} K_{2}(t, x)\left\|\Omega_{1}\right\|^{2}(t, x) d S_{x} \tag{1.11}
\end{gather*}
$$

Since Theorem II can be proved by the combination of the ideas in papers [4] and [7], we give its brief proof in §4. On the other hand, to prove Theorem I, we need a new idea (relevant to the notion of equilibrium surface current density introduced in [13]), which will be precisely discussed in §5. In §6 we shall apply Theorems I and II for the z-axially symmetric domains to show the variation formulas related to the norm of functions which satisfy the following Stokes-Beltrami partial differential equations (see E. Beltrami [3]):

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} \pm \frac{1}{x} \frac{\partial u}{\partial x}=0
$$

The author appreciates the referee for his careful reading the manuscript and his comments.

2. Electromagnetic meaning of harmonic modules

Let D be a bounded domain with C^{ω} smooth surfaces $\sum(=\partial D)$ in \mathbf{R}^{3}. We put $D^{\prime}=\mathbf{R}^{3} \backslash \bar{D}$, where $\bar{D}=D \cup \partial D$. For $i=1$, 2 , we write

$$
\begin{aligned}
& \left.C_{i}^{\infty}(D)\left(\text { resp. } C_{i, 0}^{\infty}(D)\right)=\text { the space of } C^{\infty} \text { (resp. } C_{0}^{\infty}\right) i \text {-forms in } D \\
& Z_{i}^{\infty}(\bar{D})=\text { the space of } C^{\infty} \text { closed } i \text {-forms on } \bar{D} \\
& H_{i}(D)=\text { the space of } L^{2} \text { harmonic } i \text {-forms in } D .
\end{aligned}
$$

We also denote by $B_{i}(D)$ or $Z_{i}(D)$ the closure of $d C_{i-1,0}^{\infty}(D)$ or $Z_{i}^{\infty}(\bar{D})$ in the space $L_{i}^{2}(D)$ of $L^{2} i$-forms in D. Then Weyl's orthogonal decomposition theorems in [11] hold:

$$
\begin{equation*}
L_{i}^{2}(D)=Z_{i}(D) \dot{+} * B_{3-i}(D), \quad Z_{i}(D)=H_{i}(D) \dot{+} B_{i}(D) \tag{2.1}
\end{equation*}
$$

Let $\omega_{i} \in C_{i}^{\infty}(U)$, where $U \supset \supset \sum$. If all theree coefficients of ω_{i} vanish on \sum, we write $\omega_{i}=0$ on \sum. If the restriction $\left.\omega_{i}\right|_{\Sigma}$ of ω_{i} to the surface \sum is 0 as an i-form on \sum, we write $\omega_{i}=0$ along \sum. As an analogue to Ahlfor's definition [2], we put

$$
H_{i 0}(D)=\left\{\omega \in H_{i}(D) \mid \omega \text { is of class } C^{\omega} \text { on } \bar{D} \text { and } \omega=0 \text { along } \sum\right\}
$$

Concerning the reproducing $(3-i)$-form $* \Omega_{i}$ for $\left(D, \gamma_{3-i}\right)$, we see from (1.2) and (2.1) that $\Omega_{i} \in H_{i 0}(D)$.

Let us study the static electromagnetic meaning of Ω_{i} and μ_{i} by simple examples:
[I] For $b>a>0$, let \sum be a solenoid of torus type. That is, consider a circle $C=\{(x, z)=(b-a \cos \phi, a \sin \phi) \mid 0 \leq \phi \leq 2 \pi\}$ in the (x, z)-plane with $x>$ 0 . We rotate C around the z-axis to obtain the torus \sum. We use cylindrical coordinates $[r, \theta, z]$ of \mathbf{R}^{3}. Then the solenoid is the torus \sum equipped with equilibrium surface current density on \sum

$$
J(x) d S_{x}=\frac{1}{2 \pi a r}(z \cos \theta, z \sin \theta, b-r) d S_{x}
$$

where $d S_{x}$ denotes the surface area element of \sum at x (see [13] in detail). We denote by D the solid torus bounded by Σ in \mathbf{R}^{3}. From Biot-Savart's law, the solenoid \sum induces the static magnetic field in $\mathbf{R}^{3} \backslash \sum$:

$$
B(x)=\operatorname{rot}\left(\frac{1}{4 \pi} \int_{\Sigma} \frac{J(y)}{\|y-x\|} d S_{y}\right)=\frac{1}{4 \pi} \int_{\Sigma} \frac{y-x}{\|y-x\|^{3}} \times J(y) d S_{y} .
$$

By use of the symmetry of \sum, we obtain

$$
B(x)= \begin{cases}\frac{1}{2 \pi r}(-\sin \theta, \cos \theta, 0) & \text { for } x \in D \\ 0 & \text { for } x \in D^{\prime}\end{cases}
$$

The magnetic energy of B is defined by

$$
\|B(x)\|_{\mathbf{R}^{3}}^{2}=\int_{D}\left(\frac{1}{2 \pi r}\right)^{2}\left\{(-\sin \theta)^{2}+(\cos \theta)^{2}\right\} d v_{x}=b-\sqrt{b^{2}-a^{2}} .
$$

Now consider a circle $\gamma_{1}=\{(b \cos \theta, b \sin \theta, 0) \mid 0 \leq \theta \leq 2 \pi\}$ in D. We thus have the reproducing 1 -form $* \Omega_{2}=\boldsymbol{\alpha}(x) \cdot d x$ and the harmonic 1 -module μ_{1} for $\left(D, \gamma_{1}\right)$. Then we have the relationship between the harmonic 2 -form Ω_{2} and the magnetic field B :

Proposition 2. 1. $\quad \boldsymbol{\alpha}(x)=\frac{B(x)}{\|B(x)\|_{\mathbf{R}^{3}}^{2}}$ in $D, \quad \mu_{1}=\frac{1}{\|B(x)\|_{\mathbf{R}^{3}}^{2}}$.
Proof. We put $\tau(x)=(2 \pi r)^{-1}(-\sin \theta d y \wedge d z+\cos \theta d z \wedge d x)$ and $p(x)=-$ $(2 \pi)^{-1}(\log r) d z$ in D. Hence, $\tau(x)=d p(x), d * p(x)=0$ in D, and $* \tau=d \theta / 2 \pi$ $\in Z_{1}^{\infty}(\bar{D})$. Let $\forall \omega \in Z_{1}^{\infty}(\bar{D})$. We put $C_{0}:=\{(r, z)=(b-a \cos \phi, a \sin \phi) \mid 0 \leq \phi$ $\leq 2 \pi\}$. For $\forall(r, z) \in C_{0}$, we take a circle on $\partial D: \gamma_{\theta}=\{(r \cos \theta, r \sin \theta, a \sin$ $\phi) \in \partial D \mid 0 \leq \theta \leq 2 \pi\}$. Since $\int_{r_{\theta}}=\int_{r_{1}} \omega$ by $\gamma_{\theta} \sim \gamma_{1}$ on \bar{D}, we have

$$
(\omega, * \tau)_{D}=-\int_{\Sigma} \omega \wedge p=\frac{1}{2 \pi} \int_{C_{0}}\left\{\int_{r_{0}} \omega\right\} \log r d z=\left\{\int_{r_{1}} \omega\right\}\left(b-\sqrt{b^{2}-a^{2}}\right)
$$

Therefore, $* \Omega_{2}=* \tau /\|B(x)\|_{\mathbf{R}^{3}}^{2}$, by which Proposition 2.1 follows.
[II] For $b>a>0$, let D be a condenser of shell type. That is, $D \subset \subset \mathbf{R}^{3}$ is a domain between two concentric electric conductors $K_{a}=\{\|x\| \leq a\}$ and $K_{b}=$ $\{\|x\| \geq b\}$ with charge +1 and -1 , respectively. Hence, $\partial D=C_{b}-C_{a}$ where C_{a}, $C_{b}=\{\|x\|=a, b\}$. By Coulomb's law, their equilibrium density distribution

$$
\rho(x) d S_{x}= \begin{cases}\frac{1}{4 \pi a^{2}} d S_{x} & \text { on } C_{a} \\ \frac{1}{4 \pi b^{2}} d S_{x} & \text { on } C_{b}\end{cases}
$$

induces the static electric field E in $\mathbf{R}^{3} \backslash \sum$ such that

$$
E(x)=\nabla\left(\frac{1}{4 \pi} \int_{C_{b}-C_{a}} \frac{1}{\|y-x\|} \rho(y) d S_{y}\right)=\frac{1}{4 \pi} \int_{C_{b}-C_{a}} \frac{y-x}{\|y-x\|^{3}} \rho(y) d S_{y} .
$$

By simple calculation we obtain

$$
E(x)= \begin{cases}\frac{x}{4 \pi\|x\|^{3}} & \text { for } x \in D \\ 0 & \text { for } x \in D^{\prime}\end{cases}
$$

The electric energy of E is defined by

$$
\|E(x)\|_{\mathbf{R}^{3}}^{2}=\int_{D}\left\|\frac{x}{4 \pi\left\|_{x}\right\|^{3}}\right\|^{2} d v_{x}=\frac{1}{4 \pi}\left(\frac{1}{a}-\frac{1}{b}\right) .
$$

Now consider the positively oriented sphere $\gamma_{2}=\{\|x\|=(a+b) / 2\}$ in D. Then we have the reproducing 2 -form $* \Omega_{1}=\mathbf{a}(x) \cdot * d x$. Then we have the relationship between the harmonic 1 -form Ω_{1} and the electric field E :

Proposition 2. 2. $\quad \mathbf{a}(x)=\frac{E(x)}{\|E(x)\|_{\mathbf{R}^{3}}^{2}} \quad$ in $D, \quad \mu_{2}=\frac{1}{\|E(x)\|_{\mathbf{R}^{3}}^{2}}$.
Proof. We put $\tau(x)=\left(4 \pi\left\|_{x}\right\|^{3}\right)^{-1} \sum_{i=1}^{3} x_{i} d x_{i}$ and $u(x)=-(4 \pi\|x\|)^{-1}$. Then $\tau(x)=d u(x) \in H_{1}(\bar{D})$. Let $\forall \omega \in Z_{2}^{\infty}(\bar{D})$. Since $\gamma_{2} \sim\{\|x\|=a\} \sim\{\|x\|=$ $b\}$ on \bar{D}, we have

$$
(\omega, * \tau)_{D}=\int_{D} d(u \omega)=-\frac{1}{4 \pi} \int_{\partial D} \frac{1}{\|x\|} \omega=\left(\frac{1}{a}-\frac{1}{b}\right) \int_{r_{2}} \omega .
$$

Therefore, $* \Omega_{1}=* \tau /\|E(x)\|_{\mathbf{R}^{3}}^{2}$, by which Proposition 2.2 follows.

3. Smooth variatios and Levi curvatures

Let $I=(-\rho, \rho) \subset \mathbf{R}$. Given any set \mathscr{G} in $I \times \mathbf{R}^{3}$, we put $G(t):=\left\{x \in \mathbf{R}^{3} \mid(t\right.$, $x) \in \mathscr{G}\}$ for each $t \in I$. We call $G(t)$ the fiber of \mathscr{G} at t. Now consider a 4 dimensional domain \mathscr{D} in $I \times \mathbf{R}^{3}$ such that $D(t) \neq 0$ for any $t \in I$. We denote by $\partial \mathscr{D}$ the boundary of \mathscr{D} in $I \times \mathbf{R}^{3}$. We regard \mathscr{D} as a variation of domains $D(t)$ in \mathbf{R}^{3} with parament $t \in I$, and write

$$
\mathscr{D}: t \rightarrow D(t), t \in I
$$

Assume that there exists a C^{ω}-function $\varphi(t, x)$ defined in a neighborhood \mathscr{V} of $\partial \mathscr{D}$ in $I \times \mathbf{R}^{3}$ such that (1) $\mathscr{D} \cap \mathscr{V}=\{(t, x) \in \mathscr{V} \mid \varphi(t, x)<0\}, D(t) \cap V(t)=\{x \in$ $V(t) \mid \varphi(t, x)<0\}$ for $t \in I$, (2) $\nabla \varphi(t, x):=\left(\frac{\partial \varphi}{\partial x_{i}}\right)_{i=1,2,3}(t, x) \neq 0$ for any $x \in \partial D$ (t). Then we say that \mathscr{D} is a C^{ω} smooth variation, and $\varphi(t, x)$ is $a C^{\omega}$ defining function of $\partial \mathscr{D}$. By (3), $\partial D(t)$ for each $t \in I$ is C^{ω} smooth in \mathbf{R}^{3}. We thus have

$$
\mathscr{D}=\bigcup_{t \in I}(t, D(t)), \quad \partial \mathscr{D}=\bigcup_{t \in I}(t, \partial D(t))
$$

In Introduction we defined quantities $L_{\boldsymbol{e}}(t, x), K_{2}(t, x), \widetilde{K}_{2}(\boldsymbol{e}, t, x)$ on $\partial \mathscr{D}$. We shall represent these by means of usual normal curvatures. Let $P=(t, x) \in \partial \mathscr{D}$. First, we denote by \boldsymbol{n}_{P} the unit outer normal vector of the 3 dim . surface $\partial \mathscr{D}$ at the point P in $I \times \mathbf{R}^{3}$. We consider the 2 dim. plane $\pi_{t, n_{P}}$ in $I \times \mathbf{R}^{3}$ which passes through P and is generated by the 2 vectors $\left\{(1,(0,0,0)), \boldsymbol{n}_{P}\right\}$. We denote by \boldsymbol{v}_{t} the unit tangent vector of the 1 dim . curve $\pi_{t, \boldsymbol{n}_{P} \cap} \cap \mathscr{D}$. Thus,

$$
\begin{equation*}
\frac{1}{\rho_{t}}:=\text { the normal curvature of } \partial \mathscr{D} \text { for } \boldsymbol{v}_{t} \text { at the point } P \tag{3.1}
\end{equation*}
$$

is deternined, which is called the t-normal curvature of $\partial \mathscr{D}$ at P. Next, from $x \in$ $\partial D(t) \subset \mathbf{R}^{3}$, we denote by \boldsymbol{n}_{x} the unit outer normal vector of the 2 dim . surface
$\partial \mathscr{D}(t)$ in \mathbf{R}^{3} at the point x and, by $\boldsymbol{T}_{x}\left(=\boldsymbol{T}(t)_{x}\right)$ the set of all unit tangent vectors of $\partial D(t)$ at x. Thus, for any $\boldsymbol{e}=\left(e_{1}, e_{2}, e_{3}\right) \in \boldsymbol{T}_{\boldsymbol{x}}$,

$$
\begin{align*}
\frac{1}{\rho_{e}}: & =\text { the normal curvature of } \partial D(t) \text { for } \boldsymbol{e} \text { at the point } x \\
& =\sum_{i, j=1}^{3}\left(\frac{1}{\|\nabla \varphi\|} \frac{\partial^{2} \varphi}{\partial x_{i} \partial x_{j}}\right)_{(t, x)} e_{i} e_{j} \tag{3.2}
\end{align*}
$$

is determined. Finally, we denote by H and K the mean and the Gaussian curvatures of $\partial D(t)$ at x :

$$
H=\frac{1}{2}\left(\frac{1}{\rho_{1}}+\frac{1}{\rho_{2}}\right), \quad K=\frac{1}{\rho_{1}} \frac{1}{\rho_{2}},
$$

wehre $1 / \rho_{i}(i=1,2)$ are the principal curvatures of $\partial D(t)$ at x such that $1 / \rho_{1} \geq 1 / \rho_{2}$.

Proposition 3. 1. It holds for $(t, x) \in \partial \mathscr{D}$,

$$
L_{\boldsymbol{e}}(t, x)= \begin{cases}K_{1}(t, x)^{2} \frac{1}{\rho_{\boldsymbol{e}}} & \text { for } \boldsymbol{e} \in \boldsymbol{T}_{x} \tag{3.3}\\ \left(1+K_{1}(t, x)^{2}\right)^{3 / 2} \frac{1}{\rho_{t}} & \text { for } \boldsymbol{e}=\boldsymbol{n}_{x}\end{cases}
$$

Proof. Since both sides are invariant under the Euclidean motions, we may assume that $(t, x)=(0,0)$ and $\boldsymbol{n}_{x}(=\boldsymbol{n})=(0,0,1)$. Hence, $\partial \mathscr{D}$ near $(t,(x$, $y, z))=(0,0)$ is represented in the form $z=\phi(t,(x, y))$ where $\phi(0,(x, y))=0$ $\left(x^{2}+y^{2}\right)$, so that $\varphi(t, \boldsymbol{x})=z-\phi(t,(x, y))$ is a defining function of $\partial \mathscr{D}$ near (0 , 0). In case $\boldsymbol{e} \in \boldsymbol{T}_{\boldsymbol{x}}$, we may assume $\boldsymbol{e}=(1,0,0)$. By direct calculation, we have

$$
\begin{gathered}
K_{1}(0,0)=-\frac{\partial \phi}{\partial t}, \quad \frac{1}{\rho_{e}}=-\frac{\partial^{2} \phi}{\partial x^{2}}, \quad \frac{1}{\rho_{t}}=-\frac{\partial^{2} \phi}{\partial t^{2}} /\left(1+\left(\frac{\partial \phi}{\partial t}\right)^{2}\right)^{3 / 2} \\
L_{e}=-\left(\frac{\partial \phi}{\partial t}\right)^{2} \frac{\partial^{2} \phi}{\partial x^{2}}, \quad L_{n}=-\frac{\partial^{2} \phi}{\partial t^{2}}
\end{gathered}
$$

evaluated at $(0,0)$. Proposition 3.1 follows by these formulas.
Let $(t, x) \in \partial \mathscr{D}$ and $\boldsymbol{e} \in \boldsymbol{T}_{\boldsymbol{x}}$. We put $\boldsymbol{n}:=\boldsymbol{n}_{\boldsymbol{x}}$ and $\boldsymbol{e}^{\prime}:=\boldsymbol{n}_{\boldsymbol{x}} \times \boldsymbol{e} \in \boldsymbol{T}_{\boldsymbol{x}}$. We can consider the normal curvatures $1 / \rho_{e}$ and $1 / \rho_{e^{\prime}}$ of the surface $\partial D(t)$ for \boldsymbol{e} and \boldsymbol{e}^{\prime} at x, respectively. Concerning $K_{2}(t, x)$ and $\widetilde{K}_{2}(\boldsymbol{e}, t, x)$ defined by (1.6) and (1.7) we have from (3.3).

$$
\begin{align*}
K_{2}(t, x) & =\left(1+K_{1}(t, x)^{2}\right)^{3 / 2} \quad \frac{1}{\rho_{t}}+K_{1}(t, x)^{2}\left(\frac{1}{\rho_{e}}+\frac{1}{\rho_{e^{\prime}}}\right) \tag{3.4}\\
\widetilde{K}_{2}(\boldsymbol{e}, t, x) & =\left(\left(1+K_{1}(t, x)^{2}\right)^{3 / 2} \frac{1}{\rho_{t}}+K_{1}(t, x)^{2}\left(\frac{1}{\rho_{e}}-\frac{1}{\rho_{e^{\prime}}}\right)\right. \tag{3.5}\\
& =K_{2}(t, x)-2 K_{1}(t, x)^{2} \frac{1}{\rho_{e^{\prime}}} . \tag{3.6}
\end{align*}
$$

We shall study the geometric meaning of $K_{1}(t, x)$ and $K_{2}(t, x)$. Let $x_{0} \in \partial D$ (0) and let $C_{x_{0}}: x=\boldsymbol{x}(t)$ for $t \in I$ be the orthogonal trajectory passing through x_{0} of the family of surfaces $\{\partial D(t)\}_{t \in I}$. Namely, $x=\boldsymbol{x}(t)$ is the solution of the following differential equation in I :

$$
\begin{equation*}
\dot{\boldsymbol{x}}=-K_{1}(t, \boldsymbol{x}) \boldsymbol{n}_{x} \quad \text { with } \quad \boldsymbol{x}(0)=x_{0}, \tag{3.7}
\end{equation*}
$$

where we put $\boldsymbol{n}_{x}=\boldsymbol{n}_{\boldsymbol{x}(t)}$ and $\dot{\boldsymbol{x}}=d \boldsymbol{x}(t) / d t$. Therefore, if we put $\widehat{\partial D(t)}=(t, \partial D$ $(t))$ and $\widehat{C_{x 0}}=\bigcup_{t \in I}\left(t, C_{x 0}(t)\right)$ in $I \times \mathbf{R}^{3}$, then we have the following two coordinations of $\partial \mathscr{D}$:

$$
\partial \mathscr{D}=\bigcup_{t \in I} \widehat{\partial D(t)}=\bigcup_{x_{0} \in \partial D(0)} \widehat{C_{x_{0}}} \text { such that } \widehat{C_{x_{0}}} \perp \widehat{\partial D(t)}
$$

for $\forall t \in I$ and $\forall x_{0} \in \partial D(0)$. By simple calculation we have

$$
L_{\boldsymbol{n}}(t, \boldsymbol{x}(t))=\frac{d}{d t} K_{1}(t, \boldsymbol{x}(t)) \quad \text { for } t \in I
$$

so that $\ddot{\boldsymbol{x}}=-L_{\boldsymbol{n}}(t, \boldsymbol{x}) \boldsymbol{n}_{x}-K_{1}(t, \boldsymbol{x})\left(\partial \boldsymbol{n}_{x} / \partial t\right)$ on I. Since $\boldsymbol{n}_{x} \perp\left(\partial \boldsymbol{n}_{x} / \partial t\right)$ on $C_{x_{0}}$, it follows from (3.7) that

$$
K_{1}(t, \boldsymbol{x})=-\dot{\boldsymbol{x}}(t) \cdot \boldsymbol{n}_{x}, \quad L_{\boldsymbol{n}}(t, \boldsymbol{x})=-\dot{\boldsymbol{x}}(t) \cdot \boldsymbol{n}_{\boldsymbol{x}}
$$

We assume $\dot{\boldsymbol{x}}(t) \neq 0$, and denote by s the arc length of $C_{x_{0}}$ such that $d s / d t>0$. We put $\boldsymbol{x}^{(i)}=d^{i} \boldsymbol{x} / d s^{i}(i=1,2)$, and define $\varepsilon:= \pm 1$ according to $\boldsymbol{x}^{\prime}=\mp \boldsymbol{n}_{x}$. In general, ± 1 changes to ∓ 1 along the envelope of the family of surfaces $\{\partial D$ $(t)\}_{t \in I}$. Since $\dot{\boldsymbol{x}}=(d s / d t) \boldsymbol{x}^{\prime}$ and $\ddot{\boldsymbol{x}}=\left(d s^{2} / d t^{2}\right) \boldsymbol{x}^{\prime}+(d s / d t)^{2} \boldsymbol{x}^{\prime \prime}$, it follows from $\boldsymbol{x}^{\prime \prime} \perp \boldsymbol{n}_{x}$ that, for $\forall \boldsymbol{e} \in \boldsymbol{T}_{\boldsymbol{x}}$,

$$
\begin{gathered}
L_{\boldsymbol{e}}(t, x)=\left(\frac{d s}{d t}\right)^{2} \frac{1}{\rho_{e}}, \quad L_{\boldsymbol{e}^{\prime}}(t, x)=\left(\frac{d s}{d t}\right)^{2} \frac{1}{\rho_{e^{\prime}}}, \quad L_{\boldsymbol{n}}(t, x)=\varepsilon \frac{d^{2} s}{d t^{2}}, \\
K_{1}(t, x)=\varepsilon \frac{d s}{d t}, \quad K_{2}(t, x)=\varepsilon \frac{d^{2} s}{d t^{2}}+2\left(\frac{d s}{d t}\right)^{2} H(t, x) .
\end{gathered}
$$

We give sufficient conditions for which $K_{2}(t, x)$ or $\widetilde{K}_{2}(t, x) \geq 0$ on $\partial \mathscr{D}$.
Proposition 3.2. 1. If \mathscr{D} is a convex domain in \mathbf{R}^{4}, then $K_{2}(t, x) \geq 0$ on $\partial \mathscr{D}$.
2. (a) If $\frac{1}{\rho_{t}} \geq \frac{4}{3 \sqrt{3}}|\mathrm{H}|$ on $\partial \mathscr{D}$, then $K_{2}(t, x) \geq 0$.
(b) If $\frac{1}{\rho_{t}} \geq \frac{4}{3 \sqrt{3}} \sqrt{H^{2}-K}$ on $\partial \mathscr{D}$, then $\widetilde{K}_{2}(\boldsymbol{e}, t, x) \geq 0$ for all $\boldsymbol{e} \in \boldsymbol{T}_{x}$.

Proof. If \mathscr{D} is convex in \mathbf{R}^{4}, then $L_{\boldsymbol{e}}(t, x), L_{\boldsymbol{e}^{\prime}}(t, x)$, and $L_{\boldsymbol{n}}(t, x) \geq 0$ on $\partial \mathscr{D}$, by which 1 follows. By (3.4), we have

$$
K_{2}=\frac{1}{\rho_{t}}\left(1+K_{1}^{2}\right)^{3 / 2}+2 K_{1}^{2} H \geq\left(1+K_{1}^{2}\right)^{3 / 2}\left\{\frac{1}{\rho_{t}}-\frac{4}{\sqrt{3}}|H|\right\},
$$

by which 2 (a) follows. By (3.5), we have

$$
\widetilde{K}_{2} \geq\left(1+K_{1}^{2}\right)^{3 / 2}\left\{\frac{1}{\rho_{t}}-\frac{2}{3 \sqrt{3}}\left(\frac{1}{\rho_{1}}-\frac{1}{\rho_{2}}\right)\right\}
$$

by which 2 (b) follows.
The following proposition will be useful in this paper:
Proposition 3. 3. Let $u(t, x)$ be a C^{ω} function in a neighborhood \mathscr{V} of $\partial \mathscr{D}$ in $I \times \mathbf{R}^{3}$ such that $\partial \mathscr{D}(t) \subset \subset V(t) \subset \mathbf{R}^{3}$ for each $t \in I$. Assume that
(1) $u(t, x)=$ const. c on each component of $\partial \mathscr{D}$,
(2) For any fixed $t \in I, u(t, x)$ is harmonic for $x \in V(t)$.

Then it holds for $(t, x) \in \partial \mathscr{D}$ such that $\frac{\partial u}{\partial n_{x}}(t, x) \neq 0$,

$$
\begin{gather*}
\frac{\partial u}{\partial t}=K_{1}(t, x) \frac{\partial u}{\partial n_{x}} \tag{3.8}\\
\frac{\partial^{2} u}{\partial t^{2}}=\left\{K_{2}(t, x)\left(\frac{\partial u}{\partial n_{x}}\right)^{2}+\frac{\partial}{\partial n_{x}}\left(\frac{\partial u}{\partial t}\right)^{2}\right\} /\left(\frac{\partial u}{\partial n_{x}}\right) . \tag{3.9}
\end{gather*}
$$

Proof. Let $\left(t_{0}, x_{0}\right) \in \partial \mathscr{D}$ at which $\partial u / \partial n_{x} \neq 0$. Say, $\left(\partial u / \partial n_{x}\right)\left(t_{0}, x_{0}\right)>0$. Then, from (1), $(u(t, x)-c)$ in \mathscr{V} is a C^{ω} defining function of $\partial \mathscr{D}$ near $\left(t_{0}, x_{0}\right)$, and $\frac{\partial u}{\partial n_{x}}=\|\nabla u\|$ at $\left(t_{0}, x_{0}\right)$. So, definition (1.4) of $K_{1}\left(t_{0}, x_{0}\right)$ implies (3.8). Further, since $\frac{\partial u}{\partial x_{i}} / \frac{\partial u}{\partial n_{x}}=\cos \theta_{i}$, where θ_{i} is the angle between \boldsymbol{n}_{x} and the x_{i}-axis, we have

$$
2 \sum_{i=1}^{3}\left\{\frac{\partial u}{\partial t} \frac{\partial^{2} u}{\partial t \partial x_{i}} \frac{\partial u}{\partial x_{i}} / \frac{\partial u}{\partial n_{x}}\right\}=\frac{\partial}{\partial n_{x}}\left(\frac{\partial u}{\partial t}\right)^{2} \text { at }\left(t_{0}, x_{0}\right) .
$$

So, formula (1.6) of $K_{2}(t, x)$ under condition (2) implies

$$
K_{2}\left(t_{0}, x_{0}\right)=\left\{\frac{\partial^{2} u}{\partial t^{2}} \frac{\partial u}{\partial n_{x}}-\frac{\partial}{\partial n_{x}}\left(\frac{\partial u}{\partial t}\right)^{2}\right\} /\left(\frac{\partial u}{\partial n_{x}}\right)^{2} \quad \text { at }\left(t_{0}, x_{0}\right),
$$

by which (3.9) follows.

4. Proof of Theorem II

Let $D \subset \subset \mathbf{R}^{3}$ be a domain bounded by C^{ω} smooth boundary surfaces ∂D. We denote by $\left\{C_{j}\right\}_{j=1, \cdots, q}$ the boundary components of D, so that $\partial D=\sum_{j=1}^{q} C_{j}$. Then D carries the harmonic function $u_{j}(x)$ such that

$$
u_{j}(x)= \begin{cases}1 & \text { on } C_{j} \\ 0 & \text { on } \partial D \backslash C_{j} .\end{cases}
$$

We call $u_{j}(x)$ the harmonic measure for $\left(D, C_{j}\right)$. Let γ_{j} be a 2 -cycle in D such
that $\gamma_{j} \sim C_{j}$ (homologous) on \bar{D}, and denote by $* \Omega_{j}(x)$ and $\mu_{2}(t)$ the reproducing 2 -form and the harmonic 2 -module for (D, γ_{j}). By Stokes formula we then have $\Omega_{j}(x)=d u_{j}(x)$ on \bar{D}.

Let $\mathscr{D}: t \rightarrow D(t), t \in I$ be a C^{ω} smooth variation. For each $t \in I$, we denote by $\left.\left\{C_{j}(t)\right)\right\}_{j=1, \cdots, q}$ the boundary components of the domain $D(t)$ such that ∂D $(t)=\sum_{j=1}^{q} C_{j}(t)$, and by $u_{j}(t, x)$ the harmonic measure for $\left(D(t), C_{j}(t)\right)$. Let γ_{2} (t) be a 2 -cycle in $D(t)$ which varies smoothly with $t \in I$ in \mathscr{D}. Therefore, γ_{2} $(t) \sim \sum_{j=1}^{q} n_{j} C_{j}(t)$ on $\overline{D(t)}$, where n_{j} are integers independent of $t \in I$. We denote by $* \Omega_{1}(t, x)$ the reproducing 2 -form for $\left(D(t), \gamma_{2}(t)\right)$. We have $\Omega_{1}(t, x)$ $=d U(t, x)$, where $U(t, x)=\sum_{j=1}^{q} n_{j} u_{j}(t, x)$. Let us prove (1.10) and (1.11). It suffices to prove these at $t=0$. Since $\partial \mathscr{D}$ is C^{ω} smooth, we find a small interval $I_{0}(\subset I)$ centered at 0 such that, for any $t \in I_{0}, U(t, x)$ is harmonic on $\overline{D(0)}$ and $\gamma_{2}(t) \sim \gamma_{2}(0)$ in $D(0) \cup D(t)$. Then
$\mu_{2}(t)=\int_{r_{2}(0)} * \Omega_{1}(t, x)=\left(\Omega_{1}(t, \cdot), \Omega_{1}(0, \cdot)\right)_{D(0)}=\int_{\partial D(0)} U(t, x) * d U(0, x)$.
After differentiating both sides with respect to $t, k(=1,2)$ times, we put $t=0$ to obtain

$$
\begin{equation*}
\frac{\partial^{k} \mu_{2}}{d t^{k}}(0)=\left(\frac{\partial^{k} \Omega_{1}}{\partial t^{k}}(0, \cdot), \Omega_{1}(0, \cdot)\right)_{D(0)}=\int_{\partial D(0)} \frac{\partial^{k} U}{\partial t^{k}}(0, x) * d U(0, x) \tag{4.3}
\end{equation*}
$$

Since $U(t, x)$ is const. on each component of $\partial \mathscr{D}$, it follows by (3.8) that

$$
\frac{\partial U}{\partial t}=K_{1}(t, x) \frac{\partial U}{\partial n_{x}} \quad \text { on } \partial \mathscr{D} .
$$

Note that $* d U(0, x)=\frac{\partial U(0, x)}{\partial n_{x}} d S_{x}$ along $\partial D(0)$. Applying (3.8) for $k=1$, we thus obtain

$$
\frac{\partial \mu_{2}}{\partial t}(0)=\int_{\partial D(0)} K_{1}(0, x)\left(\frac{\partial U}{\partial n_{x}}(0, x)\right)^{2} d S_{x}
$$

Since\| $\Omega_{1} \|^{2}(0, x)=\left(\frac{\partial U(0, x)}{\partial n_{x}}\right)^{2}$ on $\partial D(0)$, we have (1.10). To prove (1.11), we get by (3.9)

$$
\frac{\partial^{2} U}{\partial t^{2}}=\left\{K_{2}(t, x)\left(\frac{\partial U}{\partial n_{x}}\right)^{2}+\frac{\partial}{\partial n_{x}}\left(\frac{\partial U}{\partial t}\right)^{2}\right\} /\left(\frac{\partial U}{\partial n_{x}}\right) \quad \text { on } \partial \mathscr{D} .
$$

Applying (4.3) for $k=2$, we obtain by Stokes formula

$$
\begin{aligned}
\frac{d^{2} \mu_{2}}{d t^{2}}(0) & =\int_{\partial D(0)} K_{2}(0, x)\left(\frac{\partial U}{\partial n_{x}}(0, x)\right)^{2} d S_{x}+\int_{\partial D(0)} \frac{\partial}{\partial n_{x}}\left(\frac{\partial U}{\partial t}(0, x)\right)^{2} d S_{x} \\
& =\int_{\partial D(0)} K_{2}(0, x)\left\|\Omega_{1}\right\|^{2}(0, x) d S_{x}+\int_{D(0)} \Delta\left(\frac{\partial U}{\partial t}(0, x)\right)^{2} d v_{x}
\end{aligned}
$$

Since $\Delta\left(\frac{\partial U}{\partial t}\right)(0, x)=0$ and $\frac{\partial \Omega_{1}}{\partial t}(0, x)=d\left(\frac{\partial U}{\partial t}\right)(0, x)$ on $\overline{D(0)}$, the last integral is equal to

$$
2 \int_{D(0)}\left\{\left(\frac{\partial^{2} U}{\partial t \partial x}\right)^{2}+\left(\frac{\partial^{2} U}{\partial t \partial y}\right)^{2}+\left(\frac{\partial^{2} U}{\partial t \partial z}\right)^{2}+\frac{\partial U}{\partial t} \Delta\left(\frac{\partial U}{\partial t}\right)\right\}_{(0, x)} d v_{x}=2\left\|\frac{\partial \Omega_{1}}{\partial t}(0, x)\right\|_{D(0)}^{2}
$$

which proves (1.11).
Corollary 4.1. If $K_{2}(t, x) \geq 0$ on $\partial \mathscr{D}$, then $\frac{1}{\mu_{2}(t)}$ is a concave function on I.

Proof. Assume $K_{2}(t, x) \geq 0$ on $\partial \mathscr{D}$. Then, (1.11) implies $\mu^{\prime \prime}(t) \geq 2\left\|\frac{\partial \Omega_{1}}{\partial t}\right\|_{D(t)}^{2}$, and (4.3) implies $\left|\mu_{1}^{\prime}(t)\right| \leq \mu_{1}(t)\left\|\frac{\partial \Omega_{1}}{\partial t}\right\|_{D(t)}^{2}$. Hence, $\left(\frac{1}{\mu_{2}(t)}\right)^{\prime \prime} \geq 0$.

5. Proof of Theorem I

Let $\mathscr{D}: t \rightarrow D(t), t \in I$ be a C^{ω} smooth variation and let a 1-cycle $\gamma_{1}(t)$ in D (t) vary smoothly with parament $t \in I$. For $t \in I$, we denote by $* \Omega_{2}(t, \cdot)$ and $\mu_{1}(t)$ the reproducing 1 -form and the harmonic 1 -module for $\left(D(t), \gamma_{1}(t)\right)$. Let us prove (1.8) and (1.9). It suffices to prove these at $t=0$. We may assume that each $\gamma_{1}(t)$ is a C^{∞} closed curve in $D(t)$. Like in [13] we need a rather concrete costruction of the 2 -form $\Omega_{2}(t, x)$. We first take the u-axially symmetric solid torus G : $=L \times A$ in the (u, v, w)-space \mathbf{R}^{3} such that $L=\{\mid u$ $\mid<1\}$, and $A=\left\{1 / 2<\sqrt{v^{2}+w^{2}}<2\right\}$. In G, we take the circle $C_{0}=\{(0, \cos \theta$, $\sin \theta) \mid 0 \leq \theta \leq 2 \pi\}$ and the rectangle $S_{0}=L \times\{(v, 0) \in A \mid 1 / 2<v<2\}$, so that S_{0} $\times C_{0}$ (intersection number) $=1$. We here construct C^{∞} functions $\chi(u)$ on \bar{L} and $\varphi(v, w)$ on \bar{A} such that

$$
\chi(u)=\left\{\begin{array}{ll}
0 & \text { on }[-1,-1 / 2] \\
1 & \text { on }[1 / 2,1]
\end{array} \quad \varphi(v, w)= \begin{cases}0 & \text { on } 1 / 2 \leq \sqrt{v^{2}+w^{2}} \leq 2 / 3 \\
1 & \text { on } 3 / 2 \leq \sqrt{v^{2}+w^{2}} \leq 2\end{cases}\right.
$$

and put $\sigma_{0}=d \chi(u) \wedge d \varphi(v, w) \in Z_{20}^{\infty}(G)$. We next take a tubular neiborgood \widetilde{G} of $\gamma_{1}(0)$ in $D(0)$. We find an interval I_{0} centered at 0 such that $\gamma_{1}(t) \subset \widetilde{G} \subset \subset$ $D(t)$ for all $t \in \mathrm{I}_{0}$. So, we may assume $\gamma_{1}(t)=\gamma_{1}(0)$ for any $t \in I_{0}$. We may also assume that \widetilde{G} admits a C^{∞} (orientation preseving) transformation $T: \widetilde{G} \mapsto G$ with $T\left(\gamma_{1}(0)\right)=C_{0}$. We denote by $T \# \sigma_{0}$ the pull back of the above σ_{0} by T, so that $T \# \sigma_{0} \in Z_{20}^{\infty}(\widetilde{G})$. If we set $\tilde{\sigma}(x):=T \# \sigma_{0}$ (resp. 0) in $\widetilde{G}\left(\right.$ resp. $\left.\mathbf{R}^{3} \backslash \widetilde{G}\right)$, then $\tilde{\sigma}(x) \in Z_{20}^{\infty}\left(\mathbf{R}^{3}\right)$. Note that $\tilde{\sigma}(x)$ is independent of $t \in I_{0}$. Fix $t \in I_{0}$. Then we obtain

$$
(\omega, * \tilde{\sigma})_{D(t)}=\int_{r_{1}(t)} \omega \quad \text { for } \forall \in Z_{1}^{\infty}(\overline{D(t)}) .
$$

Therefore, when we regard $\tilde{\sigma}$ as an element of $Z_{2}(D(t))$, the harmonic 2-form $\Omega_{2}(t, \cdot)$ on $\overline{D(t)}$ is the orthogonal projection of $\tilde{\sigma}(x)$ to $H_{2}(D(t))$ in the second formula of (2.1):

$$
\begin{equation*}
\tilde{\sigma}(x)=\Omega_{2}(t, x) \dot{+} \tau(t, x), \tag{5.1}
\end{equation*}
$$

where $\Omega_{2}(t, x) \in H_{2}(D(t))$ and $\tau(t, x) \in B_{2}(D(t))$. Note that $\Omega_{2}(t, x)+\tau(t, x)$ $=0$ in $D(t) \backslash \widetilde{G}$. Since $\Omega_{2}(t, \cdot) \in H_{20}(D(t))$ for each $t \in I_{0}$, we have from Theorem 5.1 and Lemma 5.2 in [13] the following fact: We find a neighborhood $V(t)$ of $\partial D(t)$ in \mathbf{R}^{3} such that

1. $\Omega_{2}(t, \cdot) \in H_{2}(D(t) \cup V(t))$ and there esists a unique $\mathscr{A}(t, \cdot) \in C_{1}^{\omega}(V$ $(t))$ such that
(i) $d \mathscr{A}(t, \cdot)=\Omega_{2}(t, \cdot)$ in $D(t) \cup V(t)$,
(ii) $\delta \mathscr{A}(t, \cdot)=0$ in $V(t)$,
(iii) $\mathscr{A}(t, \cdot)=0$ on $\partial D(t)$.

We call $\mathscr{A}(t, \cdot)$ the vector potential of $\Omega_{2}(t, \cdot)$ with boundary values 0 in $V(t)$.
2. There exists an element $\sigma_{1}(t, \cdot) \in C_{1}^{\infty}(D(t)) \subset C_{1}^{\omega}(V(t))$ such that

$$
\begin{gather*}
\tilde{\sigma}(\cdot)=\Omega_{2}(t, \cdot)+d \sigma_{1}(t, \cdot) \text { in } D(t) \cup V(t) \tag{5.2}\\
\mathscr{A}(t, \cdot)+\sigma_{1}(t, \cdot)=0 \text { in } V(t) . \tag{5.3}
\end{gather*}
$$

Since $\partial \mathscr{D}$ is C^{ω} smooth, we may assume that the neighborhood $V(t)$ of $\partial D(t)$ is independent of $t \in I_{0}$ and so is $D(t) \cup V(t)$ (if necessary, take a smaller interval I_{0} centered at 0$)$. We thus put $V=V(t)$ and $\widetilde{D}=D(t) \cup V(t)$ for $t \in I_{0}$. Hence, $\Omega_{2}(t, x)$ is of class C^{ω} for $(t, x) \in I_{0} \times \widetilde{D}$. Let $k=1,2$. Since $\tilde{\sigma}(x)$ does not depend on $t \in I_{0}$, we have from (5.2) and (5.3)

$$
\begin{align*}
& \frac{\partial^{k} \Omega_{2}}{\partial t^{k}}(t, \cdot)+d\left(\frac{\partial^{k} \sigma_{1}}{\partial t^{k}}\right)(t, \cdot)=0 \text { in } \widetilde{D}(\supset \overline{D(0)}) \tag{5.4}\\
& \frac{\partial^{k} \mathscr{A}}{\partial t^{k}}(t, \cdot)+\frac{\partial^{k} \sigma_{1}}{\partial t^{k}}(t, \cdot)=0 \text { in } V(\supset \partial D(0)) \tag{5.5}
\end{align*}
$$

It follows from (i) and (ii) for $\mathscr{A}(t, \cdot)$ that

$$
\begin{align*}
\delta\left(\frac{\partial^{k} \sigma_{1}}{\partial t^{k}}\right)(t, \cdot) & =-\left(\frac{\partial^{k}}{\partial t^{k}} \delta \mathscr{A}\right)(t, \cdot)=0 \text { in } V \tag{5.6}\\
\delta d\left(\frac{\partial^{k} \sigma_{1}}{\partial t^{k}}\right)(t, \cdot) & =-\left(\frac{\partial^{k}}{\partial t^{k}} \delta \Omega_{2}\right)(t, \cdot)=0 \text { in } \widetilde{D} . \tag{5.7}
\end{align*}
$$

We put

$$
\begin{equation*}
\mathscr{A}(t, \cdot)=\sum_{i=1}^{3} A_{i}(t, \cdot) d x_{i} \text { in } V, \quad \sigma_{1}(t, \cdot)=\sum_{i=1}^{3} a_{i}(t, \cdot) d x_{i} \text { in } \widetilde{D} . \tag{5.8}
\end{equation*}
$$

Then conditions (i), (ii) and (iii) of $\mathscr{A}(t, \cdot)$ are written into

$$
\begin{align*}
\Omega_{2}(t, \cdot)= & \sum_{1 \leq i<j \leq 3}\left(A_{j}^{i}-A_{i}^{j}\right)(t, \cdot) d x_{i} \wedge d x_{j} \text { in } V \tag{5.9}\\
& \sum_{j=1}^{3} \frac{\partial A_{j}}{\partial x_{j}}(t, \cdot)=0 \text { in } V \tag{5.10}\\
& A_{i}(t, \cdot)=0 \text { on } \partial D(t), \tag{5.11}
\end{align*}
$$

where $A_{i}^{j}(t, \cdot)=\frac{\partial A_{i}}{\partial x_{j}}(t, \cdot)(1 \leq i, j \leq 3)$. Note that $\Delta \mathscr{A}=(d \delta-\delta d) \mathscr{A}=-\delta \Omega_{2}=$ 0 , so that each $A_{i}(t, x), i=1,2,3$ is a harmonic function for $x \in V$. Given any C^{∞} 1 -form $\omega=\sum_{i=1}^{3} \alpha_{i} d x_{i}$ in a domain of \mathbf{R}^{3}, we conveniently put $\nabla \omega:=\sum_{i=1}^{3}\left(\nabla \alpha_{i}\right)$ $d x_{i}$ and $\|\nabla \omega\|^{2}(x):=\sum_{i=1}^{3}\left\|\nabla \alpha_{i}(x)\right\|^{2}=\sum_{i, j=1}^{3}\left(\frac{\partial \alpha_{i}}{\partial x_{j}}\right)^{2}(x)$. By direct calculation we have

$$
\begin{gather*}
\Delta\left(\|\omega\|^{2}(x)\right)=2\left(\|\nabla \omega\|^{2}(x)+\sum_{i=1}^{3}\left(\alpha_{i} \Delta \alpha_{i}\right)(x)\right) \tag{5.12}\\
\|\nabla \omega\|^{2}(x)=\|d \omega\|^{2}(x)+\|\delta \omega\|^{2}(x)+2 \sum_{1 \leq_{i}<j \leq 3}\left(\alpha_{j}^{i} \alpha_{i}^{j}-\alpha_{i}^{i} \alpha_{j}^{j}\right)(x), \tag{5.13}
\end{gather*}
$$

where $\alpha_{i}^{j}=\frac{\partial \alpha_{i}}{\partial x_{j}}(1 \leq i, j \leq 3)$. By (5.9), (5.10), and (5.11) for \mathscr{A}, we also have

$$
\begin{equation*}
\left\|\Omega_{2}\right\|^{2}(t, x)=\|\nabla \mathscr{A}\|^{2}(t, x) \quad \text { on } \partial D(t) . \tag{5.14}
\end{equation*}
$$

We shall show the following foumula:

$$
\begin{equation*}
\frac{d^{k} \mu_{1}}{d t^{k}}(0)=\int_{\partial D(0)}\left\{\sum_{i=1}^{3} \frac{\partial^{k} A_{i} \partial A_{i}}{\partial t^{k} \partial n_{x}}\right\}_{(0, x)} d S_{x} \tag{5.15}
\end{equation*}
$$

In fact, since $\gamma_{1}(t) \sim \gamma_{1}(0)$ in \widetilde{D} and $* \Omega_{2}(t, \cdot) \in H_{1}(\widetilde{D})\left(\subset Z_{1}^{\infty}(\overline{D(0)})\right)$ for any $t \in I_{0}$, we have

$$
\mu_{1}(t)=\int_{r_{1}(0)} * \Omega_{2}(t, \cdot)=\int_{D(0)} \Omega_{2}(t, \cdot) \wedge * \Omega_{2}(0, \cdot)
$$

Differentiate both sides with respect to t, k times, and put $t=0$. Then we have

$$
\begin{aligned}
\frac{d^{k} \mu_{1}}{d t^{k}}(0) & =\int_{D(0)} \frac{\partial^{k} \Omega_{2}}{\partial t^{k}}(0, \cdot) \wedge * \Omega_{2}(0, \cdot) \text { by }(5.16) \\
& =-\int_{D(0)} d\left(\frac{\partial^{k} \sigma_{1}}{\partial t^{k}}(0, \cdot) \wedge * \Omega_{2}(0, \cdot)\right) \text { by } \\
& =\int_{\partial D(0)} \frac{\partial^{k} \mathscr{A}}{\partial t^{k}}(0, \cdot) \wedge * \Omega_{2}(0, \cdot) \text { by }
\end{aligned}
$$

On the other hand, from (5.8) and (5.9) the integrand is written into

$$
\frac{\partial^{k} \mathscr{A}}{\partial t^{k}}(0, \cdot) \wedge * \Omega_{2}(0, \cdot) \equiv \sum_{i=1}^{3} \frac{\partial^{k} A_{i}}{\partial t^{k}}(0, \cdot) S_{i} \quad \text { on } \partial D(0),
$$

where

$$
S_{1}=-\left(\frac{\partial A_{2}}{\partial x}-\frac{\partial A_{1}}{\partial y}\right) d z \wedge d x+\left(\frac{\partial A_{1}}{\partial z}-\frac{A_{3}}{\partial x}\right) d x \wedge d y \text { etc. on } \partial D(0) .
$$

Since (5.11) implies $d A_{j}(0, \cdot)=\sum_{i=1}^{3} \frac{\partial A_{j}}{\partial x_{i}} d x_{i}=0$ along $\partial D(0)$ for $j=2$, 3, we have

$$
S_{1}=\frac{\partial A_{1}}{\partial y} d z \wedge d x+\frac{\partial A_{1}}{\partial z} d x \wedge d y-\left(\frac{\partial A_{2}}{\partial y}+\frac{\partial A_{3}}{\partial z}\right) d y \wedge d z=\frac{\partial A_{1}}{\partial n_{x}} d S_{x}
$$

for $x \in \partial D(0)$. Similar results hold for S_{2} and S_{3}. We thus obtain the desired (5.15).

By applying (3.8) to $A_{i}(t, x)$, we have

$$
\left.\frac{\partial A_{i}}{\partial t} \frac{\partial A_{i}}{\partial n_{x}}\right|_{(0, x)}=K_{1}(0, x)\left\|\nabla A_{i}(0, x)\right\|^{2} \quad \text { on } \partial D(0) .
$$

Consequently, (5.15) for $k=1$ and (5.14) imply foumula (1.8) at $t=0$.
Let us prove formula (1.9) at $t=0$. Since $A_{i}(t, x), i=1,2,3$, is harmonic for $x \in D(t)$, we can apply (3.9) to $A_{i}(t, x)$ and obtain

$$
\frac{\partial^{2} A_{i}}{\partial t^{2}} \frac{\partial A_{i}}{\partial n_{x}}=K_{2}(t, x)\left(\frac{\partial A_{i}}{\partial n_{x}}\right)^{2}+\frac{\partial}{\partial n_{x}}\left(\frac{\partial A_{i}}{\partial t}\right)^{2} \quad \text { on } \partial \mathscr{D} .
$$

Formulas (5.15) for $k=2$ and (5.14) imply

$$
\begin{align*}
\frac{d^{2} \mu_{1}}{d t^{2}}(0) & =\int_{\partial D(0)} K_{2}(0, \cdot)\left\|\Omega_{2}\right\|^{2}(0, x) d S_{x}+\int_{\partial D(0)} \frac{\partial}{\partial n_{x}}\left\{\left\|\frac{\partial \mathscr{A}}{\partial t}\right\|^{2}(0, x)\right\} d S_{x} \\
& \equiv I+J . \tag{5.17}
\end{align*}
$$

For the sake of simplicity, given any function $f(t, x)$ or any i-form $\omega(t, x)$ of class C^{1} for $(t, x) \in I_{0} \times G$, where I_{0} is an interval centered at 0 and G is a domain in \mathbf{R}^{3}, we write

$$
f^{\cdot}=\frac{\partial f}{\partial t}(0, x), \quad \omega^{\cdot}=\frac{\partial \omega}{\partial t}(0, x), \quad\left\|\omega^{\cdot}\right\|^{2}=\left\|\frac{\partial \omega}{\partial t}\right\|^{2}(0, x)
$$

By (5.4) we replace \mathscr{A}^{\bullet} in J by $-\sigma_{\mathrm{i}}$. Since $\sigma_{\mathrm{i}} \in C^{\infty}(\widetilde{D})$, it follows from Stokes formula that

$$
J=\int_{\partial D(0)} \frac{\partial\left\|\sigma_{\mathrm{i}}\right\|^{2}}{\partial n_{x}} d S_{x}=\int_{D(0)} \Delta\left\|\sigma_{\mathrm{i}}\right\|^{2} d v_{x}
$$

$$
\begin{align*}
& =2\left(\int_{D(0)}\left\|\nabla \sigma_{\mathrm{i}}\right\|^{2} d v_{x}+\int_{D(0)}\left\{\sum_{i=1}^{3} a_{i} \Delta a_{i}\right\} d v_{x}\right) \quad \text { by }(5.8) \text { and } \tag{5.12}\\
& \equiv 2\left(J_{1}+J_{2}\right) \tag{5.18}
\end{align*}
$$

Note that the surface integral J is uniquely determined by $\mathscr{A}(t, \cdot)$ but the volume integrals J_{1} and J_{2} depend on the choice of extension $\sigma_{1}(t, \cdot)$ into $D(t)$ (determined by (5.3)). Since $\Delta \sigma_{i}=(d \delta-\delta d) \sigma_{i}=d \delta \sigma_{i}$ from (5.7), the integ. ral J_{2} (involving derivatives of the second order for x, y and z of σ_{i}) is written by means of derivatives of the first order of σ_{i} as follows:

$$
\begin{aligned}
J_{2} & =\int_{D(0)} \Delta \sigma_{\mathrm{i}} \wedge * \sigma_{\mathrm{i}}=\int_{D(0)}(d \delta) \sigma_{\mathrm{i}} \wedge * \sigma_{\mathrm{i}}^{*} \\
& =\int_{D(0)}\left\{d\left(\delta \sigma_{\mathrm{i}}^{\cdot} \wedge * \sigma_{\mathrm{i}}^{\cdot}\right)-\delta \sigma_{\mathrm{i}}^{\cdot} \wedge d * \sigma_{\mathrm{i}}^{\cdot}\right\} \\
& =\int_{\partial D(0)} \delta \sigma_{\mathrm{i}} \wedge * \sigma_{\mathrm{i}}-\int_{D(0)}\left\|\delta \sigma_{\mathrm{i}}\right\|^{2} d v_{x} \\
& =-\int_{D(0)}\left\|\delta \sigma_{\mathrm{i}}\right\|^{2} d v_{x} \text { by }(5.6) .
\end{aligned}
$$

By (5.18), we thus have

$$
\begin{align*}
J_{1}+J_{2} & =\int_{D(0)}\left\{\left\|\nabla \sigma_{1}\right\|^{2}-\left\|\delta \sigma_{1}\right\|\right\} d v_{x} \\
& =\int_{D(0)}\left\{\left\|d \sigma_{i}^{i}\right\|^{2}+2 \sum_{1 \leq i<j \leq 3}\left(\left(a_{j}^{i}\right) \cdot\left(a_{i}^{j}\right) \cdot-\left(a_{i}^{i}\right) \cdot\left(a_{j}^{j}\right) \cdot\right)\right\} d v_{x} \text { by } \tag{5.13}\\
& =\left\|\Omega_{2}\right\|_{D(0)}^{2}+2 \sum_{1 \leq_{i}<j \leq 3} \int_{D(0)}\left(\left(a_{j}^{i}\right) \cdot\left(a_{i}^{j}\right) \cdot-\left(a_{i}^{i}\right) \cdot\left(a_{j}^{j}\right) \cdot\right) d v_{x} \text { by } \tag{5.4}\\
& \equiv\left\|\Omega_{2}\right\|_{D(0)}^{2}+2 \sum_{1 \leq i<j \leq 3} L_{i j}
\end{align*}
$$

If we put $k=\{1,2,3\} \backslash\{i, j\}$, then we have the following representation of the volume integral $L_{i j}$ by menas of the surface integral of A_{i} on $\partial D(0)$:

$$
\begin{equation*}
L_{i j}=-\operatorname{sgn}(i, j, k) \int_{\partial D(0)} K_{1}(0, x)^{2}\left\{\frac{\partial A_{j}}{\partial n_{x}} d\left(\frac{\partial A_{j}}{\partial n_{x}}\right)-\frac{\partial A_{j}}{\partial n_{x}} d\left(\frac{\partial A_{i}}{\partial n_{x}}\right)\right\} \wedge d x_{k} \tag{5.19}
\end{equation*}
$$

In fact, since $\int_{\partial D(0)} A_{i}\left(d A_{\dot{j}}\right) \wedge d x_{k}+A_{\dot{j}}\left(d A_{i}\right) \wedge d x_{k}=0$, it follows that

$$
\begin{aligned}
L_{i j} & =-\operatorname{sgn}(i, j, k) \int_{D(0)} d a_{i} \wedge d a_{j} \wedge d x_{k} \\
& =-\operatorname{sgn}(i, j, k) \int_{\partial D(0)} a_{i}\left(d a_{j}\right) \wedge d x_{k} \text { by Stokes formula } \\
& \left.=-\frac{1}{2} \operatorname{sgn}(i, j, k) \int_{\partial D(0)}\left\{A_{i}\left(d A_{\dot{j}}\right)\right)-A_{j}(d A \dot{i})\right\} \wedge d x_{k} \text { by } \quad \text { (5.5). }
\end{aligned}
$$

From (3.8) and (5.11) we have

$$
\begin{aligned}
& A_{i}=K_{1}(0, x) \frac{\partial A_{i}}{\partial n_{x}} \text { on } \partial D(0) \\
& d A_{i}=\left(d K_{1}(0, x)\right) \frac{\partial A_{i}}{\partial n_{x}}+K_{1}(0, x) d\left(\frac{\partial A_{i}}{\partial n_{x}}\right) \text { along } \partial D(0) .
\end{aligned}
$$

By substituting these into the above formula, we immediately obtain (5.19).
We put, for $x \in \partial D(0)$,

$$
\begin{equation*}
\Xi(0, x)=\sum_{1 \leq_{i}<j \leq 3} \operatorname{sgn}(i, j, k)\left\{\frac{\partial A_{i}}{\partial n_{x}} d\left(\frac{\partial A_{j}}{\partial n_{x}}\right)-\frac{\partial A_{i}}{\partial n_{x}} d\left(\frac{\partial A_{i}}{\partial n_{x}}\right)\right\} \wedge d x_{k} \tag{5.20}
\end{equation*}
$$

which is a 2 -form on $\partial D(0)$ such that $L_{i j}=-\int_{\partial D(0)} K_{1}(0, x)^{2} \Xi(0, x)$. From (5.17) it turns out

$$
\begin{aligned}
\frac{d^{2} \mu_{1}}{d t^{2}} & =I+2\left\{\left\|\frac{\partial \Omega_{2}}{\partial t}(0, x)\right\|_{D(0)}^{2}-2 \int_{\partial D(0)} K_{1}(0, x)^{2} \Xi(0, x)\right\} \\
& =2\left\|\frac{\partial \Omega_{2}}{\partial t}(0, x)\right\|_{D(0)}^{2}+\int_{\partial D(0)}\left\{K_{2}(0, x)\left\|\Omega_{2}\right\|^{2}(0, x) d S_{x}-2 K_{1}(0, x)^{2} \Xi(0, x)\right\}
\end{aligned}
$$

By (3.6), it now suffices for (1.9) to prove

$$
\begin{equation*}
\Xi(0, x)=\frac{1}{\rho_{e^{\prime}}}\left\|\Omega_{2}\right\|^{2}(0, x) d S_{x} \text { for } x \in \partial D(0), \tag{5.21}
\end{equation*}
$$

where $1 / \rho_{\boldsymbol{e}^{\prime}}$ is the normal curvature of the surface $\partial D(0)$ in \mathbf{R}^{3} for $\boldsymbol{e}_{\Omega_{2}}^{\prime}\left(=\boldsymbol{e}_{\Omega_{2}}\right.$ $\times \boldsymbol{n}_{x}$) at x.

To verify (5.21), let $x_{0} \in \partial D(0)$. We many assume $x_{0}=0 \in \partial D(0)$ and $\boldsymbol{n}_{x_{0}}$ $=(0,0,1)$. Thus, $\partial D(0)$ near 0 in \mathbf{R}^{3} is given by

$$
\begin{equation*}
z=\phi(x, y) \text { where } \phi(x, y)=O\left(x^{2}+y^{2}\right) . \tag{5.22}
\end{equation*}
$$

To avoid the ambiguity we write $\boldsymbol{x}=(x, y, z)=\left(x_{1}, x_{2}, x_{3}\right)$ and $\mathbf{0}=(0,0,0)$ in \mathbf{R}^{3}. We simply put $\Omega_{2}(0, \boldsymbol{x})=\Omega_{2}(\boldsymbol{x}), \boldsymbol{\Xi}(0, \boldsymbol{x})=\boldsymbol{\Xi}(\boldsymbol{x})$, and $A_{i}(0, \boldsymbol{x})=A_{i}(\boldsymbol{x})$. By (5.11), we have

$$
\begin{equation*}
A_{i}(\boldsymbol{x})=f_{i}(\boldsymbol{x})(z-\phi(x, y)) \quad \text { for } \boldsymbol{x} \in U, \tag{5.23}
\end{equation*}
$$

where U is a neighborhood of $\mathbf{0}$ in \mathbf{R}^{3} and $f_{i} \in C^{\omega}(U)$. It follows from (5.9) and (5.10) that

$$
\begin{aligned}
& \nabla A_{i}(\mathbf{0})=\left(0,0 f_{i}(\mathbf{0})\right) \text { where } f_{3}(\mathbf{0})=0 \\
& \Omega_{2}(\mathbf{0})=-f_{2}(\mathbf{0}) d y \wedge d z+f_{1}(\mathbf{0}) d z \wedge d x
\end{aligned}
$$

Hence, $\left\|\Omega_{2}\right\|^{2}(\mathbf{0})=f_{1}(\mathbf{0})^{2}+f_{2}(\mathbf{0})^{2}$ and

$$
\begin{align*}
& \boldsymbol{e}_{\Omega_{2}}(=\boldsymbol{e})=\frac{1}{\left\|\Omega_{2}\right\|(\mathbf{0})}\left(-f_{2}(\mathbf{0}), f_{1}(\mathbf{0}), 0\right) \\
& \boldsymbol{e}_{\Omega_{2}}^{\prime}\left(=\boldsymbol{e}^{\prime}\right)=\left(e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right)=\frac{1}{\left\|\Omega_{2}\right\|(\mathbf{0})}\left(f_{1}(\mathbf{0}), f_{2}(\mathbf{0}), 0\right) \tag{5.24}
\end{align*}
$$

$\mathrm{By}(5.22), \frac{\partial}{\partial n_{x}}(z-\phi(x, y))=1$ at $\boldsymbol{x}=\mathbf{0}$. By (5.23), $\frac{\partial A_{i}}{\partial n_{x}}(\mathbf{0})=f_{i}(\mathbf{0})$. We carefully have

$$
d z=0, d\left\{\frac{\partial}{\partial n_{x}}(z-\phi(x, y)\}=0,\left(\frac{\partial A_{i}}{\partial n_{x}}\right)=d f_{i}\right.
$$

along $\partial D(0)$ at $\boldsymbol{x}=\mathbf{0}$. Since $f_{3}(\mathbf{0})=0$, it follows from (5.20) that

$$
\begin{align*}
\Xi(\mathbf{0}) & =\left.\sum_{1 \leq_{i}<j \leq 3} \operatorname{sgn}(i, j, k)\left(f_{i} d f_{j}-f_{j} d f_{i}\right)\right|_{x=0} \wedge d x_{k} \\
& =-\left.\left(f_{2} \frac{\partial f_{3}}{\partial y}+f_{1} \frac{\partial f_{3}}{\partial x}\right)\right|_{x=0} d x \wedge d y \tag{5.25}
\end{align*}
$$

On the other hand, equations (5.10), (5.11), and (5.23) imply

$$
\left(\sum_{j=1}^{3} \frac{\partial f_{j}}{\partial x_{j}}\right)(z-\phi(x, y))+f_{1}(\boldsymbol{x})\left(-\frac{\partial \phi}{\partial x}\right)+f_{2}(\boldsymbol{x})\left(-\frac{\partial \phi}{\partial y}\right)+f_{3}(\boldsymbol{x})=0 \text { for } \boldsymbol{x} \in U
$$

After defferentiating both sides with respect to x or y, we put $\boldsymbol{x}=\mathbf{0}$. It follows from $\phi(0,0)=\frac{\partial \phi}{\partial x}(0,0)=\frac{\partial \phi}{\partial y}(0,0)=0$ that

$$
\frac{\partial f_{3}}{\partial x}=f_{1} \frac{\partial^{2} \phi}{\partial x^{2}}+f_{2} \frac{\partial^{2} \phi}{\partial x \partial y}, \quad \frac{\partial f_{3}}{\partial y}=f_{1} \frac{\partial^{2} \phi}{\partial x \partial y}+f_{2} \frac{\partial^{2} \phi}{\partial y^{2}}
$$

evaluated at $\boldsymbol{x}=\mathbf{0}$. We substitute these into (5.25) and obtain

$$
\begin{aligned}
\Xi(\mathbf{0}) & =-\left\{f_{1}^{2} \frac{\partial^{2} \phi}{\partial x^{2}}+2 f_{1} f_{2} \frac{\partial^{2} \phi}{\partial x \partial y}+f_{2}^{2} \frac{\partial^{2} \phi}{\partial y^{2}}\right\}_{x=0} d x \wedge d y \\
& =-\left(f_{1}(\mathbf{0})^{2}+f_{2}(\mathbf{0})^{2}\right)\left\{\left(e_{1}^{\prime}\right)^{2} \frac{\partial^{2} \phi}{\partial x^{2}}+2 e_{1}^{\prime} e_{2}^{\prime} \frac{\partial^{2} \phi}{\partial x \partial y}+\left(e_{2}^{\prime}\right)^{2} \frac{\partial^{2} \phi}{\partial y^{2}}\right\}_{(0,0)} d x \wedge d y \text { by } \\
& =\left\|\Omega_{2}\right\|^{2}(\mathbf{0}) \frac{1}{\rho_{e^{\prime}}} d x \wedge d y \text { by }(3.2)
\end{aligned}
$$

Since $d S_{x}=d x \wedge d y$ at $\boldsymbol{x}=0$, (5.21) is proved. Formula (1.9) is completely proved.

By (5.16) for $k=1$, it holds $\left|\mu_{1}^{\prime}(0)\right|^{2} \leq \mu_{1}(0)\left\|\frac{\partial \Omega_{2}}{\partial t}(0, \cdot)\right\|_{D(0)}^{2}$. Thus, (1.9) implies

Corollary 5. 1. If $\widetilde{K}_{2}(\boldsymbol{e}, t, x) \geq 0$ on ∂D for all $\boldsymbol{e} \in \boldsymbol{T}_{x}\left(=\boldsymbol{T}(t){ }_{x}\right)$, then $\frac{1}{\mu_{1}(t)}$ is a concave function on I.
6. Examples related to $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}} \pm \frac{1}{x} \frac{\partial u}{\partial x}=0$

We use the cylindrical coordinates $x=[r, \theta, z]$ in \mathbf{R}^{3} so that

$$
\begin{equation*}
* d r=r d \theta \wedge d z, * d \theta=\frac{1}{r} d z \wedge d r, * d z=r d r \wedge d \theta \tag{6.1}
\end{equation*}
$$

and $d z \wedge d r=d r d z>0$ ．We consider the half－plane Π and its boundary $\partial \Pi$ ：

$$
\begin{gathered}
\Pi=\{\zeta=(r, z) \mid 0<r<+\infty,-\infty<z<+\infty\} \\
\partial \Pi=\{(0, z) \mid-\infty<z<+\infty\} .
\end{gathered}
$$

We identify Π with the half (x, z)－plane π_{+}in \mathbf{R}^{3} with $x>0$ by $(r, z)=(x, z)$ ， and use the simple notation $x=[r, \theta, z]=[\zeta, \theta] \in \mathbf{R}^{3}$ ．Given a set $K \subset \pi_{+}(=\Pi)$ ， we denote by $<K 》$ the z－axially symmetric set in \mathbf{R}^{3} obtained by rotating K around the z－axis，namely，$<K \gg=\{[\zeta, \theta] \mid \zeta \in K, 0 \leq \theta \leq 2 \pi\}$ ．

We shall give explicit formulas of the reproducing i－form $* \Omega_{3-i}(x)$ for some examples $\left(D, \gamma_{i}\right)$ ，where D is a z－axially symmetric domain．Let $K \subset \subset \Pi$ be a double connected domain bounded by two C^{ω} smooth closed curves C_{0} and C_{1} such that $\partial K=C_{1}-C_{0}$ ．We set $K^{\prime}=\Pi \backslash \bar{K}$ ，which consists of the bounded component K_{0}^{\prime} such that $\partial K_{0}^{\prime}=C_{0}$ and the unbounded one K_{1}^{\prime} such that $\partial K_{1}^{\prime}=-$ C_{1} in Π ．For $j=0$ ， 1 ，we define the z－axially symmetric sets：

$$
D=\ll K \gg, \quad \sum_{j}=\ll C_{j} \gg, \quad \sum=\partial D=\sum_{1}-\sum_{0},
$$

so that $D^{\prime}\left(=\mathbf{R}^{3} \backslash \bar{D}\right)$ consists of a bounded solid torus $D_{0}^{\prime}=《 K_{0}^{\prime} 》$ with $\partial D_{0}^{\prime}=$ \sum_{0} and an unbounded domain $D_{1}^{\prime}=\ll K_{1}^{\prime} 》 \cup\left\{\right.$ the z－axis\} with $\partial D_{1}^{\prime}=-\sum_{1}$ ．We draw a closed cycle γ_{1} in K such that $\gamma_{1} \sim C_{1}$ on \bar{K} ，and make a closed surface $\gamma_{2}:=\left\langle\gamma_{1}\right\rangle$ ，which is homologous to \sum_{1} on \bar{D} ．For $i=1$ ， 2 ，we have the repro－ ducing i－form $* \Omega_{3-i}(x)$ and the harmonic i－module μ_{i} for $\left(D, \gamma_{i}\right)$ ．

We here consider the following two differential operators $\Delta^{ \pm}$in Π ：

$$
\Delta^{ \pm}=\frac{\partial^{2}}{\partial r^{2}}+\frac{\partial^{2}}{\partial z^{2}} \pm \frac{1}{r} \frac{\partial}{\partial r}
$$

and construct two C^{ω} functions $v^{ \pm}(\zeta)=v^{ \pm}(r, z)$ on \bar{K} which satisfy

$$
\Delta^{ \pm} v^{ \pm}=0 \text { in } K, \quad v^{ \pm}(\zeta)= \begin{cases}0 & \text { on } C_{0} \tag{6.2}\\ 1 & \text { on } C_{1}\end{cases}
$$

Such functions $v^{ \pm}(r, z)$ are uniquely determined．Differential equations in （6．2）are called Stokes－Beltrami equations and studied in E．Beltrami［3］，A． Weinstein［10］，R．Gilbert［5］，etc．．

Remark 6．1．The operator Δ^{+}is associated with Δ^{-}in the sense that，if a C^{2} function $u(\zeta)$ satisfies $\Delta^{+} u=0$ in a simply connected domain X in Π ，then there exists a $v(\zeta) \in C^{2}(X)$ satisfying $\Delta^{-} v=0$ in X such that

$$
\frac{\partial u}{\partial r}=-\frac{1}{r} \frac{\partial v}{\partial z}, \quad \frac{\partial u}{\partial z}=\frac{1}{r} \frac{\partial v}{\partial r}
$$

Remark 6．2 Let $X \subset \subset \Pi$ be a domain with smooth boundary and let
$f(\zeta), g(\zeta) \in C^{2}(\bar{X})$. If we define

$$
\langle f, g\rangle_{ \pm, X}:=\int_{X} r^{ \pm 1}\left\{\frac{\partial f}{\partial r} \frac{\partial g}{\partial r}+\frac{\partial f}{\partial z} \frac{\partial g}{\partial z}\right\} d r d z, \quad\|f\|_{ \pm, X}^{2}:=\langle f, f\rangle_{ \pm, X},
$$

then we have

$$
\begin{equation*}
\langle f, g\rangle_{ \pm, X}=\int_{\partial X} r^{ \pm 1} f \frac{\partial g}{\partial n_{\zeta}} d s_{\zeta}-\int_{X} r^{ \pm 1} f \Delta^{ \pm} g d r d z \tag{6.3}
\end{equation*}
$$

Using notation (6.2), we have the following expressions of the above $* \Omega_{i}$ and $\mu_{i}(i=1,2)$:

Thorem 6. 1. It holds for any $x=[r, \theta, z] \in D$

$$
\begin{align*}
& \left\{\begin{aligned}
* \Omega_{2}(x) & =\frac{1}{2 \pi r}\left(\frac{\partial v^{-}}{\partial z} d r-\frac{\partial v^{-}}{\partial r} d z\right) \\
\mu_{1} & =\frac{1}{2 \pi}\left\|v^{-}\right\|_{-, K}^{2}
\end{aligned}\right. \tag{6.4}\\
& \left\{\begin{aligned}
* \Omega_{1}(x) & =r\left(\frac{\partial v^{+}}{\partial z} d r-\frac{\partial v^{+}}{\partial r} d z\right) \wedge d \theta \\
\mu_{2} & =2 \pi\left\|v^{+}\right\|_{+, K}^{2}
\end{aligned}\right. \tag{6.5}
\end{align*}
$$

Proof. We put $* \omega_{2}(x):=r^{-1}\left(v_{z}^{-} d r-v_{r}^{-} d z\right)$ on \bar{D}. By simple calculation we have $d * \omega_{2}=-r^{-1}\left(\Delta^{-} v^{-}\right) d r \wedge \mathrm{~d} z=0$, so that $* \omega_{2} \in Z_{1}^{\infty}(\bar{D})$. By (6.1) we have $\omega_{2}=v_{z}^{-} d \theta \wedge d z-v_{r}^{-} d r \wedge d \theta=-d\left(v^{-} d \theta\right)$. For any $\theta_{0}: 0 \leq \theta_{0}<2 \pi$, we put $C\left(\theta_{0}\right)$: $=\sum_{1} \cap\left\{\theta=\theta_{0}\right\}$, which is a 1 -cycle homologous to γ_{1} on \bar{D}. Let $\forall \sigma \in Z_{1}^{\infty}(\bar{D})$. Then we have

$$
\begin{aligned}
\left(\sigma, * \omega_{2}\right)_{D} & =\int_{D}-d\left(v^{-} d \theta \wedge \sigma\right)=\int_{\partial D} v^{-}(\sigma \wedge d \theta)=\int_{\Sigma 1} \sigma \wedge d \theta \\
& =\int_{0}^{2 \pi}\left(\int_{C(\theta)} \sigma\right) d \theta=2 \pi \int_{r 1} \sigma .
\end{aligned}
$$

Hence, $* \Omega_{2}=* \omega_{2} / 2 \pi$, which proves (6.4).
To prove (6.5), we put $* \omega_{1}=r\left(v_{z}^{+} d r-v_{r}^{+} d z\right) \wedge d \theta$ on \bar{D}. We thus have d $* \omega_{1}=\left(\Delta^{+} v^{+}\right) d r \wedge d \theta \wedge d z=0$, so that $* \omega_{1} \in Z_{2}^{\infty}(\bar{D})$. Note that $\omega_{1}=d v^{+}$by (6.1). Let $\forall \sigma \in Z_{2}^{\infty}(\bar{D})$. Since $\sum_{1} \sim \gamma_{2}$ on \bar{D}, we have

$$
\left(\sigma, * \omega_{1}\right)_{D}=\int_{\partial D} v^{+} \sigma=\int_{\Sigma_{1}} \sigma=\int_{\gamma_{2}} \sigma
$$

Hence, $* \omega_{1}=* \Omega_{1}$, which proves (6.5).
Now let $I=(-\rho,+\rho) \subset \mathbf{R}^{3}$. To each $t \in I$, we let correspond a domain K $(t) \subset \subset \Pi$ bounded by two C^{ω} smooth curves $C_{1}(t)$ and $C_{0}(t)$ such that $\partial K(t)$ $=C_{1}(t)-C_{0}(t)$. We assume that $\partial K(t)$ varies C^{ω} smoothly with $t \in I$ in Π. In the 3 dimensional space $I \times \Pi$ we put

$$
\mathscr{K}=\bigcup_{t \in I}(t, K(t)), \quad \partial \mathscr{K}=\bigcup_{t \in I}(t, \partial K(t))
$$

We thus have a variation \mathcal{K} of domains $K(t)$ in Π with parameter $t \in I$ such that

$$
\mathscr{K}: t \rightarrow K(t), t \in I .
$$

For each $t \in I$ and $j=0$, 1 , we consider the z-axially symmetric sets in \mathbf{R}^{3} :

$$
D(t)=\ll K(t) \gg, \quad \sum_{j}(t)=\ll C_{j}(t) \gg, \quad \sum(t)=\partial D(t)=\sum_{1}(t)-\sum_{0}(t) .
$$

In the 4 dimensional space $I \times \mathbf{R}^{3}$ we put

$$
\mathscr{D}=\bigcup_{t \in I}(t, D(t)), \quad \partial \mathscr{D}=\bigcup_{t \in I}(t, \partial D(t))
$$

We thus have a variation of domains $D(t)$ in \mathbf{R}^{3} with parameter $t \in I$ such that

$$
\mathscr{D}: t \rightarrow D(t), t \in I
$$

Now take a closed curve $\gamma_{1}(t)$ in $K(t)$ such that $\gamma_{1}(t) \sim C_{1}(t)$ on $\overline{K(t)}$ and γ_{1} (t) varies smoothly with $t \in I$ in Π. We consider the 2-cycle $\gamma_{2}(t):=《 \gamma_{1}(t) \gg$, which is homologous to $\sum_{1}(t)$ on $\overline{D(t)}$. For any $t \in I$ we have the reproducing i-form $* \Omega_{3-i}(t, x)(i=1,2)$ and the harmonic i-module $\mu_{i}(t)$ for $\left(D(t), \gamma_{i}\right.$ $(t))$. By Theorem 6.1, it holds for any $x=[\zeta, \theta]=[r, \theta, z] \in \overline{D(t)}$

$$
\left\{\begin{array}{c}
* \Omega_{2}(t, x)=\frac{1}{2 \pi r}\left(v_{z}^{-} d r-v_{r}^{-} d z\right) \tag{6.6}\\
\mu_{1}(t)
\end{array}=\frac{1}{2 \pi}\left\|v^{-}\right\|_{-, K(t)}^{2} \quad\left\{\begin{array}{c}
* \Omega_{1}(t, x)=r\left(v_{z}^{+} d r-v_{r}^{+} d z\right) \wedge d \theta \\
\mu_{2}(t)=2 \pi\left\|v^{+}\right\|_{+, K(t)}^{2}
\end{array}\right.\right.
$$

where $v^{ \pm}(t, \zeta)$ are C^{ω} functions for $\zeta \in \overline{K(t)}$ such that

$$
\Delta^{ \pm} v^{ \pm}(t, \zeta)=0 \text { in } K(t), \quad v^{ \pm}(t, \zeta)=\left\{\begin{array}{l}
0 \text { on } C_{0}(t) \tag{6.7}\\
1 \text { on } C_{1}(t)
\end{array}\right.
$$

Let us apply (1.9) and (1.11) for $\mu_{1}(t)$ and $\mu_{2}(t)$, and study what these formulas are reduced to in this special case. We take a C^{ω} defining function φ $(t, \zeta)=\varphi(t,(r, z))$ of $\partial \mathscr{K}$ defined in a neighborhood \mathscr{U} of $\partial \mathscr{K}$ in $I \times \Pi$. Then φ (t, ζ) necessarily becomes a C^{ω} defining function of $\partial \mathscr{K}$ (independent of θ). Fix any point $p_{0}=\left(t_{0}, \zeta_{0}\right)=\left(t_{0},\left(r_{0}, z_{0}\right)\right) \in \partial \mathcal{K}$. We denote by $\boldsymbol{n}_{p 0}$ the unit outer normal vector of the 2 dim . surface $\partial \mathscr{K}$ at p_{0}. We consider the 2 dim . plane $\hat{\pi}_{l n_{0}}$ which passes through the point p_{0} and is generated by the 2 vectors $\{(1$, $\left.(0,0)), \boldsymbol{n}_{p_{0}}\right\}$ in $I \times \Pi$, and denote by $\widehat{\boldsymbol{v}}_{t}$ the unit tangent vector of the 1 dim . curve $\hat{\pi}_{t, n_{0}} \cap \partial \mathscr{K}$ at p_{0}. We thus have

$$
\frac{1}{\hat{\rho}_{t}}:=\text { the normal curvature of the surface } \partial \mathscr{K} \text { for } \widehat{\boldsymbol{v}}_{t} \text { at the point } p_{0},
$$

which is called the t-normal curvature of the surface $\partial \mathscr{K}$ at p_{0}. In the half plane II we denote by $\widehat{\boldsymbol{n}}=(\xi, \eta)$ the unit outer normal vector of the 1 dim . curve ∂K $\left(t_{0}\right)$ at the point ζ_{0}, namely,

$$
(\xi, \eta)=\left(\frac{\nabla \varphi}{\|\nabla \varphi\|}\right)_{\left(t 0, \xi_{0}\right)} \text { where } \nabla \varphi=\left(\frac{\partial \varphi}{\partial r}, \frac{\partial \varphi}{\partial z}\right) \text {. }
$$

Thus, $\widehat{\boldsymbol{s}}:=(\eta,-\xi)$ is the unit tangent vector of $\partial K\left(t_{0}\right)$ at ζ_{0}. Therefore,

$$
\frac{1}{\hat{\rho}_{s}}:=\text { the normal curvature of the curve } \partial K\left(t_{0}\right) \text { for } \widehat{\boldsymbol{s}} \text { at the point } \zeta_{0}
$$ is determined. By simple calculation, we have

$$
\begin{gather*}
\frac{1}{\hat{\rho}_{s}}=\frac{1}{\|\nabla \varphi\|}\left(\varphi_{r r} \eta^{2}-2 \varphi_{r z} \xi \eta+\varphi_{z z} \xi^{2}\right) \tag{6.8}\\
\frac{1}{\hat{\rho}_{t}}=\frac{1}{\left(\varphi_{t}^{2}+\|\nabla \varphi\|^{2}\right)^{3 / 2}} \times\binom{\left(\varphi_{t t}\|\nabla \varphi\|^{2}-2 \varphi_{t}\left(\varphi_{t r} \xi+\varphi_{t z} \eta\right)\|\nabla \varphi\|+\right.}{+\varphi_{t}^{2}\left(\varphi_{r r} \xi^{2}-2 \varphi_{r z} \xi \eta+\varphi_{z z} \eta^{2}\right)} \tag{6.9}
\end{gather*}
$$

where the right hand sides are evaluated at $\left(t_{0}, \zeta_{0}\right)$. By (1.3) we defined the tangent vector field $\boldsymbol{e}_{\Omega_{2}}\left(t_{0}, x\right)$ on $\sum\left(t_{0}\right)$ associated with $\Omega_{2}\left(t_{0}, x\right)$. We consider the particular points $x \in \sum\left(t_{0}\right)$ such that $x=x_{0}=\left[\zeta_{0}, 0\right]=\left(r_{0}, 0, z_{0}\right) \in \sum\left(t_{0}\right) \cap$ $\Pi\left(=\partial K\left(t_{0}\right)\right)$. We simply put $\left\{\boldsymbol{e}_{\Omega_{2}}\left(t_{0}, x_{0}\right), \boldsymbol{e}_{\Omega_{2}}^{\prime}\left(t_{0}, x_{0}\right), \boldsymbol{n}_{x_{0}}\right\} \equiv\left\{\boldsymbol{e}, \boldsymbol{e}^{\prime}, \boldsymbol{n}\right\}$, where $\boldsymbol{n}_{x_{0}}$ denotes the unit outer normal vector of the surface $\sum\left(t_{0}\right)$ at the point x_{0} in \mathbf{R}^{3}, and $\boldsymbol{e}_{\Omega_{2}}^{\prime}\left(t_{0}, x_{0}\right)=\boldsymbol{n}_{x_{0}} \times \boldsymbol{e}_{\Omega_{2}}\left(t_{0}, x_{0}\right)$. It follows from (6.6) and (6.7) for v^{-}that

$$
\boldsymbol{e}=(\eta, 0,-\xi), \quad \boldsymbol{e}^{\prime}=(0,1,0), \quad \boldsymbol{n}=(\xi, 0, \eta)
$$

Since \boldsymbol{e} and \boldsymbol{e}^{\prime} are unit tangent vectors of the surface $\sum\left(t_{0}\right)$ in \mathbf{R}^{3} at x_{0}, we have the normal curvatures $1 / \rho_{e^{\prime}}$ of $\sum\left(t_{0}\right)$ for \boldsymbol{e} and \boldsymbol{e}^{\prime} at x_{0}, respectively. By (3.1), we also have the t-normal curvature $1 / \rho_{t}$ of the surface $\partial \mathscr{D}$ in $I \times \mathbf{R}^{3}$ at the point $P_{0}:=\left(t_{0}, x_{0}\right)$. Since each $\sum(t), t \in I$ is obtained by rotating $\partial K(t)$ around the z-axis, we have by direct dalculation

$$
\begin{equation*}
\frac{1}{\rho_{e}}=\frac{1}{\hat{\rho}_{s}}, \quad \frac{1}{\rho_{t}}=\frac{1}{\hat{\rho}_{t}}, \quad \frac{1}{\rho_{e^{\prime}}}=\frac{\xi}{r_{0}}, \quad K_{1}\left(t_{0}, x_{0}\right)=\left(\frac{1}{\|\nabla \varphi\|} \frac{\partial \varphi}{\partial t}\right)_{\left(t_{0}, \zeta_{0}\right)} \tag{6.10}
\end{equation*}
$$

By use of (6.8) and (6.9) we substitute these into (3.5) and (3.6) and obtain

$$
K_{2}\left(t_{0}, x_{0}\right)=\boldsymbol{k}_{2}^{+}\left(t_{0}, \zeta_{0}\right), \quad \widetilde{K}_{2}\left(\boldsymbol{e}_{1}, t_{0}, x_{0}\right)=\boldsymbol{k}_{2}^{-}\left(t_{0}, \zeta_{0}\right),
$$

where

$$
\boldsymbol{k}_{2}^{ \pm}\left(t_{0} \zeta_{0}\right):=\frac{1}{\|\nabla \varphi\|^{3}}\left\{\frac{\partial^{2} \varphi}{\partial t^{2}}\|\nabla \varphi\|^{2}-2\left\{\sum_{i=1}^{2} \frac{\partial^{2} \varphi}{\partial t \partial r_{i}} \frac{\partial \varphi}{\partial t} \frac{\partial \varphi}{\partial r_{i}}\right\}+\left|\frac{\partial \varphi}{\partial t}\right|^{2} \Delta^{ \pm} \varphi\right\}
$$

We here put $\left(r_{1}, r_{2}\right)=(r, z)$ and evaluate the right hand side at $\left(t_{0}, \zeta_{0}\right)$. Futher, let $\forall x=\left[\zeta_{0}, \theta\right]=\left(r_{0}, \theta, z_{0}\right) \in \partial D\left(t_{0}\right)$, where $0 \leq \forall \theta \leq 2 \pi$. Namely, x is
the point in \mathbf{R}^{3} obtained by rotaiting $x_{0}=\left[\zeta_{0}, 0\right] \in \partial K\left(t_{0}\right)$ positively with quantity θ around the z-axis. Then, using again the symmetry of $D(t)$ with respect to the z-axis, we see that

$$
K_{2}\left(t_{0}, x\right)=K_{2}\left(t_{0}, x_{0}\right), \quad \widetilde{K}_{2}\left(\boldsymbol{e}_{\Omega_{2}}, t_{0}, x\right)=\widetilde{K}\left(\boldsymbol{e}_{\Omega_{2}}, t_{0}, x_{0}\right) .
$$

It follows from (6.6) that the variation formulas (1.9) and (1.11) are reduced to

Corollary 6.1.

$$
\frac{d^{2}}{d t^{2}}\left\{\left\|v^{ \pm}(t, \cdot)\right\|_{ \pm, K(t)}^{2}\right\}=2\left\|\frac{\partial v^{ \pm}}{\partial t}(t, \cdot)\right\|_{ \pm, K(t)}^{2}+\int_{\partial K(t)} \boldsymbol{k}_{2}^{ \pm}(t, \zeta) r^{ \pm 1}\left\|\nabla v^{ \pm}\right\|^{2}(t, \zeta)|d \zeta|
$$

This concrete corollary will be useful in future for the study to find the view point from which the variation formulas (1.9) and (1.11) are unified.

Faculty of Education Shiga University

References

[1] R. Accola, Differentials and extremal length on Riemann surfaces, Proc. Nat. Acad. Sci. U.S.A., 46 (1960), 540-543.
[2] L. V. Ahlfors, Open Riemann surfaces and extremal problems on compact subregions, Comm. Math. Helv., 24 (1950), 100-129.
[3] E. Beltrami, Sull'attrazione di un anello circolare od ellitico, Mem. della R. Accad, dei Lincei., Serie III, 5 (1880), 183-194.
[4] A. Browder and H. Yamaguchi, A variation formula for harmonic modules for Riemann surfaces and its application to several complex variables, Hiroshima Math. J., 24 (1994), 493-520.
[5] R. Gilbert. Function theoretic methods in partial differential equations, Acad. Press, 1969.
[6] Y. Kusunoki, Some classes of Riemann surfaces characterized by the extremal length, Proc. Japan Acad., 32 (1956), 406-408.
[7] N. Levenberg and H. Yamaguchi, The metric induced by the Robin function, Mem. of Amer. Math. Soc., 448 (1991), 1-156.
[8] F. Maitani, Variations of meromorphic differentials under quasiconformal deformations, J. Math. Kyoto Univ., 24 (1984), 49-66.
[9] M. Taniguchi, Boundary variations and quasi-conformal maps of Riemann surfaces, J. Math. Kyoto Univ., 32 (1992), 957-966.
[10] A. Weinstein, Discontinuous integrals and generalized potential theory, Trans. Amer. Math. Soc., 63 (1948), 342-354.
[11] H. Weyl, The method of orthogonal projection in potential theory, Duke Math. J., 7 (1940), 411-444.
[12] H. Yamaguchi, Parabolicité d'une function entière, J. Math. Kyoto Univ., 15 (1976), 53-71.
[13] H. Yamaguchi, Equilibrium vector potentials in \mathbf{R}^{3}, Hokkaido Math. J., 25 (1996), 1-53.

