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1. Introduction

Let D  b e  a  dom ain spread over th e  complex p lane  C  w ith  Cw smooth
b o u n d a ry  D. Suppose tha t D  has a  nono - triv ial cycle r. Then there  exists a
unique 1,2 harmonic differential a on D  su ch  th a t Jr co = (co, *  D  for a ll C-

closed differentials w on D. W e put It = II a II . T h e n  *  a and g are  called the
reproducing differential and the harmonic module for (D, r) (see L. V . Ahofors
[2 ]) . The geometric meaning of g was originally studied by Y . Kusunoki [6]
and R. Accola [1 ]. W e now let the domain D (t) over C and the cycle r (t) c D
(t) vary Ca smoothly with a  complex parameter t in  a  disk B =  < r), where
D (0 ) =D  and r(0 ) = r. For any t E B, we have the reproducing differential *
(t, z) and the harmonic module it ( t )  fo r  (D (t), ( t ) ) ,  so g (t) is  a  function on
B. W e p u t co (t, z) =  ( t ,  + i *  (t, z ) =  f (z ) d z , 11w 11(t, z) = [f (t, z) I, and
au)  _  af — -dz for z ED  (t ). W e here put D =  tE B (t. D  (t)) a n d a D =  tEB (t, ODOf at
( t ) ) .  T h u s  D i s  a  complex 2  dim ensional dom ain spread over B X  C .  Let
9  (t, z ) b e  a  defining function o f  aD, th a t  is , go (t ,  z ) i s  a  Cc' function in  a
neighborhood V of aD over B X C  such that D (11/ (resp. a) = { 9 <o (resp.

= 0 )) and  
aço

 o n  OD. We define, fo r  (t, z) E ,
az

z)Izi (t =' aaa9t / la 9z
a 29  laço  2 f a29  a9  ao  .  2  aço4 1 3 .k 2  ( t ,  z )  =  
atar I az 2"taraz at ail+ at azaz az (1.1)

Note that neither k1 (t, z ) nor k2 (t, z) on aD depends on the choice of 9 (t, z).
In  [4 ] we call k2 (t, z) the Levi curvature of aD at (t, z), and proved the follow-
ing variation formulas:

(t)  = f (t, 411 0) 112 (t, z)at 2./ awn
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(1.4)
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a 2tt (t)
•  ) k2 (t z) 11 w 112(t, z) Idzi.atar

2
( t

D ( t )
1 

s i
f

aD(t)

(See also F. Maitani [8], M. Taniguchi [9] , and  [12]). So, if 0  is  pseudocon-
1  vex, then i t t  ( t ) i s  a superharmonic function on B.

In this paper w e study the case of R3. Let D  be a  domain in R3 bounded
by a finite number of Cy smooth boundary surfaces al). Suppose that D  has a
non-trivial i-cycle Ti (i = 1 or 2). By H. W eyl [11], there  ex ists a unique L 2

harmonic i-form * Q3-/ on D such that

r i
CO

=
 ( a ) ,  * Q 3 - i )D  for all C-  closed i-forms w on D. (1.2)

e0(x) =
II a (x )

which is called the tangent vector field on aD associated with Q2.
Now let D (t) C C R3 and  Ti (t) CD  (t)  vary C a smoothly with a rea l para-

ment t in an interval I=  ( —p, p )  ,  where D (0) =D and ri(o) Ti.=  For any tE/,
we have the reproducing i-form * Q3-i (t, x ) and the harmonic i-module (t)
fo r  (D (t), Ti (t)). W hen w e w rite Qi (t, x) = a (t, x) • dx, we define ii Q1.112 (t, x)

=11 a (t, x) 112 ( 0 ), and  I t ' (t, x) =aaat: • dx. Analogously, we define 11 Q2 112 (t,

x )  and  
ag2 (t, x ). W e consider the real 4 dimensional domain 0 =  U re/ (t, D

( t) )  in the product space I X R 3 , and put ao= u t.,(t, ap(t)). Let 9 (t, x ) be a
Ca' defining function of ao in I X R 3 . Instead of the Levi curvature k2 (t, x ) in
(1.1), we introduce two kinds of curvatures K2 (t, x ) and k2 (e, t, x ) of ao as
follows: First let eE R 3 with li e 11=1. F o r (t, x) E a0, we put

W e  c a ll  *  S23-i and fi = Ii Q3-i the reproducing i -form  and  the harmonic
i -module fo r  (D, Ti). Note th a t  Q3-: is Ca ) sm ooth ly  ex tended  up  to  ap. We
write, on 5,

Case i 1: Q2=a1 dyA dz - Faz dzA dx - Fa3dxA dy -=. a(x ) •  *dx
Case i 2: Q i= a i  dx - Faz dy - Fa3 dz m a (x ) dx

where dx= (dx, dy , dz). B y  (1.2), a (x ) and a (x ) restricted on aD are normal
and tangential, respectively. At any x E ap such that a (x) 0  (where the set
{ x E aDla(x) =0) is real one dimensional at most), we shall use notation:

a (x)
(1.3)

where V  = (a/ ax) i=1,2,3 and al go/ aei = [ai (t, x+ se) /as i ] s=0 (f  =1, 2). We



Variation formulas 95

note that neither K1 (t, x ) nor Le (t, x) on ao depends on the choice of cp(t, x).
Next, let {eh e2, e3 } form  an orthonormal base of R 3 . We put

K2 (t, x) -=Lei (t, x)+Le,(t, x )+Le,(t,
3

1 fa 2'  II v 112 f
t l  

a2T   aço ± ia(p
=  

11 v 113 at2 2 ataxi at ax11 I ati=1

 

2 d (p } ,  (1.6)

 

where d = D.1.9 2/axl. Thus, K2 (t, x )  is independent of the choice o f {e1, e2,
e3}. In  [7] we call K2 (t, x ) the  (real) Levi curvature of ao a t  (t, x ). Finally, let
e be a unit tangent vector of the surface alp (t) in R 3 a t x, and denote by n the
unit outer normal vector of 01)(t) at x. We put e = n x e  and define

IZ2 (e, t, x) = Le (t, x) — Le' (t, x) +L (t, x). (1.7)

We denote by dS z  the  Euclidean surface area element of aD (t) at x. Then we
shall show the following variation formulas for te/:

Theorem I.

d,u1(t)  = rj K1 (t, x)II Q2112 (t, x)dSzdt arm) (1.8)

d 2 tt1 (t)  = 2

d t2

Theorem IL

aQ 2  (t • )at 2 +  f k•2 (es22 , t, x) II Q2112 (t, x)dS x . (1.9)D(t) ar(t)

 

d 2 ( t)   _  f K (t, x) II Q1112 (t , x)dSxat OD t)
(1.10)

d2p2(t)  =2
dt2

aQi 
 ( t  •  )at

2 r
K2 (t, 01 112 (t, X)(1Sx.

D(t) 3D(t)

 

Since Theorem II can be proved by the combination of the ideas in papers
[4 ]  a n d  [7 ] , w e g ive  its b rief proof in  §4. O n the  o ther hand, to prove
Theorem I, we need a  new idea (relevant to the notion of equilibrium surface
current density introduced in  [13]), which will be precisely discussed in  §5.
In §6 we shall apply Theorems I and II for the z-axially symmetric domains to
show the variation formulas related to the norm of functions which satisfy the
following Stokes-Beltrami partial differential equations (see E. Beltrami [3] ):

a 2u  ± a 2i i + 1  au  0

ax 2 a y  2 x  a x

The author appreciates the referee for his careful reading the manuscript
and his comments.
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2 .  Electromagnetic meaning of harmonic modules

Let D  be a  bounded domain with C'» smooth surfaces E (= aD) in R 3 . We
put D' =R 3\D, where 5=D  U OD. For i =1, 2, we write

C7'(D) (resp. Cr,o(D)) =the space of C-  (resp. C0') i - forms in D
Zr (h ) = th e  space of C-  closed i-forms on D
Hi (D) t h e  space of L2 harmonic i-forms in D.

W e also denote by B (D ) or Z i (D) the closure of dCr_ i s , (D) or Z7*(5) in the
space L ( D )  o f  L2 i-fo rm s i n  D . T h e n  W eyl's orthogonal decomposition
theorems in  [11] hold:

Li (D) =Z 1 (D) *  B 3 -i (I)), Z t (D ) 
=

H, (D) B (D) . (2.1)

Let o.)i C7' (U ) , w here  U P  D
. I f  a ll theree coefficients of w i van ish  o n  E,

w e w rite w i =0 on E . If the restriction wzIE of w, to the surface E is 0 as an
i-form on  E , w e w rite  w i = 0 along E. As an analogue to  Ahlfor's definition
[2], we put

Hio (D)={ (D)lw is of class C'» on D and w=0 along E 1.

Concerning th e  reproducing  (3 — i)-form * Qi f o r  (D, y _ ) ,  w e  see  from
(1 .2) a n d  (2.1) tha t Qi H a ) (D) .

Let us study the static electromagnetic meaning of Qi and  tei b y  simple ex-
amples:

[ I ]  F o r  b> a> 0, le t  E be  a  solenoid of to rus type. T ha t is , consider a
circle C= {(x, z) (1) —a cosO, a  sinq5)I0 . çb 27.c)- in  th e  (x, z) -plane with x>
O. W e rotate C around the z-ax is to  obta in  the  to ru s  E . W e  use  cylindrical
coordinates [r, e, z] of R 3 . Then the  solenoid is the  to ru s  E  equipped with
equilibrium surface current density on E

j(x)dS x = 2 7 r
l
a r  (z cos°, z sinO, b— r)dSx ,

where dSx  denotes the surface area element of E  at x (see  [13] in detail). We
denote by D  the solid torus bounded by E in R 3 . From Biot-Savart's law, the
solenoid E  induces the static magnetic field in R 3\E:

B (x) = rot (* LI E dS,) = 4
1
7.11 z x T(y)dS y .

Yj  —

6)) x x II3
By use of the symmetry of E, we obtain

1 sinO, cos0, 0) for x E D
B (x) = 27rr

0 for xED'.
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The magnetic energy of B  is defined by

IIB (x) i&3=fp ( 2 ,,)
2 «—sin0)2+ (cos) 2} dvx = b — a2

Now consider a  circle Ti= {(b cos 0, b sin  0, 0)1 0 0 . _27r.} in D. We thus
have the reproducing 1-form *S22 = a (x ) • dx  and the harmonic 1 - module
f o r  (D, TO. Then we have  the  relationship between th e  harmonic 2-form Q2
and the magnetic field B:

B (x)1  Proposition 2. 1. a (x) = 2 in D ,  111=
I B (x) II B  (x )  1 1 3

.I 
Proof. We put v(x) = (27cr) -1 (— sin 0 dy Adz+ cos 0 dz A dx) and p (x) = —

(2r) (log r) dz  in D. H e n c e , (x) =dp (x), d *p (x) = 0 in D, a n d  * z =d0/2rc
E Zr (D) . L et V coEZr (D ). We put Co := { (r, z)= (b — a cos çb, a  sin  0)I 0
. 27r). F o r  V (r, z) E Co, we take a  circle on aD: re= { (r cos 0, r sin  0, a  sin

E  aD1 0 _‹ 0 27/-}. Since fro= In w by Tø Ti on D, we have

(co, * z-)D = C  Ap = 2
1
7 r L . IL col log r dz = col (b —  b 2 — a2 ) .

Therefore, * Q2
=

 * (x) life, by which Proposition 2.1 follows.

[II]  F or b > a >0, let D be a condenser of shell type. That is, D c cIV  is
a  domain between two concentric electric conductors Ka  = {II x a} and Kb =

X  II b) with charge+1 and  —1, respectively. Hence, 0D=Cb — Ca  where Ca,
C b =  X  II =a, b). By Coulomb's law, their equilibrium density distribution

1  
on Ca

p (x)dSx={
dS x47ra2

1  

induces the static electric field E in R3\ E  such that

E (x) 1  r  1  
(47ri cb- calI y x  II 

p (y)dSy)= 417.cl cb-call: 113 p (y)dS11 •

By simple calculation we obtain

E ( x ) I4 )T II x I3

0

The electric energy of E is defined by

for xED

for x ED'.

47r XII X 1130 2dvx= 
417r (1a ) .

47z-62 d S xo n  r b
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Now consider the  positively oriented sphere T2 = x =  (a b) /2) in D.
Then we have the reproducing 2-form * Q 1 = a (x ) • * dx. Then we have the
relationship between the harmonic 1-form Q1 and the electric field E:

Proposition 2. 2. a (x) =  E (x) 
E (x) 111.3

in D, 1 
P 2 ( x ) IR

Proof. W e p u t r (x ) =  (47r II x - 1 D=i x i dxi and u (x) = (471" x 11) - 1 .
Then z- (x) =du (x) E (D ) . L et V co E Z' (D ) . Since T2 {11 X  =  a} — {11 X II =
b) on D, we have

(0), *T) f r
D  d (14 w )  —  47r./

1

op x
1 r 1 \ w .re)—\

1
a b,.1 7 2

Therefore, *Q 1 = *DA E (x) II1v, by which Proposition 2.2 follows.

3. Smooth variatios and Levi curvatures

Let /= ( p, P) c R. Given any set § in I X  113 , we put G (t):= { x ER 3 I(t,
x) E }  fo r  each t E/. We call G (t) the fiber of § at t. Now consider a 4 dimen-
sional domain D in  I x 113  such that D (t) 0 fo r any t E I . We denote by ao
the boundary of D in I X R 3 . We regard a s  a  v a r ia t io n  o f  domains D(t) in R3

with parament tE/, and write

0: t D (t), t EL

Assume that there exists a C°'-function go (t, x) defined in  a  neighborhood 17 of
n  in I X R 3  such that (1) D fl "V= {(t, x) E VI ça (t, x) <0), D (t) fl V (t) = {x

V (t) I ça (t, x) <0) for t E (2) V  ça (t, x ).=  (t, x) 0 0 for any x C aD
(t). Then we say that D is a smooth variation, and 9 (t, x) is a  Ca defining

function of n. By (3), aD (t ) for each t e l  is Ca ' smooth in R3 . We thus have

D = U  (t, D (t)), aD=U (t, ai  (t)) .
t e l  t e I

In Introduction we defined quantities Le (t, x), K2 (t, x), k2 (e, t, x) on n. We
shall represent these by means of usual normal curvatures. Let P= (t, x) E n .
First, we denote by np the  unit outer normal vector of the 3 dim , su rface  aD
at the point P in I X R 3 . We consider the 2 dim. plane 7rt ,„, in I X R3 which pas-
ses through P and is generated by the 2 vectors { (1, (0, 0, 0)), np). We denote
by vt the unit tangent vector of the 1 dim. curve Trt,np

—1 : =the norm al curvature of n for vt a t the point P
Pt

n aD. Thus,

(3.1)

is deternined, which is called the t-normal curvature of aD at P. Next, from x E
aD (t) c R3 , we denote by nx  the unit outer normal vector of the 2 dim. surface



(3 . 3 )L,(t, x) =
1(1+K1 (t, x) 2 ) 3 /2

 ,T
t

9Ki (t, x) -  —
19;{  for e E Tx

f o r  e= n .
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aD (t) in R 3 a t  the point x and, by T x (= T (t) x) the set of all unit tangent vec-
tors of ap (t) at x. Thus, for any e= (01, 02, e3) E Tx,

—

1
: =the norm al curvature of aD (t) for e a t the point x

Pe

13=1

is determined. Finally, we denote by H and K the mean and the Gaussian curv-
atures of aD (t) at x:

1
H

(1 1
K = 1 .  —

1=
p i  P2'

wehre 1/p, (i = 1, 2) a re  the  p rinc ipa l curvatures o f  aD ( t)  a t  x such that
1/pi  _ 1/t92.

Proposition 3. 1. It holds f o r (t, x) E aD,

3
( 1    (3.2)

V 40 a x ia x i  ) (t-r)

Proof. S ince  bo th  sides a re  inva rian t under th e  Euclidean motions, we
may assume th a t  (t, x) = (0 ,0 )  a n d  nx  (= n )  (0, 0, 1). Hence, agi' n e a r  (t, (x,
y, z)) = (0, 0) is represented in the form z= çS (t, (x, y ) )  where 0 (0, (x, y ))  = 0
(x3 4- y2 ) , so  that 0 (t, x) = z —  çS (t, (x, y ) )  is  a  defining function of a  n e a r  (0,
0). In case eE  T x , we may assume e= (1, 0, 0). By direct calculation, we have

(0, 0 ) =  
a20

.9 2 0 /(1+( a °) 2)3/2
Pea x  2

' Pt at2 at
L e =  ( t ) 2 Z  '  L n =

evaluated at (0, 0). Proposition 3.1  follows by these formulas.
L e t (t, x) E  OD and e E T s . W e put n: = nx  a n d  e': = nx  x e E  T x . We can

consider the normal curvatures 1/ pe a n d  1/ pe ,  of the  surface ap (t) for e  and
e' at x, respectively. Concerning K2 (t, x) and k2 (e, t, x) defined by (1 .6 ) and
(1 .7 ) we have from  (3.3).

K2 (t, x) = (1 - 1- K1(t, x) 2) 3/2 1 +K1 (t, X) 2

Pt Pe
(3.4)

Pe'

k2(e, t, x)=- x) 2) " 2 - 1  ±K 1  (t, x) 2
 (1

Pt Pe
1 ) (3.5)

Pe'
21

=
K2 (t, x) (3.6)x) .

Pe'
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W e shall study the geometric meaning of K1 (t, x) and K2 (t, x). Let X0 E ao
(0) and let Cx o : x = x ( t )  for t E /  be the orthogonal trajectory passing through
xo of the family of surfaces {aD (t)} tEl. Namely, x=  x  (t) is  the solution of the
following differential equation in I:

X= — K (t, n x  w i t h  x(0) =xo , (3.7)

where we put nx=nx(t) and X= dx (t) /dt. Therefore, if w e p u t aD (t) = (t, OD
( t ) )  and Cxo = UtŒr (t, Cx,(t)) in I x R3 , then we have the following two coor-
dinations of n :

ap (t) = 1J cx0 s u c h  t h a t  Cx0 1 ap (t)
t e l xoe0D(0)

fo r  V tE/ a n d  V xoE ap (o). By simple calculation we have

dLn (t, x (t) ) = —

d t
K i g ,  x  1  for t E

so that ie= — Ln , nx—K1(t, (any/ at) o n  I . Since nxi (anx/at) on Cx o , it
follows from (3.7) that

(t, x) = (t) • n x , Ln(t, — i.(t) • n .

W e assume X (t) 00, and denote by s the  arc  length of Cx, such that ds/dt>0.
W e put x ( n =d ix/ds i (i =1, 2), and define s: =  ±1  according to x' = + nx . In
general, ± 1 changes to  + 1 along the  envelope of the family of surfaces lap
(t)} t ,I. Since X-= (ds/dt) x' and .t. = (ds2/dt2 ) (d s / d t )2  x " ,  it follows from

i n x  that, fo r  V e E Tx,

e (t, X ) = 
(d s   )2  1

Le' (t, X ) = 
( d s  \ 2  1 2d s Ln (t, x)

d t2d t  p e ' dt '

d 2 s2 + 2 (d s )2  H (t ,  x ) .K2 (t, x) -= s
=  6  4 .1 '(t, x) dt, dt \dt

We give sufficient conditions for which K2 (t, x) or 1(2 (t, x) on OD.

Proposition 3. 2. 1. If TI is a convex domain in R 4
, then K2 (t, x) 0

on aD
1 4  2. (a) I f  

P t

>

 3
0 - on aD, then K2 (t, x)

1 4  
( b )  I f  

p t
> / 

H2 —  K on OD, then k- 2(e, t, x) 0 f o r a l l  e c T s .

Proof. If is convex in  114 , then Le (t, x), Le' (t, x) , and Ln  (t, x) 0 on
ao, by which 1 follows. By (3.4), we have

3,21plt 43  K2= - 1  (1 ±Ki) 3/2 ± (1+K i)Pt
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by which 2  (a )  follows. By (3.5), we have

1 2 1R-
2 > (1 +Ki) 3/2 [ p t  34  ( P 1  P 2 ) 1 '

by which 2 (b) follows.

The following proposition will be useful in this paper:

Proposition 3. 3. Let u (t, x ) be a Cc' function in a neighborhood 17 of
ao in / x R3 such that ao (t) c c V(t) cR3 for each t E l. Assume that
(1) u (t, x) =const. c on each component of aD,
(2) For any fixed t eI, u (t, x ) is harmonic for x e  V(t).

au Then it holds for (t, x) CaD such that (t, x) *0,

au au 
at =Ki (t' x) anx (3.8)

a  2u a u  \ 2 a  0 , 4 \ 21 i t  au   \
8t 2
=  1K2 (t, an x  ) an s  k a t  1' kanzt (3.9)

Proo f . L e t  (t o , xo ) E  aD a t w hich  au/an 0. S a y , (au/ans) (to, xo) > 0.
Then, from  (1), (u (t, x) — c ) in 17  is  a  Ca defining function of ao n e a r  (to, xo),

au and anx = V u  a t  (to, xo). So, definition (1 .4 ) of If1 (t o,  xo)  im plies (3.8).
au au F urther, s ince  n = cos 6, w h e re  Oi i s  the  angle  between nx and theux i u n x

x-axis, w e have

aataux, t / t 1 = a a n x ( : ) 2  a t  (to, x0)•

So, formula (1 .6) of K2 (t, x ) under condition (2) implies

K2 (t0, x0)=1a2u  aua (a1 21/( a u
at2 au. aanx t an)

by which (3 .9) follows.

a t  (to, xo),

4. Proof of Theorem II

Let D C  c R 3 b e  a  domain bounded by Ci)  sm ooth boundary surfaces al).
W e denote by {C;},--1,... 4  th e  boundary components of D, so  th a t aD=
Then D carries the harmonic function u1 (x) such  tha t

1 on C;
14.1 — 

10 on aD\Ci.

W e call u;  (x ) the harmonic measure fo r (D, Ci ) .  Let T i b e  a 2 - cycle in D  such
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that r ;-- - C; (homologous) on D, and denote by * Q.;  (x) and i 2 (t) th e  reproduc-
ing 2-form and the harmonic 2-module for (D, ri ) . By Stokes formula we then
have Q (x) =dui (x) on D.

Let D: t D  (t)  , t  E  I  be a  C ' smooth variation. For each t E/, we denote
b y  (C; (t))) - ;-1,..., the boundary components of the domain D ( t)  such that al)
(t) =Ey=ic,(t), and by vt; (t, x ) the harmonic measure fo r  (D (t), C i(t)). Let T2
( t )  be a  2 - cycle in D ( t)  which varies smoothly with t Eir in Therefore, r2
(t) ( t)  on D (t) , where n; are integers independent of t E L  We de-
note by *Q1 (t, x ) the reproducing 2-form fo r  (D (t) , r, (t)) . We have Q1 (t, x)
=dU (t, x ), where U (t, x) = (t, x ). Let us prove (1.10) and (1.11). It
suffices to prove these at t = 0. Since aD is C'»  smooth, we find a small interval
/0 (c / )  centered at 0 such that, for any t E l°, U (t, x) is harmonic on D (0) and
r2 (t) 7-2 (0) in D (0) U D (t) . Then

112 (t) f  * Q i ( t , = (Q1 (t, • ), Q1(0, • »D(0) = f u(t, x ) * dU (0, .  (4.2)
7'2(0)D ( 0 )

After differentiating both sides with respect to t, k  (= 1, 2) times, we put t =0
to obtain

k 
1'4

„ A l c n a k u
2  (0 ) =  V 1 (0, • ) , Q1 (0, ) = „. (0, x) * dU (0, x ). (4.3)n

"

dt k u t  k D(0) fa], (0) at
Since U(t, x ) is const. on each component of aD, it follows by (3 .8) that

au =K1(t x) 
 au

 o n  aD.at anx
(oNote tha t * dU (0, x) = (3 ,X) dS  a long  OD (0) . Applying (3 .8 ) for k = 1, we

thus obtain

a :t 2 (0 )  = f (0, x )  a n
a u

xx ) ) 2 dSx.ap(o)

au  x)  )2

Sincell Q1112 (0 , x) = an:r on aD (0) , we have (1.10). To prove (1.11),

we get by (3.9)

a
a
2
t 2

=  [K2 (t, X ) ( a n
aU

, j2 +aans (a
a
u
t )1/( an

au
x) on ao.

Applying (4.3) for k 2, we obtain by Stokes formula

d
2
P2 (0) 

= f 6 D ( 0 )  
K2 (0, x) (  au (0 , ) )  d S  f  (aaut (0, x)) 2 dS x

2

dt2 X X x D (0) x

K2 (0, x) ( x d S  (o  x )) 2 d v ,OD(0)
Q

 1
0 )

f
x p(0 )
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Since d (
—au

)  (0 x ) =0 and  a°' (0 x) =d ( - - ) (0 x ) on D (0), th e  last integralat at at
au

is equal to

2

L(coRg 2tLj 2  x) + ( 'L u 2y ) + (a 2z) +aaut°a)} (Ox) x
which proves (1.11).

Corollary 4. 1. If  K2 (t, 0 on ao, then p 2
1
( t )  is  a concave function

on I.

Proof. Assume K2 (t, .1:) On ao Then, (1.11) implies fill (t) 211 ag'111)(t),
and  (4.3) implies1 i (t) (t)Vagi 2 1  )". Hence, („12 (t )O .

D(t)

5. Proof of Theorem I

Let 0: t —>13 (t), t / be a  Ca' smooth varia tion and le t a  1-cycle Ti(t) in D
(t) vary smoothly with parament tc/. F or tc/, w e denote by * Q2 (t, • ) and

(t) th e  reproducing 1-form  and  the  harmonic 1-module f o r  (D (t), T i  (t)).
L e t u s  p ro v e  (1.8) a n d  (1.9). It su ffices to  p rove  these  a t t = 0. W e m ay
assume that each Ti ( t )  is  a  C-  c losed curve in D (t). Like in  [13] we need a
rather concrete costruction of the 2-form Q2 (t, x) . W e first take the u-axially
symmetric solid torus G: = L X  A  in  th e  (u, y , w) - space R3 such  tha t L = {lu
<1 ), an d  A  = {1/2 <Vy2 -Pw2 <2 } . In  G, w e take the  circle C o = {(0, cosO,

sin6)10 . 6 27t} and the rectangle So = L X  { (v , 0) EA 11/2 <v <2} , so that So
X co (in te rsec tion  number) = 1. W e here construct C-  func tions x  (u) on T.
and cp. , w) on iT such that

10o n [ —  1, —1/2] 10 on 1/2 < Vv 2± w 2 < 2/3
X (U) = t (y, w) =

1 o n [ 1 / 2 , 1 ] 1 on 3/2 Vv2 -Fw2

and put ao=dx (u) Adgo (v, w) E (G) . W e next take a  tubular neiborgood
of Ti (0) in D (0). W e find an  interval 1 0 centered at 0 such that Ti (t) c -C c  c
D (t) for all t c I o . So, we may assume Ti (t) =ri (0) for any t c / o. We may also
assume th a t 5  adm its a  C-  (o rien ta tion  preseving) transform ation T:
with T (ri (0))= co. W e denote by T  o-0 the pull back of the above ao by T, so
th a t T  ao E  47:1 (U) . If  w e se t d(x):= T  a o  (resp. 0 ) in ô  (resp. R 3\5 . ),
then d(x) c Z 2°0 (113). Note that d (x ) is independent of t c / o. F ix tc/o. Then we
obtain

(C O ,*  ( i )  D (t )
=o . )  fo r  V E Zr (r) ) .

rift)

aQ,
(0

2
X )at D(0)
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Therefore, when we regard d as an  element of Z2 (D (t)) , the  harmonic 2-form

Q 2  (t, • ) on  D  (t) is  the orthogonal projection of d (x )  to  H 2  (D  ( t ) )  in  the
second formula of (2 .1 ):

d (x )  =  Q 2  (t, X) T (t, x),( 5 . 1 )

where Q2 (t, x) EH2  (D  (t)) and r (t, x) E B 2  (D (t)) . Note that Q2 (t, x) + v (t, x)
= 0  in  D  (t) .  Since Q2 (t, • ) E H20 (D  (t ) )  fo r each t E  10 , we have from
Theorem 5 .1  and Lemma 5 .2  i n  [1 3 ] the  following fact: We find a  neighbor-
hood V(t) of a p ( t )  in It 3 such that

1. Q2 (t, • ) E (D (t) U V  (t)) and there esists a unique 4  (t, • ) E  C ( V

( t ) )  such that
( i )  d4 (t, • ) = Q2 (t, •  )  in D (t) U V (t), (ii) 5 4 (t, • ) = 0 in  V(t),
(iii) 4 (t, • ) =0 on 3D (t) .

We call 4 (t, • ) the vector potential of Q2 (t, • ) with boundary values 0 in  V (t)

2. There exists an element a1 (t, • ) E (t )) C ( V (0 )  such that

d( • ) = Q 2  ( t ,  •  )  +dal (t, •  )  in D (t) U V(t) (5 . 2)
(t, • ) + (t, • ) =0 in  V(t). (5.3)

Since a0 is Cu  smooth, we may assume that the neighborhood V(t) of a p (t )
is independent of t E l() and so is D (t) U V ( t )  (if necessary, take a  smaller in-
terval / 0  centered at 0 ) . W e thus pu t V =  V (t) and 15 D (t) U V (t) for t

Hence, Q 2 (t, x ) is of class C  fo r  (t, x) E l0  X  D. L e t k = 1, 2. Since d(x) does
not depend on t E/0, we have from (5 .2 )  a n d  (5.3)

kA(--
"  " 2  (t, • ) +d ( 1 ) (t, •  ) = 0 in 5 (D D (o))( 5 . 4 )atk at

ic„d a k a
" (t, •  ) + 1 (t, • ) = o  in  V (D aD (0 )). (5.5)

atk atk

It follows from ( i)  and (ii) for 4 (t, • ) that

(aka

A k
5   (t • ) = 3.4) (t • ) = 0 in  -17at k a t k '

(5 .6)

( 3 d

(

akcr\ ak \
i ) ( t  •  )  5 Q 2 )(t, •  )=  0 in 5.

atk atk (5.7)

We put

3 3

4 (t, • ) Ai (t, • )dxi in V, a 1 (t, • ) ai(t, ) d x i in  5. (5.8)
i=1 i=1

Then conditions (i), (ii) and (iii) of 4  (t, • ) are written into



Variation formulas 105

Q2 (t, • ) E ("(1'; — A ii) (t, • )dxiAdx; in  V
15i<j53

3
a.AL

(t •  ) =  0  in  Vax;  '
j=1
Ai (t, • ) =0 on OD (t)

(5.9)

(5.10)

(5.11)
aA where Ai (t, • ) x ! (t, • ) j 3). Note that d4 = (d —  6d) 4 = —  dQ2=

0, so that each A i (at, jx) , i =1, 2 ,3  is a  harmonic function for xE V . Given any C-

3

1-form co=  EL iaidx ; in  a  domain of 112, we conveniently put a):= ( V a i )
i=1

3 3

dxi and II V (.0 112  ( X )  = E cri (x) 112 = E af t) 2 (x). By direct calculation we
La;

i=1 i,j=1
have

3

d (11w 112(x )) =201 V w 112 (x) E (a i da i ) (x))
i=1

(5.12)

Iv w 12(x )
 =II d w

 112(x)
 +11 ow 

112(x)
 + 2  E (al al— alai) (x) , (5.13)

15i<jS3

aai  w here al=  a x ,  (1 j  .3). By (5 .9), (5 .10), a n d  (5.11) for .4, we also have

11 Q2 112 (t , x) = 11 V. 112 (t, x) on ap( t) . (5.14)

We shall show the following foumula:
3

d a l  ( 0 )  _ f akAi OA;  

013,o)a t ,  a n x }
dtk

(0,x) dSx . (5.15)
i=1

In fact, since ri (t) (0 )  in :6 and *Q 2 (t, • ) EH (l5) (C (0 ))) for any
tE/0, we have

p1 (t) = 1 *  Q 2  (t, • )
 = f  Q2 (t, • ) A * Q2 (0, • ) .

n o D ( 0)

Differentiate both sides with respect to t, k times, and put t= O. Then we have

e t /  
- 1  ( 0 )  = i  ak Q 2  (0 , • ) A * Q2 (0, • ) b y  (5.16).

d tkD ( 0 )  at k

ko .i
=—  i,(o) d  

at"
(

a
(0  •  )  A * Q2 (0, • ) ) b y  (5.4)

r a k,94

a/Am at -, (0  •  )  A *Q 2 (0, •  ) b y  (5.5).
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On the other hand, from  (5 .8) and  (5 .9) the integrand is written into
3

k akA ( 0  •  )  A *Q 2 (0, • ) ( o • ) s ,  on apo,atk atki=1

where

s1== ( a A 2  a A l )dz  A dx + Oy ( a A l  -4 3 )d x A d v  etc. on ap(o).az a x
3

Since (5 .11) implies dA. ) (0, )  =  E -c : dx i = 0 along ap (0 ) for j=  2, 3, we
i=1

have

S i =  1 dz A dx+ l dx Ady )cly A d z =  1 dSx
aA aA aA 2 aA  3a A  
ay az ay az

for x E aD (0). Sim ilar results hold for S2
(5 . 15) .

By applying (3 .8) to A  (t, x), we have

at anx

a
1(0,)

A, aA, =Ki(0, x)ll V A;(0, x)112 o n  ap(o).

Consequently, (5.15) for k=1 and  (5.14) imply foumula (1.8) a t t=0.
Let us prove form ula (1 .9 ) at t = O. Since A i (t, x), i = 1, 2, 3, is harmonic

for x ED (t), w e can apply (3 .9) to A i (t, x ) and obtain

a2A1 aAi=x
- (t

'
 x)(aAi) 2 +  a  ( a A i )

2  
 2 on ao.

at a n x 2 anx a n x  at
Form ulas (5.15) for k = 2 a n d  (5.14) imply

d 2111 (0) =11 ( 2  (0 , • ) II Q2 112(0 x )dSx+ fo a IIp(o)anxdt2a D ( 0 ) 02 (0  x)}dS x

=I+J. (5.17)

f  = 1 ( 0 , x) , (0' = (0, x) , 11 w" 112 =II aawt 112(0, x) .
 a t

a
a
j
t

For the sake of simplicity, given any function f  (t, x ) o r any i-form a)(t, x )  of
class C1 f o r  (t, x ) EI0 X G, where /0 is  an interval centered at 0 and G is a  do-
main in IV, we write

B y  (5 .4) we replace ag• in ./  b y  — or. Since ai E C -  (/5), it follows from Stokes
formula that

all cr; 112  

ai 112 dvxJ= f aD(0> a n x  dSx =  f LIIID(o)

and S3. W e thus obtain the desired
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3

= 2 ( f V a; Pdv,r+ f
D(o) f

Ect;da4dvx) b y  (5 .8 ) and (5.12)
/No) 

= 2 (Ji +J2) . (5.18)

Note th a t the surface integral J  is uniquely determ ined by ,sai (t, • ) but the
volume integrals J i and J2 depend on the choice of extension al (t, • ) into D (t)
(determined by (5.3)). Since du; = (do — 5d) a; = d O a; from  (5 .7), the integ-
ral J2  (involving derivatives of the second order for x, y and z  of a;) is writ-
ten by means of derivatives of the first order of a; as follows:

.12=  f  d a ;  A * c .; =  f  ((la) a; A * criD(0) D(0)

=
f

= f (cl (digi A * ai) — 5a; Ad *0 -0D(3)

0 Oa; A * a; —f II Oui 112dvxD(0) 1)(0)

= —  fD(o) ll Oa; 112dvx b y  (5.6).

B y (5.18), we thus have

J1+ ./2= f { II cri• 112 — 1 1 } d v xD(0)

=fD(o) do.; 112 + 2  L AV  ( (ai) • (aii) • — (a9 • (ai) . )Idvx b y  (5.13)

=ll Q  lli3(c) +2 EL(0) ( (ai) • (ai) •— (ai) • (ai)•)dvx b y  (5.4)
15 i < j 5 3

II Qi IlL(0) +2 E L .
15 i < j 5 3

If we put k = {1, 2, 3}\ {i, j) , then we have the following representation of the
volume integral L i ;  b y  menas of the surface integral of A i on  aD (0):

14 1 = —sgn (i, j, k) f  
p (o )

 K1(0, x) 2 { ( i)1 Adx k  . (5 .1 9 )a anx anx a n x   a n x

In fact, since f a D ( 0 ) A ; (dAj) Adx k
 - FA; (dA;) Adxk= 0, it follows that

L i ; = — sgn(i, j, k )  f ) ( 0 )  da; Ada .; Adx k

= — sgn(i, j , k )  f a; (da.;) Adxk by Stokes formulaOD(0)

= - 4 s g n  (i, j ,  k )  fa D (0 ) {A; (dA;)) —A; (dA;)} Adxk b y  (5.5).

From  (3 .8) and (5.11) we have



(12111= 1 + 2 1
d t2

=2

a ga2
t

2 (0, X )

aaQt
2 (0, X ) II D2 (co + f aD(o) {K2 (0, ,C) Q 2  112(0, x)dSx - 2K1(0, x) 2 5'(O  x)}

2
— 2f Ki  (0, x) 2 2-7(0, X)}D(0) OD(0)
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A ; =K i  (0, x) a
a n

A l  o n  aD (0)

dA;= (dK 1 (0, x))  K  1 (0, x)d( a A i )  along aD (0) .

By substituting these into the above formula, we immediately obtain (5.19).

We put, for x E ap (0) ,

27 (0, =  E sgn (i, j, k )  0 j 1 L )  aA, d (  024 i)) A dx k  , ( 5.20)
x  \ anx/ a n x  \ (mx

1Si< 153

w hich is a  2-form o n  OD (0) such that Li; =  f m) (0, x) 2 SE (0, x ). Froma
(5.17) it turns out

B y  (3.6), it now suffices fo r  (1.9) to prove

1  11E(0, x )  =  
'

11 Q2 112 (0, x) dSx  for x E OD (0) ,
Pe

(5.21)

where 1/p e ,  i s  the normal curvature of the surface aD (0) in  R 3 fo r  e' 0 , (= e 0 2

x nx) at x.
T o verify  (5.21), let xoE aD (0) . W e many assume x0 =0 E ap (0) and nx0

= (0, 0, 1). Thus, aD (0) near 0 in R 3 is given by

z = (x , y) where 0 (x, y) =0 (x 2 -f-y2 ) . (5 . 22)

To avoid the ambiguity we write x = (x, y , z) = x2, x3) and 0= (0, 0, 0) in
R3 . We simply put Q2(0, X) Q2 (X) ,  (0, x) =27(x), and A, (0, x) =- A i (x) . By
(5.11), we have

A, (x) =f, (x) (z —  0(x, y)) for X E U, (5.23)

w here U is  a  neighborhood of 0 in  R 3 and  fi Cw (u ). It fo llow s from  (5.9)
and  (5.10) that

1724 i (0) = (0, 0 j (0 ))  where f (0 ) =  0
Q2 (0) = — f2 (0)dy A dz±h(0)dzA dx .

Hence, II Q2
 112(0)

 = fl (0) 2 +f2 (0) 2 and

eg.2 (=e) =
11 Q2

1

11 (0) 
( f2 (0) (0) , 0)

e'siz (= e') = e'3) =
11 Q2

11
1(0)

( f i  ( 0 )
,  

f2 (0) 0). (5.24)
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By (5 .22), a n
a

x (z 0(x, y)) = 1 at x= 0. B y  (5 .23), LA ' (o) =f, (0). We care-

fully have

dz  =0, d a (x, y)}=0, ( a
an
A ') =df,

along ap (0) at x= 0. Since f3(0) =0, it follows from (5.20) that

(0 ) =  E sgn (i, j, k) (fi df i)ix=o Adxk
1 5,</

12  a f 3  
j 1

dx Ady.
aY aX x = 0

On the other hand, equations (5.10), (5.11), a n d  (5.23) imply

3

(5.25)

OE) (z 9 5  , y » +  (x ) a
a
ç: )  +  (x ) 7) + f 3 (x) =0 for xE U.

J=1
After defferentiating both sides w ith respect to

a0 from 0(0,0) = (0,0) = (0,0) =0 thatax

x  or y, w e put x= 0. It follows

a„-3 a20 a20a 2 0 a20
t —f i  5,2 ± f2 ax a' ay axaY1 1 2  ay2

evaluated at x=0. W e substitute these into (5.25) and obtain

E(0) =  2 + 2f1f2 aal y a ay2 cl x d x  A d y

= (0) 2 +f2 (0) 2) f(e) 2 
a
a
2°

2 + 2  er
2 a

a
xt  ( e )  2 2 1 

(00)
dx A dy b y  (5.24)

, 

= 11 02 112(0) p
l

, dx A dy b y  (3.2).

Since dS x = dx  A dy  a t x =  0, (5.21) is proved. F orm ula  (1 .9 ) is completely
proved.

B y  (5.16) for k  =1, it holds VI (0)12 f,t1 (0)  (o • )at
implies

Corollary 5.1.I f  K 2 (e, t, x) 0  on ap for all e E  T ( =  (t) ),  then
1 .

p i ( t )  i s  a concave function on I.

6. Examples related to a2u + a2u -± 1 au =oa, 2  ay 2 x ax

We use the cylindrical coordinates x = [r, 0, z] in R3 so that

2
. T hus, (1.9)
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1*dr=r cleAdz, *d0= —

r
dzAdr, *dz=r drAdO

and dzAdr=drdz>0. We consider the half - plane H and its boundary an:
n= IC = (r, z)I0<r< +co , --co  <z<+ .)

an= {(o, z) I — <z < +co } .

W e identify H with the h a lf  (x, z) -plane rr+ in  R3  w ith  x >0 b y  (r, (x, z),
and use the simple notation x= [r, 0, z] = [C, 0] c R3 . Given a set K c (=11),

1C
w e denote by < K »  the z-axially symmetric set in R3 obtained by rotating K
around the z-axis, namely, < K »  = { [  0i EK'C, 0 27r).

W e shall give explicit formulas of the reproducing i-form * Q3-: (x ) for
some examples (D, ri), where D is  a z-axially symmetric domain. Let K C  c l l
b e  a double connected dom ain bounded by two C" smooth closed curves CO
and CI such  tha t ax=ci—Co. We set K' =II\K, which consists of the bounded
component If'0 such that axo'=c0 and the unbounded one K it such that aK;= —
CI in H. For j=0, 1, we define the z-axially symmetric sets:

D =  < K » , <ci> , E=aD=Ei — E0,
so that D' ( = R 3 \17) consists of a bounded solid torus DO= <If'0» w ith aDO=
Eo and an unbounded domain Dl= <ICI »  U {the z-axis}  w ith aD;= — E l . We
draw  a closed cycle Ti in  K such that ri—Ci on K, and make a closed surface

7-2:=  < T i», which is homologous to E l on 5. For i= 1, 2, we have the repro-
ducing i-form * 523-i (x) and the harmonic i-module tt, fo r  (D, Ti).

We here consider the following two differential operators Z1± in H:

a2 a2 a
d± =

0 r 2 az 2
±

 r  o r

_
and construct two C" functions y± (C) =y ±  (r, z) on K which satisfy

d±v±=0 in K, v± (C )=  
0  on Co
1  on Ci.

(6 . 2)

Such functions v±  (r, z )  a re  uniquely determ ined. D ifferential equations in
(6.2) are called Stokes - Beltrami equations and studied in  E . Beltrami [3] , A.
W einstein [10], R. Gilbert [5], etc..

Remark 6. 1. T he operator d + is  a ssoc ia ted  w ith  d -  in  th e  sense
that, if a C2 function u (C) satisfies d + u=0 in a simply connected domain X in
H, then there exists a y (C) cC2 (X) satisfying d - y =0 in X such that

au _  I  ay a u  _ 1 ay
ar r az ' az r

(6.1)

Remark 6. 2 Let X c C II be a domain with smooth boundary and let
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f (C), g (C) E C2 (7) . If we define

g) ±,x:= r±i t + I  ?j eld rdz, lifili,x:= f)±,x,

then we have

(f, g) ±,x= f  r± 1 f  
ag 

dsc —  f  r ± 1  f  d ± g  drdz. (6.3)
ax ON x

Using notation (6.2), we have the following expressions of the above *Q;
and tti(i=1, 2):

1
7r il V-  Ir—x

l *Qi(x ) =r( a
a
v
z ±d r  '91)

0: dz) Ad°

/12= 211-11v+ 112+

Proof. W e p u t *w 2 (x):=r - 1 (v,idr— v dz ) on D. By simple calculation we
have d * ah= — r- 1 (.6- v - )dr A dz =- 0, so  tha t *0) 2 E Zr ( b ) .

 B y  (6.1) we have
(02=vtleA dz — v,TdrAde= — d (v - d0). F or any  610: 0 0 0 <27.r, we put C(00):
= Ei n {O= O}, w h ich  is  a  1-cycle homologous to rl on 5 . Let V o- EZr 05).
Then we have

* D= f  d (v - d 0 A  =  f V (0 - Ada) =
D OD

f= (f  a ) d 0 = 2 7 r  f
2r

oc a o ri

Hence, *Q 2 = * co2/27r, which proves (6.4).
T o prove (6.5), we p u t  *w i =r(vi'dr — v,tdz) Ade on D. W e thus have d

* ah= (le)dr A deA  dz  = 0, so  th a t * co l  E Z; (5). Note th a t (01= d e  by
(6.1). L et V GrEr2° (5). Since Ei — r2 on D, we have

(a, * ( 0 , ) D = f f  a.
OD T2

H ence, *col= *521, w hich proves (6.5).

Now let I =  (— p, + p )  c R 3 . To each t e l ,  w e let correspond a domain K
(t)  c  c ll bounded by two Ca smooth curves CI (t) and Co (t) such that OK (t)
= C1 (t) — Co (t) . W e assume tha t ax (t) varies Cw smoothly with t E/ in  H. In
the 3 dimensional space I X f i  w e  put

Thorem 6. 1. It holds fo r  any x= [r, 0, z] ED

* Q 2 (x ) =_  21i r r   l ay - az   . r  v  
d ar dz){

p i. =
(6 .4)

( 6 .5 )

cA d
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U (t, K (t)) , = U( t ,  ax (t)) .
tel t e l

W e thus have a variation .Y{ of domains K  (t) in  II w ith param eter t E/ such
that

X: t K (t) , t E I .

For each t c/  and j= 0, 1, we consider the z-axially symmetric sets in R3 :

D (t) = «K (t) ,  E ;  ( t )  =  ( C ;  ( t )  ,  E (t) =a]) (t) = i(t) — E 0 (t).

In the 4 dimensional space I X IV we put

D  U (t, D (t)) , ao= U (t, ap (t)).
tel tel

W e thus have a variation of domains D (t) in R 3 w ith param eter t E i such that

t — >D(t) , t

Now take a  closed curve ri ( t )  in K  (t) such that T1 (t) — C1 (t ) on K  (t) and
(t) varies smoothly with t E/ in H. We consider the 2 - cycle 7.2 (t):

=
 n ( t )  ,

which is homologous to El (t ) on D (t) . For any t E/ we have the reproducing
i-fo rm  *  Q 3 - i  (t, (i = 1, 2 )  and the harmonic i-module i  ( t )  f o r  (D (t) , T i

(t)) . By Theorem 6 .1 , it holds for any x= [C, = [r, 0, z] E D (t)

{ , 1 * Q2 4, x) = 2 7 c r (vidr — v,Az)

/Li (t) = 7.L. li v— P—,K(t) l
*Q i (t, x) =r(vi'dr — v -

r
Edz) Ad0

(r) =27r II v+ 112+J oo
(6 . 6)

(6 . 7)

where v±  (t, C) are C a functions for CEK (t) such that

[ 0 on Co(t)
d ± v ± (t, C) = 0 in K (t) , (t, =

1 on CI  (t).

Let us ap p ly  (1 .9 ) a n d  (1.11) for p i  (t) and pz (t), and study what these
formulas are reduced to in this special case. W e take a  Ca ' defining function yo
(t, C) ço  (t, (r, z )) of aY{ defined in  a  neighborhood 6/./ of a .k  in I X II. Then ço
(t, C) necessarily becomes a  Ca' defining function o f ax  (independent o f  t9).
Fix any point po = (to, Co) =  (to, (ro, zo) ) E aN. W e denote by npo  the unit outer
normal vector o f the  2  dim . surface aN  at po. W e consider the  2  dim, plane
fe,,„,, which passes through the point po a n d  is generated by the 2 vectors ( (1,
(0, 0) ) , npo }  in  I x H, and denote by F t the  un it tangen t vector of the 1 dim.
curve fei ,n , ,  n a  at po. W e thus have

1 :=the normal curvature of the surface a l (  for et a t  the point po ,
pt
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which is called the t-normal cu rva ture of the surface al{ at po. In  the half plane
II we denote by i i= ( , r ) )  the unit outer normal vector of the 1 dim. curve OK
(to)  a t the point Co, namely,

) 7) ( Vii 7 (p(P  il )oo,co) w here  I 7 ço=( a(P a ç ° )Sr '

Thus, §.: = (7), is the unit tangent vector of ax (to) at Co. Therefore,

1 = the  norm al curvature  o f  th e  cu rv e  alf (to) f o r  î  a t  th e  p o in t Co
Ps

is determined. By simple calculation, we have

1 1  (6.8)
fis 117 (P II (ç° "

172 - 2 Ç °
rz

n + ( P
z
2 2)

1 _ 1  ((ç,11 V (P 112 - 2(pt (çotr + (ptzn) II V go 111 (6 .9)
filt (goi+117 go 112 ) " 2  X  \ + ( g O r r V  2 (PrZ 17 ÇOZZ772)

where the right hand sides a re  evaluated at (to, Co). By (1.3) we defined the
tangent vector field eQ , (to, x ) on  E ( to) associated with Q 2 (t0, x ) . We consider
the particular points xe  E (to) such that x=x0= [Co, 0] (ro, 0, zo) E E (to) (1
H (= a - (to)). We simply p u t Ie g2, (to, X0), e'Q, (to, xo) , nx0 1 le , e', n), where nx0
denotes the unit outer normal vector of the surface E (to) at the point xo in R3 ,
and e's2, (to, xo) = nx.

 X
 eg2, (to, x0). It follows from  (6.6) a n d  (6.7) for if -  tha t

e= (7), 0, — ), e'= (0, 1, 0) , n= ( , 0, n).
Since e  and e' are  unit tangent vectors of the  surface  E (to) in  R3 a t  xo , we
have the normal curvatures 1/p' of E (to)  fo r  e and e' at xo , respectively. By
(3.1), we also have the t-normal curvature 1/p1 of the surface n  in ix  10 at
the point P o: = (to, xo). Since each E (t), t E I  is obtained by rotating alf (t)
around the z-axis, we have by direct dalculation

1 1 1 1 1  _ (6.10)
Pef i s ' p t tot' ro

,  K i (to , x o )  
=  0  7 lç a  II 

ail)
 (to,Co)

B y u s e  o f  (6 .8 ) a n d  (6 .9 ) w e su b stitu te  th e se  in to  (3 .5 ) a n d  (3 .6 ) and
obtain

K2 (to, x0) = (to, Co) k-2 (el, to, xo) — k2 (tO, CO) ,

where

2

i=1
W e h e re  p u t  (ri , r2) = (r, z )  a n d  evaluate th e  r ig h t  h a n d  s id e  a t  (to, Co).
Futher, le t  V x = [co, 0] = (ro, 0, zo) OD (to), where 0  V  8 .2 7 r. Namely, x is

kf (to co):=
I ,

 
1{ a 2 (P II7 112 2 1 E  a

a
t

2/r,
 a

a
9
t
 a

af,.1+ ag 2A±9 }.
' (p II3at2
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the  poin t in  R3 o b ta in e d  b y  rotaiting x o =O ]  E  a i f  (to) positively with
quantity e around the z-axis. Then, using again the symmetry of D (t) with re-
spect to the z-axis, we see that

K2 (1-0, X ) 
=

K2 (1- 0, X0), k - 2 (eQ2, 10, X ) 
= k(eg„ 1-0, X0) •

It fo llow s from  (6 .6 ) th a t the variation formulas (1 .9 ) a n d  (1 .11) a re  re-
duced to

Corollary 6. 1.

(t • )112±K„)1 7--- 2  a va t
± (t, • )dt 2

2
+ (t, C)r±1 11 71)4 2 (t, CI.±,K(t) fa ra n

This concrete corollary will be useful in future for the study to  find the
view point from which the variation formulas (1 .9) and  (1.11) are unified.
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