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of graded G-modules. Because Homg (K4, Kg) = A/I by [HK, 6.1] and because
K =Ky, = K,;, we get Homg (K, K¢) = A/I in which A/I is considered to be a
graded G-module concentrated in degree 0. Hence from (4.6) we have the exact
sequence

4.7) 0-Ky—>K;—> A/l - E->Q.

If G is furthermore a Gorenstein ring with a = a(G), identifying Kg; = G(a), we
get by (4.7) the exact sequence

(4.8) 0->K;—>Gl@- A/l »E-Q
of graded G-modules. Here we note the following

Proposition (4.9). Suppose that G is a Gorenstein ring. Then
() a(G)=0.

(2) T is a Cohen-Macaulay ring of a(T)= —1.

3) Kr=G,.

Proof. Assume that a = a(G) < 0. Then considering the homogeneous com-
ponents of degree 0O in the exact sequence (4.8), we find A/l ~E. So (0):1 <1
because [(0): ITE = (0). Hence (0): I = (0) by (2.4)(4), which is impossible because
ht, I =s=0. Now suppose that a> 1. Then considering the homogeneous
components of degree —a in (4.8), we find [K;]_, =~ G, = A/I. Hence (0):1 <1
because [(0): I]T = (0). This also cannot happen. Thus a =0 and we get the
exact sequence of graded G-modules.

(4.10) 0K G- A/l -E->O0.

We have depthy T>d — 1 by (4.5) because depth G = depth; K =d. Hence to
see Cohen-Macaulayness in T, it suffices to show H&(T) = (0), or equivalently,
E =(0) (cf. [HK, 5.12]). Assume the contrary and choose a prime ideal Q e
Supp, E so that dim, E = dim A/Q. Then as E is a factor module of A/l by
a single element (look at the homogeneous components of degree 0 in the exact
sequence (4.10)), we have dim, E >dim A/l —1=d —1. Hence ht, 0 <1. As
(I +[(0):11)E =(0), we get I + [(0):I] = Q. Thus ht, Q =1 (recall that ht, (I +
[(0):1])> 1) and QB is a prime ideal in B containing IB. Now if ¢ =1, then
we have r;(I) =0 by [GNal, (2.11)]. So I =a,;A. And if £ > 2, we have I, =
a;Ag by (2.1). Hence IBy, = a,By in any case. As htgIB=1 by (4.3)(2), we
find dim B, = 1 and a, is By-regular. Thus T, = (By/a,By)[t] is a polynomial
ring in one variable t over By/a;B,. Hence T, is a Cohen-Macaulay ring
with dim T, = dim G, = 1. So we have E, = ExtéQ(Tq, Kg,) = (0) by [HK, 6.1].
This contradicts the choice of Q. Thus T is a Cohen-Macaulay ring and E = (0).
Hence by (4.10) we get the exact sequence of graded G-modules

4.11) 05 Kp—> G- A/l >0.

Now look at the homogeneous components 0 — [K;], = G, > A/I - 0 of degree
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0 in the exact sequence (4.11). Then as G, = A/I, the map ¢ has to be an
isomorphism. So we have [K;]o =(0). Thus by (4.11) we get K; =~ G, and
(K], = I/I*> #(0). Hence a(T)= —1.

If G is a Gorenstein ring, T is by (4.9)(2) a Cohen-Macaulay ring. As
hty IB =1 by (4.3)(2), we get a(T) = max {r,z(IB) — A(IB), —1} by [AH, 5.10]
and [T, 2.5]. Hence r,p(IB) < A(IB) because a(T) = —1 by (4.9)(2). Hence by
(4.4) we get the following

Corollary (4.12). Suppose that G is a Gorenstein ring. Then r;(I)<¢ — 1.
We close this section by proving Theorem (1.3).

Proof of Theorem (1.3). (1) 1If s >0, by (4.1)(2) a,t is G-regular. Hence
by (4.2) the inequality r,(I) < ad (I) — 1 readily follows from (4.12) by induction
on s.

(2) By (2.10) the sequence ayt, a,t, ..., ast is G-regular. Hence passing to
the ring G(I/(a,, a,,...,a,)A) (= Gl(a;t, a,t, ..., at)G, cf. [VV, 1.1] and thanks
to (4.2), we may assume without loss of generality that s =0. Let us maintain
the same notation as we have settled in this section. Firstly, note that by (4.4)
the hypotheses in Theorem (1.1) are all fulfilled for the ideal IB in the ring
B. Hence by (3.5) T is a Cohen-Macaulay ring and the graded canonical module
K; of T is generated by elements of degree —1 (recall that htzIB=1 by
(4.3)(2)). Therefore by [HSV, 2.4] we get Ky = gr;z(Kg)(—1) where gr;z(Kpg)
denotes the graded module associated to the filtration {I"Kg},., of K. As
K = IB by (4.3)(1), we also get gr;z(Kp)(—1) =gr;p(IB)(—1)=T,. Thus K; =
T,.. We consider the exact sequence (4.5). Recall that K = K,. Then G, = T,
whence K = G,. Further, by the sequence (4.5) G is a Cohen-Macaulay ring,
because both K = K,, and T are Cohen-Macaulay G-modules of dimension
d. Now take the Kj-dual of the canonical exact sequence 0 > G, > G - A/l —»
0. Then because Homg (G, , K5) = Homg (K, Kg) = T ([HK, 6.1]) and because
Homg (4/1, Kg) = K, (here A/I is considered to be a graded G-module concen-
trated in degree 0), we get the exact sequence 0 —» K ;; - Kz = T —0. Thus K
is generated by elements of degree 0. On the other hand, in the exact sequence
(4.7) we get E = (0) because T is a Cohen-Macaulay ring. So we have the exact
sequence 0 > K; - K; —» A/l - 0 of graded G-modules. Hence because a(T) =
—1, we get [Kg]o = A/I. Thus K, is cyclic and G is a Gorenstein ring.

5. The case where ad (/) <3

The purpose of this section is to prove Theorems (1.5), (1.6), and (1.7). We
assume that I is an ideal in a Cohen-Macaulay ring 4 of dim A =d, which
contains a special reduction J, with s = ht, I and # = A(I). We also assume that
A/l is a Cohen-Macaulay ring, ad (I) <3, and r,(I) <2. We choose a system
of generators a,, da,, ..., a, for J so that the conditions stated in (2.4) are fulfilled.
We put G = G(I), R = R(I), and I = mG + G,. Here we note that if ad (I) = 2
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(resp. ad (I) = 3), one naturally has the inequality depth (4/I"), > min {ad (I) — n,
ht, Q — s — n} for all prime ideals Q € V(I) and for all integers n with 1 <n <
ad (I) (resp. depth (4/I"), > min {ad (I) — n — 1, ht, Q — s — n} for all prime ideals
Qe V() and for all integers n with 1 <n <ad(l)—1). Hence as r,(I) <2 by
our standard assumption of this section, the results obtained in section 2 are
applicable. In particular, the sequence a;t, a,t, ..., agt is G-regular by (2.7)
(resp. (2.10)), if ad (I) = 2 (resp. if ad (I) =3 and A4 is a Gorenstein ring); thus
passing to the ring G(I/(a,, a,. ..., a))A) = G/(a,t, a,t, ..., a,;t)G and thanks to (3.1)
(resp. (4.2)), in order to prove Theorem (1.5) (resp. Theorems (1.6) and (1.7)) we
may assume without loss of generality that s =0.

For the rest of this section we assume s =0 and ad (/) =¢. We begin with
the following lemma, in which the first assertion is fairly well-known but let us
note a proof for completeness.

Lemma (5.1). (1) depth A/I">d — ¢ for all n > 1 if G is a Cohen-Macaulay
ring.
(2) Letd>3,5s=0,and ¢ =2. Suppose depth A/I*> > 1. Then depth A/I" >
1 for all n> 1.

Proof. (1) We have grade; mG = inf,,, depth A/I" ([B]), while grade; mG =
hte mG =d — ¢ as G is a Cohen-Macaulay ring. Hence depth 4/I">d — ¢ for
all n> 1.

(2) We may assume n > 3. Hence I" = J" 2I* as n > r,(I). By induction
on m we will show depth A/I"I> > 1 for all m>0. As depth A/I*> > 1, we may
assume m > 1 and depth A/J™ 'I?> > 1. First, notice that I = a}'I and I*> =~ a}'I*
because of the isomorphisms a¥I ~ a*"'I and a*I> @ a* 'I*> (k>1) given by
(2.5)(2). We consider the following six exact sequences

@ O0—1—A— A0,

b) 0-I->A—> A/aTl—>0 (recall al'l = 1),

© 0—I>—A— A/I> >0,

d 0-I>->A->A/arl* -0  (recall aTI*> = I?),
© 0—J"'I2/a™ — Aja™] - A/J" 1> >0, and
() 0-J"'12/am ] — AJall? > AJJ"I? >0,

where the last one follows from the isomorphism J™I%/a?I* =~ J™ 'I?*/a}I in
(2.5)(2). Then as depth 4/I = depth A4 = d, by the sequence (a) we get depth, I =
d so that by (b) the inequality depth A/al'l >d — 1 > 2. Hence as depth 4/J"'1 2>
1 by our hypothesis on m, we get by the sequence (e) that depth, J"'I*/al'] > 2
too. Similarly, by sequences (c) and (d) we find depth A/aT'I*> > 1. Thus by the
sequence (f) we conclude depth A/J™I? > 1, because depth, J" 'I?/a7'] > 2 and
depth A/a?"I*> > 1 as we have shown above.



Cohen-Macaulayness 245

For a moment assume that depth A/I" > 1 for all n > 1. Then by Burch’s
inequality ([B]) s < ¢ < d — inf,,, depth A/I", we get £ <d. Let & = {Qe V()]
ht, Q =i and Q € Supp, I/J;_,} for each 1 <i<¢. Then & < Min, I/(J;_; + I?)
(see (2.1)). Hence ¥ = U &, is a finite set and m¢ F as £ <d. As m¢

1<i<t
(J Ass, A/I" and as the set \J Ass, A/I" is also finite ([Br]), we may choose
n>1 n>1
an element x of m so that x ¢ Q for any Q € < (J Ass, A/I">U97. Let A = A/xA,
n>1

I=1IA4, and J =JA. Then as x is A-regular, 4 is a Cohen-Macaulay ring of
dim A =d — 1. We furthermore have the following, which we later need to
reduce the problem also to the case where d = /.

Lemma (5.2). (1) depth A/I" = depth A/I" — 1 for all n> 1. In particular
A/l is a Cohen-Macaulay ring.
(2) htzI =0 and A()="¢.
(3) J is a special reduction of I with ri(I) < 2.
(4) G is a Cohen-Macaulay (resp. Gorenstein) ring if and only if G(I) is a
Cohen-Macaulay (resp. Gorenstein) ring.

Proof. The assertion (1) follows from the fact that x is A/I"-regular for all
n>1. Since dim A/l =d — 1 = dim A, we have ht;1 =0. As x is G-regular,
we get by [VV, 1.1] an isomorphism G(I) = G/xG of A-algebras. Hence the
assertion (4) and the equality A(I) = # follow. As the ideal J is a reduction of
I with pz(J)<¢, J is a minimal reduction of I with ry(I) <2. Let Qe V(I)
with ht; O < ¢, and choose a prime ideal Q € V(I + xA) so that Q/xA = Q. Let
i=ht,Q. Then 1 <i</ as ht,Q=htzQ+ 1. As xeQ, Q¢ Supp, I/J;_, so
that we have I, = J;_; Ay whence Ig = J,_;Ag. Thus J is a special reduction of I.

Now let us note a proof of Theorem (1.5).

Proof of Theorem (1.5). The last assertion follows from [TI, 1.1], since
a(G) = —s by [AH, 5.10] and [T, 2.5]. To see the equivalence of assertions (1)
and (2) we may assume s =0. Hence £ = 2.

(1)=(2) This follows from (5.1)(1).

2)=(1) If d>3, then by (5.1)(2) we get depth A/[">1 for all n>1.
Hence by (5.2) we may furthermore assume d = 2. First of all, we choose an
element x e (0): I so that x is A/I-regular (this choice is possible, since ht, (I +
[(0):1])>1 by (2.1) and since A4/l is a Cohen-Macaulay ring of dim A = 2).
Hence depth 4/(xA + I) = 1. We now recall depth A/a,I > 1 (see Proof of (5.1)
(2)). And we choose an element y € m so that y is regular on both of A/(xA4 + I)
and A/a;I. In what follows, we will show that the sequence x + a,t, y + a,t is
G-regular. Let f=a, + a;t + - + a,t"e R with a; €I’ and assume (x + a,t)f €
IR. Then as x €(0): 1, we get (x + ajt)f = xog + Y 5y a,0;_1t' =0mod IR. As
xao € I, we have ag el since x is regular on A/I. For i > 2, we have a,a;_, €
a,ANI*Y = a,I' by (2.6). We write a,o;_; = a,& with ¢eI'. Then as a,(¢;_; —
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£) =0, we get a;_, — e [(0):a,]NI = (0) (see (2.4)(4)). Hence «;_, e I' for all
i>2 and so we have felIR. Thus x + a;t is G-regular.

Let us check y + a,t is regular on G/(x + a,;t)G. Let L =(x + a,t)R + IR.
Let g =By + Bit + -+ B,t"€ R with n> 2 and B; e I' and assume (y + a,t)g € L.
Choose f =ag + ot + - + a,t™ e R with o; € I' and m > n so that (y + a,t)g =
(x + ayt)f mod IR. Then as (x+a;t)f =xa+ Y 50,011, we get yf,+
Y icien@Biy + YR + ayBt" = xag + Y i5y a0t  mod IR. Hence as a,f, =
a,a, mod I"*2, we have a,f, — a,a, € (a;, a,)NI"*? = (a,, a,)I"** by (2.6). Choose
EeI"™! so that ay(B, — é)ea,A. Then as B, —Ee[a;A:a,]NI" and as [a,A:
a,]NI* = a;A by (2.5)(1), we have by (2.6) that §, — éea,I"'. Write B, =
a;nmod I"*! with neI""!. Then as B,t" = (a,)(nt" ") = (x + a,;)nt"* mod IR
(recall x € (0):1I), we get §,t" € L and (y + a,t)(g — B,t") € L. Thus repeating this
procedure we find Bit'e L for all 2 <i<n and (y + a,t)(B, + Bit)e L. We then
have

(a) yBo = x0to mod I ,
(b) yB, + a,Po = a,ao mod I,  and
() a,B, = a,a, mod I3 .

As x, y forms an A/I-regular sequence, by (a) we may write f, = xu mod I
and oo = yumod I for some ue A. Then as yp, + a,xu = a,yumod I* by (b)
and as xI =(0), we find yB, —a,yueI®>. On the otherhand by (c) and (2.6)
we have a,B, — a,a, € (a,,a,)NI* = (a,, a,)I* whence a,(B, — p) € a;A for some
pelI? Thus a,(y(B, — p) — ya,u)ea,A. Therefore we find y(B;, —p — a,u) =
(yB, —a,yu) —ypela,A:a,]NI* =a,l by (2.5)(1). As y is a regular on A/a;l
by its choice, we get B, — p — a,uca,l. Hence we have B, = a;umod I>. As
Bo = xumod I, we get f, + ffit = (x + a,t)umod IR so that B, + f;te L. Thus
the sequence x + a;t, y + a,t is G-regular whence depth G =2 so that G is a
Cohen-Macaulay ring. This completes the proof of (1.5).

To prove Theorem (1.7) we need the following

Lemma (5.3). Let A be a homomorphic image of a Gorenstein ring. Let
d=25s=0,and £ =2. Assume r)(I) < 1. Then depth, [Ks] > 1.

Proof. Let B= A/[0:1] and T = G(IB). Then dim T'=dim B=2. The
ring G is Cohen-Macaulay by virtue of (1.5). The element a, is B-regular by
(2.4)(4) whence depth B> 0. We begin with the following.

CrLamm 1. ayt is T-regular.

Proof of Claim 1. Let a e I" with n > 0 and assume (a,t)(at") = 0 mod [(0):
IT+IR. Then as a,xaea,ANI""?*=qa """ by (2.6), letting a0 =a,¢ with
Eel"™, we get a —Ee(0):a, =(0):1 by (24)(4). Hence ae "' + [(0):I] so
that we have at" € [(0): 1] + IR.
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Let C=B/a;B and S = G(IC). Then dimC =1 as a, is B-regular. We
get S = T/a,;tT by Claim 1. Let X =(0):ga,t and Y = S/a,tS. Then we have

Cramm 2. X,=(0) and Y, =(0) for all n > 2.

Proof of Claim 2. Let n>2 be an integer. Then (IC)? = a,IC as r,(I) <
1 whence S, < a,tS so that Y, =(0). Let ael” and assume (a,t)(at")=0
mod [(0):I] + IR + a,;tR. Then a,aelI"™? +a,A. As I"? =(a,, a,))["**, we
have a,a e a,A + a,I"*'. Write a,(x — £)e a,A with Ee "™, Then as a — ¢ €
[a,A:a,]NI"=a, "' by (2.5(1) and (2.6), we get ael"*' + a,I"'. Thus
at" € [(0): IT+ IR + a,tR. Hence X, = (0).

Cramm 3. a(S) <0.

Proof of Claim 3. Split the sequence 0 » X(—1)> S(—1)3 S - Y -0 into
the following two exact sequences 0— X(—1)—> S(—1)—a,tS—-0 and 0—
a,tS - S - Y - 0 of graded S-modules and apply functors H(*) to them. Then
we get exact sequences [Hy,(X)](—1) = [HR(S)](—1)— Hi(a,tS) and HY(Y) -
Hiy(a,tS) - HY(S) of local cohomology modules. Let a = a(S) and look at the
homogeneous components of degree a + 1. Then we get the diagram

[H%(Y)]a+s
I
[Hu(X)1, = [Hu(9 1, > [Hin(a;18) 1,41
lf
[H5(S)]a+1

with exact row and column. We have [Hiy(S)], # (0) and [HY(S)],+;1 = (0) (recall
dim S =dim C =1). Hence the map p is an epimorphism. Therefore, if ¢ # 0,
we have (0) # [H}(Y)],4; S Y,,, whence a <0 by Claim 2. Assume o =0.
Then as [Hy(S)], # (0), we get [Hy(X)], # (0) whence H (X,) # (0) as [Hi(X)], =
H!(X,) by [GH, 2.2]. Hence a <1 by Claim 2. Assume now a = 1 and choose
a prime ideal Q € Supp, X;. Then as X, = S, and IS, = (0), we have I= Q. If
ht, 0 <1 (<7 =2), then we get I, =a;A, by (2.1) whence IC, = (0) so that
we have §,, = (0). This is impossible as X, # (0). Hence we have Q = m as
dim A = 2. Thus dim, X, =0 and H}(X,) = (0). This contradicts the fact that
H!(X,) # (0). Thus a <0.

CrLamm 4. a(T) <O.

Proof of Claim 4. By Claim 1 we have a,t to be T-regular. Apply functors
Hiy(*) to the sequence 0 —» T(—1)% TS —0. Then we get the exact sequence
HY(S) - [HE(T)1(— 1) ™5 H3(T) of local cohomology modules. Let a = a(T)
and look at the homogeneous components [Hy(S)],+1 = [HE(T)], = [H3(T)],41
of degree a+ 1. Then as [H3(T)],+; =(0) and as [H%(T)], # (0), we get
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[Hy(S)],+1 #(0). Hence a+ 1 <a(S) so that we have a <0 as a(S)<0 by
Claim 3.

Now let ¢: G- T be the canonical epimorphism and K = Ker ¢. Then
K, = {"N[0): 17)/I™ " N[(0): I]) whence K, =(0) if n> 1 and K, = (0): I (recall
[(0): 11N = (0) by (2.4)(4)). We consider the exact sequence 0 > K -G —->T -0
and take the Kg-dual of it. Then we get the exact sequence 0 - K; — K —
Homg (K, Kg) of graded G-modules. As [K;], = (0) by Claim 4, we have the
embedding [K;], = Homg (K, Kg)],- Now recall that depth, K = depth, [(0):
I = 2 (use the exact sequence 0 — (0): I - A - B — 0 and the fact that depth B >
0 as well). Choose an element xem so that x is K-regular and let K =
K/xK. Then as K is a Cohen-Macaulay G-module of dimz; K =1, we have
Homg (K, Kg) = (0) by [HK, 6.1] so that x is a nonzerodivisor on Homg (K, K).
Hence x is a nonzerodivisor on [Kg], too. Thus we get depth, [Kg], > 1 as
claimed. This complete the proof of (5.3).

We are now closing this section by proving theorems (1.6) and (1.7).

Proof of Theorem (1.6). (1)=(2) See (5.1)(1).

(2)=(1) We may assume s=0. Let B= A/[(0):I]. Then B is a Cohen-
Macaulay ring of dim B =d ([PS, 1.3]), while we have by (4.3) and (4.4) that
htg IB =1, A(IB) =3, B/IB is Cohen-Macaulay, and JB is a special reduction
of IB with r;5(IB) = r;(I) < 2. Hence the hypotheses in Theorem (1.5) are satisfied
for the ideal IB in B. Recall the exact sequences

(a) 012> A— A/I*> >0 and
(b) 0—-1>->B—B/I’B-0,

in which the latter one follows from the equality that [(0):I]1N(0). Then as
depth A/I*> > d — 3, by the sequence (a) we have depth, I> >d — 2 whence by
(b) we get depth B/I?’B>d — 3. Thus by (1.5) T = G(IB) is a Cohen-Macaulay
ring of dim T=d. Now let ¢: G —> T be the canonical eqimorphism and look
at the exact sequence 0 » K - G 5 T — 0 with K = Ker ¢. Then as depth; K =
d (recall K = Ky = K 4, cf. the remark just after (4.3)), we get depth G =d. Thus
G is a Cohen-Macaulay ring.

Proof of Theorem (1.7). (2)=-(1) This follows from (1.3)(2).

(1)=(2) We may assume s=0 and /#=3. If d >4, then by (51)(1) we
get depth A/I" > 1 for all n > 1. Hence passing to the ring G(I), we may assume
by (5.2) that d =/ = 3. We must show depth A/I*> > 1. For this it is enough
to see depth, I/I> > 1. Let B= A/[(0):I], C = B/a,B, T = G(IB), and S = G(IC).
Then B is a Cohen-Macaulay ring of dim B =3 ([PS]). By (4.4) the ideal JB
is a special reduction of IB with r,z(IB) <1 and A(IB)=3. By (4.3) we have
htg IB=1 and B/IB is a Cohen-Macaulay ring of dim B/IB=2. And, C is
a Cohen-Macaulay ring of dim C =2 as a, is B-regular (cf. (2.4)(4)), whence
hte IC = 0 (note dimC/IC = dim B/IB = 2), so that the proof of (3.1) works to
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get, passing to the above data on B, that A(IC) =2 and IC contains JC as a
special reduction with r,(IC) < 1. Hence the hypotheses in Lemma (5.3) are
satisfied for the ideal IC in C. Let us now notice by (4.9) T is a Cohen-Macaulay
ring of a(T)= —1 and by (2.7) a,t is T-regular. Hence Kg=~[K;/a;tK;](1)
([GW, (2.2.10)] as S =~ T/a;tT ([VV, 1.1]). We have [Ks], =~ [Kr], as [K;]o =
(0) (recall a(T) = —1), while G, = [K;]; by the sequence (4.11) and depth, [Ks], =
1 by (5.3). Hence we get depth, I/I* > 1, which completes the proof of Theorem
(1.7).
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