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Donsker’s delta functions and approximation of
heat kernels by the time discretization methods

By

Yaozhong Hu* and Shinzo WATANABE

Introduction

Time discretization approximation schemes for solutions of stochastic differen-
tial equations have been studied by many people and are treated, e.g., in the
book of Kloeden-Platen [KI-P192]. Since heat kernels are the probability den-
sities of the law of solutions, it might be worth-while to ask if these approximation
schemes provide a natural scheme of approximation for heat kernels. Purpose
of this paper is to propose one of such schemes with a help of Malliavin calculus.

In section 1, we introduce the notion of Donsker’s delta functions as a class
of generalized Wiener functionals on Wiener space. In section 2, we obtain a
general approximation result for Donsker’s delta functions. In section 3, we
consider the case of Wiener functionals given by solutions to stochastic differential
equations. An [t6-Taylor approximation scheme of order y for the solution has
been introduced by Kloeden and Platen [KI-P195]. Here we improve their result
of the strong convergence in the L,-norm to the strong convergence in every
Sobolev norm in the Malliavin calculus (Theorem 3.1). This is a main result of
this paper and its proof is given in section 4. This result, combined with general
results in section 2, yields some strong approximation scheme for Donsker’s delta
functions and thereby an approximation result for the heat kernel in the form
of Theorem 3.2. However, it should be remarked that the heat kernel is given
by a generalized expectation of Donsker’s delta function and therefore, what is
involved in this problem is essentially an weak approximation. The rate of
convergence in Theorem 3.2 is that of the strong approximation and it can be
improved to the rate of weak convergence. For such improvements, we refer
to the recent works by Bally and Talay [B-T95] and Kohatsu-Higa [Ko095].

1. Malliavin calculus and Donsker’s delta functions

Let (W, H, P) be a (classical or abstract) Wiener space, where H is the
Cameron-Martin Hilbert space and P is the Wiener measure. Let F: W — R?
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be a d-dimensional Wiener functional, i, a P-measurable mapping (more pre-
cisely, an equivalent class of P-measurable mappings) from W to R% Let
T e #'(R?) be a Schwartz tempered distribution on R%. We want to give a sense
to the composite T o F. This should be naturally defined as a limit of Wiener
functionals ¢, F, where ¢, € % (R?) (= the space of test functions on R?) such
that ¢, > T in &' (R?) and so we need a framework to realize this convergence
and to identify the limit. Such a framework is provided by the Malliavin calculus
as follows (cf. [Wa84]).

Starting with the family of L” spaces L? over the Wiener space (W, H, P)
and the basic differential operators D (the gradient), D* (the dual of D, the
divergence) and L = —D*D (the Ornstein-Uhlenbeck operator), a family of Sobolev
spaces Df, 1 < p < oo, a €R, can be introduced as

Df = (I - L)™(L7)

with the norm
IFllp.=II = LY?F|,, FeDE,
where |-, is the L, norm on L”. Then clearly,
D? =L*, D? < D% if p>p and az>do
and
D2y = D2,
As in the Schwartz theory of distributions, we introduce the space of test Wiener
functionals by
DZ™ =My50Micpcn D7

and its dual, the space of generalized Wiener functionals, by
D, = U,<oUs < p< o DL

When we consider, more generally, E-valued functional, E being a separable real
Hilbert space, the corresponding Sobolev spaces are denoted by DZ[E].

The natural coupling of G € D? and @ € (DZ) = D?%~Y or that of Ge DE~
and @ e D! is denoted by E(G-®), in particular, when G =1, the Wiener
functional identically equal to one, E(1-®) is simply denoted by E(¢) and is
called the generalized expectation of & e D! . E(®) coincides with the usual
expectation [, ®(w)P(dw) when & is given by an integrable random variable.

Let C(RY) = {f:R?*> R, continuous, lim ., f(x) =0} and define a family
of Banach subspaces of &'(R?) by

L=+ x> = A)™CRY), n=0, £1, +2, -
with the norm

llulls,, = sup, LT+ [x]? = AY'u] (x)]
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so that
YRYc - cFhcSFh=CR)cF,c R
and
FRY =N S L' RY)=UL Sy,

Definition 1.1. Given a d-dimensional Wiener functional F: W —R* and
T e &' (RY), we say that T o F is defined in D**, and To F = & for some ® € D1,

i there exist ne Z"* (the set of nonnegative integers), | < p < 00, & > 0 such that
TeY.,, ®eDP?, and the following holds: For every sequence {¢:k =1, ,...}
&L (R such that ||¢,— Tls_, =0 as k— oo, it holds that |¢. o F — D, -,—0 as
k— oo (Note that ¢ o F e L® < D2, for all k).

Clearly @ is uniquely determined from F and T.
It is well-known [Wa84] that if F is smooth in the sense that F e DX~ [R?],
ie, F=(F', ..., F% with Fl'e D", and non-degenerate in the sense that

(det ap) ' € L®™ (=N, <pcn LP)

where o/ = (DF', DF/), is the Malliavin covariance of F, then for every
Te % (R?, ToF can be defined in D', and it holds that

ToFeU,soMN, <pen D7y

In the particular case of T = (1 — 4)*?5,, B > 0, y € R?, where 9,() = do(- — y)
is the Dirac delta function at y and 4 is the Laplacian on RY it is known
[Wa93] that

ToF:(]_A)ﬂ/26yoFeﬂl<p<wD’ia, if a>p+d,

more precisely,
(1.1) (1 — 4y25, 0 FeD? ﬁa>ﬂ+§ 1+1=1
. y —a q ) p q .

In particular, when =0,
d 1 1

5,0FeD?, fa>-, —4+-=1
9 P (4

From this we can see that J,0 F is arbitrarily close to L' space. In particular,

we can conclude that if Ge DY, g> 1, oc>‘—;, then u(y) = E[G-J,0 F]e C*(R?)

d
for every 0 < B <« s where C#(R?) is the closure of &(R?) with respect to

the norm

S sup |20 — 270

milm[=[B] x#y [x — .V|ﬂ_m]

lgls= 3 1078l +
miimT<(8]

simi <[



502 Yaozhong Hu and Shinzo Watanabe

0,0 F is called a Donsker’s delta function and was studied first by H-H. Kuo
in the frame of white noise analysis. Note that

E[G-d,0 F] = E[G|F = y]pg(y),

where pp(y) is the density at y of the probability law of F. Thus we see that
these notions are important in the study of the densities and conditional expecta-
tions for Wiener functionals.

2. An approximation theorem for Donsker’s delta functions

Suppose that a d-dimensional Wiener functional F: W — R? be given which
is smooth and non-degenerate in the sense explained above. Then, for every
B>0 and ye R’ (1 — 4)*25,0 F is defined in DY, Suppose that a sequence
{F,;n=1,2,...} of d-dimensional smooth Wiener functionals converge to F as
n— oo in a certain sense. We want to obtain an approximation of (1 — 4)P2§, 0 F
in terms of F,.

Theorem 2.1. Let F,, n=1, 2, ... and F be smooth d-dimensional Wiener
functionals, i.e.,

F,

no»

F e D= [R].

We suppose that F and F, satisfy the following:
i) F, approximates F in D%~ [R] with order y (y > 0) in the sense that for
every 1 <p< oo and o >0,

2.1 |F, — Fl,,=0(n") as n— o0.

i) F is non-degenerate, i.e.,
(2.2) (detop) ' e L™

Then for every o >0, $>0,8>0 and 1 < p < oo such that o > f + d/q + 1,
1/p + 1/q = 1, it holds that

(2.3) sup [[(1 — A)2¢, JJ(F, — y) — (1 = A28, 0 F|,_, = O(n™""?)

ye R4
as n— oo, where
(2.4) B,(x) = (2mp?) d2e~P20? - x e R?, p>0.

Remark. Obviously, (1 — 4/"2¢, . e & (R?) and hence [(1 — 4)*¢,,]1(F, — y)
eD®" for each n and yeR".

Corollary 2.1. Let >0, 1<g<oo and o> f+d/q+ 1 and G,, Ge Dy,
n=1, 2, ... such that

1
(2.5) 1G, — Gllg.. = 0<?>, as n— oo



Donsker’s delta functions 503

for some ¢ >0. Then it holds that
(2.6) sup, . ga (1 — AWPE[G," ¢,-o(F, — )] — (1 — A52E[G-6,(F)]|
=0(n7 %" as n— o0.
In particular, setting
u,(y) = E[G," ¢,-s(F, — )] and u(y) = E[G-9,(F)],
we have
2.7 lu, — ully =0(n"7"%*%)  as n— .

We remark that we are not assuming that F, is non-degenerate so that we
do not even know that J, o F, = dy(F, — y) can be defined. A key point in the
proof of Theorem 2.1 is to use an idea of Léandre ([Lé87]) which we formulate
in the following:

Lemma 2.1. Let H,, He D" satisfy the following:
(1) There exists y > 0 such that for any 1 < p < oo,

2.8) |H, — H|l,, = 0(n™"), as n— .

(i) (detoy)'eL®".
(ili) For any 1 < p < oo, there is v(p) > O such that |(det oy )7'[, = O(n*?)
as n— o0.

Then, for any 1 < p < oo, we have
(2.9) sup [I(det oy ) 7', < 0.
Proof. In the following, C,(p), C,(p), ... are positive constants depending

only on 1 <p < oco. Writing det oy = 1, and det o4 = 7, for simplicity, we have
for a given 1 < p < o0,

_ o 1 _o 11, 1
E(]7,|77) = E(|‘E,,[ -1 < 5) + E(|r,,| P T 1> 5) =1, + I,.
T, 1 1 1 -
If T 11 < 7 then 7, > 57 and hence 7,' <217'. Consequently, by the assump-
tion (ii),

T

I, < 2°E <|z|-":

1
< -
2
< 2PE|T|7?:= C,(p) < oo0.

As for I,, we can estimate by the Schwartz inequality

1 12
)

I, < E(Iu,l‘“’)‘“P( "

By the assumption (iii),
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E(|t,| ") < Cy(p) w20

and by (2.8) it is easy to deduce that
E(t, — t**) < C3(k)-n™ 2

for every k > 1. Combining this with (i),
g

T

T,— 7T

n

2k
) < C4(k) * n_Zky

1
— | < 2%*E

< Cs(k)-n~2%,

and hence

n— T

T, — 1

g

2k
T T

Consequently

I, < \/CZ(p)’C5(k)'n"(21’)‘2p—2k~y'
By taking k large enough so that v(2p)-2p < 2ky, we can conclude (2.9).

Remark. In the above proof, the assumption (i) can be replaced by the
following weaker assumption:

(i) For every 1 < p < oo, there exists a u(p) > 0 such that u(p)t oo as pt oo and
E(|H,— H|F + |DH, — DH|P) = O(n™*P) as n— oo.

Proof of theorem 2.1. We take a product Wiener space (W =W x W',
P =P x P'), where (W', P’) is a classical d-dimensional standard Wiener space
and consider on (W, P) the following Wiener functionals

H®) = Fon + w(l),  HE) = F(w)

for w=(w,w)e W x W'. Then we can apply the above lemma 2.1 to obtain

sup |[(det o )7'|, < o0.
n

Set further K, ,(w) = (1 — t)F(w) + tH,(w) for t € [0, 1]. Then,
K, (W) — F(w) = t(H,(w) — F(w)) and [(det og,)7'll, = O(n**t27).

nt

Applying Lemma 2.1 by fixing n, we deduce that, for each p > 1, u > 0 exists
such that

S I(det ok, )" ll, = O(n*).

te(0,1

Then applying Lemma 2.1 again, we can conclude that, for each p > 1,
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sup [(det ag, )7, < 0.

t,n

Set T = (1 — 4)’?5,. Then

1
ToH,— ToF=f 0T o K, ,"(H, — F)dt
0

and, if « > (B + 1)+ d/q, 1/p + 1/q =1, then by (1.1) we can choose p > p such
that

sup 0T o K, 5, < 0.
tLn

Since |H, — Fl;, = O(n~""%) for g > 1 such that 1/p + 1/g < 1/p, we deduce that

1
IToH,—ToF|,_, SJ 10T o K, - (H, — F)|,,-,dt
0

1
< const J 10T o Ky, ll5,~a | Hy — Fllz,odt

0
= 0(n7"9).

From this, we can conclude (2.3) by noting
Lﬂ [(1 — 4Y28,1(H,(w, w))P'(dw') = [(1 — 4¥P¢, J(F,(w) - y)
and a general fact that the map
P(W) = P(w, w') > B(w) = L" D(w, w')P'(dw’)

is a contraction from D? (W) to D? (W) for every 1 <p < o and ae€R. This
follows at once from the following relation which can be easily verified by the
Wiener chaos expansion:

[(1 — L)y*®]" =(1 — L),
L and L being the Ornstein-Uhlenbeck operator on W and W, respectively.
Corollary 2.2. If F, in Theorem 2.1 is uniformly non-degenerate, i.e.
sup [[(det af, )7, < o,
then, [(1 — 4", ;](F, — y) and O(n"?"°) in (2.3), and @, +(F, — y) and O(n"""?"?%)

in (2.6), may be replaced by (1 — 4’25, 0 F, and O(n™"), and 8,0 F, and O(n"""*),
respectively.

Indeed, if T = (1 — 4)"6,, we can deduce by the same proof that
“ T(Hn) - T(Fn)”p,—a = O(n—d)'

Also we may take § as large as we want.
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3. Approximate heat kernels by time discretization scheme

We consider a typical example of applications of the above theorem.
Let W = Wy be the classical r-dimensional Wiener space:

W5 = {we C([0, T] - R"), w(0) = 0}

and P be the standard Wiener measure on WJ. Then w(t) = (w'(t),..., w'(t)) for
we W is a realization of r-dimensional Brownian motion on W. Also we write
w for wi(t).

Fix a T> 0. Consider the following stochastic differential equation:

r t
(3.1 X, =x+ Y, j b(s, X,)dw/, t € [0, T], x € R,
=0 Jo

where b, j =0, 1, ..., r are given smooth functions from [0, T] x R? to R? with
bounded derivatives, and we use the convention dw? = ds to simplify notation.
The unique solution is denoted by X, = X(t,x). Then X(t, x)e D®"[R?] for
every t >0 and x e R%

To describe the time discretization schemes, we introduce the following opera-
tors on functions f: [0, T] x R > R

. 4 of )
(3.2) Lif(s,x) =Y bis,x)55(s,x), j=1,...,r,
k=1 0x

(3.3)
0 d of 1 d r o%f
L6 = Lo+ 3 0360 aloox) + 5 3 3 b6, 0005, 550150,
where bj" is the k-th component of the vector b; (k =1,...,4d).
Consider a multi-index a = (o, &5, ..., ;) with «;€{0,1,...,r} and write

I=1(a). If o) >2, we set —a = (ap,...,) and a— = (ay,...,,_,). Given q,
we define an R%valued function f,(s, x) = (fX(s, x)) on [0, T] x R recursively by

1(s, x) = bk (s, x), if lo)=1 and o= (a,),
—(L5f%)(s %), if @) =2 and o= (2, —a)
so that
(3.4) fk(s, x) = LuL™... L"“‘(b:')(s, X)

if = (ay,...,). Also we define, for « and 0 <s <t < T, a Wiener functional
I, ., recursively by

1

a,s,t

=wi — wh, if llo)=1 and o= (o),

t
=j Lo oudwWy, if l(la)>2 and a=(a—,q)

N

so that
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(3.5) L. = J fsgul<...<,,ls, dwjidwg?---dwg if o= (oty, ", )

Then by the recursive application of It6’s formula, we obtain the following It6-
Taylor expansion for the solution X, to (3.1) (cf. [KI-PI192]) for every 0 <s<t<T
and a non-empty set I' of multi-indices with the property that if « €I, then
—ael]

(3.6) X =X+ era(& X o5, + % LS X)), o5
ae ae r

where

(3.7 Br={ow;a¢l" and —oael}

and

(3.8) L(fi(- X))y, = f j Sy, X, Ydwdwe ... dws
S<uy <. <u<t

if a=(ay,..., %)
In the sequel, we consider the following case of class I” of multi-indices
exclusively: For an integer or half-integer y > 0,

(3.9 I'=1T = {a;l(0) +n(@) <2y or Ila)=n(e)=1y+ 1/2},

where n(a) = # {k; o, = 0} for o = (ay,..., ).

Consider a partition n of the interval [0, T], n:0=¢t,<t; <" <t,=T
and put |z| =sup;(t;;; —t;), the step of the partition. A strong It6-Taylor
approximation scheme (X[*) of order y for the solution X, to (3.1) is defined by

(3.10) Xr=x

X=X+ ¥ fultm XZ ) 0

ael”
for t € [ty ther ], m=0,1, ..., n—1,

where I'=I,. This recursive formula lends itself to explicit computations (the
multiple integrals can be even handled by a computer). Examples are the case
7 = 3 Euler-Maruyama scheme, with

'={a=(@),a=01,...,r}
and the case y = 1. Milstein schemes, with
F={o=(),a=01,....r; or o=(a;,0,),1 <o, a,<r}

The following estimate was proved in [KI-P192] when p =2 but this can be
obtained by the same proof for general p if we use Lemma 4.1 given in the
next section:

3.11)

= O(|n[")

p

( sup | X, — X.”I)
o0<i<T
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for any 1 <p <oo. Let xeR? be fixed and set
(3.12) Fw)=X(Tx);,  F, = X"(T, x).
Then F, F,e DX [R*]. (3.11) implies, in particular, that
IFe — Fll,=0(nl")  as |x|>0
and in the next section we will improve this result to obtain

Theorem 3.1. Suppose that the coefficients b;, j=0, 1, ..., r, are in C* with
bounded derivatives and further f¥(s, x) for every multi-index a and k=1, ..., d
have bounded derivatives. Then, for every p>1 and f > 0,

(3.13) [Fe — Fll,p=0(nl")  as |n|->0.

Let m, be the equal partition of [0, T]:n,:0=t,<t, <...<t,=T where
ty =§T. We write F, = F,. Then F, approximates F in D%~ with order y.
Now we suppose that F is non-degenerate:
(3.14) (det op) ' € L™,

A sufficient condition has been studied, just as the beginning of the Malliavin
calculus, by Malliavin [Ma78] and then completely by Kusuoka-Stroock [Ku-
St85]. The non-degeneracy of the diffusion coefficients a*(x) =) 5_, b¥(x)bi(x)
at x is sufficient: However, a much weaker sufficient condition can be given as
a Hormander type condition at x for vector fields b, involving the Poisson
brackets. We do not intend to state explicitly here (c.f. [Ku-St85]).

Now F, and F satisfy both conditions (i) and (ii) of the above theorem 2.1
and hence we can conclude that (2.3) holds. Thus we could obtain an approxima-
tion scheme for the Donsker’s delta function 6,(X(t, x)) in terms of the It56-Taylor
scheme (3.10) for the solution X(t, x) and thereby for the probability density of
X(t, x) and the conditional expectation given X(t, x). In particular, we can sum-
marize Corollary 2.1 in the following

Theorem 3.2. Let F, = X™(T, x) and F = X(T, x) for fixed xe R and T >0
and assume that equation (3.1) satisfy the non-degeneracy condition (3.14). For
every f>0and 1 <gq< oo, if G,, GeDj§ for « >d/q+ p+ 1 and

G, — Gllg.. = O(n™°) for some &€ >0 as n— oo,
then setting
uy(y) = E[G," 4,-o(F, — y)] = E[G," ¢,-s(X™(T, x) — y)]
and
u(y) = E[G-9,(F)] = E[G - 0,(X(T, x))],

we have
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(3.15) lu, — ully = O(n~7"°"%) as n— .
Note that
u(y) = P(T, x, y)E[G|F = y]

where P(T, x, y) = E[J,(X(T, x))] is the probability density of the solution X(T, x).
We know that P(T, x, y) coincides with the heat kernel for the heat operator L°.
If the non-degeneracy condition (2.10) is satisfied for F,, i.e,

sup [|(det gz )", < o0,

n

then, by Cor 3.2, u, in (3.15) may be replaced by
un(y) = E[G,6,(F,)] = P(T, x, y) E[G,|F, = y],
where P,(T, x, y) = E[6,(X™(T, x))] and it holds that
lu, —ully =0mn7""%)  as n— oo.
In particular, for any f > 0,
[PAT, x,-) — P(T, x,*)llg = O(n™") as n— oo.

For example, suppose that the coefficients of SDE (3.1) satisfies the uniform
ellipticity condition:

inf det [a(s, x)] > 0,
(s,x)e[0,T)x R4

where a*(s, x) = Y5, bj(s, x)b/(s,x), k, I=1, ..., d and consider the Euler-
Maruyama scheme:

X. ., =X + Zx bi(ty, X&)[Wziﬂ - Wr]k] + bo(ty, X7 ) (b — Lo)-
f=

Then, for any >0,
IPX(T, x, ) — P(T, x, ")l = O(|n|"?)

as |n| = max,(t,4, — ) — 0 and PY(T, x, y) = E[4,(X7)] is given explicitly by

PYT, x,y) = J f n Ay, Xi5 vy Xpwr)dXy .o dx, g,

Rd k=
where m: 0=ty <t; < <t, <t,=T, xo=x, x,=y and, in general
Ao, &1, 1)
= [(2n(r — o))" det [a(s, £)1171?
x exp [—3 < a0, &)(n — & — bo(a, &)(t — 0)), n — & — by(0, &)z — 0) > ],
0<o<t<T & neRY
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4. Convergence in D? of the It6-Taylor schemes

In this section, we prove Theorem 3.1. For this we need some key estimates
as formulated in Lemma 4.1 below which is a natural extension of Lemma 5.7.3
and Lemma 10.8.1 of [KI-PI92]. For a given finite T > 0, let

4={(s,52,....,5) R0 < s, <s553,... <5, < T}

and L?*(4) be the usual L2-space of real square-integrable functions on 4. Let
f(sys...,s) be an L?*(4)-valued Wiener functional on W such that f(s,,...,s,) is
2, -measurable for each fixed s; <... <s,. Define for a multi-index o = (a,, ..., o))
and O<u<v<T,

L(f o= j S(sps oo, s)dw . dwg
u<s;<--<§<v

by iterated Itd’s stochastic integrals. In particular, if f = 1, then I,(f), , coincides
with 1, , , defined by (3.5) and, if f(sy,...,s) = fo(s;, X;,), then I,(f), , coincides
with L(f,(-, X.)), . defined by (3.8). Set, for 0 <u<s<T,

Ifllu(s) = 1f(s)] if 1=1
= sup [f(S15 s Si—15 S)] if I>1.

Lemma 4.1. (1) For p>1and 0<u<v<T,
4.1) E[ sup IIa(f).,,.l""] < C(u — p)pti@nal=t J E[Ifl.(t)*"]dt
u<st<v u

(2) Let n:0=ty<t, <--<t,=T be a partition of [0, T]. Set |n|=
sup;(t;4; — t;) and m(s)=m if t,<s <t,,,. Consider the following expectation
Jor each 0 <t <T:

2p>
t

(4.2) FP < Clm?ri®™t) J E(If,,,(s)*")ds if le) = n(),

m(s)—1

Y L., + LS,

m=0

Fr = E( sup

0<s<t

misy» S

Then, for p>1 and 0 <t <T,

0

t
< CIHI”“‘“”"‘“"”J E(I1f Ul (8)*P)ds if 1(a) # n(x).

0

Here, C are positive constants depending on T, p and o which may vary from
lines to lines.

Proof: (1) can be proved by induction on the length I(a) of o: If /(x) > 1,

Il(.f)u,! = J‘ Ia—(fs)u.sdw,:‘

1
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where f5(s;,....8-1) = f(S4s.--» 81, 8). If a; =0, then

v 2p
E[ sup | L(f).[*"] < E{[J |1a-(fs)u.s|d3] }

< (U — u)2p—l J‘v E[l’a—(fs)u,s|2p]ds

u

by the Holder inequality. If «, # 0, then

E[ sup |1,(f),. "] < C- E{[ J v |1a_(f5)u_s|2ds]p}

< Clv —up™ f E[,-(f*)ul?"1ds
by a standard martingale inequality of the Burkholder-Davis-Gundy type for
stochastic integrals (cf. [IW89], p. 110) and the Hdolder inequality. The inequality
(4.1) for the case l(a) = 1 can be obtained by the same estimates. Then we can
conclude the proof by induction if we note the following facts: l(a—) = I(a) — 1,
n(e—) = n(a) or n(x) — 1 according as o, # 0 or o, =0 and || f°|,@&) < | fl.(s) if
t<s.
Next, we prove (2). We note that

t

m(t)—1
E(t) = ZO Ia(f)lm,r,,,ﬂ + Ia(f)t,,,(,,,r = J Ia—(fs)tm‘,,,sdwsa"

0

If n(a) = l(a), then

t 2p
E[sup |5(s)|2"]sE{[ f |1a_(f*),m(,,,s|ds] }
0<s<t 0

<c j E{L_(f*),. [ "}ds

0

m(t) Ime1 AL

<C ) E{1-(f*),,."}ds.

By the estimate (4.1), this is dominated by
m(t) I+ AL s t
Cln|?rie==t. J de E[Ilfsll,,,,(f)z”]dtSCIMZ""“"j ELIf 1, (s)?"1ds.
I Im 0

m=0

Since l(a—) = I(a) — 1, (4.2) is obtained in this case.
If n(a) # l(2), and o, # 0, then by the Burkholder-Davis-Gundy inequality
applied to stochastic integral Z(s), we have

E[ sup |5(s)|2"] < CE{U |1a_(f5>,,,.m,,s|2ds]p}
0<s<t 0

< C‘f E{IL—(f*),,,.s|*"} ds.
0
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By the same estimate as above using (4.1), this is further dominated by

t
C Pt tne) f ELI S e, (5)*71ds.
0

Since o, # 0, we have l(xa—) + n(e—) = l(«) + n(ax) — 1 and hence (4.2) is obtained.
Finally we consider the case n(a)  /(2) and o, = 0. We have

m(s)—1 2p
< C‘E{ sup | D L(f)i., } + C‘E{ sup |Ia(f)lm(s,,s|2p}
0<s<t| m=0 0<s<t
= 11 + 12

and estimate these two terms separately. We first note that

b

and S, =) k_olL(f),, . ., forms a discrete time martingale. Then we can apply
the Burkholder-Davis-Gundy inequality for the discrete time martingale (cf.
[Ga73]) to obtain that

mt)—1 P
I, < CE{I: Zo |Ia(f)lm.lmu|2j| }

el

2

k
2 LDt

m=0

I, =C-E{ sup

0<k<m(t)—1

-1

=

I

Im+1
< (tm+1 - tm)'J “a—(fs)tm,slzds?
Im

I+t
J L (f*),,.sds
Im

0

Since

J I (f*),,,sds
Im

this is further dominated by

CInv’-E{[Mfl f |11_(f3),m,s|2ds]p} < Clap E{U 1 _(fS)....(s,.sVds]"}
m=0 tyn 0

'
< CInI”-J E{l1,-(f*),,..s|*"} ds.
(o]

Then by the same estimate as above using (4.1), we deduce that the above is
dominated by

(s)2P)ds.

m(s)

t
Clnl”“‘“'“"‘“"“lj E(ILf I,
0

Since l(a—) + n(e—)+ 1 = l(a) + n(x) — 1, I, is now dominated as desired.
As for I,, we have,
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s 2p

J L (f )yt ]

m(s)

< E{ sup [(S = )2 j Ila—(f’).m(s,,tlz”df]}
0<s<t m(s)

m(t) tmi 1 AL
< IHIZ‘HE[ > j lla—(f‘),m,slz”ds]-
m=0 J, .

By using (4.1), this can be dominated by

E[ sup |1a(f>,m(s,.s|“] = E[ sup

0<s<t 0<s<t

t
Clnlz”_l‘Inl"“‘“_””“’_”J E(IIfl,,(s)*")ds
0

t

=Clnr*- INI”["”*"‘“"”f E(I1f 111, (8)*7)ds.

0

Since p > 1, we obtained the desired estimate for I, and the proof of (4.2) is
now complete.

If f is deterministic, i.e., f € L?(4), then L(f),,€ D2~ and we have, for each
se[0,T] and k=1, ..., r,

(4.3)

DL = Y. J Sy S)lsmslis, s, g (AW dWi . dwg,
=k Ju<s; < <§<-<s<vp

if o) > 1
= L, 0(9) O o fs),  if l) =1

where the symbol " means to discard the element which bears it. Here, generally,
DF for F e D? denotes the gradient, i.e. H-derivative, of F and define D,F =
(D§F)=1,...., by

.....

T

(DF, hyy = f (D,F, h> geds

0
r T .
=Y j DYF-htds,  for all he H
k=1 Jo

where H < W] is the Cameron-Martin subspace:

H= {h e Wi h, = (h5), t - k¥ is absolutely continuous

r (T
and |k} =) J [h¥|2dt < oo}.
k=1 Jo
Set, for fixed 1 <i <!l and s€[0, T],
(4.4) o = (0, eeny Gyyenny 0y)
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and

(45)  fulsI(sysooss2) = fls1s o Sicts 88 ooy 812 g, 50(9) if [>1.

Then we may write (4.3) in the following form:

(4'6) D:Ia(f)u,v = X Zk Ia\i(f\i[s])u.v’ lf [(zl(a)) > 1

ia;=

= f(5) 11,,07(5) Oy as if I=1.
Note that the right-hand side of (4.6) is well-defined for almost all s even if f

is not deterministic and so we define generally, for each se [0, T]Jand k=1, ..., r,

(47) Eé‘la(f)u,v = Z Itz\i(f\i[s])u.v’ if I(ZI(CX)) > 1

ia;=

= f(5) 11, 1(8) " Oy as if I=1.
Then, we have generally
(4.8) DEL(f o = DELfNuo + Lles)unn
where e (s,,...,s;) = D[ f(s;, ..., s)]

Consider the solution X, = X(t, x) of the SDE (3.1) and suppose that coeffi-
cients satisfy the same assumptions as in Theorem 3.1.

Lemma 4.2. We have

T
4.9) sup sup J E|: sup |D§‘Xu|”:|dt< 00

se[0,T) 1<k<r JO O<uc<t
for all p> 1.

Proof. Taking DY in the both sides of equation (3.1) we obtain, for 0 < s < ¢,
r t
DEX, =Y j Vbj(u, X,)DEX,dw] + b(s, X,).
Jj=0Jo
So there are two constants C; and C, such that

r t
E|: sup |DfX,,|”] <C ) J‘ E|: sup |D;‘X,,|"]dv + C,.
O<u<t =0 Jo O<u<v

This shows the boundedness of (4.9) by the Gronwall lemma.

Now we prove Theorem 3.1. We may assume p > 2 and hence write it as
2p for p>1. We give a proof in the case of f = 1: The proof for f =2, 3, ...
can be given in a similar way. We note that the estimate

[Fe = Fll2p,y = O(In")  as |7| >0

is a consequence of a more sharp estimate
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(4.10) sup E|: sup |DEXT — DfX,,IZ”] = O(|n|?P) as || = 0.
0<s<T O<u<T

So we prove (4.10). Taking the derivative in both sides of equations (3.10) and
(3.6), we have for t € [t,, ty+1]s

(4.11) D*XF=DIXE + 3 Vfultys XE)DEXE Lo o+ Y, Sultws X2)D{ 0,0
ae I’ ael’

and

4.12) D¥X, = DX, + ¥ Vfiltw, X, )DEX, I
r

[ 20 st
aEe

+ 0 Saltes X )DEL o0

ae I’

Z Ia[Vf:z('» X-)D:X']r,,,,r

ae B

+ Y BALLAC, X1,

ae 4

where Vf(s, x) = (5){ (s, x)> .
J 1<j<d

Now substract equation (4.11) from (4.12):
(4.13) D!X,— DEXT = DiX, — DEX]

+ Z [Vfa(tma Xtm)D;(X!",Ia.lm.l - Vf:z(tm’ X::,,)D:Xrnmla,t,,,,t]

ae I’

+ Zr[fa(tm, er)_f;z(t 1",)]Dk a,t,,
+ Y LIVAC. XODEX. ], o+ Y DELLAC, X1,

ae B ae #
= D:Xl," - D:Xr’t,, + Z sz(tm’ Xl"m)[D:XI - DkX" ]Iar W
ael’
+ R, .

where we denote by R, (s)

[ Rl Y N 5

(4.14) R,,.(5) = ZI.[VL(I,.., X)) = Vftm, XE)IDEX, 1

1 ) - ﬁz([m? X:!,,,)]D:Ia,lm.t

m

+ 3 Uslt X

+ 2 LIVAC, X)DiX.], . + Z DS, XD,

x€ B ae 4

=R (s)+ R} () + R} (s) + RE (s).

Repeatedly using the formula (4.13) for t =t,, (m = m(t), m(t) — 1,..., 1), we have

r"I

m(t

) m(t)
DX, — DX[ = ) Z Vfaltms XE)IDEX,, — DEXT Moo one + Z

sty AL )
ael m=0
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Now fix s. By Lemma 4.1 (2), we obtain

t

(4.15) E sup |DEX,— DIXIPP<C Y E sup |DfX, — D¥XT|*Pdv

O<v<t ael” JO O<u<v
m(u) 2p
+Esup | 3 R, ailS)
O0<u<t |m=0
Now we estimate the last expectation of the above formula:
(4.16) the last term of (4.15) < C(R,(s) + R,(s) + R5(s) + R4(s))
where
m(u) 2p
4.17) R(s)=E sup | Y Ri . .5
0<u<t |m=0

Denoting t,, by ¢,, for simplicity, R,(s) can be estimated by Lemma 4.1
(2) as

R,(s) < ZI_ L E|lVfbu Xy,) — Vidu X5 )1DEX 4 |*Pdu

a€
T 1/2 1/2
SCJ {E sup |D;‘Xu|“"} {E sup |X,,—X,’,’|“”} dv.
0 O<u<v O<u<v
By Lemma 4.2 and (3.11), this is further dominated by
(4.18) R,(s) < C|m|*™.
Next, we estimate R,(s). It is easy to see that
D:Ia,rm.z,,,ﬂ = 1[1,,.,:,,,*,]( s): Dkla [ 6m,m(s)'D;‘Ia:,t,,,(s,,r,,,(s,+|

and

sup sup E|D!I,,

, m(s»-‘m(s)nlq <®
n 0<s<T

for every ¢ > 1. Then,

(4.19)

Ry(5)<C Y E sup

ael” O<u<t

2p

Z [faltms X1,) = Saltms XEDIDE et nu

m=0

<C Z_{Elf,(tmm, X)) = Jultmy X2) )|*P}V2- {E|DI,. 'm(s,,rm<s,+,m|4p}”2

ae [

1/2
< C[E sup |X, — X;‘l“”] < C|n|?®.

O<u<T
To estimate R,(s), we first note that if o e £, then

2la) — 2 = 2y when (o) = n(o)
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and
o) + n() — 1 >2y when [(a) # n(a).

Then using Lemma 4.1 (2),

T
(4.20) Rs(s) < Clm|*™” 3, J E sup |Vf(u, X,)DEX,|*Pdv

ae B Jo O0<u<v

T

SC|n|2”’f E sup |D¥X,|*’dv
0 O<u<v

< C|m|?.

Finally we estimate R,(s). Put f(sy,...,s) = f,(s;, X;,). Since
Ia\i(f\i[s])lm,th = 1[:,,,.:,,.+,1(3)']a\i(f\i[s])z,,,,:m,,

m(u)
Z Ia\i[f\i[s]]tm,tm+l Au

m=0

4.21) Ris)=C Y Y E{ sup

ae Bra;=k O<uc<t

.

=C Z > E{r sup Ila\i[f\i[s]]tm(,).ulzp}s

ae B a; #0 mis) SUSIm(s)+ 1 AL

and by Lemma 4.1 (1), this is dominated by

tos)+ 1 AT
c 5, 5, et [ B0, 0P < Clapter o
tms)

ae B a; 20
Since l(a) + n(e) >2y + 1 if € &, l(a) + n(ax) — 1 > 2y and hence
R,(s) < C|n|*™.
Thus we have shown
E sup |DfX,— D!X*?P < C, J‘I E sup |DX, — D*XT*Pdv + C,|n|*??
O<uc<t 0 O<u<v

with positive constants C, and C, independent of s e [0, T]. Now (4.10) follows
from the Gronwall lemma.
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