
J . Math. Kyoto Univ. (JMKYAZ)
36-3 (1996) 499-518

Donsker's delta functions and approximation of
heat kernels by the time discretization methods

By

Yaozhong H u* and  Shinzo WATANABE

Introduction

Time discretization approximation schemes for solutions of stochastic differen-
tial equations have been studied by m any people  and  are  treated, e.g., in the
book of Kloeden-Platen [K 1-P192]. Since heat kernels a re  the  probability den-
sities of the law of solutions, it might be worth-while to ask if these approximation
schemes provide a  natural scheme of approximation for heat kernels. Purpose
of this paper is to propose one of such schemes with a help of Malliavin calculus.

In section 1, we introduce the notion of Donsker's delta functions a s  a  class
of generalized Wiener functionals on W iener sp a c e . In  section 2 , w e obtain a
general approximation result fo r  Donsker's de lta  functions. In  sec tion  3 , we
consider the case of Wiener functionals given by solutions to stochastic differential
equations. A n Iti5-Taylor approximation scheme of order y for the solution has
been introduced by Kloeden and Platen [K l-P195]. Here we improve their result
o f the  strong convergence in the L2 -norm t o  th e  strong convergence in every
Sobolev norm  in  the  Malliavin calculus (Theorem 3.1). This is  a  m ain  result of
this paper and its proof is given in section 4. This result, combined with general
results in section 2, yields some strong approximation scheme for Donsker's delta
functions a n d  thereby an approxim ation result fo r the  heat kernel in  th e  form
of Theorem 3.2. However, it should be remarked that the  heat kernel is given
by  a  generalized expectation o f Donsker's delta function a n d  therefore, what is
involved in  this problem  is essentially a n  w eak approxim ation . T he ra te  of
convergence in Theorem 3.2 is  th a t o f the  strong approximation and it can be
im proved to  th e  ra te  o f  weak convergence. For such improvements, we refer
to  the  recent works by Bally and  Talay [B-T95] and  Kohatsu-Higa [Ko95].

1. M alliavin  calculus and Donsker's delta functions

L e t (W , H , P) b e  a  (classical or abstract) W iener space, where H  i s  the
Cameron-Martin H ilbert space a n d  P  is  the W iener m easu re . L e t F :  W  R d
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be  a  d-dimensional Wiener functional, i.e., a P-measurable mapping (more pre-
cisely, a n  equivalent class of P -m easurable m app ings) from  W  to  R d . Let
T E . 9 7 ( R d )  b e  a Schwartz tempered distribution on Rd . W e  w an t to  g ive  a  sense
to  the composite T 0 F .  This should be naturally defined a s  a  lim it of Wiener
functionals On • F , where On e Y(R d ) ( th e  space o f te s t functions on R d )  such
that 0„ T  in  ,r (R d )  a n d  so w e need a  framework to realize this convergence
and to identify th e  lim it. Such a framework is provided by the Malliavin calculus
as follows (cf. [Wa84]).

Starting with th e  family o f LP spaces LP over the W iener space (W, H, P)
an d  th e  b asic  differential operators D  (the gradient), D * (the  d u a l o f  D, the
divergence) and L = —D*D (the Ornstein-Uhlenbeck operator), a  family of Sobolev
spaces Df, 1 < p < oo, a c R, can be introduced as

= (I — L) - Œl2 (LP)

with the  norm

( F 11 P ,„ = ((I — L)"12F11 p  , F  c Dfc,

where II ' II P  is  t h e  L  norm  o n  LP. Then clearly,P

IN  —  LP, D Df: if p  >  p ' a n d  a  >  a '

and

(D)' = DP/P- 1 ) .

As in the Schwartz theory of distributions, we introduce the space of test Wiener
functionals by

nOE>o (11 < p < œ

and its  dual, the space of generalized Wiener functionals, by

(.1„< 0 1.11 < p <  D f .

When we consider, more generally, E-valued functional, E being a  separable real
Hilbert space, the corresponding Sobolev spaces are  denoted by Df [E].

The natural coupling of G e Df and 0 E (Df)' = DP/Œ
(P- ' ) o r  tha t of G e 131 -

a n d  0 e D_l +  is  d e n o te d  b y  E(G•0); in  particular, w hen G  = 1 , the Wiener
functional identically equal to one, E(1. 0) is sim ply  denoted by E (0 ) a n d  is
called th e  generalized expectation o f  0 e D .  E (0 ) coincides with th e  usual
expectation w  0(w)P(dw) when 0  is given by a n  integrable random variable.

L e t e(le) = {f: l e  R, continuous, lim i„H o o  f(x) =  0} a n d  define a  family
of Banach subspaces of 9 9 '(Rd )  by

9 92. = ( 1 +  1 4 2 — Ar "(AR")),n  =  0 ,  + 1 ,  +2, • • •

with the  norm

Ilulls2,, = sup 1[0 + xI 2A r u ] ( - 0
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so that

Y  (R d ) • • • c = e ( R d ) • • • 9 - ( R d )

and

y ( l d ) =  n , 7 0 = ,  2n , 99 '(Rd ) = U,T= —2n•

Definition 1.1. Given a  d-dimensional W iener functional F: W  l e  and
T e 99 '(R d ), we say that T  0 F is defined in 13 an d  T o F = 0  for some e D
if  there exist n e Z +  (the set of  nonnegativ e integers), 1 < p < co, a > 0  such that
T E 9 9_2 n ,  0 eDP_, and the following holds: For every sequence { chk : k = 1, ,  ... }
Y (R d )  such that liOk T11,_ 2 -.> 0  as k -> cc), it holds that !10, o  F  - 0  as
k co (N ote that Ok o F  E L' c DP_„ f o r all k).

Clearly 0 is uniquely determined from F  a n d  T.
It is well-known [W a84] that if F  is smooth in  the sense that F e  D 'o o -  [ Rd ],

i.e., F = (F 1 , , Fd )  w ith F' e D ,  a n d  non-degenerate in  th e  sense that

(det E L" -  (  n , ‹  p < oo L P

where o-Y  =  <DF', D P > ,  i s  the M alliavin  covariance of F ,  th e n  f o r  every
T e .99 '(R d ), T  0  F can be defined in  D 1= ' and  it holds that

T o F e  U „ o rl i , p ,,,, D .

In the particular case of T  = (1  - 4)13126y, >  0, y e R d , where Sy (•) = 60 (• -  y)
is  the  D irac  de lta  function  a t y  and 4  i s  th e  Laplacian o n  le , it is know n
[Wa93] that

T  o F = (1 - 4) 1312 6) , 0 F e (11 < p < 0 0 DP if a >  +  d ,

m ore precisely,

d 1 1
(1 - 4)P 12 6y  o F E D Œi f  a  >  13 +

q P

In particular, when 13 = 0,

d I l
(5y 0 F ED!„ if a  >  -  ,  -  +  -  =  1 .

q P

From  this w e can see that by o  F  is arbitrarily close to  L 1 s p a c e .  In particular,

w e can conclude that if  G e DL q >  1 ,  a > -
d

,  then u(y) = E[G • ( 5  °  1] E C (R d )

for every 0 < f i <  a  -  -
d

,  w here C(R d )  is  the  closure o f  9 9 (R d )  w ith respect to

the  norm

1411, = E E  sup  am Olx) - am0(y)1 
nom15_1fil m;Iml=ffil 113 Ein
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63, o  F is called a D onsker's delta  function a n d  w as studied first by H- H . Kuo
in  th e  frame of white noise analysis. N ote  that

E[G • (5y ° F] = E[G1F = A p F (y),

where p,(y ) is  the  density  at y  of the  probability law of F .  Thus we see that
these notions are important in the study of the densities and conditional expecta-
tions for Wiener functionals.

2. An approximation theorem for Donsker's delta functions

Suppose tha t a  d-dimensional Wiener functional F : W  R d be given which
is sm ooth  a n d  non-degenerate in  th e  sense explained above. Then, for every
13 > 0  a n d  y e R d , (1 —  

4)P/2 6y o  F is defined in D .  Suppose th a t a  sequence
{Fn : n = 1, 2 , ...}  of d-dimensional smooth Wiener functionals converge to  F  as
n o o  in a certain sense. We want to obtain an approximation of (1 — 41)fli2 by  0 F
in terms of F .

Theorem 2.1. L et Fn ,  n  = 1 , 2 , . . .  an d  F  be sm ooth d-dim ensional Wiener
functionals, i.e.,

F ,  F  DT: [Rd ].

W e suppose th at F and Fn  satisf y  the following:
i) Fn approx im ates F in D o" -  [R d ]  w ith order y (y > 0) in the sense that for

ev ery  1 <p < co and a > 0,

(2.1)M F  —  Fl p ,n  =  0(n -
7 ) a s  n — > co.

ii) F  is non -degenerate, i.e.,

(2.2) (det L .

Then f or every c > 0, /3 0 ,  6 > 0 and 1 <p  < oo  such  that a > f i + d/q + 1,
1/p + 1/q 1, it holds that

(2.3)s u p  M [ ( 1
 — — Y) — ( 1 —

 4 )
2

5

y  ° F = 0(n - v " )
ye  Rd

as n co, where
d ix(2.4) Op(x) (27rp2 ) - i2 e - ei2 p2x  E R d  , p >  0.

Rem ark. Obviously, (1 — E  99 (10  and hence [(1 — A)13/2 0n- , i1f., — Y)
E as°, -  f o r  each n  and y E Rd .

Corollary 2.1. Let 13 0 ,  1  < q  < o o  an d  cc > +  diq  + 1  and G n , G  e
n  = 1 , 2 , ... such that

(2.5) — GMq ,Œ =
 (  1

as n co
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f o r some E  >  0. T hen it holds that

(2.6) SUPye Rd 1(1 Mf,i2E[Gn • 0,, - 6(Fn (1 Z1412E[G • Sy (FAI

= O(n A e ) as n - + oo.

In particular, setting

u„(y)= E[G• , ( F -  y ) ]  a n d  u(y)= E[G • Sy (F)],

we have

(2.7) Mun - u =  0(n as co.

W e rem ark that w e are  not assum ing that Fn is non-degenerate so that we
d o  not even know  that by o  F„ = (50 (F  -  y ) can  be  defined . A  key point in the
proof of Theorem 2.1 is  to  use an idea of Léandre ([L687]) which we formulate
in  the  following:

Lemma 2.1. L et Hn , H e DT -  satisf y  the following:
(i) T here ex ists y > 0 such that f o r any  1 < p < cx),

(2.8) II H i , -  1111„,1 = 0(n"), a s  n

(ii) (det e L .
(iii) For any  1 p < oo, there is v(p ) >0  such  that II(det 0-

1.4 )- 1 1Ip =  0(1'4 P ) )
as  n-> co.

T hen, for any  1 p < oo, w e have

(2.9) sup 11(det o-„ n)- 1 1Ip <  0 0 .

P ro o f . In  th e  following, C l (p ) , C 2 ( p ) ,  . . .  are positive constants depending
only o n  1 < p <  o o . Writing det 0-,” =  r n a n d  det o-

H  =  r ,  for simplicity, we have
fo r a  given 1 < p <  co,

E(1-rn i- P) = E  t„1- P: Tr; i— — 1
r

n > 
2

-
1

) :=  i i  +  /2.

    

' -
< -

1 

then t„ > -
1

r  and hence Ç ' <  2r - '. Consequently, by the assump--  2 2

 

I, 2PE (111 — P : — I <  I )
— 2

< 2PE := C1 (p) < oc).

A s for /12 ,  w e can estim ate by the Schwartz inequality

12 E ( t ,r 2 P)1/2 P
— 2

  

By the  assumption (iii),
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E (IT r ir
<  C 2 ( p ) n 2 2 "

and  by (2.8) it is easy to deduce that

e 2 k ,
E (1 T  —HI C 3 ( k ) n 2 " '

for every k >  1. Combining this with (ii),

2 k )  
<  C4 (k ) 11- 2 k Y

and  hence

TH — T

T„ — T
>  

1

) <  2 2k E
2 —

 

TH — T 2 k )

         

< C 5 (k) • r1- 2 k Y .

Consequently

1 2  <  /C 2(p)• C 5(k ). nv(2P)'2P-2ky.

By taking k  large enough so that v(2p) • 2p < 24, we can conclude (2.9).

Rem ark. In  th e  above proof, th e  assumption (i) can  be  rep laced  by  the
following weaker assumption:

(i)' For every 1 < p <  co, there exists a  p(p) > 0  such that p(p) 1. co as p j oo and

E (H n — HIP + IDH n —  DHIP) = 0(n - P( P) ) a s  n co.

Proof o f  theorem 2.1. W e  ta k e  a  product W iener space (W  = W  x W',
P = P x P'), where (W ', P') is  a  classical d-dimensional standard W iener space
and  consider on (W, /5 )  th e  following Wiener functionals

1
H„(W)) = Fn (w) + w '( 1 )  , H(vïr) = F(w)

for vï) = (w, w') e W x W'. Then w e can apply the  above lemma 2.1 to obtain

sup IRdet cr„„) - 1
 p  < co.

Set further K„(0) = (1 —  t)F(w) + tH„(vT) for t E  [ 0 ,  1]. T h e n ,

K n ,,(W) — F(w) = t(H„(W) — F (w)) and II(det aK„ ,) - 1  II p  = 
o ( n 2 b d t - 2 d ) .

Applying Lemma 2.1 by fixing n , we deduce that, for each p >  1 , g > 0  exists
such that

sup II(det =  0 (e ) .
te[0 ,11

Then applying Lemma 2.1 again, we can conclude that, for each p > 1,
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sup 11(det < co.P
t,n

Set T = (1 — .4) 2 .5y . Then

T 0 Fln  —  T 0 F = OT 0 K n ,,•(H„ — F)dt
Jo

and, if a > + 1) + d/g , 1/p + 1/q = , then by (1.1) we can choose fi > p  such
that

sup ilOTT o<  co.
t,n

Since 11H — FM =  0(n - 7 " )  for 4 > 1 such that 1/15 + < 1/p, we deduce that

T o H n  — T IlaT  K - ( H n — F)11,,,,dt
Jo

< const 11OT o K„,t4,-.11 1-1„ — F1 4 ,a dt
Jo

= 0 ( n " " ) .

From  this w e can conclude (2.3) by noting

[(I —  zl)P12(5),](H„(w, w'))P'(dw') = [(1 — /1)P 120n , ]( F n (w) — y)

a n d  a  general fact that the  map

0()T, ) = 0(w, w') =  f 0 (w , w')P'(dw')

is a contraction from D OE(W) to D 2 (W) for every 1 < p <  co and a e R . This
follows at once from the  following relation which can be easily verified by the
Wiener chaos expansion:

[(1 — L) - a0]^ = (1 —

L and  L  being the Ornstein-Uhlenbeck operator o n  W a n d  W, respectively.

Corollary 2.2. I f  F„ in  Theorem 2.1 is uniformly non-degenerate, i.e.

sup 11(det crF S ' l l p  <  0 0 ,

then, [(1 — 4 )13120.- , ](Fn — y) and 0 ( n " " )  in (2.3), and On -4F„ — y) and 0(n - " '" ')
in (2.6), may be replaced by (1 — 4 )'312ô  and 0 (n " ) , and (5y o  Fn and 0 ( n " " ) ,
respectively.

Indeed, if  T = (1 —  L1)1 2 6y , we can deduce by the  same proof that

11T(Hn) T(Fn)11,,,-„ =

A lso w e m ay take o as large  as we want.
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3. Approximate heat kernels by time discretization scheme

We consider a  typical example of applications of the above theorem.
L et W  =  147„; be  the  classical r-dimensional Wiener space:

= {w e C( [0, T ]  R'), w(0) = 0}

and P  be the standard Wiener measure o n  K . T hen  w (t) =  (w l (t), wr(t)) for
w E W  is a  realization of r-dimensional Brownian m o tio n  o n  W . Also we write

f o r  0 4
Fix  a T >  O. C o n s id e r  the  following stochastic differential equation:

(3.1)
r tf

X, = X ± E
i=0 ,)

bi (s, X s )dwj, t E  [0, T], x  e Rd ,

where bp  j  = 0, 1, , r are given smooth functions from [0, T ] x  Rd  t o  Rd with
bounded derivatives, a n d  w e use the convention dw? = d s  to simplify notation.
The unique solution is  d en o ted  b y  X, = X  (t, x). T h e n  X (t, x) E Dr, -  [R d ]  for
every t >  0  and x e Rd .

To describe the time discretization schemes, we introduce the following opera-
tors o n  functions f : [0, T ] x  Rd  R

d Of
(3.2) Lif (s, x) =  E 0(s, x ) (s, x ) ,  j  = 1, r,

Ox'k=1

(3.3)
Of d r (32f

e f ( s ,  x) = —

O f 

(s, x) + bt,(s, x) (s, x) + E  E  bP(s, x)bl(s, x) (s, x),
OS k=1O x k2  k , 1 = 1  t = 1 Ox k aX 1

where b., '  is  the  k-th  component of the  vector bi  (k  = 1, d).
Consider a m ulti-index a = (a,, a 2 , a ,)  w ith a , e  {0, 1 , ...,r}  a n d  write

1 = l(c). I f  1(a) 2 , w e set — 1 =  (a2 , a i )  a n d  a— = (a,, a ,_ ,) .  Given a,
we define an  Rd -valued function f c,(s, x) = (f ,k (s, x)) on [0, T ] x  Rd recursively by

f a
k (s, x) = x), if 1(a) = 1 a n d  a  =

=  (L 'if ) ( s , x), if  1(a) > 2  a n d  a =  (a i , — a)

so that

(3.4) frk(s, x) = L'i ... x)

if a = (al, • • • , (xi). Also we define, for a and 0 < s <  t <  T , a Wiener functional
recursively by

= wt1 ' — if 1(a) = 1 a n d  a  =  (a, ),

= if  1(a) 2  a n d  a  =  (a—,

so that
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(3.5) fOE,,,t = f ' • s<u,<••.<u,<, dw d< - - - dw' if a  — (al, • • •

Then by the recursive application of I t6 's  formula, we obtain the  following It6-
Taylor expansion for the solution X, to (3.1) (cf. [Kl-P192]) for every 0 <  s <  t T
a n d  a  non-empty se t F  of multi-indices w ith  th e  property  that if  a e  F, then
— a e F,

(3.6) x f =  X s + E + E loc(fŒ('
ŒE F a e

where

(3.7) PAr = la; a  F  a n d  —a E T'l

and

(3.8) ..• f .(u ,, X. i )dwdw,Œ,22.

if =  (al, • • • , al).
In  th e  sequel, we consider th e  following case  o f class F  of multi-indices

exclusively: F o r  a n  integer o r  half-integer y > 0,

(3.9) F = Fy := 11; 1(a) + n(a) 2 y  o r  1(a) = n(a) = y + 1/21,

where n(a) = # {k; oc, = 0}  for a  =  (a, , ,
Consider a  p a rtitio n  n  o f  th e  interval [0, T ], n : 0  =  to <  t, < • • < t , = T

a n d  p u t  I trI = sup, (t i + ,  — t i ), th e  s te p  o f  th e  p a r t i t io n . A  strong  It6-Taylor
approximation scheme (X 7) of order y  for the solution X, to  (3.1) is defined by

(3.10) X'or = x

= X  + f a (t.„

for t E [t m , tm + 1 ],m  =  0 , 1 , ,  n — 1,

where r = r;. T h i s  recursive formula lends itself to explicit computations (the
multiple integrals can be even handled by a  com puter). Examples are the case
y =  Euler-M aruyam a scheme, with

F = =  (a), a = 0, 1, , r}

and the case y = I :  Milstein schemes, with

F = {a = (a), a = 0, I, ..., r; o r  a (a,, a 2 ), 1 a ,, a 2r } .

T he following estimate was proved in  [K l-P192] when p = 2  b u t  this can be
obtained by th e  sam e proof fo r general p  if  w e  u se  Lemma 4 .1  given in the
next section:

(3.11) (  sup IX , — X.71) = 0 ( 171.1Y)
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for any 1 < p <  co. Let x e Rd be  fixed and set

(3.12) F (w ) X  (T , x); F„ = Xl`(T, x).

Then F, F„ e D [Rd ]. (3.11) implies, in particular, that

V i r -  F  p  =  0 0 7 0 as - ■

and  in  the  next section we will improve this result to obtain

Theorem 3.1. Suppose that the coefficients k, j = o, 1, r , are in C  with
bounded derivatives and further f a,k (s, x) for ev ery  multi-index a and k = 1, d
have bounded derivatives. Then, for every p >  1 and fi> 0,

(3.13) 11F, - = 0(17c1 7 ) as

L et 7En  b e  the equal partition of [0, T]: it,,: 0 = to <  t, < < t  =  T  where

tk =  -
n

T  W e w rite FR F n . Then Fn approxim ates F  in  DI -  w ith  o rd e r  y.

Now we suppose th a t F  is non-degenerate:

(3.14) (det 
E F Y 1  e  L .

A  sufficient condition has been studied, just a s  th e  beginning of the Malliavin
calculus, by Malliavin [Ma78] and  then completely by Kusuoka-Stroock [Ku-
S t8 5 ] . T h e  non-degeneracy of the diffusion coefficients a"(x) = E G,r= i bak(x)N(x)
at x is sufficient: However, a  much weaker sufficient condition can be given as
a H eirm ander type condition a t  x  fo r  vector fields bc,  involving the Poisson
brackets. W e d o  not intend to state explicitly here (c.f. [Ku-St85]).

N ow  Fn a n d  F  satisfy both conditions (i) and (ii) of the above theorem 2.1
and hence we can conclude that (2.3) holds. Thus we could obtain an approxima-
tion scheme for the Donsker's delta function 45(X(t, x)) in  terms of the Itô-Taylor
scheme (3.10) for the solution X(t, x) and thereby for the  probability density of
X(t, x) and the conditional expectation given X(t, x). In particular, we can sum-
marize Corollary 2.1 in  th e  following

Theorem 3.2. Let F,, = X'n(T, x) and F = X (T, x) for f ix ed x e R d  and T > 0
and assume that equation (3.1) satisfy  the non-degeneracy condition (3.14). For
every (3 > 0  and 1 < q  <  co, if G,„ G e  DOEq  f o r a > diq +  f i  +  1  and

IIG,, - G q , R =  O (n ) for some p. > 0 a s  n co,

then setting

and

we have

u„(y)= E[G n  • 0,A F ,, - y)] = E[G„• On 4XR-(T, x )  -  y)]

u(y) E[G • (5) ,(F)] = E[G • ,5),(X (T, x))],
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(3.15) = o(n-yAsAE) as  n -> co.

N ote that

u(Y ) = P(T , x , Y )E[GIF = y]

where P(T, x , y) = E R ,(X (T , x ))] is the probability density of the solution X (T, x).
W e know that P(T, x , y) coincides with the heat kernel for the heat operator L ° .

If the  non-degeneracy condition (2.10) is satisfied for F,„ i.e.,

sup 11(det p  <  CO,

then, by C or 3.2, un  i n  (3.15) may be replaced by

u ( y )  E[G„• 6y (F„)] = Pn (T, x, y)E[G,JF,, = y],

where P„('T, x, y) = E [b y (X n-(T, x )) ]  and it holds that

II un -  u  II p =  0(n - Y ̂ e) a s  n co.

In particular, for any ,6 > 0,

1113.(T, X , •) P(T, x, • )11 1,  =  O ( n ) a s  n -+ co.

F o r  example, suppose th a t  the coefficients of S D E  (3 .1 ) satisfies th e  uniform
ellipticity condition:

inf det [a(s, x)] >  0,
(s,x)e[0, 7] x

w here am (s, x ) = E r„,= , bi
k(s, x )14(s, x ), k , 1 = 1, , d  a n d  consider t h e  Euler-

M aruyam a scheme:

= x +  
j = i 

bi (tk , X ) [w tik - ]  +  b o (tk , X 7)(t„+ ,  -  tk).

Then, for any fl > 0,

Mr t (T, X , • ) — P (T, X , • )11fl = 0 (1 7r1 112 )

as i t  =  m ax k  (tk ± i  -  t k ) -*0 a n d  M T , x, y) =  E [6 (X 1 )] is given explicitly by

M T ,
n - 1

T, x, Y) = • • • Il ok , x k ;  t k , i ,  x k , i ) d x i  . . .  dx n-i,
R d k  = 0

where it: 0  =  to <  t ,  < • • • < t„_, <  t„ =  T , x , = x , x „ = y  and , in  general

A(o-, T, ri)

= [(2/t(T - o -))d det [a(o-, ) ] ] - 1 /2

X  exp [ < ( a ,  )(t1 - -  b o ( a ,  ) ( " ( "  -  OE)), j -  -  b ( 7 ,  )("E  - o -)  >],

0 < o - < T < 'T ,
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4. Convergence in Df, of the Itel-Taylor schemes

In this section, v■Te prove Theorem  3.1. For this we need some key estimates
as formulated in  Lemma 4.1 below which is a  natural extension of Lemma 5.7.3
an d  Lemma 10.8.1 o f [K l-P 192]. F o r a  given finite T >  0 , let

A = 1(s 1 , s 2 , s t ) e 100 s ,  < s2 , < s, T1

and  L 2 (4 )  be  the  usual L 2 -space of real square-integrable functions o n  4 .  Let
f ( s ,, s t )  be an L 2 (4)-valued Wiener functional on  W  such that f (s i , s t )  is
A 1 -measurable for each fixed s , < < s,. Define for a multi-index a = (a i , ...,
a n d  0  < u < v <  T,

by iterated Itô's stochastic integrals. In particular, if f 1, then
 I Œ ( f ) U , , ,

 coincides
with k defined by (3.5) and, if f (s ,, s,) = fa,(s i , X s i ) , then

 I Œ ( f ) U V
 coincides

w ith /OE(f,(• , X.)) u ,, de fined  by  (3 .8 ). Set, for 0 u <  s T,

f = I f (s)I

sup s/1
u<s,<•••<s,_,<s

Lem m a 4.1. (1) For and 0 < u < v < T ,

if 1 = 1

if 1>  1.

(4.1) E  sup I Œ ( f ) U j
 1 2 p  <  C (

"U  —  v )E 1 (c 0 + 1 0 )1 -1 ELI f 11.(02 P]dt
u v

(2) L e t  7r : 0 =  to <  t 1 < • • • < t„ = T  b e  a p art it io n  o f  [0, T ] .  Set 1 7t1 =
sup, (t 1 + 1  —  t i )  and m (s) = m  i f  t„, s  <  t „ , , , .  Consider the following expectation
f o r each 0 <  t  <  T:

=  E (  sup
o<s<t

Then, fo r  p  > 1  and 0 <  t < T ,

m(s)—

la ( 1 ) t , „  t , „ 1 2 (f )t„ ,,s ,,s
m =0

2 p )

  

(4.2) Ft. < c Ini 2 P"(a) - " f E(11.1. 11,„,.(s)2 P)ds i f  l(a) = n(Œ),
Jo

InI P I " + "( a ) - 1 1 E (  f (s)t< C Il II,,   )
2 Pf

0
)ds i f  1(a) 0 n(a).

Here, C  are  positive constants depending o n  T ,  p  and oc which may vary from
lines to lines.

P r o o f :  (1) can be proved by induction on the length l(a) of a : If  1(a) > 1,

4(1' ),,., =
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where f s(s i , , s 1_ 1 ) = f (s , s,_,, s). If  a, = 0, then

u,sE [  su p  II.(f  )u,t12 P ] 1/„._(fs) Idsn •

(v - u ) 2 P- ' f al ( f  slu,s 12 P]ds
Ju

by the  H older inequality. If  a, 0 0, then

E [s u p  1 4 ( f  F P ] C  • E  •{ [f  11,,-(f s ) 2 d s] P }
u<t‹,

< C(v  —  u)P-' J a l l a , - ( f s ) u , P ] d s

b y  a  standard  m artingale  inequality of the Burkholder-Davis-Gundy type for
stochastic integrals (cf. [IW89], p. 110) and the Hiilder inequality . The inequality
(4.1) for the case 1(a) = 1 can be obtained by the  same estimates. Then we can
conclude the proof by induction if we note  the following facts: 1(a— ) = 1(a) —  1,
n(a— ) = n(a) o r  n(a) —  1 according a s  a , 0  0  o r  a , =  0  and f ( t )  II f Ilu(s) if
t  < s.

N ext, w e prove (2). W e note that
m(t)-1

E(t) : =  E  i a ( f , +  1 OE(f ) t t = 4 - ( f s )t„,,s o dw p.
m=o

If n(a) = 1(a), then

E [  suP I ,
E(s) 2 P ] E s)t„,„,,sld512P}

<  C • f  E { 1 4 - ( f

C • E
m =0 t „,

By the estimate (4.1), this is dominated by

M 0

+  A  t S

C 2 ' 1  • E ds c17.02P4Œ—) f f 11,.( s ) (s) 2 P]ds.
t , 0

Since 1(a— ) = 1(a) —  1, (4.2) is obtained in  th is case.
I f  n(a) 1 ( 4  a n d  a , 0  0 , th e n  b y  the Burkholder-Davis-Gundy inequality

applied to stochastic integral  E ( s ) ,  w e have

E [  sup 12.-7(s)1 2 P1
0<s<,

C • E lic,-(fs)i„,(s),s12ds1P}
ID

C • f l

M (t) em

=  ft„,

0
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By the same estimate as above using (4.1), this is further dominated by

Cl7r1Pri ( Œ- )  + "( œ - ) 1 a  II f  II (s)2 P]f
0 ,,n(s, ds.

Since a i 0  0 , we have l(Œ—) +  n(Œ—) = 1(a) + n(a) — 1 and hence (4.2) is obtained.
Finally we consider the case n(a) 1(a) and a, = O. W e  have

Fta  < C •E f sup
o<s<t

m(s)-1
I O E ( f ) , „ „ , , „ ,

m=0
,

2 p }

C • E {  sup I 1 ,z(f)t,„ ( s ) ,s12 P }o <s

  

:=  I  + 1 2

and estim ate these two term s separately. W e first note that

I, =  C  E {  sup
0 .1 c .m ( t) -1

E IŒ( f
m=o

2 p }

  

and Sk = Ekm=0 4(f), t 1 fo rm s a  discrete time m artingale. Then we can apply
th e  Burkholder-Davis-Gundy inequality fo r th e  discre te  tim e martingale (cf.
[G a73]) to obtain that

mm-1
I, C• Em=o

fr t ,
=c• E

m=o

2 t„, +

( t m +1 t m  •  f 4— (f s )tm ,si 2 dS,

this is further dominated by

m0)-1 +

C ln I P  • E { [  E 
J i m  

1-1._(fs) 2 ds]} clitiP E 
{ [J '

 11,,-(f5),  ),,I2ds1P}
m=o

nIP  • f tCi E sk„,s,,s121 ds.

T hen by  the same estimate a s  above using (4.1), w e deduce that the above is
dominated by

C 17r1P"(" -  ) + "(œ-  ) + 1 1 E ( 1 1  f  Mt (S)j .

0
rn(s) 2P)dS.

Since 1(a —) + n(c—) + 1 = 1(a) + n(a) — 1, I ,  is now dom inated as desired.
As for / 2 ,  w e have,

oJf

1 ( f

Since

I OE_ ( f



(4.3)

D is la (f).,r  = f (s si)ls,=s 1 r.,_,,,,,,,(s)dwZI • •
isai =k I u<s,<•••<g ; <•••<s i <v

div4z,
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E [  su p  lic,(f )t, ( s ) ,s12 P 1 = E [  sup I _(f  t)I' m(s) f " " rd t

2p1

 

—< ES s u p  [(s t„,( ,) )2 P- 1  s

(i<s<t fm(s)
[m(t) „ At

<
m=ci J

By using (4.1), this can be dominated by

f  i , ( s ) (s)2 P)dsC 11E12P )+n(Œ— n

0

=  C  i '  .1 7CIP [ 1 ( 2 ) + 1 1 ( 2 ) - 1 1 t  
E (

11, ,  )(s)2f
0

P)ds.

Since p  > 1, w e obtained th e  desired estimate fo r 12  a n d  th e  proof o f (4.2) is
now complete.

If f  is deterministic, i.e., f  E L 2 (A ), then
 I Œ ( f ) U V

 e  Dr and we have, for each
s e [0, T ]  and  k  = 1, , r,

if l(a) > 1

=  1 1.,1,1(s)• 6 k,a • f(s), if /(a) = 1

where the sym bol m eans to discard the element which bears it. H e r e ,  generally,
D F  fo r F E  D  denotes the gradient, i.e. H-derivative, o f  F  a n d  define Ds F =

(Dsknk =1,...,r by

<DF, h> „ = <DJ', its > R rds
Jo

k=1 ID 'X I' • Iis
kds, for a ll h e H

where H  K . i s  the  Cameron-Martin subspace:

H =  fh e = (hit), t -+ h is absolutely continuous

a n d  I h  =
k

k l 2 d t  <  co 1..
r=1 IT0

Set, for fixed 1 < i <  / and  s e [0, T ],

(4.4) cxv = ii,•••, al)
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and

(4.5) f v [s](s,, s1_1 ) = f(s si_, , s, s i , s,_,)l i s ,_ i i (s) if  1 > 1.

Then we may write (4.3) in  th e  following form:

(4.6) =  E 1. \ ,( 4 ,[5 ] )U ,„ , if 1(= 1(a)) > 1

= f(s) • 1 [„, „ ] (s) • 61, , if  1 = 1.

N ote tha t the  right-hand side of (4.6) is well-defined for alm ost all s  even if f
is not deterministic and so we define generally, for each s e [0, T ] and k = 1, r,

(4.7) iisq, c (f )u  „ = E i „ , i ( A i [ s ] ) . , „ , if l( =l(a)) > 1

= f ( s ) •  l [ u,u] (s)• 6k ,, if  I = 1.

Then, we have generally

(4.8) I)! 1OE ( f  )u , = f )u „ + ( es )„, „

where es (s i , si ) = Ds
k [f (s i , , s1)].

Consider the solution X, = X (t, x) of the SDE (3.1) and suppose that coeffi-
cients satisfy the  same assumptions a s  in  Theorem 3.1.

Lemma 4.2. We have

(4.9) s u p  s u p  I  E l  s u p  D '  X I  d t  < 0 9
s e [ 0 , 1-1c.r

fo r  all p >
 1.

P roo f. Taking Ds
k  in  the both sides of equation (3.1) we obtain, for 0 < s < t,

r
D s

k X ,  =  E 17bi (u, X„)1Y:X u dwuj + bk (s, X s ).
i=0 Jo

So there a re  tw o constants C , and  C 2  such that

E [
 s u p  IDX u r i  C ,  

r

E E [ sup IM X u1P1 dv +
0 < .< , j= 0  ( ) 0  u  v

This shows the boundedness of (4.9) by  the Gronwall lemma.

Now we prove Theorem  3.1. W e m ay assume p > 2  an d  hence write it as
2p for p 1. We give a  proof in the case of 13 = 1: The proof for fl = 2, 3 , ...
can be given in  a  sim ilar w a y . W e note tha t the  estimate

— fl2p,1 = 0(Inl Y ) as —> 0

is a  consequence of a  m ore  sharp estimate
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(4.10) s u p  E  su p  ID:X,1: — DXa l2 P I = 0 1170 2 P 7 ) as
0<s<T

So we prove (4.10). Taking the derivative in  both sides of equations (3.10) and
(3.6), we have for t e [t„„ t m + j ,

(4 .11) DXlti = D'aA  + aE Vfa (t„„ + f a (tm , X titm,)D i
s 1̀„. 4 n ,t

and

(4.12) MX, = D's`X,m  + VfOE(tm, Xt) 1 )!Xt,,,la,t„„t
0 E  f

+ E f a (t„„
0 E

+ E  l a [fvf,(- ,
0 E

+ E  ;61: 10 [L ( . , x . ) ] 1 1
0 E  r

where Vf(s, x) — ( tV  (s, x))

Now substract equation (4.11) from (4.12):

(4.13) Da
k X, — Da

k K  = — Ds
k Xr,„

+ E [17f,c (t„„ Xtm,)D!:-X l tX 1 0 ]
a E  1

+ E [L ( t „ „ x )— f . ( t . ,  X tg )]D ! ia ,t„„t
e r

"" a  E

+  E  l a [Vfa (•, X .)as`X.] 1 t +  E
ae  41-

= — Da
k X,I, + E  Vfa (t„„ Xt1,)[D s

k Xt m  —
S E  

+

where we denote by R , ( s )

(4.14) R 1 (s) = [Vfa(t„„ X)— Vfa (t„„ Xt1,)11Ds
k Xt m l

5
,

1m ,t

S E  f

+ E [L ( t m , Xt ,n ) — fa (t„„
E  f

+ 2̀: l a [Vfa ( ,  X.)DX.], 1 +  E
z  e  4 / - a e  4 1-

R 1 (S) R ( s )  +  RL, t (s).

Repeatedly using the formula (4.13) for t = t„, (m = m(t), m(t) — 1, ..., 1), we have
m(t) m(t)

DX t — gAtIr = E  E  VfOE (t„„ Xr,n )[0 :X 1  — DI: K ] -1 , A t  ±  E
S E !  , n = ( ) m 0
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Now fix s. By Lemma 4.1 (2), we obtain

(4.15) E  su p  1DskXv — DX 2 P • C E  su p  1Ds
k Xu  — 101

.:X:1 2 Pdv
0 < v < t se 0 < u < v

+  E  sup
o<.<,

m(u)
E Rt Au(s)m = o  " "  '

2p

   

Now we estimate the  last expectation of the  above formula:

(4.16) the  last term  of (4.15) C(R i (s) + R2(s)+ R3(s) + R4(s))

where

(4.17) R i(s)=  E  sup
o<u<t

m(u)

t"rn O
7  Ri 

"̀ "'+̀  A u

( s )

2p

    

Denoting tm o o  b y  Ou , fo r simplicity, R 1 ( s )  can be estim ated by Lem m a 4.1
(2) as

R i (s) E f t El[v.fc,(0u, X 0“) — FL A , X L )]D X 0 . 12 Pdu
a E 0

1/2 1/2

C { E  s u p  IDI
s`X u 14 P } •  { E  s u p  1X,, — X,714 P }  d v .

0 .<0 u < v 0 < u < v

By Lemma 4.2 and (3.11), this is further dominated by

(4.18) R i(s) CIn12 1".

Next, we estimate R 2 (s). It is easy to see that

e,,,, e,,, = DSkiLf, t", - I  I  =  6 m,,n(s) . Dsk  cc, t,„(s),tmw-F 1

and

s u p  s u p  ElDs
k l,„,,m . , , ,,, ( s )+ 1 1q < aD

7r 0  < s < T

for every g >  1. Then,

(4.19)

R 2 (s) C E  sup
CI E  I .

   

2pm(u)E Efa (t„„  x )— L (t,„ , x ;:»D isq„ A  U
m =0

     

C  E {E ifa (tm ( , ) , fcc(t„,(,), x,,, )14 p  n t 1/2p1 1/2 . j i k

(-1---5-ct,t(spt„"_, A I '

a e  r

< C [E  sup I X  — X:1 4 P ] C I nI2 ' .
O .<14 

To estimate R 3 (s), we first note tha t if a e then

21(a) — 2 2 7 when 1(a) = n(a)

1/2
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and

1(a) + n(a) — 1 2y w hen 1(a) 0 na).

Then using L em m a 4.1 (2),

(4.20) R3(s) CIR12 "  E E  sup I Ffa (u, X . )D s
k X u

 2 P dV
a e 3 -  0 0 Gu

Cln1 2 "  I E  s u p  IDs
k X u l2 Pdv

JO

<

Finally w e estim ate R 4 (s). P ut f(s ,, s1) = f„(s,, X s 1 ). Since

ia \ i(fv [s ])i, + , = l ( 1 v (f\ i[s ])tf„„

(4.21) R 4 (s ) = C  E  E  E f  sup
aE.I F  cc,=k 0514.t

m(u)E racv [ f v [ s ] i t , ,  u
tn=0

2 p }

  

= C  E  E  E { sup I/Œv[fv[s]],,,,,s,„12P},
ŒE t „ , u < t , , , ( s ) , , A  t

an d  by L em m a 4.1 (1), th is is dom inated by

I tt , _,
i - n(av)] - 1  L„ ( s )

o s )E IPII(œv) fv[s]Ilt„,(s)(14)2P]d
a e .4fr  a ; #0

— U  <  CI it 1141(a)-En(a)-1].

Since 1(a) + n(a) 2y + 1 if  a  e M r,  1(a) + n(Œ)— 1 > 2y an d  hence

R4(s) C  n 1 2
" .

T hus w e  have shown

E  s u p  IMX,, — Ds
k X,712 P C , E  s u p  1Ds

k X u — Ds
kX:1 2 Pdv + C2 17r12 "

o<u<tJ Oo < u < ,,

w ith positive constants C , an d  C 2  independent of s e  [0, T ] .  N ow  (4.10) follows
from  the  Gronwall lemma.
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