The quasi KO_* -types of weighted projective spaces

By

Yasuzo Nishimura and Zen-ichi Yosimura

0. Introduction

Let KO and KU be the real and the complex K-spectrum respectively. For any CW-spectrum X its KU-homology KU. X is regarded as a (Z/2-graded) abelian group with involution because the complex K-spectrum KU possesses the conjugation $\phi_c^{-1}: KU \rightarrow KU$. Given CW-spectra X and Y we say that X is quasi KO-equivalent to Y if there exists an equivalence $f: KO \land X \rightarrow KO \land Y$ of KO-module spectra (see [5]). If X is quasi KO-equivalent to Y, then KO-X is isomorphic to KO-Y as a KO-module, and in addition KU-X is isomorphic to KU-Y as an abelian group with involution ϕ_c^{-1} .

Let $\tilde{P}^n = \tilde{P}^n(q_0, \dots, q_n)$ be the (complex) weighted projective space of type (q_0, \dots, q_n) , and $CP^n = \tilde{P}^n(1, \dots, 1)$ the usual complex projective space. The KU-cohomology of \tilde{P}^n has been computed in [1]. Our purpose here is to determine the quasi KO_* -type of \tilde{P}^n . In the special case $(q_0, \dots, q_n) = (1, \dots, q_n)$

 \cdots , 1), it is known that CP^n is quasi KO_* -equivalent to $\bigvee C_n$ or $\bigvee C_n \vee \sum^{2n}$

according as n=2m or 2m+1 where Σ^k is the k-dimensional sphere spectrum and C_{η} denotes the cofiber of the stable Hopf map $\eta: \Sigma^1 \to \Sigma^0$ (cf. [3, Theorem 2] and [5, Corollary 2.5]).

In §1 we recall some results about the KU-cohomology of a weighted projective space $\tilde{P}^n = \tilde{P}^n(q_0, \dots, q_n)$ from [1]. In §2 we investigate the behaviour of the conjugation ϕ_c^{-1} on $KU^*\tilde{P}^n$ in order to determine the quasi KO_* -type of \tilde{P}^n . In §3 we describe generators of the KO-cohomology group $KO^*\tilde{P}^n$.

1. A weighted projective space \tilde{P}^n

Let n be a positive integer and (q_0, \dots, q_n) a tuple of positive integers. Consider the following operation of the multiplicative group $C^* = C \setminus \{0\}$ on

the space $(C^{n+1})^* = C^{n+1} \setminus \{0\}$:

$$\lambda \cdot (x_0, \dots, x_n) = (\lambda^{q_0} x_0, \dots, \lambda^{q_n} x_n). \tag{1}$$

The associated topological quotient space is called the (complex) weighted projective space of type (q_0, \dots, q_n) and it is denoted by

$$\tilde{P}^n = \tilde{P}^n(q_0, \dots, q_n)$$
.

Of course, $\tilde{P}^n(1, \dots, 1)$ is the usual complex projective space $\mathbb{C}P^n$.

We call a tuple (q_0, \dots, q_n) "well-ordered" if q_i divides q_{i-1} for all $i(1 \le i \le n)$. Given a tuple (q_0, \dots, q_n) the integer $l_k = l_k(q_0, \dots, q_n)$ for $0 \le k \le n$ is defined as the least common multiple (lcm) of all integers

$$\left(\prod_{0 \le a \le k} q_{i_a}\right) / \gcd\{q_{i_a} \mid 0 \le \alpha \le k\}, \text{ with } 0 \le i_0 < i_1 < \dots < i_k \le n$$

where gcd stands for the greatest common divisor. Using the integer $l_k = l_k(q_0, \dots, q_n)$ we define integers

$$\bar{q}_i = l_{i+1}/l_i \quad (0 \le i \le n-1), \quad \bar{q}_n = \gcd\{q_0, \dots, q_n\}.$$
 (2)

Then the tuple $(\bar{q}_0, \dots, \bar{q}_n)$ is well-ordered and $l_k(\bar{q}_0, \dots, \bar{q}_n) = l_k(q_0, \dots, q_n)$ for all $k(0 \le k \le n)$ (cf.[1, 4.10]). Suppose that $\nu_p(q_0) \ge \nu_p(q_1) \ge \dots \ge \nu_p(q_n)$ for a prime p where ν_p is the p-valuation. Then the p-valuation of l_k is $\nu_p(l_k) = \nu_p(q_0) + \nu_p(q_1) + \dots + \nu_p(q_{k-1})$. Therefore $l_k = q_0 q_1 \dots q_{k-1}$, and hence $\bar{q}_k = q_k$, if (q_0, \dots, q_n) is well-ordered.

Denote by γ the canonical line bundle over CP^n and set $a = [\gamma] - 1 \in KU^0CP^n$. Then it is well known that the (reduced) KU-cohomology group $KU^*CP^n = Z[a]/(a^{n+1})$ where CP^n is the disjoint union of CP^n and a point. Consider the map $\varphi = \varphi(q_0, \dots, q_n) : CP^n \to \tilde{P}^n$ defined by $\varphi[x_0, \dots, x_n] = [x_0^q, \dots, x_n^{q_n}]$. According to [1, Theorem 3.4] the map φ induces a monomorphism $\varphi^* : KU^*\tilde{P}^n \to KU^*CP^n$ and there exists a Z-basis $\{T_1, \dots, T_n\}$ of $KU^*\tilde{P}^n$ such that

$$\varphi^{*}(T_{i}) = Q_{\bar{q}_{0}}(a)Q_{\bar{q}_{1}}(a)\cdots Q_{\bar{q}_{i-1}}(a)$$
(3)

where $Q_k(a) = (1+a)^k - 1$. Thus $KU^0\tilde{P}^n$ is a free abelian group of rank n and $KU^1\tilde{P}^n = 0$.

The group Z/q of the q th roots of the unity in C^* acts on the space $(C^{n+1})^*$ as in (1). The quotient space denoted by $\tilde{L}^n = \tilde{L}^n(q; q_0, ..., q_n)$ is called the weighted lens space of type $(q; q_0, ..., q_n)$. For the natural surjection $\theta: \tilde{L}^n \to \tilde{P}^n$ and the canonical inclusion $i_{n+1}: \tilde{P}^n \to \tilde{P}^{n+1}$ the following sequence is a cofibering (cf. [4, Assertion. 1]):

$$\tilde{L}^n(q; q_0, \dots, q_n) \xrightarrow{\theta} \tilde{P}^n(q_0, \dots, q_n) \xrightarrow{i_{n+1}} \tilde{P}^{n+1}(q_0, \dots, q_n, q).$$
 (4)

In particular, if q divides all $q_i(0 \le i \le n)$ then \mathbb{Z}/q acts trivially on the space $(\mathbb{C}^{n+1})^*$ and hence $\tilde{L}^n = (\mathbb{C}^{n+1})^*$ is (homotopy) equivalent to Σ^{2n+1} .

2. The quasi KO_* -type of \tilde{P}^n

In order to determine the quasi KO_{\bullet} -type of \tilde{P}^n we shall use the following theorem (cf. [2, Theorem 3.2] or [5, Theorem 2.4]).

Theorem 2.1. Let X be a CW-spectrum such that KU^0X is a free abelian group and $KU^1X=0$. Then X is quasi KO-equivalent to a certain wedge sum of copies of C_n and $\Sigma^{2s}(0 \le s \le 3)$ where C_n denotes the cofiber of the stable Hopf map $\eta: \Sigma^1 \to \Sigma^0$.

Remark. The conjugation map ϕ_c^{-1} acts on KU^0X as follows:

$$\phi_{c}^{-1} = \begin{cases}
1 & \text{when } X = \Sigma^{0} \text{ or } \Sigma^{4}, \\
-1 & \text{when } X = \Sigma^{2} \text{ or } \Sigma^{6}, \\
\begin{pmatrix}
-1 & -1 \\
0 & 1
\end{pmatrix} \text{ (denoted by } \rho\text{)} & \text{when } X = C_{\eta}.
\end{cases}$$
(5)

The following lemma asserts that for our purpose any tuples (q_0, \dots, q_n) may be restricted to well-ordered ones.

Lemma 2.2. $\tilde{P}^n(q_0, \dots, q_n)$ is quasi KO_* -equivalent to $\tilde{P}^n(\bar{q}_0, \dots, \bar{q}_n)$.

Proof. The map associated with any permutation

$$f: \tilde{P}^n(q_0, \dots, q_n) \rightarrow \tilde{P}^n(q_{i_0}, \dots, q_{i_n})$$

is clearly a homeomorphism. Therefore we may assume that $\nu_2(q_0) \geq \nu_2(q_1)$ $\geq \cdots \geq \nu_2(q_n)$ where ν_2 is the 2-valuation. It is easily seen that $\nu_2(\bar{q}_i) = \nu_2(q_i)$ for all $i(0 \leq i \leq n)$. We put $\xi_i = l\bar{q}_i/q_i$ and $\bar{\xi}_i = lq_i/\bar{q}_i(0 \leq i \leq n)$ with $l = \text{lcm}\{q_0, \dots, q_n\}/2^{\nu_2(q_0)}$ and consider the following two maps between $\tilde{P}^n = \tilde{P}^n(q_0, \dots, q_n)$ and $\bar{P}^n = \tilde{P}^n(\bar{q}_0, \dots, \bar{q}_n)$:

$$g: \tilde{P}^{n} \rightarrow \bar{P}^{n}, (x_{0}, \dots, x_{n}) \mapsto (x_{0}^{\xi_{0}}, \dots, x_{n}^{\xi_{n}}), h: \bar{P}^{n} \rightarrow \tilde{P}^{n}, (x_{0}, \dots, x_{n}) \mapsto (x_{0}^{\bar{\xi}_{0}}, \dots, x_{n}^{\bar{\xi}_{n}}).$$

According to Theorem 2.1 \tilde{P}^n and \bar{P}^n are quasi KO_* —equivalent to certain wedge sums Y_n and \bar{Y}_n of C_n and $\sum^{2s} (0 \le s \le 3)$ respectively. Since gh, hg: $(x_i) \mapsto (x_i^{l^2})$ and l is odd, $g: \tilde{P}^n \to \bar{P}^n$ is a 2—equivalence. Therefore Y_n must be coincide with \bar{Y}_n .

Given CW-spectra X and Y we say that X has the same \mathscr{C} -type as Y if KU. X is isomorphic to KU. Y as an abelian group with involution ϕ_c^{-1} (cf. [2, 4.1]).

Proposition 2.3. Let (q_0, \dots, q_n) be a well-ordered tuple and put $c_k = (q_0, \dots, q_n)$ $+\cdots+q_{k-1})/q_k$ for $1 \le k \le n-1$. Then the weighted projective space $\tilde{P}^n = \tilde{P}^n(q_0, q_0)$ \cdots , q_n) has the same \mathscr{C} -type as the following cell complex

$$Y_{\scriptscriptstyle n} = \sum^2 \bigcup_{\theta_1} e^4 \bigcup_{\theta_2} e^6 \bigcup_{\theta_3} \cdots \bigcup_{\theta_{n-1}} e^{2n}$$
 where $\theta_{\scriptscriptstyle k} = \eta$ if $c_{\scriptscriptstyle k}$ is odd, and $\theta_{\scriptscriptstyle k} = 0$ if $c_{\scriptscriptstyle k}$ is even.

Remark. Note that $\theta_k = \eta$ if $\theta_{k-1} = 0$ and q_{k-1}/q_k is odd, and $\theta_k = 0$ otherwise. Let $S = \{1 \le s \le n \mid c_{s-1} \text{ and } c_s \text{ are even} \}$ and $T = \{1 \le t \le n-1 \mid c_t \text{ is } t \le n-1 \mid c_t \text{ is } t \le n-1 \mid c_t \text{ are even} \}$ odd) where we understand that c_0 and c_n are even. Then Y_n is just the wedge sum $\bigvee_{t \in T} \sum^{2t} C_n \vee \bigvee_{s \in S} \sum^{2s}$.

We shall prove Proposition 2.3 by induction on n below, but first show how to obtain the quasi KO_* -type of \tilde{P}^n applying Proposition 2.3.

Theorem 2.4. Let (q_0, \dots, q_n) be a well-ordered tuple of positive integers. Then the weighted projective space $\tilde{P}^n = \tilde{P}^n(q_0, \dots, q_n)$ is quasi KO_* -equivalent to the wedge sum $Y_n = \bigvee_{t \in T} \sum^{2t} C_n \vee \bigvee_{s \in S} \sum^{2s}$ given in the above remark.

Proof. In order to prove our theorem by induction on n we consider the following diagram

$$\Sigma^{2n+1}KO \xrightarrow{1 \wedge \theta} KO \wedge \tilde{P}^{n} \xrightarrow{1 \wedge i_{n+1}} KO \wedge \tilde{P}^{n+1}$$

$$\uparrow \iota \qquad \qquad \uparrow f$$

$$\Sigma^{2n+1} \xrightarrow{\theta_{n}} Y_{n} \longrightarrow Y_{n+1}$$

Here $f: Y_n \to KO \land \tilde{P}^n$ is a quasi KO_{\bullet} -equivalence and $\iota: \Sigma^{0} \to KO$ is the unit of KO. For each component of Y_n we have

$$KO_{2n+1}\Sigma^{2s} \cong \begin{cases} \mathbb{Z}/2 (\text{generated by } \eta) & \text{if } n \equiv s \mod 4 \\ 0 & \text{if otherwise,} \end{cases}$$

 $KO_{2n+1}C_n = 0.$

Since \tilde{P}^{n+1} and Y_{n+1} have the same \mathscr{C} -type, we observe that the map $\iota \wedge \theta$: $\sum_{n=0}^{2n+1} KO \wedge \tilde{P}^n$ is trivial if and only if $\theta_n = 0$. Therefore the square in the above diagram becomes commutative after changing the quasi KO.equivalence $f: Y_n \rightarrow KO \wedge \tilde{P}^n$ suitably if necessary. So there exists a quasi KO_* -equivalence $g: Y_{n+1} \rightarrow KO \land \tilde{P}^{n+1}$ as desired.

Let $(q_0, \dots, q_{n-1}, q_n, q_{n+1})$ be a tuple such that (q_0, \dots, q_n) is well-ordered and q_{n+1} divides q_{n-1} . Since $l_k(q_0, \dots, q_n) = l_k(q_0, \dots, q_n, q_{n+1})$ for $0 \le k \le n$ it follows that $i_{n+1}^*T_i = T_i(1 \le i \le n)$ and $i_{n+1}^*T_{n+1} = 0$ for the canonical inclusion $i_{n+1}: \tilde{P}^n(q_0, \dots, q_n) \rightarrow \tilde{P}^{n+1}(q_0, \dots, q_n, q_{n+1})$ where T_i 's are the generators of $KU^0\tilde{P}^{n+1}$ and $KU^0\tilde{P}^n$ given in (3). In order to prove Proposition 2.3 by induction on n we may assume that the conjugation ϕ_c^{-1} on $KU^0\tilde{P}^n\cong KU^0Y_n$ is expressed as a certain direct sum J_n of ± 1 and $\pm \rho$ after the basis $\{T_1, \dots, T_n\}$ is replaced by $\{T_1, \dots, T_n\}$ where $T_i = T_i + a$ linear combination of $\{T_{i+1}, \dots, T_n\}$. Then the conjugation ϕ_c^{-1} on $KU^0\tilde{P}^{n+1}$ behaves as $\phi_c^{-1}T_i = J_nT_i + \gamma_iT_{n+1}$ for some integer $\gamma_i(1 \le i \le n)$ and $\phi_c^{-1}T_{n+1} = (-1)^{n+1}T_{n+1}$.

Lemma 2.5. Let $(q_0, \dots, q_{n-1}, q_n, q_{n+1})$ be a tuple such that (q_0, \dots, q_n) is well-ordered and q_{n+1} divides q_{n-1} . When the conjugation ϕ_c^{-1} behaves as $\phi_c^{-1}T_i = J_nT_i + \gamma_iT_{n+1}$ on $KU^0\tilde{P}^{n+1}$, $q\gamma_i$ is divisible by q_{n-1} for any i $(1 \le i \le n)$ and in particular $q\gamma_n = (-1)^{n+1}(q_0 + \dots + q_{n-1})$ where $q = \text{lcm}\{q_n, q_{n+1}\}$.

Proof. Consider $\bar{P}^{n+1} = \tilde{P}^{n+1}(q_0, \dots, q_{n-1}, q_{n-1}, q_{n-1})$ as well as $\tilde{P}^{n+1} = \tilde{P}^{n+1}(q_0, \dots, q_{n-1}, q_{n-1}, q_{n-1})$. Recall that $\{T_1, \dots, T_n, T_{n+1}\}$ and $\{T_1, \dots, T_n, T_{n+1}\}$ form base of $KU^0\tilde{P}^{n+1}$ and $KU^0\bar{P}^{n+1}$ respectively where $\varphi^*T_{n+1} = q_0 \cdots q_{n-1}q_n^{n+1}$ and $\varphi^*T_{n+1} = q_0 \cdots q_{n-1}q_{n-1}a^{n+1}$. Since the conjugation φ_c^{-1} on $KU^0\bar{P}^{n+1}$ behaves as $\varphi_c^{-1}T_i = J_nT_i + \zeta_iT_{n+1}$ for some integer ζ_i it follows immediately that $q\gamma_i = q_{n-1}\zeta_i$ for any $i(1 \le i \le n)$. In the special case $i = n(T_n = T_n)$ we have

$$\varphi^* T_n = l_n a^n + L a^{n+1}, \quad \varphi^* T_{n+1} = l_{n+1} a^{n+1}$$

where $l_n = q_0 \cdots q_{n-1}$, $l_{n+1} = q_0 \cdots q_{n-1} q_n$ and $L = l_n (q_0 + \cdots + q_{n-1} - n)/2$. Note that $\phi_c^{-1} a = (1+a)^{-1} - 1$. This implies that

$$\phi_c^{-1}a^n = (-1)^n a^n + (-1)^{n+1} n a^{n+1}, \quad \phi_c^{-1}a^{n+1} = (-1)^{n+1} a^{n+1}.$$

Since $\phi_c^{-1}\varphi^* = \varphi^*\phi_c^{-1}$, we see that $\gamma_n = (-1)^{n+1}(q_0 + \dots + q_{n-1})/q$.

Proof of Proposition 2.3. By induction on n we shall show that the conjugation ϕ_c^{-1} on $KU^0\tilde{P}^{n+1}$ is normalized as a desired direct sum J_{n+1} of \pm 1 and $\pm \rho$ after the basis $\{T_1, \dots, T_n, T_{n+1}\}$ is replaced by $\{T_1', \dots, T_n', T_{n+1}\}$ where $T_i' = T_i + \delta_i T_{n+1}$ for some integer $\delta_i (1 \le i \le n)$. Set $\alpha_i = \nu_2(q_i)$ for simplicity.

i) The " $\theta_{n-1}=0$ " case: In this case \tilde{P}^n has the same \mathscr{C} -type as $Y_n=Y_{n-1}\vee \Sigma^{2n}$. Therefore the conjugation ϕ_c^{-1} on $KU^0\tilde{P}^n$ is $J_n=J_{n-1}\oplus (-1)^n$. Then the conjugation ϕ_c^{-1} on $KU^0\tilde{P}^{n+1}$ behaves as follows:

$$\begin{array}{lll} \phi_c^{-1} T_i = J_{n-1} T_i + \gamma_i T_{n+1} & \text{if} & 1 \le i \le n-1, \\ \phi_c^{-1} T_n = (-1)^n T_n + \gamma_n T_{n+1} & \text{and} & \phi_c^{-1} T_{n+1} = (-1)^{n+1} T_{n+1}. \end{array}$$

We first assume that $\alpha_{n-2} > \alpha_{n-1}$. If $\alpha_{n-1} = \alpha_n$, then $(q_0 + \cdots + q_{n-1})/q_n$ is odd, and hence, by Lemma 2.5, so is γ_n . Hence the conjugation ϕ_c^{-1} is congruent to $J_{n-1} \oplus (-1)^n \rho$ and $Y_{n+1} = Y_{n-1} \vee \sum^{2n} C_n$. If $\alpha_{n-1} > \alpha_n$, then all of γ_i are even from Lemma 2.5. Therefore the conjugation ϕ_c^{-1} is congruent to $J_n \oplus (-1)^{n+1}$ and

 $Y_{n+1}=Y_n\vee\sum^{2n+2}$. We next assume that $\alpha_{n-2}=\alpha_{n-1}$, and hence $\theta_{n-2}=\eta$. Then there exists an odd integer $m\geq 3$ such that $\alpha_{n-m-1}>\alpha_{n-m}=\cdots=\alpha_{n-2}=\alpha_{n-1}$. From Lemma 2.5 it follows that γ_n is even if and only if $\alpha_{n-1}>\alpha_n$. Now our result is shown similarly to the first case " $\alpha_{n-2}>\alpha_{n-1}$ ".

ii) The " $\theta_{n-1}=\eta$ " case: In this case \tilde{P}^n has the same \mathscr{C} -type as $Y_n=Y_{n-2}\vee\sum^{2n-2}C_\eta$ and $\alpha_{n-2}=\alpha_{n-1}$. We first assume that $\alpha_{n-1}>\alpha_n$. Then $Y_{n+1}=Y_n\vee\sum^{2n+2}$ as is shown in the " $\theta_{n-1}=0$ " case. We next assume that $\alpha_{n-1}=\alpha_n$. Then there exists an even integer $m\geq 2$ such that $\alpha_{n-m-1}>\alpha_{n-m}=\cdots=\alpha_{n-1}=\alpha_n$. From induction hypothesis the conjugation ψ_c^{-1} on $KU^0\tilde{P}^n$ is $J_n=J_{n-m}\oplus (-1)^{n+1}(\rho\oplus\cdots\oplus\rho)$. Then the conjugation ψ_c^{-1} on $KU^0\tilde{P}^{n+1}$ behaves as follows:

$$\phi_c^{-1}T_i = (-1)^{n+1}T_i + \gamma_i T_{n+1}, \qquad \phi_c^{-1}T_j = (-1)^n T_j + \gamma_j T_{n+1},
\phi_c^{-1}T_h = \mp (T_h + T_{h+1}) + \gamma_h T_{n+1}, \quad \phi_c^{-1}T_{h+1} = \pm T_{h+1} + \gamma_{h+1} T_{n+1}.$$

for some $i, j \ge n-m$ and $h \le n-1$. For $\psi_c^{-1} = \binom{(-1)^{n+1}}{0} \binom{\gamma_i}{(-1)^{n+1}}$ on the (i, n+1)-th component we have $\gamma_i = 0$ because $(\psi_c^{-1})^2 = 1$. On the (h, h+1, n+1)-th component $\psi_c^{-1} = \binom{\pm \rho}{0} \binom{\gamma_{n+1}}{(-1)^{n+1}}$ is congruent to $(\pm \rho) \oplus (-1)^{n+1}$ where $\gamma = \binom{\gamma_n}{\gamma_{n+1}}$. We here consider $\tilde{P}^{n+2}(q_0, \dots, q_n, q_{n+1}, q_{n+2})$ with $q_{n+2} = q_n$. Then the conjugation ψ_c^{-1} on the (j, n+1, n+2)-th component is expressed as

$$\phi_c^{-1} = \begin{pmatrix} (-1)^n & \gamma_i & \zeta_i \\ 0 & (-1)^{n+1} & \zeta_{n+1} \\ 0 & 0 & (-1)^n \end{pmatrix}$$

for some integer ζ_i and $\zeta_{n+1} = (-1)^n (q_0 + \dots + q_n)/q_n$ by Lemma 2.5. Note that $\gamma_i \zeta_{n+1} = (-1)^n 2\zeta_i$ because $(\phi_c^{-1})^2 = 1$. This equality implies that γ_i must be even since ζ_{n+1} is odd. Therefore $\phi_c^{-1} = {(-1)^n \choose 0}^n {\gamma_i \choose -1}^{n+1}$ on the (j, n+1)-component is congruent to $(-1)^n \oplus (-1)^{n+1}$. Consequently we see that the conjugation ϕ_c^{-1} is congruent to $J_n \oplus (-1)^{n+1}$ and $Y_{n+1} = Y_n \vee \sum_{n=1}^{2n+2} (-1)^{n+1} = Y_n \vee \sum$

3. The group $KO^*\tilde{P}^n$

We have the Bott cofiber sequence

$$\Sigma^{1}KO^{\eta \wedge 1}KO^{\varepsilon_{U}}KU^{\varepsilon_{O}\beta}\Sigma^{2}KO$$

where $\beta: KU \to \sum^2 KU$ denotes the inverse of the Bott periodicity and ε_U : KO \to KU is the complexification and ε_O : KU \to KO is the realification. As is well known, the equalities $\varepsilon_O \varepsilon_U = 2$ and $\varepsilon_U \varepsilon_O = 1 + \psi_C^{-1}$ hold. Let $\eta \in \pi_1 KO \cong \mathbb{Z}/2$, $\eta^2 \in \pi_2 KO \cong \mathbb{Z}/2$ and $\xi \in \pi_4 KO \cong \mathbb{Z}$ be the generators such that $\xi^2 = 4B_R \in \pi_8 KO \cong \pi_0 KO \cong \mathbb{Z}$ where B_R denotes the Bott periodicity element. Hereafter we shall drop B_R writing $\xi^2 = 4$ instead of $\xi^2 = 4B_R$. Let (q_0, \dots, q_n) be a well-

ordered tuple of positive integers and $\tilde{P}^n = \tilde{P}^n(q_0, \dots, q_n)$. Recall that $KU^0\tilde{P}^n$ is a free abelian group with basis $\{T_1, \dots, T_n\}$ and $KU^1\tilde{P}^n = 0$. By a routine computation we can obtain

Lemma 3.1. Operating $\varepsilon_{\nu}\varepsilon_{o}=1+\phi_{c}^{-1}$ on $KU^{e\nu}\tilde{P}^{n}$ we have the following equalities: $(1+\phi_{c}^{-1})\beta^{n}T_{n}=2\beta_{n}T_{n}$, $(1+\phi_{c}^{-1})\beta^{n}T_{n-1}=c_{n-1}\beta^{n}T_{n}$, $(1+\phi_{c}^{-1})\beta^{n-1}T_{n}=0$ and $(1+\phi_{c}^{-1})\beta^{n-1}T_{n-1}=2\beta^{n-1}T_{n-1}-c_{n-1}\beta^{n-1}T_{n}$ where $c_{k}=(q_{0}+\cdots+q_{k-1})/q_{k}$.

Consider the following cofiber sequence

$$\sum^{2n-1} \xrightarrow{\theta} \tilde{P}^{n-1} \xrightarrow{i_n} \tilde{P}^n \xrightarrow{j_n} \sum^{2n}.$$

The map j_n induces elements of the group $KO^{ev}\tilde{P}^n$ as follows:

$$R_n = j_n^* 1 \in KO^{2n} \tilde{P}^n$$
, $R_n = j_n^* \eta^2 \in KO^{2n-2} \tilde{P}^n$ and $R_n = j_n^* \xi \in KO^{2n-4} \tilde{P}^n$.

There hold the following relations: $2R_n = \varepsilon_0 \beta^n T_n$, $\varepsilon_U R_n = \beta^n T_n$, $R_n = \varepsilon_0 \beta^{n-1} T_n$, $\varepsilon_U R_n = 0$, $R_n = \varepsilon_0 \beta^{n-2} T_n$ and $\varepsilon_U R_n = 2\beta^{n-2} T_n$. In particular, R_n and R_n are contained in the image $\varepsilon_0 (KU^{ev} \tilde{P}^n) \subset KO^{ev} \tilde{P}^n$.

Assume that c_{n-1} is odd. Then we have the following cofiber sequence

$$\sum_{n}^{2n-3} C_n \longrightarrow \tilde{P}^{n-2} \tilde{i}_n i_{n-1} \longrightarrow \tilde{P}^n \xrightarrow{k_n} \sum_{n}^{2n-2} C_n$$

inducing a split exact sequence

$$0 \longrightarrow KO^* \sum^{2n-2} C_n \longrightarrow KO^* \tilde{P}^n \longrightarrow KO^* \tilde{P}^{n-2} \longrightarrow 0.$$

Set $T_{n-1} = T_{n-1} + (1-c_{n-1})/2T_n$. Using the realification $\varepsilon_0: KU \to KO$ we consider the following elements in $KO^{ev}\tilde{P}^n$:

$$S_{n} = \varepsilon_{0} \beta^{n} T_{n-1}' = KO^{2n} \tilde{P}^{n}, \qquad S_{n}' = \varepsilon_{0} \beta^{n-1} T_{n-1} = KO^{2n-2} \tilde{P}^{n},$$

$$S_{n}'' = \varepsilon_{0} \beta^{n-2} T_{n-1}' = KO^{2n-4} \tilde{P}^{n}, \quad S_{n}''' = \varepsilon_{0} \beta^{n-3} T_{n-1} = KO^{2n-6} \tilde{P}^{n}.$$

Since $\varepsilon_v S_n = \beta^n T_n = \varepsilon_v R_n$ and $2\varepsilon_v S_n^r = 2\beta^{n-2} T_n = \varepsilon_v R_n^r$ it follows that $S_n - R_n = \eta^* x$ for some $x \in KO^{2n+1} \tilde{P}^n \cong KO^{2n+1} \tilde{P}^{n-2}$ and $2S_n^r - R_n^r = \eta^* y$ for some $y \in KO^{2n-3} \tilde{P}^n \cong KO^{2n-3} \tilde{P}^{n-2}$. Therefore we may employ the elements S_n , S_n , S_n^r and S_n^m instead of a basis of the image $k_n^* (KO^{ev} \sum_{n=0}^{2n-2} C_n) \subset KO^{ev} \tilde{P}^n$.

Lemma 3.2. Let $(q_0, \dots, q_n, \dots, q_{n+m})$ be a well-ordered tuple such that $c_n = (q_0 + \dots + q_{n-1})/q_n$ is even. For any $m \ge 0$ there exists an element $T_{n,n+m} = T_n + a_1T_{n+1} + \dots + a_mT_{n+m} \in KU^0\tilde{P}^{n+m}$ satisfying $\varepsilon_0\beta^{n+1}T_{n,n+m} = 0$, where $a_1 = -c_n/2$ and a_{2i} is taken to be 0 or 1. In particular, $a_{4k} = a_{4k+2} = 0$ if c_{n+4k} is even.

Proof. By induction on m we shall construct a desired element $T_{n,n+m}$. Obviously $\varepsilon_0 \beta^{n+1} T_n = 0$ and $(1 + \psi_c^{-1}) \beta^{n+1} T_{n,n+1} = 0$, which implies that $\varepsilon_0 \beta^{n+1} T_{n,n+1} = 0$. Under induction hypothesis we here assume that there exists an element $T_{n,n+m-1} \in KU^0 \tilde{P}^{n+m-1}$ satisfying $\varepsilon_0 \beta^{n+1} T_{n,n+m-1} = 0$.

- i) The m = 4k + 2 case: Take $a_{4k+2} = 0$ if $\varepsilon_0 \beta^{n+1} T_{n, n+4k+1} = 0 \in KO^{2n+2}$ \tilde{P}^{n+4k+2} and $a_{4k+2} = 1$ if otherwise. Setting $T_{n, n+4k+2} = T_{n, n+4k+1} + a_{4k+2} T_{n+4k+2} \in KU^0 \tilde{P}^{n+4k+2}$, it follows immediately that $\varepsilon_0 \beta^{n+1} T_{n, n+4k+2} = 0$.
- ii) The m=4k+3 case: Note that $(1+\phi_c^{-1})\beta^{n+1}T_{n,n+4k+2}=b_{n+4k+2}$ $\beta^{n+1}T_{n+4k+3} \in KU^{2n+2}\tilde{P}^{n+4k+3}$ for some integer b_{n+4k+2} . Since there exists an integer b such that $\varepsilon_0\beta^{n+1}T_{n,n+4k+2}=b\varepsilon_0\beta^{n+1}T_{n+4k+3}\in KO^{2n+2}\tilde{P}^{n+4k+3}$, we see that $b_{n+4k+2}=2b$ is even. Setting $T_{n,n+4k+3}=T_{n,n+4k+2}-b_{n+4k+2}/2T_{n+4k+3}\in KU^0\tilde{P}^{n+4k+3}$, it is obvious that $\varepsilon_0\beta^{n+1}T_{n,n+4k+3}=0$.
- iii) The m=4k case: Setting $T_{n,n+4k}=T_{n,n+4k-1}+aT_{n+4k}\in KU^0\tilde{P}^{n+4k}$ for any integer a, we see that $\varepsilon_0\beta^{n+1}T_{n,n+4k}=0$. The integer a_{4k} will be determined in iv).
- iv) The m=4k+1 case: Note that $(1+\phi_c^{-1})\beta^{n+1}T_{n,\,n+4k-1}=b_{n+4k}\beta^{n+1}T_{n+4k+1}$ $\in KU^{2n+2}\tilde{P}^{n+4k+1}$ for some integer b_{n+4k} . Consider $\bar{P}^{n+4k+2}=\tilde{P}^{n+4k+2}(q_0,\,\cdots,\,q_{n+4k-1},\,q_{n+4k},\,q_{n+4k},\,q_{n+4k})$. Then $(1+\phi_c^{-1})\beta^{n+1}T_{n,\,n+4k-1}=b_{n+4k}\beta^{n+1}T_{n+4k+1}-d\beta^{n+1}T_{n+4k+2}$ (1 $+\phi_c^{-1})\beta^{n+1}T_{n+4k+1}=2\beta^{n+1}T_{n+4k+1}-(c_{n+4k}+1)\beta^{n+1}T_{n+4k+2}$ in $KU^{2n+2}\bar{P}^{n+4k+2}$. Since $(\phi_c^{-1})^2=1$ it is immediate that $b_{n+4k}(c_{n+4k}+1)=2d$. This implies that c_{n+4k} is odd if b_{n+4k} is odd. Take $a_{4k}=0$, $a_{4k+1}=-b_{n+4k}/2$ when b_{n+4k} is even, and $a_{4k}=1$, $a_{4k+1}=-(b_{n+4k}+c_{n+4k})/2$ when b_{n+4k} is odd. Setting $T_{n,\,n+4k+1}=T_{n,\,n+4k-1}+a_{4k}T_{n+4k}+a_{4k+1}T_{n+4k+1}\in KU^0\tilde{P}^{n+4k+1}$, it follows immediately that $(1+\phi_c^{-1})\beta^{n+1}T_{n,\,n+4k+1}=0$, and hence $\varepsilon_0\beta^{n+1}T_{n,\,n+4k+1}=0$.

Assume that c_{n+4k} is even. In this case b_{n+4k} is even, so a_{4k} is taken to be 0 as in iv). If c_{n+4k+1} is odd, then \tilde{P}^{n+4k+2} is quasi KO_{\star} -equivalent to $\tilde{P}^{n+4k} \vee \sum^{2n+8k+2} C_n$. Hence we can see that $\varepsilon_o \beta^{n+1} T_{n,n+4k+1} = 0 \in KO^{2n+2} \tilde{P}^{n+4k+2}$. So a_{4k+2} is taken to be 0 as in i). When c_{n+4k+1} is even, we consider $\bar{P}^{n+4k+2} = \tilde{P}^{n+4k+2} = (q_0, \cdots, q_{n+4k-1}, q_{n+4k}, q_{n+4k}, q_{n+4k})$. Then the canonical map $\pi: \tilde{P}^{n+4k+2} \to \bar{P}^{n+4k+2} \to \bar{P}^{n+4k+2}$ induces a homomorphism $\pi^*: KO^{2n+2}\bar{P}^{n+4k+2} \to KO^{2n+2}\tilde{P}^{n+4k+2}$ carrying $\varepsilon_o \beta^{n+1} T_{n,n+4k+1}$ to $\varepsilon_o \beta^{n+1} T_{n,n+4k+1}$. Since $\varepsilon_o \beta^{n+1} T_{n,n+4k+1} = 0$ in $KO^{2n+2}\bar{P}^{n+4k+2}$, a_{4k+2} is taken to be 0 even if c_{n+4k+1} is even.

Corollary 3.3. Let $(q_0, \dots, q_n, \dots, q_{n+m})$ be a well-ordered tuple such that $c_n = (q_0 + \dots + q_{n-1})/q_n$ is even. For any $m \ge 1$ there exists an element $R_{n, n+m} \in KO^{2n}\tilde{P}^{n+m}$ such that $\varepsilon_U R_{n, n+m} = \beta^n T_{n, n+m}$, $i_{n+m}^* R_{n, n+m} = R_{n, n+m-1}$ or $R_{n, n+m-1} + R'_{n+m-1}$ if $m \equiv 2 \mod 4$ and c_{n+m-1} is odd, and $i_{n+m}^* R_{n, n+m} = R_{n, n+m-1}$ if otherwise. Here $R_{n, n} = R_n = j_n^* 1 \in KO^{2n}\tilde{P}^n$ and $R'_{n+m-1} = j_{n+m-1}^* \eta^2 \in KO^{2n+2m-4}\tilde{P}^{n+m-1} \cong KO^{2n}\tilde{P}^{n+m-1}$.

Proof. The induced homomorphism $i_{n+m}^*: KO^{2n+1}\tilde{P}^{n+m} \to KO^{2n+1}\tilde{P}^{n+m-1}$ is an epimorphism unless $m \equiv 2 \mod 4$ and c_{n+m-1} is odd. In this case we can easily find an element $R_{n,n+m} \in KO^{2n}\tilde{P}^{n+m}$ satisfying $\varepsilon_U R_{n,n+m} = \beta^n T_{n,n+m}$ and $i_{n+m}^*R_{n,n+m} = R_{n,n+m-1}$. Assume that $m \equiv 2 \mod 4$ and c_{n+m-1} is odd. Since $(i_{n+m}i_{n+m-1})^*: KO^{2n+1}\tilde{P}^{n+m} \to KO^{2n+1}\tilde{P}^{n+m-2}$ is an isomorphism, we can find an element $R_{n,n+m} \in KO^{2n}\tilde{P}^{n+m}$ such that $\varepsilon_U R_{n,n+m} = \beta^n T_{n,n+m}$ and $i_{n+m-1}^*i_{n+m}^*R_{n,n+m} = i_{n+m-1}^*R_{n,n+m-1}^*$. The last equality implies that $i_{n+m}^*R_{n,n+m} = R_{n,n+m-1} + xR_{n+m-1}^*$ for

some $x \in \mathbb{Z}/2$.

Remark. In Corollary 3.3 we can uniquely choose an element $R_{n,n+m}$ unless $m \equiv 1 \mod 4$ and c_{n+m-1} is even. On the other hand, we can choose just two elements $R_{n,n+m}$ and $R_{n,n+m} + R_{n+m}$ if $m \equiv 1 \mod 4$ and c_{n+m-1} is even.

If c_n is even, we set

$$R'_{n,n+m} = \varepsilon_0 \beta^{n-1} T_{n,n+m} \in KO^{2n-2} \tilde{P}^{n+m},
R''_{n,n+m} = \varepsilon_0 \beta^{n-2} T_n \in KO^{2n-4} \tilde{P}^{n+m}.$$
(6)

Note that $\eta^2 R_{n,n+m} = \varepsilon_0 \beta^{-1} \varepsilon_U R_{n,n+m} = R'_{n,n+m}$ where $R_{n,n+m} \in KO^{2n} \tilde{P}^{n+m}$ is obtained in Corollary 3.3. If c_{n-1} is odd, we set

$$S_{n,n+m} = \varepsilon_{O}\beta^{n}T_{n-1} \in KO^{2n}\tilde{P}^{n+m},$$

$$S_{n,n+m}' = \varepsilon_{O}\beta^{n-1}T_{n-1} \in KO^{2n-2}\tilde{P}^{n+m},$$

$$S_{n,n+m}'' = \varepsilon_{O}\beta^{n-2}T_{n-1} \in KO^{2n-4}\tilde{P}^{n+m},$$

$$S_{n,n+m}'' = \varepsilon_{O}\beta^{n-3}T_{n-1} \in KO^{2n-6}\tilde{P}^{n+m}.$$

$$(7)$$

By virtue of Theorem 2.4 we can now give generators of $KO^*\tilde{P}^n$ as follows (cf. [3]):

Theorem 3.4. Let (q_0, \dots, q_n) be a well-ordered tuple of positive integers. For the weighted projective space $\tilde{P}^n = \tilde{P}^n(q_0, \dots, q_n)$ the group $KO^*\tilde{P}^n \cong \bigoplus_{0 \leq i \leq l} KO^i\tilde{P}^n$ is generated by the following elements:

$$R_{s,n}, \eta R_{s,n}, R_{s,n}', R_{s,n}', S_{t+1,n}, S_{t+1,n}', S_{t+1,n}''$$

where s and t run over $S = \{1 \le s \le n ; c_{s-1} \text{ and } c_s \text{ are even}\}$ and $T = \{1 \le t \le n - 1 ; c_t \text{ is odd}\}$ respectively.

DEPARTMENT OF MATHEMATICS
OSAKA CITY UNIVERSITY

DEPARTMENT OF MATHEMATICS
NAGOYA INSTITUTE OF TECHNOLOGY

References

- [1] A. Al Amrani, Complex K-theory of weighted projective spaces, J. Pure and Applied Algebra, 93 (1994) 113-127.
- [2] A.K. Bousfield, A Classification of K-local spectra, J. Pure and Applied Algebra, 66 (1990) 121 163.
- [3] M. Fujii, Ko-groups of projective spaces, Osaka J. Math., 4 (1967) 141 149.
- [4] T. Kawasaki, Cohomology of twisted projective spaces and lens complexes, Math. Ann., 206 (1973) 243 248.
- [5] Z. Yosimura, Quasi K-homology equivalences, I, Osaka J. Math., 27 (1990) 465 498.