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Homogeneous generalized functions
which are rotation invariant

By

Ji-Young NA and Soon-Yeong CHUNG

Abstract

We characterize generalized functions including distributions and ultradistri-
butions which are rotation invariant and homogeneous as follows:

If u is a generalized function in R" with n>2 which is rotation invariant
and homogeneous of real degree k then it can be written as

alx|*+bA™ 7§, if —n—kisan even nonnegative integer,
u=
alx|k, otherwise.

In addition, we find a structure theorem of rotation invariant ultradistributions
with support at the origin.

1. Introduction

A theory of invariance under a transformation group is one of the most
important subjects in harmonic analysis and its applications to physics (see
[4], [8], [9]). TItis well known that a distribution u in R" which is rotation invariant
and homogeneous of degree k, comes out to be u=|x|* in R"\{0} (see [3, Section 23]).

In this paper we give an expression in the whole of R" of the generalized
functions, including distributions and ultradistributions, which are rotation invariant
and homogeneous. To be precise, we show that if u is an ultradistribution in R"
with n>2, homogeneous of real degree k and rotation invariant, then u can be
written as

y alx|*+bA~7 6, if —n—k isaneven nonnegative integer,
alx|, otherwise,

where A is the Laplace operator A=X7-; % and § is the Dirac measure in R"
xj
Besides, proving this theorem we find a structure theorem of rotation invariant

ultradistributions supported at the origin.
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2. Ultradistributions and main results

Throughout this paper, referring the Euclidean space R" we assume n> 2, since
all that we are going to consider in this paper is trivial if n=1.

It is seen in [3] that if a distribution 7 in R" is invariant under rotation and
homogeneous of real degree k, then T has the form T=c|x[* away from the
origin. In this section we find an expression of T which holds in the whole of
R". Actually we do this work for ultradistributions including distributions.

First, we introduce an ultradistribution. Let M, p=0,1,2, .-, be a sequence
of positive numbers and let Q be an open subset of R". An infinitely differentiable
function ¢ on Q is called an ultradifferentiable function of class (M) (of class {M},
respectively) if for any compact set K of Q and for each A>0 (for some A>0,
respectively)

_ 6% p(x)|
|Plmp.k.n= 2%)‘ m

is finite.
We impose the following conditions on M,
M.1) MI<Mp-1Mpiy, p=1,2,---.
(M.2) There are positive constants 4 and H such that

M,<AH® min MM, p=0,1,---

0<qg<p
(M.3) There is a constant 4 >0 such that

& M- SAPMMp’p=1’2"“
+1

q p

For example, the sequence M ,=p!%(s> 1) satisfies all conditions above.
We denote by & ,(Q) (Em ), respectively) the space of all ultradifferentiable
functions of class (M,) (of class {M,}, respectively) on Q.

The topologies of such spaces are defined as follows:
A sequence ¢;—0 in &MP,(Q) ((K(Mp)(Q), respectively) if for any compact set
K of Q and for every h>0 (for some h>0, respectively) we have

su laad)’(x)l -0 as j—o0.
ol 1Ml

In addition, we denote by Q(Mp)(ﬂ) (@(Mp,(ﬂ), respectively) the space of all
ultradifferentiable functions of class (M,) (of class {M,}, respectively) on Q with
compact support.
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As usual, we denote by (fiMp)(Q) (é”ZMp)(Q), respectively) the strong dual space
of Em () (of é’(Mp;(Q), respectively) and we call its elements ultradistributions of
Beurling type (of Roumieu type, respectively) with compact support in Q. The
spaces Dm Q) and Dim Q) are also defined similarly as in the distributions
2'(Q). For more details on the ultradistributions & (<), i )Q), Dim (L), and
Dim Q) we refer the reader to [2], [5] and [6].

In what follows, * denotes (M,) or {M,} throughout this paper.
Now we introduce the homogeneity and the spherical average for the generalized
functions.

Let [, =&l where I is the n x n identity matrix and ¢>0. For an ultradistribution
u an ultradistribution uo/, is defined by

<uol,¢p>= é <u,d)[§:|>, PeD,.

From now on when we refer to a degree k of homogeneity we assume that k
should be a real number.

Definition 2.1. An ultradistribution u in R" is homogeneous of degree k if for all
e>0

uol,=cu.

Then using the same method as in [3] we can easily show the following:

Lemma 2.2. An ultradistribution u in Q is homogeneous of degree k if and only if
it satisfies the Euler equation

ku= il X; % , xeQ.
J

j=
Definition 2.3. For a continuous function ¢ in Q, the spherical average of ¢ is
defined to be a function

os(r)= |S.,—1_1—| L”_l d(row) do,

where |S"~!| denotes the surface area of the (n—1)-dimensional unit sphere.

Definition 2.4. (i) For an ultradistribution ue 9. (&., respectively), the spherical
average of u is an ultradistribution ug defined by the relation

<ug, p>=<u, pg>

Jor all €D, (8., respectively).
(i) An ultradistribution ue 2. is said to be rotation invariant if u=us.
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In the above we note that since ¢g is also ultradifferentiable, <u,¢g> is
well-defined. Hence, we can readily see that ug defines an ultradistribution. More-
over, it is known in [1] that if f'is a rotation invariant continuous function, then f=f
and if u is a rotation invariant distribution, then u=ug.

For each defining sequence M, we define the associated function of M, on (0,
o) by

M
M@= 1 U
(] sup log —7

p

Then (M.1) implies

(2.1) M, =M, su

tP
p g>()pm’ p—l,,2,3,-..

(see [6]).
Now we will characterize rotation invariant ultradistributions with support at
the origin.

Theorem 2.5. Let ue &(R") have its support at the origin and *={M }(x=(M ),
respectively). If u is rotation invariant, then there exists an entire function F in C
such that on R"

u=FA)d
and for every L>0 there exists C>0 (there exist L>0 and C> 0, respectively) such that

|FA(z%)| < C exp M(L|z|), zeC,

2
where A is the Laplace operator A=X}-, % and 6 is the Dirac measure in
X ;
R". l
Proof. We prove only the case where *={M}. In view of the Paley-Wiener

type theorem in [7], the Fourier-Laplace transform ({) of u is an entire function
in C" and satisfies that for every L>0 there exists C>0 such that

22 (0 < C exp M(L|L]), {e C™.

Moreover, the function #(&), £€R", is also rotation invariant, since u is rotation
invariant. For each £eR" we choose a rotation matrix 4 so that £=Ae, where
e, is a unit vector in the direction of the n-th coordinate for R".  Then it follows that

(&) =i( ¢l Ae,)=d(¢le,)=u(0, ---, 0, £|&]).
Expanding #({) into
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a“u(O)

4(f)= Z &, leCr,

we have for every £eR"

@(&)=4u(0,---,0, +|&)
iz o%i(0)

(1)

2 0l0) (o
=X o 16

where 6j=—?—,j=1,2,-~~,n

0Ox;
By the identity theorem of entire functions the above equality still holds for
complex vectors {e C". In other words,

2k
a0= 5 e G
for {=({y,--{)eC™
Now we define F(z) on C by
— —n < 63“12(0) )k
(23) Hz)=(2m) hgo ! (—2)".

Then F(z) is an entire function in C and
A=+ +{)=2n) "), LeC.
Moreover, it follows from the Fourier inversion formula that
u=(2m) "
© 02*4(0)
K=o (2k)!
= FA)é.
On the other hand, using (2.2) and (2.3) we have
|Fz%)| =140, -+, 0, iz)|
< Cexp M(L|z]), zeC.

(=1 @3+ -+ 02

This completes the proof.

Now we are in a position to state the main theorem of this paper.
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Theorem 2.6. Let u be an element of 2R"). If u is rotation invariant and

homogeneous of degree k, then there exist real numbers a and b such that

. alx[*+bA~ES, if —n—k is an even nonnegative integer,
alx|, otherwise, '

2
where A is the Laplace operator A=%}-, aiz and 0 is the Dirac measure in R".
Xj

Proof. Here we prove only the case *={M,}. In fact, the case *=(M,) can
be done similarly with only a slight modification. If y(x) is an ultradifferentiable
function in R supported by the half-axis 0 <7< oo, then the function

LY(x) = p(x) =(|x])

is an ultradifferentiable function in R", vanishing in a neighborhood of the origin. The
mapping £ determined by this equation is a continuous linear transformation of
the ultradifferentiable functions on the half-axis into the ultradifferentiable functions
on R" so that the linear functional

<S,Yy>=<u LyY>

is an ultradistribution on r>0.
Since L(Yol)=(LY)ol, and u is homogeneous of degree k, we can easily see
that S is homogeneous of degree n+k—1. Using the Euler equation

}":1 %05 —(4k—1)S in R"
J= X j

and the chain rule
n 0 d _
PILTF i Tl i

we have a differential equation

ds
T =(n+k—-1)S, r>0.

Solving this differential equation in R"\ {0} we have
S=Cr"tk1 r>0

for some real constant C.
It follows that the ultradistribution T defined by
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c k
<T,¢>=<u,p>— ST |x[*p(x)dx, Ppe2D,

is an ultradistribution defined on R"\{0}, which vanishes on all ultradifferentiable
functions that are functions only of radius |x|. Moreover, it is easy to see that T
is rotation invariant.

Let ¢(x) be an arbitrary ultradifferentiable function vanishing for |x|<e. Then

the spherical average ¢g of ¢ is an ultradifferentiable function only of radius |x|
and it follows that

<T,¢>=<Ts,¢p>=<T, s> =0,

which implies T=0 outside the origin. Therefore, if we put a constant a=g&y
then u—alx|* is a rotation invariant ultradistribution which is homogeneous of

degree k and has its support at the origin. Thus by Theorem 2.5 there is an entire
function F in C such that

(24) u—alx|* = F(A)S
and for every L>0
|F(z%)| < Cexp M(L|z|), zeC

for some constant C>0. Since for every me N, and every />0 there is a constant
A>0 such that

01| 5 [ 750

m!
<A [ €XP M(LI),

we have from (2.1) for every meN,

) . . exp M(L])
|F™(0)| < Am! 1111(1; —

2m -1
< | [2m _
<Am! L [?Bg exp M(t)]

= AMOm!Lzm/Mzm.
Expand Fz) into the Taylor series

Az)= io(— 1"ay,z", zeC.

Then for any L>0 there exists constant C>0 such that
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(2.5 a3l < CL*™ /M3, meN,,

Since T—alx[* is homogeneous of degree k, we have for every £>0
(2.6) <(T—alxY)ol,p>=e"<T—alx|*, ¢ >

for all ¢pe2,.
In view of the relation (2.4), the equality (2.6) can be rewritten as

@7 (DA O) = T (— 1)y, A0,

Since ¢e2,, there exist A>0 and C’'>0 such that
(2.8) |A™p(0)| < C'h>™ M 3m, mEN,,.

We define a function f on (0, o) by
o m m 1
S =MZO(_ "a, A ¢(0);2;:r,, .

Then making use of (2.5) and (2.8) we can show that f is well defined and real
analytic on (0, c0). Comparing the coefficients of 7* both sides of (2.7) we have
a,,=0 if k# —2m—n. Therefore, (2.4) make it possible to write

y= alx|*+bA~7 §, if —n—kisaneven nonnegative integer,
alx|¥, otherwise,

for some constants a and b. This completes the proof.
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