
J . Math. Kyoto Univ. (JMKYAZ)
40--1 (2000), 155-163

Homogeneous generalized functions
which are rotation invariant

By

Ji-Young NA and Soon-Yeong CHUNG

Abstract

We characterize generalized functions including distributions and ultradistri-
butions which are rotation invariant and homogeneous as follows:

If u  is a  generalized function in  R " with n>2 which is rotation invariant
and homogeneous of real degree k  then it can be written as

- n - k

{

akik  - FM  2  ( 5 ,  if —n—k is an even nonnegative integer,
ale , otherwise.

In addition, we find a structure theorem of rotation invariant ultradistributions
with support at the origin.

1. Introduction

A  theory of invariance under a transform ation g ro u p  is  o n e  o f  th e  most
im portan t subjects i n  harm onic analysis a n d  i t s  applications to physics (see
[4], [8], [9]). It is well known that a distribution u in R" which is rotation invariant
and homogeneous of degree k, comes out to be u = le in R" \ {0} (see [3, Section 23]).

In  this paper w e give an expression in  the whole o f  R . o f th e  generalized
functions, including distributions and ultradistributions, which are rotation invariant
and homogeneous. To be precise, we show that if u  is  an  ultradistribution in  R"
with n> 2, homogeneous of real degree k  and rotation invariant, then u  can be
written as

{ ale  + bA - "2- k b, if — n — k is an even nonnegative integer,

where A is the Laplace operator A = E7= 
a

and 6 is the D irac measure in R .

Besides, proving this theorem we find a structure theorem of rotation invariant
ultradistributions supported at the origin.
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2. Ultradistributions and main results

Throughout this paper, referring the Euclidean space R " we assume n> 2, since
all that we are going to consider in  this paper is trivial if n -=1.

It is seen in  [3 ] that if a distribution T  in  R " is invariant under rotation and
homogeneous o f  real degree k ,  then  T  has th e  form  T=clxi k  aw ay  from  the
o r ig in . In  this section we find an expression of T  which holds in  th e  whole of
R " .  Actually we d o  this work for ultradistributions including distributions.

First, we introduce an ultradistribution. Let M p , p =0, 1,2, be a  sequence
of positive numbers and let Q be an open subset of R ' . A n  infinitely differentiable
function 0  on D is called an ultradifferentiable function of class (M p ) (of class {M p },
respectively) if  fo r any com pact set K  o f s-/ an d  fo r  each h > 0  (for some h >0,
respectively)

laag6(4110Imp,K,h = sup ,
x e K  n  m

cten

is finite.
We impose the following conditions on M p :

(M.1) M1,..Mp - iM p+i, p=1,2,•••.
(M.2) There are positive constants A  and H  such that

M <AHP m in  M M .P — q p  - q
0 5 ( p

(M .3 )  There is a constant A >0 such that

M  p  
D  — 1, 2, • • •

00 Mg - 1  <  Ap
q ; +  1  M q

m , , +

For example, the sequence M p =pV (s>1) satisfies all conditions above.
We denote by (e,mp)(o), respectively) the space of all ultradifferentiable

functions of class (M p ) (of class {M p }, respectively) on a

The topologies of such spaces are defined as follows:
A sequence 0 ; -+0 in e (mp )(n) (e {mp ,(Q), respectively) if for any compact set
K  of D  and for every h > 0  (for some h > 0 , respectively) we have

„ „  laa4(x)1 —.0 as j-- ,  CO.
aeln

In  addition, we denote by  2 (mp )(D) (3{m p }(D), respectively) th e  space o f all
ultradifferentiable functions o f class (Mp )  (of class {M p } , respectively) o n  Q  with
compact support.
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As usual, we denote by Cm p )(5.2) (6"imp g2), respectively) the  strong dual space
of g (Mp ) (f2) (of g{Mp }(f2), respectively) and  we call its elements ultradistributions of
Beurling type (of Roumieu type, respectively) with com pact support in  f2 . The
spaces gim p )(0 )  and gim p )(f2) are also defined similarly as in the distributions
2r(f2). F o r  m o r e  details on the ultradistributions gim p )(f2), eimp }(f2), gimp )(f2), and
gim p )(f2) we refer the reader to  [2], [5] and [6].

In  what follows, * denotes (M,,) or {M p } throughout this paper.
Now we introduce the homogeneity and the spherical average for the generalized

functions.
Let 4 =d  where / is the n x n identity matrix and E > 0 .  For an ultradistribution

u  an ultradistribution u ./ , is defined by

X
<1401c ork> =  —

1  
<U,OH > ,  (Peg..

En

From now on when we refer to a degree k  of homogeneity we assume that k
should be a  real number.

Definition 2 . 1 .  A n ultradistribution u in R" is homogeneous of degree k if for all
>

uol,=e k u.

Then using the same method as in  [3 ] we can easily show the following:

Lemma 2 .2 .  A n ultradistribution u in f2 is homogeneous of degree k if and only if
it satisf ies the Euler equation

auk u=
J=1 ax •

Definition 2 .3 .  For a continuous function 0 in f l, the spherical average of  .0 is
defined to be a function

r
d's( r) — J s . - . dw'

where 1.5' 1 1 denotes the surface area of  the (n-1)-dim ensional unit sphere.

Definition 2 .4 .  (i) For an ultradistribution ueg'. (r., respectively), the spherical
average of  u is an ultradistribution u s  def ined by  the relation

<us , 0> = < u, Os>

f o r all 0 e g .  (e,,, respectively).
(ii) A n ultradistribution ueg: is said to be rotation invariant if  u=us.
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In  th e  above w e no te  that since O s is also ultradifferentiable, <  u, >  is
well-defined. Hence, we can readily see that us  defines an ultradistribution. More-
over, it is known in [1] that if f  is a rotation invariant continuous function, then f=  fs

and if u is a rotation invariant distribution, then u = us .
For each defining sequence M I, we define the associated function of M r , on (0,

co) by

M(t)= sup log tP M °

M p

Then (M.1) implies

tP(2.1) M M 0  
p= 1„2, 3, • • •

P t s > l ô  exp M(t)

(see [6]).
Now we will characterize rotation invariant ultradistributions with support at

the origin.

Theorem 2 .5 .  Let ue (R") have its support at the origin and *= 1 I p l(*= (M  p ),
respectively). If  u is rotation invariant, then there exists an entire function F  in C
such that on R"

u = F(A)(5

and for every L>0  there exists C>0 (there exist L>0 and C>0, respectively) such that

IF(z2 )1 C  exp M(L1z1), ze C,

02

where A  is  the L aplace operator A — El_ i  a n d  5  i s  th e  D ira c  measure in
az,2

R".

P ro o f  We prove only the case where *=  {M } .  In  view of the Paley-Wiener
type theorem in [7], the Fourier-Laplace transform ft(C) of u is  an  entire function
in  C" and satisfies that for every L > 0 there exists C> 0 such that

(2.2) C exp MV-1(i), Ce

Moreover, the  function fi( ), e R", is a lso  rotation invariant, since u is  rotation
invarian t. F o r e a c h  e  R " we choose a rotation matrix A  s o  t h a t  = Ae„, where
e„ is a unit vector in the direction of the n-th coordinate for R " .  Then it follows that

ti(0 =12(1 1Ae„) ie„)= to, • 0 , ± I D.
Expanding 0(() into
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0'aq))ii(C)=E  C", Ce C",
„ cd

we have for e v e ry  e R"

140 = LAO, 0, ± I I )

=
"a

L
(
,
°)

 ( ± I 1)
k

k  0

00 a2ka,o,
=  E   "  '  '

k  =  0  (2k)! (102k,

a
where O f = — , j= 1, 2, • • n.

ax,
By the  identity theorem of entire functions the  above equality still holds for

complex vectors CEC". In  other words,

co 2ku r )
/4 0  =  E   "  (0+ .-.+c,Dk

k = 0 (2k)!

for C = (Ci ,• • •,(n) E C".
Now we define Rz) on  C by

œ  a 2ka(o)
(2.3) F(z)=(27t)-" E   Z)k

k = 0 (2k)!

Then F(z) is an  entire function in  C and

—  + • • • + CD) = (2 n) Cn•

Moreover, it follows from the Fourier inversion formula that

u=(270 - "ii

co a 2kii(01
=  E   l y v ? + • • • + a y a

k = 0 (2k)!

=F(A)(5.

O n the other hand, using (2.2) and (2.3) we have

IF(z2)1 = lag  • • 0, iz)I

Cexp M(L1z1), Z E C .

This completes the proof.

Now we are in a position to state the m ain theorem of this paper.
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Theorem 2 .6 . L et u be an  element of  3 ( R "). I f  u  is rotation invariant and
homogeneous of  degree k, then there exist real numbers a and b such that

u  =  
alxik + i= (5, —n—k is an even nonnegative integer,

otherwise,

a2
where A is the Laplace operator A=E7= 1   a n d  is the Dirac measure in R".ax,2

P ro o f  Here we prove only the case *= {Mp }. In fact, the case *=(M p) can
be done similarly with only a  slight modification. If t/i(x) is an ultradifferentiable
function in R supported by the half-axis 0<r < oo, then the function

580(x)= 4)(x)=Ill(lx1)

is an ultradifferentiable function in R", vanishing in a neighborhood of the origin. The
mapping Y  determined by this equation is a  continuous linear transformation of
the ultradifferentiable functions on the half-axis into the ultradifferentiable functions
on R" so that the linear functional

<,5,0>=<u,..990>

is an ultradistribution on r >0.
Since Y(tp.4)=(2'0).4 and u is homogeneous of degree k , we can easily see

that S  is homogeneous of degree n+ k -1 . U s in g  the Euler equation

x  O S  _—(n+ k — 1)S in R"

and the chain rule

a dE x• _ =1' -  ,  r=lx100,
i=1 ' Ox• dr

we have a differential equation

ddSr  r — (n +k - 1)S, r>0.

Solving this differential equation in R" \ {0} we have

S=Crn + k - i ,  r>0

for some real constant C.
It follows that the ultradistribution T  defined by
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<T ,0> = <u,0> — (beg.
IS" I

is  an ultradistribution defined on /2" \ {0}, which vanishes on  all ultradifferentiable
functions that are functions only of radius 1x1. M oreover, it is easy to see that T
is  rotation invariant.

Let (/)(x) be an arbitrary ultradifferentiable function vanishing for 'xi < E .  Then
the spherical av e rag e  0 , o f  0  is  an ultradifferentiable function only of radius 1.x1
and it follows that

<T ,0 > = <T 5 ,0 > = <T ,0 s > =0,

which implies T =0  outside th e  o r ig in . Therefore, if  w e pu t a  constan t a = is„c_ if
then u—alxl k i s  a rotation invariant ultradistribution which is homogeneous of
degree k  and has its support a t the  o rig in . Thus by Theorem 2.5 there is an entire
function F in  C such that

(2.4) u—alxik=- FOOS

and for every L>0

IF(z2)I Cexp M(Lizi), zeC

for some c o n s ta n t C > 0 . Since for every meN o an d  every 1>0 there is a constant
A >0 such that

IP'") (0)1 -

 

m!  r
(2ni) J141=12 Cn 4 1 -

  

m! exp M(L1),T2 T"

we have from (2.1) for every meN 0

Ifil m ) (0 )1< Am! inf exP M(L1)
1>o 12 'n

<A m! L 2 m [su p t2 m
t> b  exp M (t)]

=A M o m!L 2 m/M2„,.

Expand F(z) into the Taylor series

F(z )= E (- 1)ma2 „,zni, z e C.
m=1)

Then for any L>0 there exists constant C >0 such that
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(2.5) CL2m/M2„„ meN o .

Since T - aixi k  is homogeneous of degree k , we have for every E >0

(2.6) <(T - alxi k ) 0 it , =  < T >

for all (keg..
In view of the relation (2.4), the equality (2.6) can be rewritten as

(2.7) EOE) ( -  lyna2 m e-  2 m  n Am 0(0)= Ek E  (-  ir a 2 „,Amoo).
m=0 m=0

Since (k eg * , there exist h > 0 and C > 0  such that

(2.8) Am0(0)1 C'h 2 m _  2m , M  E N o.

We define a function f  on (0, co) by

1f  (t) = Ec° ( -  1)ma2 ,„Am0(0)-2—  .
t  m + n

Then making use of (2.5) and (2.8) w e can show that f  is well defined and real
analytic on ( 0 ,  x ) .  Comparing the coefficients of l k  bo th  s ides  of (2.7) w e have
a2 ,„= 0 if k  - 2m -  n. Therefore, (2.4) make it possible to write

u =
 a x '  b A  26 ,  if -  n -  k is an even nonnegative integer,

for some constants a and b. This completes the proof.
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