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Homotopy-commutativity in spinor groups

By

Hiroaki HAMANAKA and A kira KONO

1. Introduction

F or two subsets S  and S ' o f  a  topological group G  which contain the unit
o f  G  a s  its  base points, w e say S  a n d  S ' homotopy-commute in  G , when the
commutator map c from S A S ' to  G which maps (x, y) e S A S ' to x y x y  E  G
is null homotopic.

In  [3], the  first author showed the  next theorem:

Theorem 1.1. Let n, in be positive integers, and let n  +  m  4  or 8. If  n or M
—

is even o r i f  
(17

I  
2 )

 0  mod 2  then SO (n ) and SO (m ) do not homotopy-
n –

commute in  SO(11 + m –1).

I n  th is  paper, w e describe th e  hom otopy-com m utativity o f  Spin(n) and
Spin(m) in  Spin(n + m – 1).

Definition 1.2. If  SO (n ) and  S 0 (m ) homotopy-commute in  SO(ii + M — 1),
w e say (n, ni) is SO-irregular, an d  if  no t w e say  (n, m ) is SO -regular. A lso, If
Sp in (n) and Spin(m) homotopy-commute in Spin(n + m – 1) , we say (n, ni) is Spin-
irregular, and  if  no t w e say  (n, in) is Spin-regular.

M ain theorems are  the  followings:

Theorem 1.3. A ssume neither n – I nor in  – 1  is a pow er of  2  and n+  M  0  4
+  –

or 8. If  n or M  is even or if
1
 1 )

0  mod 2  then (n, ni) is Spin-regular.
n –

For the case n  –1  is  a  pow er o f 2 , we give some results a s  following:

Theorem 1.4. S et n = 3  and ni 1  mod 4  then (3, m) is Spin-irregular.

Remark 1.5. Theorem 1.1 implies that if M  #  1  mod 4, (3, m ) is SO-regular.

Remark 1.6. I n  f a c t ,  s in c e  Spin(5) S p (2 ) a n d  n6(Sp(2)) n6(Sp)
K—Sp - 7 (pt) 0  where S p  is  lim „ _ ,  S p (n ), th e  com m utator m ap C: Spin(3)
Spin(3) Spin(5) is  nu ll hom otopic a n d  (3, 3) is Spin-irregular. O n  the  other

Received November 12, 1 999



390 Hiroaki Hamanaka and A kira Kono

hand, Theorem 1.1 implies (3,3) is SO-regular. Therefore SO-regularity and Spin-
regularity is not the same.

This paper is organized as follows: In  §2 we give a  sufficient condition for
( n .m )  to  be Spin-regular, w hich is an  ex is tence  o f a  m ap  w ith  a n  adequate
property and show  that, w hen n + in  i s  o d d ,  (n , m )  is  S p in -reg u la r . In  § 3  we
introduce the maps cfi; :  Q i I30 A Ql130 Q B 0  t o  in v e s t ig a t e  KO - *(Spin(n)
Spin (m )) and in §4 investigate its induced cohomology maps and prove Theorem
1.3 for the case both n  and i n  are o d d .  In §5 we look into the case n  and i n  are
even and complete the proof of Theorem 1.3 and finally in §6 we give the proof of
Theorem 1.4.

2. L ift of commutator map

Similarly to [3], consider the  next fibrations:

S p in ( n  m  - 1 ) Spin Spin/Spin(/' + m - 1),

S O (11  + —  1 )  — >  SO —> SOISO(n - 1 ),

where SO (resp. Spin) is lim„_,„ S O (n ) (resp. lim„ „  Spin(n)).
We refer to the cohomology rings of spaces which we use in this paper that is.

H'(S2 Spin) = Z/ 2 Z[042.g4, 1 6 ,  •  - ] / ( 1 4 k  —  4 )

H *(Spin(lc)ISpin(k -1)) =  4(xk X k  1),

H* (Sp/11(k)) = 4(A- 3, A- 5, x6, x7 -Y 9 , •  •  - ) A(-).
In  the last equality, the index i  of x , scans all integers neither of which is not a
pow er of 2  and 3 <  i < k  -  I. Also, deg( 2 )  =  2 i and deg(x 1) =

Further, it can be easily seen that H*(Q Spin/Spin(n +,n  1)) = 0  for * < n
+ i n  - 3 a n d  H " 1 - 2 (S2 Spinl Spin(n +  in  - 1 )) =  Z/2Z whose generator is written
a s  a n + , ) , - 2 .  W h e n  n + i n  is even, Qp' (gn+m-2) 211+111-2 E  H*(Q Spin).

From above librations, w e can deduce the  following fibration sequences.

52p
• • • Q Spin Q(Spinl Spin(n +  in  -1)) — >

S p in ( n  in - 1 ) Spin 2 - 4  Spinl Spin(n +  in  —  1).

52q 6 Yo
• • • — > QSO Q(SO/S0(n +  in  -  1 ) )

SO(n + in  - 1 ) SO SOISO(n + m - 1).

L e t  c s o  ( r e s p . c sp i„ )  b e  th e  com m uta to r m ap  from  SO(n) A S O (m )  to
SO(n + in  -  1) (resp. from Spin(n) A S p in (m ) to  Spin(n +  in  -  I )). Obviously we
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can see that i o csp ,n and  j o cso are null homotopic. Thus there exists a lift of cso
from SO(n) A  SO (m ) to  S2S0 / SO(n + ni — 1) and  a  lif t o f csp in f ro m  Spin(n)
Spin(m) to  Q Spin/Spin(n m — 1).

In  [4], a  lift o f cs o  w ritten as Aso was constructed and  in  [31, it is obtained
that

11'S* 0( 1 n+m- 2 ) — — 0 XM —  I • (1)

Here set Asp i„ = Aso 0  (p„ A  p,„).

Lemma 2.1. Â s p i n  i s  a  lift o f cspni, that is, 6 Spin ° ;
S p i,,

P r o o f  See the  diagram below.

Q Spinl Spin(n + in — 1)

Spin(n) A Spin(m)

SO

Since 6so 0  Aso = cso and 6s o  p „ + „,_ ] o Ss p n ,, it occurs that

p n + m - i  o  Spin 0  ASpin — 6 S 0 0  ASO °  (p n  A  P . )

cs o  o  (p n  A Pm)

1 0  ("Spin (2)

N o w  c o n s id e r  t h e  fibration Z/2Z —> Spin(n + ni — I )  —> SO(n + ni — I).
T hen  fo r  a n y  CW  complex X  w e  have  the  exac t sequence o f  b a se  pointed
homotopy sets:

n-1 1-- I
[X  Z/2Z], — > [X , Spin(n + m — 1)] P 1 1

— 4  [X, SO(n + m —

Thus p„.4_,„_1* i s  injective and from  (2) we can see

&pin °  2 Spin CSpin •

In  the  rest of paper, c, Â, (5 stands fo r cs p i„, 4 , 1„, 6sp i„  respectively.
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Proposition 2.2. A ssume neither n — 1 nor m  — 1 is  a  pow er of  2.
1. If n + ni is  o d d , c  is  no t nu ll homotopic.
2. Let n + m  is even. If  f or any  continuous m ap x  f rom  Spin(n) A  Spin(m ) to

Q Spin, x (an+m-2) 0 x 1 1 - I X 117-I
 i n  cohom ology , th e n  c  is  n o t  n u ll

homo topic.

P r o o f  I f  c  is null hom otopic, that is, o A* ,  then there exists a  map
: Spin(n) A  Spin(m) Spin such that O p o x A .

From (1) we can see

"C* (an+,11-2) —  f  °  Qp*(an+,,,2)

—

=  (P „  A p u ,)  0  ;Ls* o (an+ .-2 )

= A  pm) * (x  i  0 )

= xn- I xm- , (3)

since neither n — 1 nor m — 1 is a  p o w e r  o f  2 . Thus the  statement for the case
n + ni is even is proved.

W hen n + ni is odd, it occurs that

— x" o  Qp*(an+m-2)

= x*(0),

since FI' (52 Spin) is concentrated in even degrees. This contradicts to (3) and c is
not null homotopic.

3• X 0 - *(Spin(n) A  Spin(m))

In  this section w e assume that bo th  n  and m  are  odd.
F ro m  Proposition 2.2 w e should  lo o k  in to  the  hom otopy  se t [Spin(n)

Spin(m).52 Spin]. By use of KO-theory we can say that,

[Spin(n) A  Spin(m), Q Spin] [Spin(n) A Spin(m). Q 0 S 0 1  KO - 2  (Spin(n) A Spin(m)).

since .52 2 B° = 52S0.
Further more, the complex representation ring of S pin(2k  +1) is generated by

real representations or symplectic representations. (See Proposition 6.19 in P. 290
of [8].) Thus Theorem 5.12. in [11] implies that, when n  is odd, KO — (Spin(n)) is
K O ( p t )  free. T h e re fo re  w e  have an decomposition of

KO - * (Spin(n) A  Spin(m)) KO - * (Spin(n)) 17-(-)  ( p i )  K O "  (Spin(m)).

From  now  on , we identify KO - i (X )  with [X,52'BO].
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Theorem 3 .1 . T here is a m ap 00  : 52/ 130 A f2.130 52/±/B0 such that for
any  CW-complexes X . X ' an d  a c K O ' (X ) and fi e K- 071 (r ) ,

oc (3 )6' =o A  /6) in  KO - ( "" ) (X  A  X').

P ro o f  F irst w e  construc t Let b e  the universal vector bundle
over BO(n) and put ;in =  —  n, re,,. And set 0 0 ,0 : BO A BO —> BO
as the classifying m ap of n, rr„. Let h. ;  : Z 1.0430 —> BO b e  the map which
satisfies

Adirt-1

Consider the composition of /c  A  Ki  and

E i S2i B0 A El SPBO - >h '  A  A . ' BO A BO - ‘'6') ( I B O .

We define çb1 1 as

= Ad i + j(0 0 ,0 o (Ki A  ici )) : O l B0 A Q./B0 Q i ± /130.

Now, ta k e  a c [X , S2/ B 0 ] and )6 c [X ', SPBO] and se e  the composition of
/ A  /6 and 00 :

o (a A  fi) : X  A X ' —> Q'BO A S P B O  Q ' ± 1 130.

Taking Ad - ( 1 ± ' ) of the above com position, we obtain

Ad - ( l+ i ) (00  o A  13)) = (Aci - ( `+ i) 01,1 ) o (L./  a A i fl)

: A  X ' )  --> 2' i + j(S2'BO A  g2j 130) --> BO.

From  the definition of çb , Ac1 j ) (00  o (a A  #)) is  the composition of following
maps:

• • ,

E i+ .1 (X  A  X I ) fi> Z i ± j (S2130 A  Ql130) 
 K , A K

 B O  A BO 
 0 0  0

BO. (4)

Lemma 3 .2 . For any  continuous m ap f : X  — > BO,

f Ad' f ).

P ro o f  Consider the composition of Ad i f and  iden tity  m ap  o f Q i BO.

Ad '/ Id  ' B oX  S2'BO  Q'BO.

T a k in g  A d ' of the above composition, w e have

f  =  A d - 4  (IcIt2 iB o  o Ad i f ) =  K  o  E i Ad i f

• Z ' A d j • •

BO.
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By (4) and the above lemma, it follows that

Ac1- ( i +1) (00  o (a A fl)) 00 ,o o (Ki A  J ) o a A Z i fi)

ohm o (wi ° Z i a) A  (K j o  / 3 )

00 .0  0 (Ad - i oc A Ad - ifl).

Since f  e [X , S21130] corresponds t o  (A e l f)*  (/ 7x )  c '( X ) .  th e  above
equation says that 00  o (a A f i) corresponds to

(Ad - `a A Ad - ifi)* ) (n,c ) =  Ad - 1 7*(17,x ) 6 Ad— w ( q ,c ).
Therefore we obtain that

a  CD = o (a  A  fl) in  KO - 1) (X  A  X').

From  the above theorem, we can deduce the next theorem.

Theorem 3.3. A ssume both n and m are  o d d . lf, f o r all (i, j) E Z I8Z 2 w hich
satisf y  i j  =  2, 0,:k, j (gn-Fm-2) = E bs 0 et  w h e re  IN  = s an d  let =  t  and b„_1 0

= 0 then c : Spin(n) A  Spin(m) Spin(n — 1) is  no t nu ll homotopic.

P r o o f  For any n c KO - - (Spin(n) A  Spin(m)), there exist a„ E K- 0 - i '(Spin(n))
and fi„ e K- 071, (Spin(m)) such that n = E  /3„ and i„ j „  =  2. Since a„+ „,_, is
primitive,

— oft , i i „ )  an+m-2) a '3 /3 „) * (an+m - 2)

and by Theorem 3.1,

(ot /3) (/n+m-2) = A  /3) * 0 K i(a n + m -2 )•

If the hypothesis is satisfied, /7* (an+m-2) can not be x-
n_i x,,, . Therefore from

Proposition 2.2 , c  is no t nu ll homotopic.

4 .  The case n and ni are odd

In  th is  section we investigate th e  induced cohomology m a p  o f  0, 4  fo r
(i,,/) c (Z/8Z) 2 ,  such that, i j  =  2.

W e start from  the next lemma.

Lemma 4.1. Assume a c H"(Q 1+iB 0 )  is prim itive and 0 1 (a) = Es + ,_„ bs 0
w here lbs 1= s and cil = t. T hen 19, and e t are prim itive.

P r o o f  Since for any a.13. y c KO(X),

(P' (a) 0 1.7 (13 )) ® p  (y ) = (0c) 0 P; (Y)) (1 ()6 )  ® P (y ))

where p i : X x X x X — X  is the projection to i-th component, the next diagram
commutes.
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52'px 1

S2i B0 x S2 /130 x S2i130 

( Ix  T x 1)o(1 x 1 xd)

S2i B0 x S2-/B0 x S2 i B 0  x  a /B O

Q'BO x SPBO

0 1 1

Q
Q i + iB0 x Q'+./ 

' ' i p
B 0   S2 + .1B 0

Here T  is the transposition map, d is the diagonal m ap and t :  BO x BO —> BO
i s  th e  classifying map o f  n  x over B O  x  B O . F urther, q5  t h e  next
composition:

S2i B 0  x  S P B O  S 2 'B O  A  S21 B 0  S -2/±/B0.

Let a c H"(S2 i ± lB 0 )  be  a primitive e lem ent. Then w e have

(1 0 .4 * )o  (1 0  T* 0 1) 0 4,* /. 0 S2'111' (a)

= ( 1 0 ,6 1 * ) o ( 1 0 T * 0 1 ) o 4 i*J 0 i ) ( a 0 1 + 1 0  a)

= (1 d * )  0  (1 0 T * 0 1)( s el 0 1 0 1   +1 0 1   b, 0 c,)

= 4 .)(E  b., 1 c ,  1  + 1  ® b® c , )

=  (E  bs  0  1  0  et + 1 0 b., 0 cr)

(E ( b s  01  + 1  b s )  0  c r) .

Also

p 0 1) 0 (ki:1 (a) = (0 1,11* 0  1 ) (E  b s  0  c i)

Q's ,u* (b.,) C) et .

T h e  above  d iagram  says tha t these  a r e  th e  s a m e . Therefore it occurs that
S2Vt' (b.,) = b 0  1  + 1  0  b s , that is, h, is p rim itive . Similarly we can prove that c t

is  primitive.

Theorem 4.2. L e t i + j = 2  and n  and  n i b e  od d . A ssume 0 i , j(an+m-2) =

E c ,  where IN = s  an d  101  = t. I f  
(n  + in — 2 )

n — 1
0  m od 2, then b„_, 0

L in -1  =

P r o o f  From  assum ption, (i, j)  is  (1 ,1 ) , (2 .0 ) , (3 .7 ) , (4 ,6 ) , (5 ,5 ) , (6 .4 ) ,
(7,3) or (0, 2). From the symmetricity, we shall look in to the cases (i, j) = (1.1).
(2,0), (3,7), (4.6) and (5, 5).

For 03 , 7 , 05 , 5 ,  the proof is easy . F rom  the assumption, n — 1 and m — 1 are
even and by Lemma 4.1, b„_ 1 a n d  c„,_, are  prim itive. O n the other hand, it is



w(q) = 1 + V12N -k
k=0 1=0

modulo (w i C) 1, w2 C) 1, C) 1) 2

N - 1  k  ( N  k )

= fi (l +1 +
i= 1

N  N -  ( N  /7 k )

i=ok=1
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know n that all of the non-zero primitive elements of Q 3 B0, S2 5 B 0  a re  in  odd
degrees. [7] Thus b„_ 1 0 = O.

T o start the proof for 0, 0 , we investigate
Let N = 2 ,  r E N  and n 'E KO(BO(N) A  BO (N  )) be  the class of

=  ( AT — N )  (6 /  -  N).

We calculate the total Stiefel-Whitney class of ti in  fr(B (Z /2Z ) N A B(Z/2Z) N ) D
H' (BO A  B O ) .  Let t 1 ..... 1N a n d  t[...., t 'N b e  the generator of H*(B(Z/2Z) N  A

B(Z/2Z) N ) w here  ti corresponds to  the  first component and c o r r e s p o n d s  to
the  second. T hen  w  =  ak ( 1 ) , .  t N )  and t'AT) (1 < k < N) are the
generators o f H t(B 0  A BO) where ak is k-th fundamental symmetric polynomial.
(W e put 11,

0  =  1 . )  A lso we set S i =  E ,N_ 1 t .

L em m a 4.3. T he tota l Stiefel- W hitney  class of  ti satisfies

in  H*(BO(N) A BO(N)) fbr * < N.

P r o o f  Since

— (15 —  (f) N  N  ( i 1 N  N  N ,

we can see that

Iv(g) ( 1 + +  )  H  ( 1 + 0 - N  f i  ( 1 + ,y N
I <1 <N ,1 <j<N I <1 <N 1 < j<N

H ere in  th e  p a r t  o f  degrees less than N , (1+  t 1) - A l =  (1+  tiv ) - 1  =  1 a n d  also
(I ±  1;) - 1 "  =  I .  Therefore modulo 10  H i (B(Z/2Z) N  x B(Z/2Z) N ) , we obtain
that

W (11) = ( t i  +  1 +
I <i<N ,1<f  <N

= 11
1=1 k = 0

N

)

w h ( 1  ±  t ri ) N -k

We proceed the  calculation modulo (w i C) 1, it', 1, ... ,1] ,
N 1 ) 2 a n d  obtain

N  N - k
w(q) 1 + 111kS;

k=1 1=1

< k ,  < I . k  I < N ( N  

—
wk S;.



since

E a _ 2 k : even
t 0 k : odd

K ( W k )  —
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Lemma 4 .4 .  Let k, I,r e  N .  I f 2r > k + 1, then
( 2r —  k )

(k  +1 —  1)
1

mod 2.

P ro o f  W e set the binary expansion of k —  1, 1 as

k — 1 = ei2i , 1 = 5x2'.
0< i< r-1 0<i<r-1

Then we have

—  
) 

( (2 1 _  1) — (k — H
0< t< r-I

Therefore ( 2 r  k  =  0  if and only if, for some i, ( 1  
6 ,

c1) = O, i.e. , e• — 6. = 1
1

Assume, for some i  (0 < i <  r —  1), e, = 1. T h e n  let io b e  the smallest
such a  num ber. Then i 0 -th coefficient of the binary expansion of k  + I — 1 is O.

—

while 6 , = 1. T h u s  w e  have  
( k  +  1  1 )

O.

Vice versa if, for any  i  (0 < i <  r —  1), not both e ,  and 6 , a re  1 , then

k + / — 1 ) Et 6 ,)
0  O.

1 0< i< r-I

Therefore
( 2 r  — -

1
 ( k  +  I — 1)

mod 2.

Since q5 the classifying map o f no, ( '5 r ,  Lemma 4.3 implies that

00* ,o(Wi)
 k +1 =i

2 r  —
= Wk S;

( k  + 1  1 )
Wk o s j  modulo (w1 C) 1, w2 Ø l, w 3  0  1 , . ) 2 ( 5 )

k+1=i 

where r is sufficiently large.
Therefore

(K2 A ki8o) * °0(*),0(wi) = E )
(  k  +  I  —  

Z2ak_2
k+1=i,k:even

and l q  (decomposable element) = O.
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From definition, 0 2 ,0 A d 2 (K 2  A  Id o 00 ,0 )  and then w e have

02*,0(a4/+2) =  
k+1=-4i+2.k:even

/  )

( k + I )  
ak Si, (6)

+
here we remark that 

(k  + 1 + 1 ) ( k 1)
when k and / are even. From (6),

/
and since a4k = a3k ,  it occurs that

02*,o(a2Poi+2))
(k  + 21'1 ,2) a k 0 ,— ■- P

k+1=4i+2,k:even

Thus the coefficient of bn _ ic „ 1 in  02*,0(an+m-2) i s  0  w hen  
(n  +  in —  2 \

n —  1 )
= 0  and the statement is true for 02 , 0.

Second case is 0 1 ,1 . C o n s id e r  the composition of following maps.

ES2B0 A ES2B0--1/ "K B O  A BO - - +(b"  BO.

From  (5) and since Kt (decomposable element) = 0 and

Ki*(wk) = .EXk-1

k :  odd
K (S i )  =

0 k : even,

the induced cohomology map of this composition can be obtained as

( K i  A KO * 0  0 0
*
,0 ( 0 ' , )  =  (K 1  A  KI) * (

k+1=1( k  ±  11 —  1 ) S1  ®  W 'k )

k + 1 —1 )

1
Exk_i.

k+1=i,Lodd 

H ere w e rem ark that ( k
 + 1

 1  =  0  w h e n  /  i s  o d d  and k  is  even . T hus it

occurs that

(Ki K I)*  °  O ô ,0 (W i) = E (k -
Ex,_, Ex k _,. (9 )

Similarly as the case of 02 , 0 , 0 1 , 1  =  A C P (K i  A  K i 0  0 0 , 0 )  and from (9) we have

01* , (a4i+2) =
k + I — 1)

1
0 Xk— I

k+/=4(i+1),/:odd,k:odd

) x i
k+1=r4i+2,/:even,k:even

k + I
Xk • (10)
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A nd also

01* ,t(a2P oi+20 -
(  k  + ,p

k •
2P

k+/=4i+2, Leven, keven

T h u s  th e  c o e ff ic ie n t  o f  b„_1 0 c.--1 i n  K.1(au-Em-2)
(  n  + m  -  2

n 1
)

= 0 and  the  statement is true for 0 1
-  

is a l s o  0  when

The final case is 04 , 6. Let e l,. and e l, b e  the universal bundle over B O(n),
B U (n )  and  BS p ( n )  respectively and put

n n _  n .

and
C= lim -  n . j4 lim 111,i = liM — n.

11- 00 n -, n

Also set e be the classifying map to (4 ) c , complexification of rill ,  c ' be the
classifying map of /ill  as a complex vector bundle and be the classifying map of
17 t i  over BU A BU.

W e start from  the next lemma.

Lemma 4.5. The next diagram commutes.

BSp A  BSp -±±!1+ BU A BU

04,4

BO BU

P ro o f  Consider the  next composition:

E4BSp A Z 4BSp >' 4A B O  A B O  ° BO BU.

Here in  K-theory, c(ri c
x ,) = (ti l l

3,) c  a n d  0(;.0 ((e ) c ) =  (e ,) c  '105 (e  ) c . Also it is
known that " ( ( e c )c ) (CH -  H) Oc  ex. where C H is  the H  canonical line bundle
over H P '. Therefore above composition pulls back t o  ( C H -  H) (5c (CH -  H)

O n the  other hand consider the next composition:

E .

8
BSp A  BSp  ( C '  A C '/ Z8 BU A  BU >

8

B U ) BU.

Here is defined a s  fo llow s. F rom  Bott Periodicity, we know that Q2 BU
BU x Z . Thus there exists a  map K2

1
1 : E 2/BU -> BU which satisfies Ad 2/K i is  the

inclusion m ap BU Q2iB U . O ne can easily verify that

l c !,  0  z2 h .r,  0  . . . 1 2i-21 (

-
and  it is  know n tha t in  K-theory = (Cc  -  C) 6ijÇ where C c  i s  the ca-
nonical line bundle over C P ' .  Therefore K (C,c  - C ) 4.  Now we can see
tha t the above composition pulls back to (Cc  - C ) 4e p c



( C ,
A  C/ rliik (1

1=I
11))

2

i=1
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Since k - 4 (p t) =  Z  and the second Chern class of —(CH  —  H) and (Cc  — C) 2

coincide, we see that the above two compositions are homotopic each other.
Take the Ad 8 o f  tw o compositions and we obtain

C O 04,4 =ÇIJO C'

Refer to the diagram of Lemma 4.5. W e want to calculate 0 4 4 (1 1 '0 . As we
have done in  the  proof o f  Lemma 4.3, le t N = 2 ',  r e N  and  O e k (BU (2N )x
BU(2N)) be the class of 0 = —  2 N ) 1 3  ( N  — 2N) where i s  the universal
vector bundle over B U (2 N ). Also le t O N  be  the  classifying map o f  O.

F irst, w e  ca lcu la te  th e  to ta l C h e rn  c la ss  o f  0  i n  H *(BT 2 N  x  BT 2 N )  D
H *(B U (2N ) x  B U (2 N )). Let t1, ,t2N, tç, • ,  t E H *(B T 2 N  x  BT 2 N ) b e  the
generators a s  u su a l. T h en  in  the  part o f degree less than 4N,

Ok (1 fi
i = i  ) j  2 N ( 1

ti

Now we proceed the calculations o f  (c ' A  c')*O N* (1 + c,) in  H*(BT N  )<
BT N ) D H*(BSp(N) x BS p (N ) ) .  Let EH*(BTN x BT N ) be
the  generators. Then we can see

(c' A  c i)* tii*N ( 1

(c' A  c')* fi (1 + ti + tj)
1,;< 2N .1 <j<2N

H ( i  + 5 ; +s;)(1 + 5 1 _  5 ; ) (1  _ 5 , + 5;) ( i _  _ 5 1>
1< i< N ,1< j< N

H
± s i + s ,D4

1< i< N ,I< j< N

_1< i< N ,1< j< N

On the other hand, considering H * (B S p (N ) )  H*(BSp), in the part of degree
less than 4N,

2
(1 + 4  + Sj2 ) }  .



1=1 1< i< N ,1< j< N

k = 0  1 = 1 ( 1

N—

1 QI qk i = 4 ]
k + I —1
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Since H*(BSp A BSp) is a  subalgebra of a polynomial algebra, the square of
any element in  H*(BSp A BSp) does not vanishes. Therefore

s ± sj/ 2 )

in  the  part o f degree less than 2N.
W e  s e t  cfk  = o -k(sç2 ,...,4 3 ) (1  <  k  <  N ) w h ich  a r e  t h e  generators of

FF(BSp(N )) a n d  0  = 41 which is the primitive element o f H*(BSp(N)).
Now we have in  the part of degrees less than 2N

(
i

i=1
=

,

11 ( 1+ 4  + s 2 )
1< i < N 1< j< N  

cc

= (1 + 4)kg'N-k
1=1 k = 0

N N - 1  k

= 1 + E E )si2V N  k )
1-1 k = 0  1 = 0 (  

I

Now we proceed the calculations modulo (g;, , a ) 2  .

04,4 ( 1 ±
i=1

1 +

1 +
k=1 1=1

N — k)
Q 1 61/k

1=1 1 <k,1<1,k+1=i 

( N

This leads us to the  next lemma.

Lemma 4.6. M odulo (1 gi,1 q2, 1 0 g3 , . . .) 2 ,

K 4 ( 1V1) — 1 <k,1<1,k+1=j

 i 0mod4

where H*(BSp) = Z/2Z[qi q 2 ,  q3,...] an d  Q1 e H*(BSp) is  the prim itive elem ent o f
degree 4/.

L e t x' : E 2 S26 B 0  524 B 0  b e  th e  map which satisfies Ad 2 (e )  =
Then it can be easily verified that Ad 2 (04 ,4 o 1c:10 4w  A IC' )  =  04, 6. Since

2K/ * =  E b 4 1 - 2 ,
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where H*(Q 2 B Sp) =  A (b2, b4,1)6, .) and 134,_2 is  primitive, it occurs that

and

(IdQ4B0 A K i ) *  0 4
*  ,4(11'4i) =

1 <k,I<I,Ic+1=i

0 4 ,6 (a 4 i -2 )  =
(  k  + I -  1 )

1 Q i 0  b 4 k -2 .
1 <k ,1

R em ark that 
( k + / - 1

/ 4/ )
( 4 k +  4 / -  4 ( 4 k + 4 1 -  2 )

  
and

Oâ',6(612P(4/-2))
( 4 k +  4 / -  2 )  

Q

2p

i 0  b 4 k -2 2 P  •
1 <k, I

Therefore the  statement is also true for 04, 6. Q.E.D. (Theorem 4.2)

From Theorem 3.3  and  Theorem 4 .2 , the  next theorem follows.

Theorem 4.7. Assume neither n  -  1  nor m  -  1  is a power of  2 and both n  and

in  are  o d d . I f  ( n + m -  2 )  0  mod 2  (n  m ) is Spin-regular.
n - 1

5. The case n  and n i are even

In  this section w e use integral co h o m o lo g y . Consider the  next diagram.

Sn - '

R P "

 

Spin(n) S"-1

SO(n) S"-1

 

Here tin ,n", is  the map obtained from S pin(n) -> S pin(n)I S pin(n - 1) = S " - 1

and S O (n) -> S O (n)1S 0(n - 1) = S " - 1  respectively. A lso i„ is the inclusion map
defined as fo llow s. Let / E RPn - 1  b e  a  line and let e e I  be a  un it vec to r. Then
in(/) =  in'( /0 ) / ( / )  where i (/)(v) =  y -  2(v, e )e  a n d  /0 i s  the  base  po in t o f RP" - 1 .
We set p; : R P "  b e  the usual covering map then there is a map i„ which
makes diagram com m utative. Moreover, when n = 4 , 7r„ has a section e : S 11- 1  -->
S pin(n), tha t is , nn 0 E =  Id.

W e  se t c „ _ , a s  th e  generator o f  I t  ( S " ;  Z )  a n d  take  (5 E  W (S pin(n)
Spin(m) ; Z )  as (5 = (n„ A  it„,)*(c,,_ ic m _ 1 ).

Lemma 5.1. I f  n  and in  are  even and neither n  nor in  is  4,

H" ± "1 - 2  (Sp in(n) A  Sp in(m); Z) = <(5> Ker(i„ A  7,0 '.
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P r o o f  Since n is even, if*,7r* (c„_i) is the generator of H" -  I (RP" -  I : Z) Z.
Therefore

TC,/* c —i )  =  P;,* i,* * (en_i) = (12)

tha t is, 41 A = 4c t,_. ]c m
Because p".,* : (R P ' ;  Z/2Z) Hii -1 (S" -1 ; Z /2Z ) is a  0-map and i7 o

= p"; o i ,  we have ]/: o p  =  0 in mod 2 cohomology. Further, since, when n A  4,
pn* : H "  (S0(n); Z/2Z) H"- 1 (Spin(n);Z/2Z) is e p ic , th is  im p lie s  th a t  i , :

-H"-1(Spin(n);ZI2Z)
H u i

3
r ] - 1 ;

 Z /2 Z )  is  a lso  a  0 - m a p . Therefore Im i,*,
<2c,,,_ ] > in  integral cohomology.

N o w  w e  o b ta in  th a t Im (in A  7„,)* = <4c„_1 0 cm-1> = A im) * (6 ) >  and
n-F m-from the  freeness of H m -2(sn-F2 ; z .,) the  statement follows.

Lemma 5 .2 .  I f  n = 4  and  ni are  even and  ni A  4,

H" + "' - 2 (Spin(n) A  Spin(m) ; Z ) =  <6> e Ker(e A .

P r o o f  From (12) and  e*7t4'(e 3 ) = e 3 ,

(e A  JO  (6) = 2c11_ 1 

A s  seen  i n  t h e  p ro o f  o f  previous lem m a, Im  i,< 2 c ; , , _ ] >  i n  integral
cohomology and since c  is  a section, Im E* =  <CO.

N ow  it follow s that Im (e A  J ) * =  < 2 0  c _ 1 > = 7,0*(6)> a n d  from
the freeness o f l i n + m - 2 (Sn + m - 2 ; Z ) th e  statement follows.

Theorem 5 . 3 .  A ssum e neither n — 1 nor in — 1 is a pow er of ' 2, both n and in
are ev en, n + m 0  m od 4  and  n  + n i>  16. Then (n, ni) is S pin-regular.

P r o o f  W e  use P r o p o s i t io n  2 .2 .  L e t Spin(n) A  Spin(m) Q Spin
satisfies x * (04]±],2) = xn-] xm-1 in m od 2 cohom ology. Then there exists g c
KO(Z 2 Spin(n) A Spin(rn)) which satisfies

Wn-l-m (71) 0  Xm— I • (13)

Here, since Pontrjagin square acts trivially in F1*(E 2 Spin(n) A  Spin(m):Z), by
the second formula of Wu [12],

p4 ( ii) )  — lv (r1) , (14)

where w; is the im age of 14'„+„, under the coefficient monomorphism Z/2Z
Z /4 Z  and p4  i s  the  m ap o f mod 4 reduction.

When neither n nor in  is 4, from (13), (14) and Lemma 5.1, we can see that

P(„+„ )/4(q) = Z 2 ((4k + 2)(5 + a),

where a E K er(J A  7,n )*  and  we obtain

P]mFm)/4(Z2 (4, A 4 ) * (0 )  =  ( I 6 k  8)cn+m.
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When n -= 4  and in 0  4 , (13), (14) and  Lemma 5 .2  imply that

— E 2 ((4k + 2)6 + 13).Po+m)/4(3)

where )3 e Ker(e A i,„)* and  we have

P(n+m)/4(E2 (8  A  im )  ( ) )  =  (8k + 4 )en+ni.

B u t  f o r  t h e  genera tor rio  o f  Kó ( S ''" ) ,  P ( n + m ) / 4 ( 3 o )  i s  divisible by
+ m

1 ) ! .  [1] W hen n - > 16 th is  is  a  contradiction and the statement
2

follows.

Theorem 5.4. A ssume neither n — I nor in —  1 is a pow er of  2, both n and in
are  ev en . If  n + m  = 12 or n + 2  mod 4. Then (n,m) is Spin-regular.

P ro o f  We use Proposition 2.2. Let x :  S pin(n) A Spin(m) —> Q Spin be the
arbitrary continuous map.

W hen n  +  m  2  m od 4 ,  th a t is , n + m — 2 is  divisible b y  4, x*(an-Fin- , ) =-
x * (a(n+m-2)/2) 2 i n  m od 2  c o h o m o lo g y . Thus x * (an+m-2) can be w ritten in the
form E OE f l where a and )3 are decomposable. Therefore x * (otn+ni-2) x n - 1
x„,_,

N ow  le t n + m  = 1 2  and  n  < m . W hen n 4, x * (a 6 ) =  x 3 x 3 o r  0  and
when n = 4, x*(a6) = z x3, x3 CD x3  o r  0. We can see

Sq 2 x* (a6) = x* (Sq 2 a6) = x* (a8) = x* (a2) 4  =  0

while

Sq2x3 0 X3 =  X5  X 3  ±  X 3  0  X 5 .

Sq 2 z x 3  =  z 0 x5.

So X *( 6 )  =  0  and we have

x*(aio) = x*(5q 4 a6) = Sq 4 x*(a6) = 0.

From Proposition 2.2, Theorems 4.7, 5.3, 5.4, we finally obtain Theorem 1.3.

6. ( 3 ,4 k  +  1 )  is Spin-irregular

In  this section we shall give the proof o f Theorem 1.4 which requires that
(3,4k +  1 )  is Spin-irregular.

Since t h e r e  are e m b e d d in g s  Spin(3) —> Spin(4k + 3), Spin(4k +1) -->
Spin(4k + 3 )  w here any elem ent o f  S pin(3) a n d  any  e lem ent o f  Spin(4k)
Spin(4k  +1) exactly commute in Spin(4k + 3). Let A  e  Spin(3), B  e Spin(4k +1),
C E Spin(4k) S p in ( 4 k  + 1 ) .  Then A ( B C ) A ( B C ) 1  =  A B C A - I  C - 1  =
A B A ' B ' and the commutator of A  and B is invariant under the right translation
o f Spin(4k) o n  B.
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T h e re fo re  th e re  e x is ts  a  m a p  c' : Spin(3) A (Spin(4k + 1)1 Spin(4k)) —>
Spin(4k + 3 ) su c h  th a t c' o (1 A Tcak+i) -= c. See the diagram  below. Rem ark
tha t Spin(3) S 3 an d  Spin(4k + 1)1 Spin(4k) S 4 k

QSO SO(4k  + 3)

Spin(3) A Spin(4k + 1)  S pin(4k  + 3)

In the above diagram S2S0 I SO(4k + 3) —> Spin(4k + 3) —> Spin is a  fibration
and i o c ' is null homotopic. So there exists a m a p  : S4 1'+3 —> OS O/S 0(4k  + 3).
such that 6 o A e'.

Since 7E4k+4(SO/S0(4k + 3)) 0  ([1 0 ]), n4k+3(QS0/S0(4k + 3)) 0  and A is
null homotopic.

Thus c 6  0  o  ( 1  A nan+i) ^=* and Theorem 1.4 is proved.
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