Homotopy-commutativity in spinor groups

By
Hiroaki Hamanaka and Akira Kono

1. Introduction

For two subsets S and S^{\prime} of a topological group G which contain the unit of G as its base points, we say S and S^{\prime} homotopy-commute in G, when the commutator map c from $S \wedge S^{\prime}$ to G which maps $(x, y) \in S \wedge S^{\prime}$ to $x y x^{-1} y^{-1} \in G$ is null homotopic.

In [3], the first author showed the next theorem:
Theorem 1.1. Let n, m be positive integers, and let $n+m \neq 4$ or 8 . If n or m is even or if $\binom{n+m-2}{n-1} \equiv 0$ mod 2 then $S O(n)$ and $S O(m)$ do not homotopycommute in $S O(n+m-1)$.

In this paper, we describe the homotopy-commutativity of $\operatorname{Spin}(n)$ and $\operatorname{Spin}(m)$ in $\operatorname{Spin}(n+m-1)$.

Definition 1.2. If $S O(n)$ and $S O(m)$ homotopy-commute in $S O(n+m-1)$, we say (n, m) is SO-irregular, and if not we say (n, m) is SO-regular. Also, If $\operatorname{Spin}(n)$ and $\operatorname{Spin}(m)$ homotopy-commute in $\operatorname{Spin}(n+m-1)$, we say (n, m) is Spinirregular, and if not we say (n, m) is Spin-regular.

Main theorems are the followings:
Theorem 1.3. Assume neither $n-1$ nor $m-1$ is a power of 2 and $n+m \neq 4$ or 8 . If n or m is even or if $\binom{n+m-1}{n-1} \equiv 0 \bmod 2$ then (n, m) is Spin-regular.

For the case $n-1$ is a power of 2 , we give some results as following:
Theorem 1.4. Set $n=3$ and $m \equiv 1 \bmod 4$ then $(3, m)$ is Spin-irregular.
Remark 1.5. Theorem 1.1 implies that if $m \not \equiv 1 \bmod 4,(3, m)$ is SO-regular.
Remark 1.6. In fact, since $\operatorname{Spin}(5) \cong S p(2)$ and $\pi_{6}(S p(2)) \cong \pi_{6}(\mathbf{S p}) \cong$ $\widetilde{K S p^{-7}}(\mathrm{pt}) \cong 0$ where $\mathbf{S p}$ is $\lim _{n \rightarrow \infty} S p(n)$, the commutator map $c: \operatorname{Spin}(3) \wedge$ $\operatorname{Spin}(3) \rightarrow \operatorname{Spin}(5)$ is null homotopic and $(3,3)$ is Spin-irregular. On the other
hand, Theorem 1.1 implies (3,3) is SO-regular. Therefore SO-regularity and Spinregularity is not the same.

This paper is organized as follows: In $\S 2$ we give a sufficient condition for ($n . m$) to be Spin-regular, which is an existence of a map with an adequate property and show that, when $n+m$ is odd, (n, m) is Spin-regular. In $\S 3$ we introduce the maps $\phi_{i, j}: \Omega^{i} \mathbf{B O} \wedge \Omega^{j} \mathbf{B O} \rightarrow \Omega^{i+j} \mathbf{B O}$ to investigate $\widetilde{K O}^{-*}(\operatorname{Spin}(n) \wedge$ $\operatorname{Spin}(m))$ and in $\S 4$ investigate its induced cohomology maps and prove Theorem 1.3 for the case both n and m are odd. In $\S 5$ we look into the case n and m are even and complete the proof of Theorem 1.3 and finally in $\S 6$ we give the proof of Theorem 1.4.

2. Lift of commutator map

Similarly to [3], consider the next fibrations:

$$
\begin{gathered}
\operatorname{Spin}(n+m-1) \xrightarrow{i} \mathbf{S p i n} \xrightarrow{p} \mathbf{S p i n} / \operatorname{Spin}(n+m-1), \\
S O(n+m-1) \xrightarrow{j} \mathbf{S O} \xrightarrow{q} \mathbf{S O} / S O(n+m-1),
\end{gathered}
$$

where SO (resp. Spin) is $\lim _{n \rightarrow \infty} \operatorname{SO}(n)$ (resp. $\lim _{n \rightarrow \infty} \operatorname{Spin}(n)$).
We refer to the cohomology rings of spaces which we use in this paper, that is,

$$
\begin{aligned}
\mathrm{H}^{*}(\Omega \text { Spin }) & =\mathbf{Z} / 2 \mathbf{Z}\left[x_{2}, \alpha_{4}, \alpha_{6}, \ldots\right] /\left(\alpha_{4 k}-\alpha_{2 k}^{2}\right), \\
\mathrm{H}^{*}(\operatorname{Spin}(k) / \operatorname{Spin}(k-1)) & =\Delta\left(x_{k-l}, \ldots, x_{k-1}\right), \\
\mathrm{H}^{*}(\operatorname{Spin}(k)) & =\Delta\left(x_{3}, x_{5}, x_{6}, x_{7}, x_{9}, \ldots\right) \otimes \bigwedge(z) .
\end{aligned}
$$

In the last equality, the index i of x_{i} scans all integers neither of which is not a power of 2 and $3 \leq i \leq k-1$. Also, $\operatorname{deg}\left(\alpha_{2 i}\right)=2 i$ and $\operatorname{deg}\left(x_{i}\right)=i$.

Further, it can be easily seen that $\mathrm{H}^{*}(\Omega \mathbf{S p i n} / \operatorname{Spin}(n+m-1))=0$ for $* \leq n$ $+m-3$ and $\mathbf{H}^{n+m-2}(\Omega \operatorname{Spin} / \operatorname{Spin}(n+m-1))=\mathbf{Z} / 2 \mathbf{Z}$ whose generator is written as α_{n+m-2}. When $n+m$ is even, $\Omega p^{*}\left(\alpha_{n+m-2}\right)=\alpha_{n+m-2} \in \mathrm{H}^{*}(\Omega$ Spin $)$.

From above fibrations, we can deduce the following fibration sequences.

$$
\begin{aligned}
\cdots & \Omega \mathbf{S p i n} \xrightarrow{\Omega p} \Omega(\mathbf{S p i n} / \operatorname{Spin}(n+m-1)) \xrightarrow{\delta_{\text {spin }}} \\
& \operatorname{Spin}(n+m-1) \xrightarrow{i} \mathbf{S p i n} \xrightarrow{p} \mathbf{S p i n} / \operatorname{Spin}(n+m-1), \\
\cdots & \Omega \mathbf{S O} \xrightarrow{\Omega_{q}} \Omega(\mathbf{S O} / S O(n+m-1)) \xrightarrow{\delta_{s o}} \\
& \operatorname{SO}(n+m-1) \xrightarrow{j} \mathbf{S O} \xrightarrow{q} \mathbf{S O} / S O(n+m-1) .
\end{aligned}
$$

Let $c_{S O}$ (resp. $c_{\text {Spin }}$) be the commutator map from $S O(n) \wedge S O(m)$ to $\operatorname{SO}(n+m-1)($ resp. from $\operatorname{Sin}(n) \wedge \operatorname{Sin}(m)$ to $\operatorname{Spin}(n+m-1))$. Obviously we
can see that $i \circ c_{S p i n}$ and $j \circ c_{S O}$ are null homotopic. Thus there exists a lift of $c_{S O}$ from $S O(n) \wedge S O(m)$ to $\Omega S O / S O(n+m-1)$ and a lift of $c_{S p i n}$ from $\operatorname{Spin}(n) \wedge$ $\operatorname{Spin}(m)$ to $\Omega \operatorname{Spin} / \operatorname{Spin}(n+m-1)$.

In [4], a lift of $c_{S O}$ written as $\lambda_{S O}$ was constructed and in [3], it is obtained that

$$
\begin{equation*}
\lambda_{S O}^{*}\left(\alpha_{n+m-2}\right)=x_{n-1} \otimes x_{m-1} . \tag{1}
\end{equation*}
$$

Here set $\lambda_{\text {Spin }}=\lambda_{\text {SO }} \circ\left(p_{n} \wedge p_{m}\right)$.
Lemma 2.1. $\lambda_{\text {Spin }}$ is a lift of $c_{\text {Spin }}$, that is, $\delta_{\text {Spin }} \circ \lambda_{\text {Spin }} \simeq c_{\text {Spin }}$.
Proof. See the diagram below.

Since $\delta_{S O} \circ \lambda_{S O} \simeq c_{S O}$ and $\delta_{S O} \simeq p_{n+m-1} \circ \delta_{S p i n}$, it occurs that

$$
\begin{align*}
p_{n+m-1} \circ \delta_{S p i n} \circ \lambda_{S p i n} & =\delta_{S O} \circ \lambda_{S O} \circ\left(p_{n} \wedge p_{m}\right) \\
& \simeq c_{S O} \circ\left(p_{n} \wedge p_{m}\right) \\
& =p_{n+m-1} \circ c_{S p i n} \tag{2}
\end{align*}
$$

Now consider the fibration $\mathbf{Z} / 2 \mathbf{Z} \rightarrow \operatorname{Spin}(n+m-1) \rightarrow \operatorname{SO}(n+m-1)$. Then for any CW complex X we have the exact sequence of base pointed homotopy sets:

$$
[X, \mathbf{Z} / 2 \mathbf{Z}]_{*} \longrightarrow[X, \operatorname{Spin}(n+m-1)]_{*} \xrightarrow{p_{n+m-1}}[X, S O(n+m-1)]_{*} .
$$

Thus p_{n+m-1}. is injective and from (2) we can see

$$
\delta_{\text {Spin }} \circ \lambda_{\text {Spin }} \simeq c_{\text {Spin }} .
$$

In the rest of paper, c, λ, δ stands for $c_{\text {Spin }}, \lambda_{\text {Spin }}, \delta_{S p i n}$ respectively.

Proposition 2.2. Assume neither $n-1$ nor $m-1$ is a power of 2 .

1. If $n+m$ is odd, c is not null homotopic.
2. Let $n+m$ is even. If for any continuous map x from $\operatorname{Spin}(n) \wedge \operatorname{Spin}(m)$ to Ω Spin, $x^{+}\left(\alpha_{n+m-2}\right) \neq x_{n-1} \otimes x_{m-1}$ in cohomology, then c is not null homotopic.

Proof. If c is null homotopic, that is, $\delta \circ \lambda \simeq *$, then there exists a map $x: \operatorname{Spin}(n) \wedge \operatorname{Spin}(m) \rightarrow \Omega \operatorname{Spin}$ such that $\Omega p \circ x \simeq \lambda$.

From (1) we can see

$$
\begin{align*}
x^{*}\left(\alpha_{n+m-2}\right) & =x^{*} \circ \Omega p^{*}\left(\alpha_{n+m-2}\right) \\
& =\lambda^{*}\left(\alpha_{n+m-2}\right) \\
& =\left(p_{n} \wedge p_{m}\right)^{*} \circ \lambda_{S O}^{*}\left(\alpha_{n+m-2}\right) \\
& =\left(p_{n} \wedge p_{m}\right)^{*}\left(x_{n-1} \otimes x_{m-1}\right) \\
& =x_{n-1} \otimes x_{m-1}, \tag{3}
\end{align*}
$$

since neither $n-1$ nor $m-1$ is a power of 2 . Thus the statement for the case $n+m$ is even is proved.

When $n+m$ is odd, it occurs that

$$
\begin{aligned}
\lambda^{*}\left(\alpha_{n+m-2}\right) & =x^{*} \circ \Omega p^{*}\left(\alpha_{n+m-2}\right) \\
& =x^{*}(0),
\end{aligned}
$$

since $\mathrm{H}^{*}(\Omega$ Spin $)$ is concentrated in even degrees. This contradicts to (3) and c is not null homotopic.
3. $\widetilde{K O}^{-*}(\operatorname{Spin}(n) \wedge \operatorname{Spin}(m))$

In this section we assume that both n and m are odd.
From Proposition 2.2 we should look into the homotopy set $[\operatorname{Spin}(n) \wedge$ $\operatorname{Spin}(m), \Omega$ Spin]. By use of KO-theory we can say that,
$[\operatorname{Spin}(n) \wedge \operatorname{Spin}(m), \Omega \mathbf{S p i n}] \cong\left[\operatorname{Spin}(n) \wedge \operatorname{Spin}(m), \Omega_{0} \mathbf{S O}\right] \cong \widetilde{K O}^{-2}(\operatorname{Spin}(n) \wedge \operatorname{Spin}(m))$,
since $\Omega^{2} \mathbf{B O} \cong \Omega \mathbf{S O}$.
Further more, the complex representation ring of $\operatorname{Spin}(2 k+1)$ is generated by real representations or symplectic representations. (See Proposition 6.19 in P. 290 of [8].) Thus Theorem 5.12. in [11] implies that, when n is odd, $K O^{-*}(\operatorname{Spin}(n))$ is $K O^{-*}(\mathrm{pt})$ free. Therefore we have an decomposition of

$$
\widetilde{K O^{-*}}(\operatorname{Spin}(n) \wedge \operatorname{Spin}(m)) \cong \widetilde{K O}^{-*}(\operatorname{Spin}(n)) \otimes_{\widetilde{K O} \cdot(\mathrm{pt})} \widetilde{K O}^{-*}(\operatorname{Spin}(m)) .
$$

From now on, we identify $\widetilde{K O}^{-i}(X)$ with $\left[X, \Omega^{i} \mathbf{B O}\right]$.

Theorem 3.1. There is a map $\phi_{i . j}: \Omega^{i} \mathbf{B O} \wedge \Omega^{j} \mathbf{B O} \rightarrow \Omega^{i+j} \mathbf{B O}$ such that for any $C W$-complexes X, X^{\prime} and $x \in \widetilde{K O^{-i}}(X)$ and $\beta \in \widetilde{K O^{-j}}\left(X^{\prime}\right)$,

$$
\alpha \hat{\otimes} \beta=\phi_{i, j} \circ(\alpha \wedge \beta) \quad \text { in } \widetilde{K O}^{-(i+j)}\left(X \wedge X^{\prime}\right)
$$

Proof. First we construct $\phi_{i, j}$. Let ξ_{n} be the universal vector bundle over $B O(n)$ and put $\eta_{n}=\xi_{n}-n, \eta_{\infty}=\lim _{n \rightarrow \infty} \eta_{n}$. And set $\phi_{0,0}: \mathbf{B O} \wedge \mathbf{B O} \rightarrow \mathbf{B O}$ as the classifying map of $\eta_{x} \hat{\otimes} \eta_{x}$. Let $\kappa_{i}: \Sigma^{i} \Omega^{i} \mathbf{B O} \rightarrow \mathbf{B O}$ be the map which satisfies

$$
\operatorname{Ad}^{i} \kappa_{i} \simeq \mathrm{Id}_{\Omega^{\prime} \mathbf{B O}}
$$

Consider the composition of $\kappa_{i} \wedge \kappa_{j}$ and $\phi_{0,0}$:

$$
\Sigma^{i} \Omega^{i} \mathbf{B O} \wedge \Sigma^{j} \Omega^{j} \mathbf{B O} \xrightarrow{\kappa_{i} \wedge \kappa_{j}} \mathbf{B O} \wedge \mathbf{B O} \xrightarrow{\phi_{0.0}} \mathbf{B O} .
$$

We define $\phi_{i, j}$ as

$$
\phi_{i, j}=\operatorname{Ad}^{i+j}\left(\phi_{0,0} \circ\left(\kappa_{i} \wedge \kappa_{j}\right)\right): \Omega^{i} \mathbf{B O} \wedge \Omega^{j} \mathbf{B O} \rightarrow \Omega^{i+j} \mathbf{B O} .
$$

Now, take $x \in\left[X, \Omega^{i} \mathbf{B O}\right]$ and $\beta \in\left[X^{\prime}, \Omega^{j} \mathbf{B O}\right]$ and see the composition of $\alpha \wedge \beta$ and $\phi_{i, j}$:

$$
\phi_{i, j} \circ(\alpha \wedge \beta): X \wedge X^{\prime} \rightarrow \Omega^{i} \mathbf{B O} \wedge \Omega^{j} \mathbf{B O} \rightarrow \Omega^{i+j} \mathbf{B O}
$$

Taking $\mathrm{Ad}^{-(i+j)}$ of the above composition, we obtain

$$
\begin{aligned}
& \operatorname{Ad}^{-(i+j)}\left(\phi_{i, j} \circ(\alpha \wedge \beta)\right)=\left(\operatorname{Ad}^{-(i+j)} \phi_{i, j}\right) \circ\left(\Sigma^{i} \alpha \wedge \Sigma^{j} \beta\right) \\
& \quad: \Sigma^{i+j}\left(X \wedge X^{\prime}\right) \rightarrow \Sigma^{i+j}\left(\Omega^{i} \mathbf{B O} \wedge \Omega^{j} \mathbf{B O}\right) \rightarrow \mathbf{B O}
\end{aligned}
$$

From the definition of $\phi_{i, j}, \operatorname{Ad}^{-(i+j)}\left(\phi_{i, j} \circ(\alpha \wedge \beta)\right)$ is the composition of following maps:

$$
\Sigma^{i+j}\left(X \wedge X^{\prime}\right) \xrightarrow{\Sigma^{i} \not \wedge \Sigma^{i} \beta} \Sigma^{i+j}\left(\Omega^{i} \mathbf{B O} \wedge \Omega^{j} \mathbf{B O}\right) \xrightarrow{\kappa_{i} \wedge \kappa_{j}} \mathbf{B O} \wedge \mathbf{B O} \xrightarrow{\phi_{0.0}} \mathbf{B O}
$$

Lemma 3.2. For any continuous map $f: \Sigma^{i} X \rightarrow \mathbf{B O}$,

$$
f \simeq \kappa_{i}\left(\Sigma^{i} \mathrm{Ad}^{i} f\right)
$$

Proof. Consider the composition of $\operatorname{Ad}^{i} f$ and identity map of $\Omega^{i} \mathbf{B O}$.

$$
X \xrightarrow{\mathrm{Ad}^{i} f} \Omega^{i} \mathbf{B O} \xrightarrow{\mathrm{Id}_{\Omega^{\prime} \mathrm{BS}}} \Omega^{i} \mathbf{B O} .
$$

Taking Ad^{-i} of the above composition, we have

$$
\begin{aligned}
& f= \operatorname{Ad}^{-i}\left(\mathrm{Id}_{\Omega^{\prime} \mathbf{B O}^{\prime}} \circ \mathrm{Ad}^{i} f\right)=\kappa_{i} \circ \Sigma^{i} \mathrm{Ad}^{i} f \\
& \quad: \Sigma^{i} X \xrightarrow{\Sigma^{i} \mathrm{Ad}^{i} f} \Sigma^{i} \Omega^{i} \mathbf{B O} \xrightarrow{\kappa_{i}} \mathbf{B O} .
\end{aligned}
$$

By (4) and the above lemma, it follows that

$$
\begin{aligned}
\operatorname{Ad}^{-(i+j)}\left(\phi_{i, j} \circ(\alpha \wedge \beta)\right) & \simeq \phi_{0,0} \circ\left(\kappa_{i} \wedge \kappa_{j}\right) \circ\left(\Sigma^{i} \alpha \wedge \Sigma^{j} \beta\right) \\
& \simeq \phi_{0,0} \circ\left(\kappa_{i} \circ \Sigma^{i} \alpha\right) \wedge\left(\kappa_{j} \circ \Sigma^{j} \beta\right) \\
& \simeq \phi_{0,0} \circ\left(\operatorname{Ad}^{-i} \alpha \wedge \operatorname{Ad}^{-j} \beta\right)
\end{aligned}
$$

Since $f \in\left[X, \Omega^{i} \mathbf{B O}\right]$ corresponds to $\left(\mathrm{Ad}^{-i} f\right)^{*}\left(\eta_{\infty}\right) \in \widetilde{K O}-i(X)$, the above equation says that $\phi_{i, j} \circ(\alpha \wedge \beta)$ corresponds to

$$
\left(\operatorname{Ad}^{-i} \alpha \wedge \operatorname{Ad}^{-j} \beta\right)^{*} \phi_{0,0}^{*}\left(\eta_{\infty}\right)=\operatorname{Ad}^{-i} \alpha^{*}\left(\eta_{\infty}\right) \hat{\otimes} \operatorname{Ad}^{-j} \beta^{*}\left(\eta_{\infty}\right) .
$$

Therefore we obtain that

$$
\alpha \hat{\otimes} \beta=\phi_{i, j} \circ(\alpha \wedge \beta) \quad \text { in } \widetilde{K O}^{-(i+j)}\left(X \wedge X^{\prime}\right)
$$

From the above theorem, we can deduce the next theorem.
Theorem 3.3. Assume both n and m are odd. If, for all $(i, j) \in \mathbf{Z} / 8 \mathbf{Z}^{2}$ which satisfy $i+j=2, \quad \phi_{i, j}^{*}\left(\alpha_{n+m-2}\right)=\sum b_{s} \otimes c_{t}$ where $\left|b_{s}\right|=s$ and $\left|c_{t}\right|=t$ and $b_{n-1} \otimes$ $c_{m-1}=0$ then $c: \operatorname{Spin}(n) \wedge \operatorname{Spin}(m) \rightarrow \operatorname{Spin}(n+m-1)$ is not null homotopic.

Proof. For any $\eta \in \widetilde{K O^{-2}}(\operatorname{Spin}(n) \wedge \operatorname{Spin}(m))$, there exist $\alpha_{u} \in \widetilde{K O}^{-i_{u}}(\operatorname{Spin}(n))$ and $\beta_{a} \in \widetilde{K O}^{-j_{a}}(\operatorname{Spin}(m))$ such that $\eta=\sum \alpha_{a} \hat{\otimes} \beta_{a}$ and $i_{a}+j_{a}=2$. Since α_{n+m-2} is primitive,

$$
\eta^{*}\left(\alpha_{n+m-2}\right)=\left(\sum \alpha_{a} \hat{\otimes} \beta_{a}\right)^{*}\left(\alpha_{n+m-2}\right)=\sum\left(\alpha_{a} \hat{\otimes} \beta_{a}\right)^{*}\left(\alpha_{n+m-2}\right)
$$

and by Theorem 3.1,

$$
(\alpha \hat{\otimes} \beta)^{*}\left(\alpha_{n+m-2}\right)=(\alpha \wedge \beta)^{*} \circ \phi_{i, j}^{*}\left(\alpha_{n+m-2}\right) .
$$

If the hypothesis is satisfied, $\eta^{*}\left(\alpha_{n+m-2}\right)$ can not be $x_{n-1} \otimes x_{m-1}$. Therefore from Proposition 2.2, c is not null homotopic.

4. The case n and m are odd

In this section we investigate the induced cohomology map of $\phi_{i, j}$ for $(i, j) \in(\mathbf{Z} / 8 \mathbf{Z})^{2}$, such that, $i+j=2$.

We start from the next lemma.
Lemma 4.1. Assume $a \in \mathrm{H}^{u}\left(\Omega^{i+j} \mathbf{B O}\right)$ is primitive and $\phi_{i, j}^{*}(a)=\sum_{s+t=u} b_{s} \otimes c_{t}$ where $\left|b_{s}\right|=s$ and $\left|c_{t}\right|=t$. Then b_{s} and c_{t} are primitive.

Proof. Since for any $\alpha . \beta . \gamma \in \widetilde{K O}(X)$,

$$
\left(p_{1}^{*}(\alpha) \oplus p_{2}^{*}(\beta)\right) \otimes p_{3}^{*}(\gamma)=\left(p_{1}^{*}(\alpha) \otimes p_{3}^{*}(\gamma)\right) \oplus\left(p_{2}^{*}(\beta) \otimes p_{3}^{*}(\gamma)\right)
$$

where $p_{i}: X \times X \times X \rightarrow X$ is the projection to i-th component, the next diagram commutes.

Here T is the transposition map, Δ is the diagonal map and $\mu: \mathbf{B O} \times \mathbf{B O} \rightarrow \mathbf{B O}$ is the classifying map of $\eta_{x} \times \eta_{x}$ over $\mathbf{B O} \times \mathbf{B O}$. Further, $\hat{\phi}_{i, j}$ is the next composition:

$$
\Omega^{i} \mathbf{B O} \times \Omega^{j} \mathbf{B O} \rightarrow \Omega^{i} \mathbf{B O} \wedge \Omega^{j} \mathbf{B O} \rightarrow \Omega^{i+j} \mathbf{B O}
$$

Let $a \in \mathrm{H}^{u}\left(\Omega^{i+j} \mathbf{B O}\right)$ be a primitive element. Then we have

$$
\begin{aligned}
(1 \otimes & \left.\Delta^{*}\right) \circ\left(1 \otimes T^{*} \otimes 1\right) \circ\left(\hat{\phi}_{i, j}^{*} \otimes \hat{\phi}_{i, j}^{*}\right) \circ \Omega^{i+j} \mu^{*}(a) \\
& =\left(1 \otimes \Delta^{*}\right) \circ\left(1 \otimes T^{*} \otimes 1\right) \circ\left(\hat{\phi}_{i, j}^{*} \otimes \hat{\phi}_{i, j}^{*}\right)(a \otimes 1+1 \otimes a) \\
& =\left(1 \otimes \Delta^{*}\right) \circ\left(1 \otimes T^{*} \otimes 1\right)\left(\sum b_{s} \otimes c_{t} \otimes 1 \otimes 1+\sum 1 \otimes 1 \otimes b_{s} \otimes c_{t}\right) \\
& =\left(1 \otimes \Delta^{*}\right)\left(\sum b_{s} \otimes 1 \otimes c_{t} \otimes 1+\sum 1 \otimes b_{s} \otimes 1 \otimes c_{t}\right) \\
& =\left(\sum b_{s} \otimes 1 \otimes c_{t}+\sum 1 \otimes b_{s} \otimes c_{t}\right) \\
& =\left(\sum\left(b_{s} \otimes 1+1 \otimes b_{s}\right) \otimes c_{t}\right) .
\end{aligned}
$$

Also

$$
\begin{aligned}
\left(\Omega^{i} \mu^{*} \otimes 1\right) \circ \hat{\phi}_{i, j}^{*}(a) & =\left(\Omega^{i} \mu^{*} \otimes 1\right)\left(\sum b_{s} \otimes c_{t}\right) \\
& =\sum \Omega^{i} \mu^{*}\left(b_{s}\right) \otimes c_{t} .
\end{aligned}
$$

The above diagram says that these are the same. Therefore it occurs that $\Omega^{i} \mu^{*}\left(b_{s}\right)=b_{s} \otimes 1+1 \otimes b_{s}$, that is, b_{s} is primitive. Similarly we can prove that c_{t} is primitive.

Theorem 4.2. Let $i+j=2$ and n and m be odd. Assume $\phi_{i, j}\left(\alpha_{n+m-2}\right)=$ $\sum b_{s} \otimes c_{t}$ where $\left|b_{s}\right|=s$ and $\left|c_{t}\right|=t . \quad$ If $\binom{n+m-2}{n-1} \equiv 0 \bmod 2$, then $b_{n-1} \otimes$ $c_{m-1}=0$.

Proof. From assumption, (i, j) is $(1,1),(2,0),(3,7),(4,6),(5,5),(6,4)$, $(7,3)$ or $(0,2)$. From the symmetricity, we shall look in to the cases $(i, j)=(1.1)$. $(2,0),(3,7),(4,6)$ and $(5,5)$.

For $\phi_{3,7}, \phi_{5,5}$, the proof is easy. From the assumption, $n-1$ and $m-1$ are even and by Lemma 4.1, b_{n-1} and c_{m-1} are primitive. On the other hand, it is
known that all of the non-zero primitive elements of $\Omega^{3} \mathbf{B O}, \Omega^{5} \mathbf{B O}$ are in odd degrees. [7] Thus $b_{n-1} \otimes c_{m-1}=0$.

To start the proof for $\phi_{2,0}$. we investigate $\phi_{0,0}^{*}$.
Let $N=2^{r}, r \in \mathbf{N}$ and $\eta \in \overparen{K O}(\mathbf{B O}(N) \wedge \mathbf{B O}(N))$ be the class of

$$
\eta=\left(\xi_{N}-N\right) \hat{\otimes}\left(\xi_{N}-N\right)
$$

We calculate the total Stiefel-Whitney class of η in $\mathbf{H}^{+}\left(\mathbf{B}(\mathbf{Z} / 2 \mathbf{Z})^{N} \wedge \mathbf{B}(\mathbf{Z} / 2 \mathbf{Z})^{N}\right) \supset$ $\mathrm{H}^{*}(\mathbf{B O} \wedge \mathbf{B O})$. Let t_{1}, \ldots, t_{N} and $t_{1}^{\prime}, \ldots, t_{N}^{\prime}$ be the generator of $\mathrm{H}^{*}\left(\mathbf{B}(\mathbf{Z} / 2 \mathbf{Z})^{N} \wedge\right.$ $\mathbf{B}(\mathbf{Z} / 2 \mathbf{Z})^{N}$) where t_{i} corresponds to the first component and t_{i}^{\prime} corresponds to the second. Then $w_{k}=\sigma_{k}\left(t_{1}, \ldots, t_{N}\right)$ and $w_{k}^{\prime}=\sigma_{k}\left(t_{1}^{\prime}, \ldots, t_{N}^{\prime}\right)(1 \leq k \leq N)$ are the generators of $\mathrm{H}^{*}(\mathbf{B O} \wedge \mathbf{B O})$ where σ_{k} is k-th fundamental symmetric polynomial. (We put $w_{0}^{\prime}=1$.) Also we set $S_{l}^{\prime}=\sum_{i=1}^{N} t_{i}^{\prime \prime}$.

Lemma 4.3. The total Stiefel-Whitney class of η satisfies

$$
w(\eta)=1+\sum_{k=0}^{N-1} \sum_{l=0}^{k}\binom{N-k}{l} w_{N-k} \otimes S_{l}^{\prime} \text { modulo }\left(w_{1} \otimes 1, w_{2} \otimes 1, \ldots, w_{N} \otimes 1\right)^{2}
$$

in $\mathbf{H}^{*}(\mathbf{B O}(N) \wedge \mathbf{B O}(N))$ for $*<N$.
Proof. Since

$$
\eta=\xi_{N} \hat{\otimes} \xi_{N}-\xi_{N} \hat{\otimes} N-N \hat{\otimes} \xi_{N}+N \hat{\otimes} N
$$

we can see that

$$
w(\eta)=\prod_{1 \leq i \leq N, 1 \leq j \leq N}\left(1+t_{i}+t_{j}^{\prime}\right) \prod_{1 \leq i \leq N}\left(1+t_{i}\right)^{-N} \prod_{1 \leq j \leq N}\left(1+t_{j}^{\prime}\right)^{-N} .
$$

Here in the part of degrees less than $N,\left(1+t_{i}\right)^{-N}=\left(1+t_{i}^{N}\right)^{-1}=1$ and also $\left(1+t_{j}^{\prime}\right)^{-N}=1$. Therefore modulo $\oplus_{i \geq N} \mathbf{H}^{i}\left(\mathbf{B}(\mathbf{Z} / 2 \mathbf{Z})^{N} \times \mathbf{B}(\mathbf{Z} / 2 \mathbf{Z})^{N}\right)$, we obtain that

$$
\begin{aligned}
w(\eta) & =\prod_{1 \leq i \leq N, I \leq j \leq N}\left(t_{i}+1+t_{j}^{\prime}\right) \\
& =\prod_{j=1}^{N}\left(\sum_{k=0}^{N} w_{k}\left(1+t_{j}^{\prime}\right)^{N-k}\right) \\
& =\prod_{j=1}^{N}\left(1+\sum_{k=1}^{N} \sum_{l=0}^{N-k}\binom{N-k}{l} w_{k} t_{j}^{\prime \prime}\right) .
\end{aligned}
$$

We proceed the calculation modulo $\left(w_{1} \otimes 1, w_{2} \otimes 1, \ldots, w_{N} \otimes 1\right)^{2}$ and obtain

$$
\begin{aligned}
w^{(n)} & \equiv 1+\sum_{k=1}^{N} \sum_{l=1}^{N-k}\binom{N-k}{l} w_{k} S_{l}^{\prime} \\
& \equiv 1+\sum_{1 \leq k, 1 \leq 1, k+1 \leq N}\binom{N-k}{l} w_{k} S_{l}^{\prime} .
\end{aligned}
$$

Lemma 4.4. Let $k, l, r \in \mathbf{N}$. If $\quad 2^{r}>k+l$, then $\quad\binom{2^{r}-k}{l} \equiv$ $\binom{k+l-1}{l} \bmod 2$.

Proof. We set the binary expansion of $k-1, l$ as

$$
k-1=\sum_{0 \leq i \leq r-1} \varepsilon_{i} 2^{i}, \quad l=\sum_{0 \leq i \leq r-1} \delta_{i} 2^{i} .
$$

Then we have

$$
\binom{2^{r}-k}{l}=\binom{\left(2^{r}-1\right)-(k-1)}{l} \equiv \prod_{0 \leq i \leq r-1}\binom{1-\varepsilon_{i}}{\delta_{i}} .
$$

Therefore $\binom{2^{r}-k}{l} \equiv 0$ if and only if, for some $i,\binom{1-\varepsilon_{i}}{\delta_{i}} \equiv 0$, i.e., $\varepsilon_{i}=\delta_{i}=1$.
Assume, for some $i(0 \leq i \leq r-1), \varepsilon_{i}=\delta_{i}=1$. Then let i_{0} be the smallest such a number. Then i_{0}-th coefficient of the binary expansion of $k+l-1$ is 0 , while $\delta_{i_{0}}=1$. Thus we have $\binom{k+l-1}{l} \equiv 0$.

Vice versa if, for any $i(0 \leq i \leq r-1)$, not both ε_{i} and δ_{i} are 1 , then

$$
\binom{k+l-1}{l} \equiv \prod_{0 \leq i \leq r-1}\binom{\varepsilon_{i}+\delta_{i}}{\delta_{i}} \not \equiv 0 .
$$

Therefore $\binom{2^{r}-k}{l} \equiv\binom{k+l-1}{l} \bmod 2$.
Since $\phi_{0,0}$ is the classifying map of $\eta_{\infty} \hat{\otimes} \eta_{\infty}$, Lemma 4.3 implies that

$$
\begin{align*}
\phi_{0,0}^{*}\left(w_{i}\right) & =\sum_{k+l=i}\binom{2^{r}-k}{l} w_{k} \otimes S_{l}^{\prime} \\
& =\sum_{k+l=i}\binom{k+l-1}{l} w_{k} \otimes S_{l}^{\prime} \operatorname{modulo}\left(w_{1} \otimes 1, w_{2} \otimes 1, w_{3} \otimes 1, \ldots\right)^{2} \tag{5}
\end{align*}
$$

where r is sufficiently large.
Therefore

$$
\left(\kappa_{2} \wedge \operatorname{Id}_{\mathbf{B O}}\right)^{*} \circ \phi_{0,0}^{*}\left(w_{i}\right)=\sum_{k+l=i, k: \mathrm{even}}\binom{k+l-1}{l} \Sigma^{2} a_{k-2} \otimes S_{l}^{\prime},
$$

since

$$
\kappa_{2}^{*}\left(w_{k}\right)= \begin{cases}\Sigma^{2} a_{k-2} & k: \text { even } \\ 0 & k: \text { odd }\end{cases}
$$

and $\kappa_{2}^{*}($ decomposable element $)=0$.

From definition, $\phi_{2,0}=\operatorname{Ad}^{2}\left(\kappa_{2} \wedge \operatorname{Id} \circ \phi_{0,0}\right)$ and then we have

$$
\begin{equation*}
\phi_{2,0}^{*}\left(a_{4 i+2}\right)=\sum_{k+l=4 i+2, k: \operatorname{even}}\binom{k+l}{l} a_{k} \otimes S_{l}, \tag{6}
\end{equation*}
$$

here we remark that $\binom{k+l+1}{l}=\binom{k+l}{l}$ when k and l are even. From (6), and since $a_{4 k}=a_{2 k}^{2}$, it occurs that

$$
\phi_{2,0}^{*}\left(a_{2^{p}(4 i+2)}\right)=\sum_{k+l=4 i+2, k: \text { even }}\binom{k+l}{l} a_{k}^{2^{p}} \otimes S_{l}^{2^{p}}
$$

Thus the coefficient of $b_{n-1} \otimes c_{m-1}$ in $\phi_{2,0}^{*}\left(a_{n+m-2}\right)$ is 0 when $\binom{n+m-2}{n-1}$ $=0$ and the statement is true for $\phi_{2,0}$.

Second case is $\phi_{1,1}$. Consider the composition of following maps.

$$
\Sigma \Omega \mathbf{B O} \wedge \Sigma \Omega \mathbf{B O} \xrightarrow{\kappa_{1} \wedge \kappa_{1}^{\prime}} \mathbf{B O} \wedge \mathbf{B O} \xrightarrow{\phi_{0,0}} \mathbf{B O} .
$$

From (5) and since κ_{1}^{*} (decomposable element) $=0$ and

$$
\begin{aligned}
\kappa_{1}^{*}\left(w_{k}\right) & =\Sigma x_{k-1} \\
\kappa_{1}^{*}\left(S_{l}\right) & = \begin{cases}\Sigma x_{l-1} & k: \text { odd } \\
0 & k: \text { even },\end{cases}
\end{aligned}
$$

the induced cohomology map of this composition can be obtained as

$$
\begin{align*}
\left(\kappa_{1} \wedge \kappa_{1}\right)^{*} \circ \phi_{0,0}^{*}\left(w_{i}\right) & =\left(\kappa_{1} \wedge \kappa_{1}\right)^{*}\left(\sum_{k+l=i}\binom{k+l-1}{l} S_{l} \otimes w_{k}^{\prime}\right) \tag{7}\\
& =\sum_{k+l=i, l: \text { odd }}\binom{k+l-1}{l} \Sigma x_{l-1} \otimes \Sigma x_{k-1} . \tag{8}
\end{align*}
$$

Here we remark that $\binom{k+l-1}{l}=0$ when l is odd and k is even. Thus it occurs that

$$
\begin{equation*}
\left(\kappa_{1} \wedge \kappa_{1}\right)^{*} \circ \phi_{0,0}^{*}\left(w_{i}\right)=\sum_{k+l=i, l:: \text { odd }, k: \text { odd }}\binom{k+l-1}{l} \Sigma x_{l-1} \otimes \Sigma x_{k-1} . \tag{9}
\end{equation*}
$$

Similarly as the case of $\phi_{2,0}, \phi_{1,1}=\operatorname{Ad}^{2}\left(\kappa_{1} \wedge \kappa_{1} \circ \phi_{0,0}\right)$ and from (9) we have

$$
\begin{align*}
\phi_{1,1}^{*}\left(\alpha_{4 i+2}\right) & =\sum_{k+l=4(i+1), l: \text { odd }, k: \text { odd }}\binom{k+l-1}{l} x_{l-1} \otimes x_{k-1} \\
& =\sum_{k+l=4 i+2, l \text { :even }, k: \text { :even }}\binom{k+l}{l} x_{l} \otimes x_{k} . \tag{10}
\end{align*}
$$

And also

$$
\begin{equation*}
\phi_{1,1}^{*}\left(x_{2 p}(4 i+2)\right)=\sum_{k+l=4 i+2, l \text { leven }, k: \mathrm{even}}\binom{k+l}{l} x_{l}^{2^{p}} \otimes x_{k}^{2^{p}} \tag{11}
\end{equation*}
$$

Thus the coefficient of $b_{n-1} \otimes c_{m-1}$ in $\phi_{1,1}^{*}\left(a_{n+m-2}\right)$ is also 0 when $\binom{n+m-2}{n-1}=0$ and the statement is true for $\phi_{1,1}$.

The final case is $\phi_{4.6}$. Let $\xi_{n}^{\mathbf{R}}, \xi_{n}^{\mathbf{C}}$ and $\xi_{n}^{\mathbf{H}}$ be the universal bundle over $B O(n)$, $B U(n)$ and $B S p(n)$ respectively and put

$$
\eta_{n}^{\mathbf{R}}=\xi_{n}^{\mathbf{R}}-n, \quad \eta_{n}^{\mathbf{C}}=\xi_{n}^{\mathbf{C}}-n, \quad \eta_{n}^{\mathbf{H}}=\xi_{n}^{\mathbf{H}}-n .
$$

and

$$
\eta_{x}^{\mathbf{R}}=\lim _{n \rightarrow \infty} \xi_{n}^{\mathbf{R}}-n, \quad \eta_{\infty}^{\mathbf{C}}=\lim _{n \rightarrow \infty} \xi_{n}^{\mathbf{C}}-n, \quad \eta_{\infty}^{\mathbf{H}}=\lim _{n \rightarrow \infty} \xi_{n}^{\mathbf{H}}-n .
$$

Also set c be the classifying map to $\left(\eta_{\infty}^{\mathbf{R}}\right)_{\mathbf{C}}$, complexification of $\eta_{x}^{\mathbf{R}}, c^{\prime}$ be the classifying map of η_{x}^{H} as a complex vector bundle and ψ be the classifying map of $\eta_{\infty}^{\mathrm{C}} \hat{\otimes} \eta_{\infty}^{\mathrm{C}}$ over $\mathbf{B U} \wedge \mathbf{B U}$.

We start from the next lemma.
Lemma 4.5. The next diagram commutes.

Proof. Consider the next composition:

$$
\Sigma^{4} \mathbf{B S p} \wedge \Sigma^{4} \mathbf{B S p} \xrightarrow{\kappa_{4} \wedge \kappa_{4}} \mathbf{B O} \wedge \mathbf{B O} \xrightarrow{\phi_{0.0}} \mathbf{B O} \xrightarrow{c} \mathbf{B U} .
$$

Here in K-theory, $c^{*}\left(\eta_{\infty}^{\mathbf{C}}\right)=\left(\eta_{\infty}^{\mathbf{R}}\right)_{\mathbf{C}}$ and $\phi_{0,0}^{*}\left(\left(\eta_{\infty}^{\mathbf{R}}\right)_{\mathbf{C}}\right)=\left(\eta_{\infty}^{\mathbf{R}}\right)_{\mathbf{C}} \hat{\otimes}\left(\eta_{\infty}^{\mathbf{R}}\right)_{\mathbf{C}}$. Also it is known that $\kappa_{4}^{*}\left(\left(\eta_{\infty}^{\mathbf{R}}\right)_{\mathbf{C}}\right)=\left(\zeta_{\mathbf{H}}-\mathbf{H}\right) \otimes_{\mathbf{C}} \eta_{\infty}^{\mathbf{H}}$ where $\zeta_{\mathbf{H}}$ is the \mathbf{H} canonical line bundle over $\mathbf{H} P^{1}$. Therefore above composition pulls back $\eta_{\infty}^{\mathrm{C}}$ to $\left(\zeta_{\mathbf{H}}-\mathbf{H}\right) \hat{\otimes}_{\mathbf{C}}\left(\zeta_{\mathbf{H}}-\mathbf{H}\right)$ $\hat{\otimes}_{\mathbf{C}} \eta_{\infty}^{\mathbf{H}} \hat{\otimes}_{\mathbf{C}} \eta_{\infty}^{\mathbf{H}}$.

On the other hand consider the next composition:

$$
\Sigma^{8} \mathbf{B S p} \wedge \mathbf{B S p} \xrightarrow{\Sigma^{8}\left(c^{\prime} \wedge c^{\prime}\right)} \Sigma^{8} \mathbf{B U} \wedge \mathbf{B U} \xrightarrow{\Sigma^{8} \psi} \Sigma^{8} \mathbf{B U} \xrightarrow{\kappa_{8}^{\prime}} \mathbf{B U} .
$$

Here κ_{8}^{\prime} is defined as follows. From Bott Periodicity, we know that $\Omega^{2} \mathbf{B U} \cong$ $\mathbf{B U} \times \mathbf{Z}$. Thus there exists a map $\kappa_{2 i}^{\prime}: \Sigma^{2 i} \mathbf{B U} \rightarrow \mathbf{B U}$ which satisfies $\mathrm{Ad}^{2 i} \kappa_{2 i}^{\prime}$ is the inclusion map $\mathbf{B U} \rightarrow \Omega^{2 i} \mathbf{B U}$. One can easily verify that

$$
\kappa_{2}^{\prime} \circ \Sigma^{2} \kappa_{2}^{\prime} \circ \cdots \Sigma^{2 i-2} \kappa_{2}^{\prime} \simeq \kappa_{2 i}^{\prime}
$$

and it is known that in K-theory $\kappa_{2}^{\prime *}\left(\eta_{\alpha}^{\mathbf{C}}\right)=\left(\zeta_{\mathbf{C}}-\mathbf{C}\right) \hat{\otimes} \eta_{\infty}^{\mathbf{C}}$ where $\zeta_{\mathbf{C}}$ is the canonical line bundle over $\mathbf{C} P^{1}$. Therefore $\kappa_{8}^{\prime *}=\left(\zeta_{\mathbf{C}}-\mathbf{C}\right)^{4} \hat{\otimes} \eta_{x}^{\mathbf{C}}$. Now we can see that the above composition pulls back η_{x}^{C} to $\left(\zeta_{\mathbf{C}}-\mathbf{C}\right)^{4} \hat{\otimes} \eta_{x}^{\mathrm{H}} \hat{\otimes}_{\mathbf{C}} \eta_{x}^{\mathrm{H}}$.

Since $\tilde{K}^{-4}(\mathrm{pt})=\mathbf{Z}$ and the second Chern class of $-\left(\zeta_{\mathbf{H}}-\mathbf{H}\right)$ and $\left(\zeta_{\mathbf{C}}-\mathbf{C}\right)^{2}$ coincide, we see that the above two compositions are homotopic each other.

Take the Ad^{8} of two compositions and we obtain

$$
c \circ \phi_{4,4} \simeq \psi \circ c^{\prime}
$$

Refer to the diagram of Lemma 4.5. We want to calculate $\phi_{4,4}\left(w_{i}\right)$. As we have done in the proof of Lemma 4.3, let $N=2^{r}, r \in \mathbf{N}$ and $\theta \in \tilde{K}(B U(2 N) \times$ $B U(2 N))$ be the class of $\theta=\left(\xi_{2 N}^{\mathrm{C}}-2 N\right) \hat{\otimes}\left(\xi_{2 N}^{\mathrm{C}}-2 N\right)$ where $\xi_{2 N}^{\mathrm{C}}$ is the universal vector bundle over $B U(2 N)$. Also let ψ_{N} be the classifying map of θ.

First, we calculate the total Chern class of θ in $\mathrm{H}^{*}\left(B T^{2 N} \times B T^{2 N}\right) \supset$ $\mathrm{H}^{*}(B U(2 N) \times B U(2 N))$. Let $t_{1}, \ldots, t_{2 N}, t_{1}^{\prime}, \ldots, t_{2 N}^{\prime} \in \mathrm{H}^{*}\left(B T^{2 N} \times B T^{2 N}\right)$ be the generators as usual. Then in the part of degree less than $4 N$,

$$
\psi_{N}^{*}\left(1+\sum_{i=1}^{\infty} c_{i}\right)=\prod_{1 \leq i \leq 2 N, 1 \leq j \leq 2 N}\left(1+t_{i}+t_{j}^{\prime}\right)
$$

Now we proceed the calculations of $\left(c^{\prime} \wedge c^{\prime}\right)^{*} \psi_{N}^{*}\left(1+\sum_{i=1}^{\infty} c_{i}\right)$ in $\mathrm{H}^{*}\left(B T^{N} \times\right.$ $\left.B T^{N}\right) \supset \mathrm{H}^{*}(B S p(N) \times B S p(N))$. Let $s_{1}, \ldots, s_{N}, s_{1}^{\prime}, \ldots, s_{N}^{\prime} \in \mathrm{H}^{*}\left(B T^{N} \times B T^{N}\right)$ be the generators. Then we can see

$$
\begin{aligned}
\left(c^{\prime} \wedge\right. & \left.\wedge c^{\prime}\right)^{*} \psi_{N}^{*}\left(1+\sum_{i=1}^{\infty} c_{i}\right) \\
& =\left(c^{\prime} \wedge c^{\prime}\right)^{*}\left(\prod_{1 \leq i \leq 2 N, 1 \leq j<2 N}\left(1+t_{i}+t_{j}^{\prime}\right)\right) \\
& =\prod_{1 \leq i \leq N, 1 \leq j \leq N}\left(1+s_{i}+s_{j}^{\prime}\right)\left(1+s_{i}-s_{j}^{\prime}\right)\left(1-s_{i}+s_{j}^{\prime}\right)\left(1-s_{i}-s_{j}^{\prime}\right) \\
& =\prod_{1 \leq i \leq N, 1 \leq j \leq N}\left(1+s_{i}+s_{j}^{\prime}\right)^{4} \\
& =\left\{\prod_{1 \leq i \leq N, 1 \leq j \leq N}\left(1+s_{i}^{2}+s_{j}^{\prime 2}\right)\right\}^{2} .
\end{aligned}
$$

On the other hand, considering $\mathrm{H}^{*}(B S p(N)) \subset \mathbf{H}^{*}(\mathbf{B S p})$, in the part of degree less than $4 N$,

$$
\begin{aligned}
\left(c^{\prime} \wedge c^{\prime}\right)^{*} \psi_{N}^{*}\left(1+\sum_{i=1}^{\infty} c_{i}\right) & =\phi_{4,4}^{*} c^{*}\left(1+\sum_{i=1}^{\infty} c_{i}\right) \\
& =\phi_{4,4}^{*}\left(1+\sum_{i=1}^{\infty} w_{i}^{2}\right) \\
& =\phi_{4.4}^{*}\left(1+\sum_{i=1}^{\infty} w_{i}\right)^{2}
\end{aligned}
$$

Since $\mathrm{H}^{*}(\mathbf{B S p} \wedge \mathbf{B S p})$ is a subalgebra of a polynomial algebra, the square of any element in $\mathrm{H}^{*}(\mathbf{B S p} \wedge \mathbf{B S p})$ does not vanishes. Therefore

$$
\phi_{4,4}^{*}\left(1+\sum_{i=1}^{\infty} w_{i}\right)=\prod_{1 \leq i \leq N, 1 \leq j \leq N}\left(1+s_{i}^{2}+s_{j}^{\prime 2}\right) .
$$

in the part of degree less than $2 N$.
We set $q_{k}^{\prime}=\sigma_{k}\left(s_{1}^{\prime 2}, \ldots, s_{N}^{\prime 2}\right)(1 \leq k \leq N)$ which are the generators of $\mathrm{H}^{*}(B S p(N))$ and $Q_{l}=\sum_{i=1}^{N} s_{i}^{2 l}$ which is the primitive element of $\mathrm{H}^{*}(B S p(N))$. Now we have in the part of degrees less than $2 N$

$$
\begin{aligned}
\phi_{4,4}^{*}\left(1+\sum_{i=1}^{\infty} w_{i}\right) & =\prod_{1 \leq i \leq N, 1 \leq j \leq N}\left(1+s_{i}^{2}+s_{j}^{\prime 2}\right) \\
& =\prod_{i=1}^{N}\left(\sum_{k=0}^{N}\left(1+s_{i}^{2}\right)^{k} q_{N-k}^{\prime}\right) \\
& =\prod_{i=1}^{N}\left(1+\sum_{k=0}^{N-1} \sum_{l=0}^{k}\binom{k}{l} s_{i}^{2 l} q_{N-k}^{\prime}\right)
\end{aligned}
$$

Now we proceed the calculations modulo $\left(q_{1}^{\prime}, \ldots, q_{N}^{\prime}\right)^{2}$.

$$
\begin{aligned}
\phi_{4,4}^{*}\left(1+\sum_{i=1}^{\infty} w_{i}\right) & \equiv 1+\sum_{k=0}^{N-1} \sum_{l=1}^{k}\binom{k}{l} Q_{l} q_{N-k}^{\prime} \\
& \equiv 1+\sum_{k=1}^{N} \sum_{l=1}^{N-k}\binom{N-k}{l} Q_{l} q_{k}^{\prime} \\
& \equiv 1+\sum_{i=1}^{N} \sum_{1 \leq k, 1 \leq l, k+l=i}\binom{N-k}{l} Q_{l} q_{k}^{\prime}
\end{aligned}
$$

This leads us to the next lemma.
Lemma 4.6. Modulo $\left(1 \otimes q_{1}, 1 \otimes q_{2}, 1 \otimes q_{3}, \ldots\right)^{2}$,

$$
\phi_{4,4}^{*}\left(w_{i}\right)= \begin{cases}\sum_{1 \leq k, 1 \leq l, k+l=j}\binom{k+l-1}{l} Q_{l} \otimes q_{k} & i=4 j \\ 0 & i \not \equiv 0 \bmod 4\end{cases}
$$

where $\mathbf{H}^{*}(\mathbf{B S p})=\mathbf{Z} / 2 \mathbf{Z}\left[q_{1}, q_{2}, q_{3}, \ldots\right]$ and $Q_{l} \in \mathbf{H}^{*}(\mathbf{B S p})$ is the primitive element of degree $4 l$.

Let $\kappa^{\prime}: \Sigma^{2} \Omega^{6} \mathbf{B O} \rightarrow \Omega^{4} \mathbf{B O}$ be the map which satisfies $\operatorname{Ad}^{2}\left(\kappa^{\prime}\right)=\operatorname{Id}_{\Omega^{6} \mathbf{B O}}$. Then it can be easily verified that $\operatorname{Ad}^{2}\left(\phi_{4,4} \circ \operatorname{Id}_{\Omega^{4} \mathbf{B O}} \wedge \kappa^{\prime}\right)=\phi_{4,6}$. Since

$$
\kappa^{\prime *}\left(q_{l}\right)=\Sigma^{2} b_{4 l-2}
$$

where $\mathbf{H}^{*}\left(\Omega^{2} \mathbf{B S p}\right)=\bigwedge\left(b_{2}, b_{4}, b_{6}, \ldots\right)$ and $b_{4 i-2}$ is primitive, it occurs that

$$
\left(\operatorname{Id}_{\Omega^{4} \mathrm{BO}} \wedge \kappa^{\prime}\right)^{*} \phi_{4,4}^{*}\left(w_{4 i}\right)=\sum_{1 \leq k, 1 \leq 1, k+l=i}\binom{k+l-1}{l} Q_{l} \otimes \Sigma^{2} b_{4 k-2}
$$

and

$$
\phi_{4,6}^{*}\left(a_{4 i-2}\right)=\sum_{1 \leq k, 1 \leq 1, k+l=j}\binom{k+l-1}{l} Q_{l} \otimes b_{4 k-2} .
$$

Remark that $\binom{k+l-1}{l}=\binom{4 k+4 l-4}{4 l}=\binom{4 k+4 l-2}{4 l}$ and

$$
\phi_{4,6}^{*}\left(a_{2^{p}(4 i-2)}\right)=\sum_{1 \leq k, 1 \leq l, k+l=j}\binom{4 k+4 l-2}{4 l} Q_{l}^{2^{p}} \otimes b_{4 k-2^{2^{p}}}
$$

Therefore the statement is also true for $\phi_{4,6}$.
Q.E.D. (Theorem 4.2)

From Theorem 3.3 and Theorem 4.2, the next theorem follows.
Theorem 4.7. Assume neither $n-1$ nor $m-1$ is a power of 2 and both n and m are odd. If $\binom{n+m-2}{n-1} \equiv 0 \bmod 2,(n, m)$ is Spin-regular.

5. The case n and m are even

In this section we use integral cohomology. Consider the next diagram.

Here $\pi_{n}, \pi_{n}^{\prime}$ is the map obtained from $\operatorname{Spin}(n) \rightarrow \operatorname{Spin}(n) / \operatorname{Spin}(n-1)=S^{n-1}$ and $S O(n) \rightarrow S O(n) / S O(n-1)=S^{n-1}$ respectively. Also i_{n} is the inclusion map defined as follows. Let $l \in \mathrm{RP}^{n-1}$ be a line and let $e \in l$ be a unit vector. Then $i_{n}(l)=i_{n}^{\prime}\left(l_{0}\right) i_{n}^{\prime}(l)$ where $i_{n}^{\prime}(l)(v)=v-2(v, e) e$ and l_{0} is the base point of RP^{n-1}. We set $p_{n}^{\prime}: S^{n-1} \rightarrow \mathrm{RP}^{n-1}$ be the usual covering map then there is a map \tilde{i}_{n} which makes diagram commutative. Moreover, when $n=4, \pi_{n}$ has a section $\varepsilon: S^{n-1} \rightarrow$ $\operatorname{Spin}(n)$, that is, $\pi_{n} \circ \varepsilon=\mathrm{Id}$.

We set c_{n-1} as the generator of $\mathrm{H}^{*}\left(S^{n-1} ; \mathbf{Z}\right)$ and take $\delta \in \mathrm{H}^{*}(\operatorname{Spin}(n) \wedge$ $\operatorname{Spin}(m) ; \mathbf{Z})$ as $\delta=\left(\pi_{n} \wedge \pi_{m}\right)^{*}\left(c_{n-1} \otimes c_{m-1}\right)$.

Lemma 5.1. If n and m are even and neither n nor m is 4 ,

$$
\mathrm{H}^{n+m-2}(\operatorname{Spin}(n) \wedge \operatorname{Spin}(m) ; \mathbf{Z})=\langle\delta\rangle \oplus \operatorname{Ker}\left(\tilde{i}_{n} \wedge \tilde{i}_{m}\right)^{*}
$$

Proof. Since n is even, $i_{n}^{*} \pi_{n}^{\prime *}\left(c_{n-1}\right)$ is the generator of $\mathrm{H}^{n-1}\left(\mathrm{RP}^{n-1}: \mathbf{Z}\right) \cong \mathbf{Z}$. Therefore

$$
\begin{equation*}
\tilde{i}_{n}^{*} \pi_{n}^{*}\left(c_{n-1}\right)=p_{n}^{\prime *} i_{n}^{*} \pi_{n}^{\prime *}\left(c_{n-1}\right)=2 c_{n-1}, \tag{12}
\end{equation*}
$$

that is, $\tilde{i}_{n} \wedge \tilde{i}_{m}^{*}(\delta)=4 c_{n-1} \otimes c_{m-1}$.
Because $p_{n}^{\prime *}: \mathrm{H}^{n-1}\left(\mathrm{RP}^{n-1} ; \mathbf{Z} / 2 \mathbf{Z}\right) \rightarrow \mathrm{H}^{n-1}\left(S^{n-1} ; \mathbf{Z} / 2 \mathbf{Z}\right)$ is a 0 -map and $\tilde{i}_{n}^{*} \circ p_{n}^{*}$ $=p_{n}^{\prime *} \circ i_{n}^{*}$, we have $\tilde{i}_{n}^{*} \circ p_{n}^{*}=0$ in $\bmod 2$ cohomology. Further, since, when $n \neq 4$, $p_{n}^{*}: \mathrm{H}^{n-1}(S O(n) ; \mathbf{Z} / 2 \mathbf{Z}) \rightarrow \mathbf{H}^{n-1}(\operatorname{Spin}(n) ; \mathbf{Z} / 2 \mathbf{Z})$ is epic, this implies that \tilde{i}_{n}^{*} : $\mathbf{H}^{n-1}(\operatorname{Spin}(n) ; \mathbf{Z} / 2 \mathbf{Z}) \rightarrow \mathrm{H}^{n-1}\left(S^{n-1} ; \mathbf{Z} / 2 \mathbf{Z}\right)$ is also a 0 -map. Therefore $\operatorname{Im} \tilde{i}_{n}^{*} \subset$ $\left\langle 2 c_{n-1}\right\rangle$ in integral cohomology.

Now we obtain that $\operatorname{Im}\left(\tilde{i}_{n} \wedge \bar{i}_{m}\right)^{*}=\left\langle 4 c_{n-1} \otimes c_{m-1}\right\rangle=\left\langle\left(\tilde{i}_{n} \wedge \tilde{i}_{m}\right)^{*}(\delta)\right\rangle$ and from the freeness of $\mathrm{H}^{n+m-2}\left(S^{n+m-2} ; \mathbf{Z}\right)$ the statement follows.

Lemma 5.2. If $n=4$ and m are even and $m \neq 4$,

$$
\mathrm{H}^{n+m-2}(\operatorname{Spin}(n) \wedge \operatorname{Spin}(m) ; \mathbf{Z})=\langle\delta\rangle \oplus \operatorname{Ker}\left(\varepsilon \wedge \tilde{i}_{m}\right)^{*}
$$

Proof. From (12) and $\varepsilon^{*} \pi_{4}^{*}\left(c_{3}\right)=c_{3}$,

$$
\left(\varepsilon \wedge \tilde{i}_{m}\right)^{*}(\delta)=2 c_{n-1} \otimes c_{m-1}
$$

As seen in the proof of previous lemma, $\operatorname{Im} \tilde{i}_{m}^{*} \subset\left\langle 2 c_{m-1}\right\rangle$ in integral cohomology and since ε is a section, $\operatorname{Im} \varepsilon^{*}=\left\langle c_{3}\right\rangle$.

Now it follows that $\operatorname{Im}\left(\varepsilon \wedge \tilde{i}_{m}\right)^{*}=\left\langle 2 c_{3} \otimes c_{m-1}\right\rangle=\left\langle\left(\varepsilon \wedge \tilde{i}_{m}\right)^{*}(\delta)\right\rangle$ and from the freeness of $\mathrm{H}^{n+m-2}\left(S^{n+m-2} ; \mathbf{Z}\right)$ the statement follows.

Theorem 5.3. Assume neither $n-1$ nor $m-1$ is a power of 2 , both n and m are even, $n+m \equiv 0 \bmod 4$ and $n+m \geq 16$. Then (n, m) is Spin-regular.

Proof. We use Proposition 2.2. Let $x: \operatorname{Spin}(n) \wedge \operatorname{Spin}(m) \rightarrow \Omega \operatorname{Spin}$ satisfies $x^{*}\left(\alpha_{n+m-2}\right)=x_{n-1} \otimes x_{m-1}$ in mod 2 cohomology. Then there exists $\eta \in$ $\widetilde{K O}\left(\Sigma^{2} \operatorname{Spin}(n) \wedge \operatorname{Spin}(m)\right)$ which satisfies

$$
\begin{equation*}
w_{n+m}(\eta)=\Sigma^{2} x_{n-1} \otimes x_{m-1} . \tag{13}
\end{equation*}
$$

Here, since Pontrjagin square acts trivially in $\mathrm{H}^{*}\left(\Sigma^{2} \operatorname{Spin}(n) \wedge \operatorname{Spin}(m) ; \mathbf{Z}\right)$, by the second formula of Wu [12],

$$
\begin{equation*}
\rho_{4}\left(P_{(n+m) / 4}(\eta)\right)=w_{n+m}^{\prime}(\eta), \tag{14}
\end{equation*}
$$

where w_{n+m}^{\prime} is the image of u_{n+m} under the coefficient monomorphism $\mathbf{Z} / 2 \mathbf{Z} \rightarrow$ $\mathbf{Z} / 4 \mathbf{Z}$ and ρ_{4} is the map of mod 4 reduction.

When neither n nor m is 4 , from (13), (14) and Lemma 5.1, we can see that

$$
P_{(n+m) / 4}(\eta)=\Sigma^{2}((4 k+2) \delta+\alpha),
$$

where $\alpha \in \operatorname{Ker}\left(\tilde{i}_{n} \wedge \tilde{i}_{m}\right)^{*}$ and we obtain

$$
P_{(n+m) / 4}\left(\Sigma^{2}\left(\tilde{i}_{n} \wedge \tilde{i}_{m}\right)^{*}(\eta)\right)=(16 k+8) c_{n+m} .
$$

When $n=4$ and $m \neq 4$, (13), (14) and Lemma 5.2 imply that

$$
P_{(n+m) / 4}(\eta)=\Sigma^{2}((4 k+2) \delta+\beta),
$$

where $\beta \in \operatorname{Ker}\left(\varepsilon \wedge \bar{i}_{m}\right)^{*}$ and we have

$$
P_{(n+m) / 4}\left(\Sigma^{2}\left(\varepsilon \wedge \tilde{i}_{m}\right)^{*}(\eta)\right)=(8 k+4) c_{n+m} .
$$

But for the generator η_{0} of $\widetilde{K O}\left(S^{n+m}\right), \quad P_{(n+m) / 4}\left(\eta_{0}\right)$ is divisible by $\left(\frac{n+m}{2}-1\right)$!. [1] When $n+m \geq 16$ this is a contradiction and the statement follows.

Theorem 5.4. Assume neither $n-1$ nor $m-1$ is a power of 2 , both n and m are even. If $n+m=12$ or $n+m \equiv 2 \bmod 4$. Then (n, m) is Spin-regular.

Proof. We use Proposition 2.2. Let $x: \operatorname{Spin}(n) \wedge \operatorname{Spin}(m) \rightarrow \Omega$ Spin be the arbitrary continuous map.

When $n+m \equiv 2 \bmod 4$, that is, $n+m-2$ is divisible by $4, x^{*}\left(\alpha_{n+m-2}\right)=$ $x^{*}\left(\alpha_{(n+m-2) / 2}\right)^{2}$ in mod 2 cohomology. Thus $x^{*}\left(\alpha_{n+m-2}\right)$ can be written in the form $\sum \alpha \otimes \beta$ where α and β are decomposable. Therefore $x^{*}\left(\alpha_{n+m-2}\right) \neq x_{n-1} \otimes$ x_{m-1}.

Now let $n+m=12$ and $n \leq m$. When $n \neq 4, x^{*}\left(\alpha_{6}\right)=x_{3} \otimes x_{3}$ or 0 and when $n=4, x^{*}\left(\alpha_{6}\right)=z \otimes x_{3}, x_{3} \otimes x_{3}$ or 0 . We can see

$$
\mathrm{Sq}^{2} x^{*}\left(\alpha_{6}\right)=x^{*}\left(\mathrm{Sq}^{2} \alpha_{6}\right)=x^{*}\left(\alpha_{8}\right)=x^{*}\left(\alpha_{2}\right)^{4}=0
$$

while

$$
\begin{gathered}
\mathrm{Sq}^{2} x_{3} \otimes x_{3}=x_{5} \otimes x_{3}+x_{3} \otimes x_{5} \\
\mathrm{Sq}^{2} z \otimes x_{3}=z \otimes x_{5} .
\end{gathered}
$$

So $x^{*}\left(\alpha_{6}\right)=0$ and we have

$$
x^{*}\left(\alpha_{10}\right)=x^{*}\left(\mathrm{Sq}^{4} \alpha_{6}\right)=\mathrm{Sq}^{4} x^{*}\left(\alpha_{6}\right)=0 .
$$

From Proposition 2.2, Theorems 4.7, 5.3, 5.4, we finally obtain Theorem 1.3.

6. $(3,4 k+1)$ is Spin-irregular

In this section we shall give the proof of Theorem 1.4 which requires that ($3,4 k+1$) is Spin-irregular.

Since there are embeddings $\operatorname{Spin}(3) \rightarrow \operatorname{Spin}(4 k+3), \quad \operatorname{Spin}(4 k+1) \rightarrow$ $\operatorname{Spin}(4 k+3)$ where any element of $\operatorname{Spin}(3)$ and any element of $\operatorname{Spin}(4 k) \subset$ $\operatorname{Spin}(4 k+1)$ exactly commute in $\operatorname{Spin}(4 k+3)$. Let $A \in \operatorname{Spin}(3), B \in \operatorname{Spin}(4 k+1)$, $C \in \operatorname{Spin}(4 k) \subset \operatorname{Spin}(4 k+1)$. Then $\quad A(B C) A^{-1}(B C)^{-1}=A B C A^{-1} C^{-1} B^{-1}=$ $A B A^{-1} B^{-1}$ and the commutator of A and B is invariant under the right translation of $\operatorname{Spin}(4 k)$ on B.

Therefore there exists a map $c^{\prime}: \operatorname{Spin}(3) \wedge(\operatorname{Spin}(4 k+1) / \operatorname{Spin}(4 k)) \rightarrow$ $\operatorname{Spin}(4 k+3)$ such that $c^{\prime} \circ\left(1 \wedge \pi_{4 k+1}\right) \simeq c$. See the diagram below. Remark that $\operatorname{Spin}(3) \cong S^{3}$ and $\operatorname{Spin}(4 k+1) / \operatorname{Spin}(4 k) \cong S^{4 k}$.

In the above diagram $\Omega \mathbf{S O} / S O(4 k+3) \rightarrow \operatorname{Spin}(4 k+3) \rightarrow \mathbf{S p i n}$ is a fibration and $i \circ c^{\prime}$ is null homotopic. So there exists a map $\lambda: S^{4 k+3} \rightarrow \Omega \mathbf{S O} / S O(4 k+3)$, such that $\delta \circ \lambda \simeq c^{\prime}$.

Since $\pi_{4 k+4}(\mathbf{S O} / S O(4 k+3)) \cong 0([10]), \pi_{4 k+3}(\Omega \mathbf{S O} / S O(4 k+3)) \cong 0$ and λ is null homotopic.

Thus $c \simeq \delta \circ \lambda \circ\left(1 \wedge \pi_{4 n+1}\right) \simeq *$ and Theorem 1.4 is proved.

Department of Natural Science Hyogo University of Teacher Education
 Department of Mathematics
 Kyoto University

References

[1] R. Bott, The space of loops on a Lie group, Michigan Math. J., 5 (1958), 35-61.
[2] R. Bott, A note on the Samelson product in the classical groups, Comment. Math. Helv., 34 (1960), 249-256.
[3] H. Hamanaka, Homotpy-commutativity in rotation groups, J. Math. Kyoto Univ., 36-3 (1996), 519-537.
[4] S. Y. Husseini, A note on the intrinsic join of Stiefel manifolds, Comment. Math. Helv., 38 (1963), 26-30.
[5] I. M. James and E. Thomas, Homotopy-commutativity in rotation groups, Topology, 1 (1962), 121-124.
[6] I. M. James, The topology of Stiefel manifolds, London Math. Soc. Lecture Notes 24, Cambridge University Press, 1976.
[7] M. Nagata, On the uniqueness of Dyer-Lashof operations on the Bott periodicity spaces, Publ. Res. Inst. Math. Sci., 16-2 (1980), 499-511.
[8] T. Bröcker and T.tom Dick, Representations of Compact Lie Groups, GTM 98, SpringerVerlag, 1985.
[9] J. H. C. Whitehead, On the groups $\pi_{r}\left(V_{n, m}\right)$ and sphere-bundles, Proc. Lond. Math. Soc., 48 (1944), 243-291.
[10] G. F. Paechter, The groups $\pi_{r}\left(V_{n, m}\right)$ (I), Quart. J. Math. Oxford, 7 (1956) 249-268.
[11] R. M. Seymour, The real K-theory of Lie groups and homogeneous spaces, Quart. J. Math. Oxford Ser. (2), 24 (1973), 7-30.
[12] Wu Wen-Tsün, On Pontrjagin class III, Acta Math. Sinica, 4 (1954), 323-45.

