J. Math. Kyoto Univ. JMKYAZ)
40-2 (2000) 389-405

Homotopy-commutativity in spinor groups
By

Hiroaki HAMANAKA and Akira KonNo

1. Introduction

For two subsets S and S’ of a topological group G which contain the unit
of G as its base points, we say S and S’ homotopy-commute in G, when the
commutator map ¢ from S A S’ to G which maps (x.y)e S A S toxyx~'y ' eG
is null homotopic.

In [3], the first author showed the next theorem:

Theorem 1.1. Let n, m be positive integers, and let n +m # 4 or 8. If n or m
. L (n+m=2
is even or if
n—1
commute in SO(n+m—1).

) =0 mod 2 then SO(n) and SO(m) do not homotopy-

In this paper, we describe the homotopy-commutativity of Spin(n) and
Spin(m) in Spin(n+m —1).

Definition 1.2. If SO(n) and SO(m) homotopy-commute in SO(n+m — 1),
we say (n,m) is SO-irregular, and if not we say (n,m) is SO-regular. Also, If
Spin(n) and Spin(m) homotopy-commute in Spin(n + m — 1), we say (n,m) is Spin-
irregular, and if not we say (n,m) is Spin-regular.

Main theorems are the followings:

Theorem 1.3.  Assume neither n — 1 nor m— 1 is a power of 2 and n+m # 4
n+m-—1

or 8. If n or m is even or if ( |
n—

) =0 mod 2 then (n,m) is Spin-reqular.

For the case n— 1 is a power of 2, we give some results as following:
Theorem 1.4. Set n =3 and m =1 mod 4 then (3,m) is Spin-irregular.
Remark 1.5. Theorem 1.1 implies that if m # 1 mod 4, (3.m) is SO-regular.

~__Remark 1.6. In fact, since Spin(5) = Sp(2) and n6(Sp(2)) = ne(Sp) =
KSp~7(pt) =0 where Sp is lim,_., Sp(n). the commutator map c: Spin(3) A
Spin(3) — Spin(5) is null homotopic and (3,3) is Spin-irregular. On the other
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hand, Theorem 1.1 implies (3. 3) is SO-regular. Therefore SO-regularity and Spin-
regularity is not the same.

This paper is organized as follows: In §2 we give a sufficient condition for
(n.m) to be Spin-regular. which is an existence of a map with an adequate
property and show that, when n+m is odd, (n,m) is Spin-regular. In §3 we
introduce the maps ¢, ; : 'BO A Q/BO — QB0 to investigate KO~ (Spin(n) A
Spin(m)) and in §4 investigate its induced cohomology maps and prove Theorem
1.3 for the case both n and m are odd. In §5 we look into the case n and m are
even and complete the proof of Theorem 1.3 and finally in §6 we give the proof of
Theorem 1.4.

2. Lift of commutator map

Similarly to [3], consider the next fibrations:
Spin(n +m — 1) LR Spin -2 Spin/Spin(n +m — 1),
SO +m—1) -5 SO —4 SO/SO(n +m — 1),

where SO (resp. Spin) is lim,_. SO(n) (resp. lim,_ . Spin(n)).
We refer to the cohomology rings of spaces which we use in this paper. that is,
H"(Q Spin) = Z/2Z[uy. 04, %, . . .|/ (24 — 23,).
H*(Spin(k)/Spin(k — 1)) = A(Xk—p, ... . Xk—1),
H* (Spin(k)) = A(x3.x5.x6,x7. X9, ...) ® \(2)-

In the last equality, the index / of x; scans all integers neither of which is not a
power of 2 and 3 <i<k—1. Also, deg(ay) =2/ and deg(x;) =i.

Further, it can be easily seen that H* (€2 Spin/Spin(n +m — 1)) = 0 for *x <n
+m —3 and H""~2(Q Spin/Spin(n +m — 1)) = Z/2Z whose generator is written
as %pm—2. When n+m is even, Qp (%, 4m—2) = %yrm—2 € H*(£2 Spin).

From above fibrations, we can deduce the following fibration sequences.

Ospin

-+ — Q Spin 2, Q(Spin/Spin(n +m — 1)) —
Spin(n + m—1) LN Spin L Spin/Spin(n 4+ m — 1),
L 0S0 24 Q(SO/SO(n + m — 1)) 22
SO(n+m—1) L. so-L SO/SO(n+m—1).

Let c¢so (resp. cspin) be the commutator map from SO(n) A SO(m) to
SO(n+m — 1) (resp. from Spin(n) A Spin(in) to Spin(n +m — 1)). Obviously we
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can see that i o cgpiy and j o cso are null homotopic. Thus there exists a lift of ¢so
from SO(n) A SO(m) to QSO/SO(n+m —1) and a lift of cspin from Spin(n) A
Spin(m) to Q Spin/Spin(n +m —1).

In [4], a lift of ¢sp written as Aso was constructed and in [3]. it is obtained
that

As0(Ungpm—2) = Xyt @ Xp—1. (n
Here set Aspin = Aso o (p, A Py)-
Lemma 2.1. Agpy is a lift of Cspin. that is, Sspin © Aspin =~ Cspin-
Proof. See the diagram below.

Q Spin/Spin(n +m — 1)

13

0QSO/SO(n+m—1)

Spin(n) A Spin(m) o m—1) Sso
WW m’
SO(n) A SO(m) ——=2 SO(n+m—1)

Spin J

T

SO
Since dsp 0 Aso ~ ¢so and dso ~ p,p,—1 ©Ospin, it occurs that
Puym—1 © 5Spin o ASpin = (550 o )-S() o ([7,, A ]7,,,)
= Cs00© (pn A pm)
= Pnt+m—1 © CSpin (2)

Now consider the fibration Z/2Z — Spin(n+m — 1) — SO(n+m —1).
Then for any CW complex X we have the exact sequence of base pointed
homotopy sets:

(X.Z/2Z)], — [X . Spin(n + m — 1)], =5 [X. SO(n + m — 1)],.
Thus p,,,,_,. is injective and from (2) we can see
(sSpin © lSpin = CSpin-

In the rest of paper, ¢, 4, 0 stands for cspi. Aspin. Ospin TESpECtively.



392 Hiroaki Hamanaka and Akira Kono

Proposition 2.2. Assume neither n — 1 nor m — 1 is a power of 2.

1. If n+m is odd, ¢ is not null homotopic.

2. Let n+m is even. If for any continuous map x from Spin(n) A Spin(m) to
Q Spin, X' (%ypm-2) # Xyt ® Xy—y in cohomology, then ¢ is not null
homotopic.

Proof. If ¢ is null homotopic, that is, do A ~ %, then there exists a map
x : Spin(n) A Spin(m) — Q Spin such that Qpox ~ A
From (1) we can see
'\’*(an+m—2) =x'o Qp*(all+lu—~2)
= j~*(O(n+m—2)
= (pn A pm)" o /1;'0(“"+m—2)
=(p, A pm)*(xu-l ® Xp-1)
=Xyt ® X1, (3)
since neither n — 1 nor m — 1 is a power of 2. Thus the statement for the case
n+m is even is proved.
When n+m is odd, it occurs that
l¥(“n+m—2) =x"o0 Qp*(an+m—2)
= x*(0),

since H"(£2 Spin) is concentrated in even degrees. This contradicts to (3) and ¢ is
not null homotopic.

3. 1?5‘*(Spin(n) A Spin(n))

In this section we assume that both n and m are odd.
From Proposition 2.2 we should look into the homotopy set [Spin(n) A
Spin(m). £ Spin]. By use of KO-theory we can say that,

[Spin(n) A Spin(m), Q Spin] = [Spin(n) A Spin(m), 2,SO] = 1?5_2(Spin(n) A Spin(m)),

since 22BO =~ QSO.

Further more, the complex representation ring of Spin(2k + 1) is generated by
real representations or symplectic representations. (See Proposition 6.19 in P. 290
of [8].) Thus Theorem 5.12. in [11] implies that, when n is odd, KO~ (Spin(n)) is
KO~ *(pt) free. Therefore we have an decomposition of

1?5“(Spin(n) A Spin(m)) = @‘*(Spin(n)) ®;,5 %‘*(Spin(m)).

“(pt)

From now on, we identify KO~/(X) with [X.Q'BO).
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Theorem 3.1.  There is a map ¢;; : Q'BO A Q/BO — Q™/BO such that for
any CW-complexes X. X' and x e RB"(X) and B e KO (X').
a®P =g 0(xnf) in KOH(X AX).

Proof. First we construct ¢, ;. Let &, be the universal vector bundle
over BO(n) and put 7, = &, —n. n,. = lim,_, n,. And set ¢, ,: BO A BO — BO
as the classifying map of 5, ®#,. Let x;: Z'Q'BO — BO be the map which
satisfies

Ad'k; ~ 1dgigo-
Consider the composition of x; A k; and ¢ :

Ki A K #o0

2Q'BO A 2/Q/BO —2 BO A BO —- BO.

We define ¢, ; as
¢, = Ad™(d 0 (ki A K;)) : QBO A Q/BO — QBO.

Now, take 2 € [X.Q'BO] and fe[X’ . Q/BO] and see the composition of
anf and ¢

$o(nf): X A X —QBO AQBO— QYBO.

Taking Ad~(*) of the above composition, we obtain
Ad (g0 (2 A B) = (Adg; ) o (Za 1 27P)
(XX A X)) - ZH(QBO A 2/BO) — BO.

From the definition of ¢, ;. Ad™""(¢, ;o (« A f)) is the composition of following
maps:

ZlanZlp B0
—_—

X A XY ZH(QBO A 2/BO) "7, BO A BO —2" . BO. (4)
Lemma 3.2. For any continuous map f:X'X — BO,

[ =w(Z'Ad'S).
Proof. Consider the composition of Ad’Af and identity map of Q'BO.

x MY 0igo e, oigo,

Taking Ad™" of the above composition, we have
f=Ad"(ldgigo 0 Ad'f) = ki o Z'Ad'f

ZIAd' S

(x5 PIQ'BO — BO.
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By (4) and the above lemma, it follows that
Ad™ (g0 (a A B)) = g0 (ki A Kj) 0 (E'a A ZTB)
~ ¢y 0 (Kio Z'a) A (k50 Z/P)
~ ¢y o0 (Ad ™' A Ad/P).

Since f e [X.Q'BO] corresponds to (Ad"f)*(nm,)eI’(\(J)"(X), the above
equation says that ¢, ;o (x A f§) corresponds to

(Ad™x A Ad7B) ¢ (n,0) = Ad ™o (n,,) ® Ad7B"(1,,).
Therefore we obtain that
a@B=¢;;0(xnAp) in KO~0")(X A X).
From the above theorem. we can deduce the next theorem.

Theorem 3.3.  Assume both n and m are odd. If. for all (i, j) € Z./82Z* which
satisfy i+ j =2, ¢,.fj(a,,+,,,_2) =>"b;®c; where |bs|=s and |¢,| =1t and b,_; ®
Cm—1 =0 then c: Spin(n) A Spin(m) — Spin(n 4+ m — 1) is not null homotopic.

Proof. For any n e KO~2(Spin(n) A Spin(m)), there exist a, € 1?5“"'(Spin(n))
and B, € KO«(Spin(m)) such that n = Yo, ® B, and i, +j, = 2. Since tym—2 is
primitive,

’7*(0(11+m——2) = (Z Xy ® ﬁa> (an+m—2) = Z(au ®/))a)*(an+m—2)
and by Theorem 3.1,
(O‘ ® ,B) ‘(9"1+m—2) = (“ A ﬂ)* o ¢Zj(an+m—2)-

If the hypothesis is satisfied, #*(o+m—2) can not be x,_; ® x,—1. Therefore from
Proposition 2.2, ¢ is not null homotopic.

4. The case n and m are odd

In this section we investigate the induced cohomology map of ¢,; for
(i, j) € (Z/8Z)*, such that, i+ j=2.
We start from the next lemma.

Lemma 4.1.  Assume a € H*(Q™BO) is primitive and ¢ (a) =3 e B ®
where |bs| =s and |¢,| =t. Then by and ¢, are primitive.

Proof. Since for any a.ﬁ.yem(X),
(Pi(2) ® p3(B) ® p3(7) = (pi (@) ® p3 (7)) ® (p3(B) ® p3(7))

where p;: X x X x X — X is the projection to i-th component, the next diagram
commutes.
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Q'BO x Q'BO x 2BO — 2L, 0'BO x Q/BO
l(lexl)o(lxle)
Q'BO x Q/BO x Q'BO x 2/BO b
ot
QB0 x Q'BO 2 o"BO

Here T is the transposition map, 4 is the diagonal map and x: BO x BO — BO
is the classifying map of 7, x#, over BO x BO. Further, ¢;; is the next

composition:

ij
Q'BO x Q/BO — Q'BO A Q/BO — Q'¥BO.
Let a € HY(Q™/BO) be a primitive element. Then we have
(1®4) (1T ®1)o (¢, @) 0 2™’ (a)
=(1@4)o(1@T' ®@1)o(4,;®4;)d®1+1®a)
—(184)0(1@T @) (3 be®c®I®1+) 101058«

(104 (Y 6010¢@1+) 10501 @)

= (Yhelea+Y 10hod)
= (Ybo1+18b)®0).
Also
(@' ®1)odi ) = @ @ D(Y @)

= Z Qi (b)) ® c.

The above diagram says that these are the same. Therefore it occurs that
Qiut(by) = b, ® 1 + 1 ® b, that is, by is primitive. Similarly we can prove that ¢,
is primitive.
Theorem 4.2. Let i+ j=2 and n and m be odd.  Assume @; (dpim-2) =
-2
S by ® ¢, where |by| =s and |c| =1 If (n—{—m ) =0 mod 2, then b,_| ®

n—1
-1 = 0.

Proof. From assumption, (i.j) is (1.1), (2.0), (3.7), (4,6). (5.5). (6.4),
(7.3) or (0.2). From the symmetricity, we shall look in to the cases (i. j) = (1.1).
(2.0). (3.7), (4.6) and (5,5).

For ¢; 7, ¢5 5. the proof is easy. From the assumption, n — 1 and m — 1 are
even and by Lemma 4.1, b,_; and ¢, are primitive. On the other hand, it is
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known that all of the non-zero primitive elements of Q3BO. Q°BO are in odd
degrees. (7] Thus b, ® ¢;y-1 = 0.

To start the proof for ¢, . we investigate ¢ .

Let N =2", reN and € KO(BO(N) A BO(N)) be the class of

n=(Ev - N)® &y~ N).

We calculate the total Stiefel-Whitney class of # in H‘(B(Z/2Z)N AB(Z22)N)
H'(BO A BO). Lett.....1y and 1]..... 1y be the generator of H*(B(Z/2Z)" A
B(Z/22)") where t; corresponds to the first component and t; corresponds to
the second. Then wy = ax (1), .. .. ty) and wp = ok (r].....ty) (1 <k < N) are the
generators of H*(BO A BO) where g, is k-th fundamental symmetric polynomial.
(We put wy=1.) Also we set S =S~ /.
Lemma 4.3. The total Stiefel-Whitney class of n satisfies
N=l k

N —k
wn) =1+ Z ( / )wN_k ® S, modulo (w; @ lLw, ®1,.... wy ® l)2
k=0 1=0

in H(BO(N) A BO(N)) for * < N.
Proof.  Since
N=C(v®EN —ENON-—NREV+N®N.

we can see that

w(n) = H (1+1,+fj() H (1+,i)—N H (l+t_;)_N.

1<i<N,1<j<N 1<i<N 1<j<N

Here in the part of degrees less than N, (14 14)™" = (1 +I,N)_' =1 and also
(1+ t;)_N = 1. Therefore modulo @sz H/(B(Z/2Z)" x B(Z/2Z)"), we obtain
that

ORI | RS R

J=1 \k=0
N N N~k [N _k
= H(l +Z ( / )]l'klj{l>.
ey k=1 1=0
We proceed the calculation modulo (w; @ [,y ® 1....,wy ® 1)2 and obtain
N N-k /N _k
win) =1+ Wi S/
k=1 I=1 /

N —k
=1+ Wi S/
I<k 1<l k+lI<N l
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r_k
Lemma 44. Let kI reN. If 2'>k+1,  then (21 >E

(“j”) mod 2.

Proof. We set the binary expansion of kK — 1, / as

k—1= Z g2l 1= > 62"

0<i<r-1 0<i<r-1

1—8,'
os:l;];—l( di )

2 4 .
Therefore < k) = 0 if and only if, for some i, (1 &8 ) =0, ie,6=0=1.

Assume, for some i (0<i<r—1), & =0;=1. Then let i, be the smallest
such a number. Then j-th coefficient of the binary expansion of k +/—1 is 0,

while J,, = 1. Thus we have <k+1_ 1> = 0.

Then we have

<2rl—k) _ ((2’—1)1—(k—1)>

r_

/
Vice versa if, for any i (0 <i<r—1), not both ¢ and J; are 1, then

() L)

0<i<r-1

Therefore (2 [_k) = (k+j_l> mod 2.

Since ¢, is the classifying map of 7, ®17,. Lemma 4.3 implies that

, 2" —k )
B5.0(w1) = Z( 1 )wk®s,

kti=i
k+1~1 ) )

= Z | wr ® S/ modulo (w; @ Lw, ®@L,w3®1,...) (5)

kti=i

where r is sufficiently large.
Therefore

s k+1-1 ,
(k2 A Idgo) o g5 owi) = Y ( . )Zzak_z ® S,
k+1=i,k:even

since

* 22 . k:
i) = { Tz Keeven

and «j (decomposable element) = 0.
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From definition, ¢, , = Ad?*(k3 A Id o #00) and then we have

¢;,0(a4i+2) = Z (k -;— l>ak ® S, (6)

k+1=4i+2, k:even

I+1
here we remark that <k+ + ) = (k+[

I /
and since as = a3, it occurs that

) when k and / are even. From (6),

* k+1\ 5
$3 o(araisa) = Z < ; )a,% ® S?,

k+1=4i+2,k:even

. . . . n+m-—2
Thus the coeflicient of b,_; ® ¢,,—1 In ¢2,0("“+'"-2) is 0 when < ne 1 )
=0 and the statement is true for ¢, .
Second case is ¢, ;. Consider the composition of following maps.

K| AR} Bo.0

Z0QBO A 2QBO —— BO A BO — BO.
From (5) and since x| (decomposable element) =0 and
Kr(li’k) = Zxk_]
, Zxi-y k:odd
K1 (Sy) =
0 k : even,

the induced cohomology map of this composition can be obtained as

k+1-1
(ki A k1) o o(wi) = (k1 A Ky) ( Z ( +1 )S/ ® w,'(> (7)
k+l=i

k+1-1
= Z Zx121 ® Zxp_y. (8)
k+1=7 T-odd [

k+1-1

Here we remark that < /

) =0 when / is odd and k is even. Thus it

occurs that

. s k+1-1
(k1 A K1) 0 gg o (wi) = ( / )le_l ® Zxp_. 9)
k+I=i,I:0dd, k:0dd
Similarly as the case of ¢, 4, ¢, | = Ad* (k) A K ° @) and from (9) we have

) k411
¢ 1 (04iv2) = Xi-1 ® Xk

k+1=4(i+1), l:0dd, k:odd ( [

k+1
X1 @ xk. (10)
k+1=4i+2, l:even, k:even /
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And also

k+1\ 5 )
).\‘,2 ®x,§l. (11)

‘M. 1 (“2ﬂ(4i+2)) = /

k-+1=4i+2,T:even, k:even (
Thus the coefficient of b,-i ® ¢-1 In ¢ | (@y4m—2) 1s also 0 when
(n:nj 1_ 2) =0 and the statement is true for ¢, .
The final case is ¢, . Let &R € and &M be the universal bundle over BO(n),
BU(n) and BSp(n) respectively and put

R _ xR C _ ¢C H _ zH
un _én -n My = én —-n, My = én - n
and

= lim &R — nS =1lim &8 —n, M= lim M
H— L H— h—

Also set ¢ be the classifying map to (4% )¢, complexification of 7R | ¢’ be the
classifying map of 7' as a complex vector bundle and ¢ be the classifying map of
7S ®@n< over BU A BU.

We start from the next lemma.

Lemma 4.5. The next diagram commutes.

BSp A BSp <2, BU A BU

o

BO LN BU

Proof. Consider the next composition:

Ky ARy do.0

24BSp A Z*BSp ™5 BO A BO —- BO —— BU.

Here in K-theory, ¢'(7S) = (7R )¢ and @5 o((1R)e) = (1R )e ®@ (1R )¢ Also it is
known that x; (7% )¢) = (Cu — H) ®¢ n*! where {y is the H canonical line bundle
over HP'. Therefore above composition pulls back 7S to ({y — H) ®c(Cy — H)
®c ’ll;l: ®C '7'1

On the other hand consider the next composition:

(/\(

22 $8BU A BU >3BU BU.

Z¥BSp A BSp

Here wj is defined as follows. From Bott Periodicity, we know that Q?BU =
BU x Z. Thus there exists a map x5 : Z¥BU — BU which satisfies Ad”x’}, is the
inclusion map BU — Q¥BU. One can easily verify that

/ 2
Kho Ziyo- . T ~ wh,

and it is known that in K-theory i\‘”(ﬂg) (Cc
nonical line bundle over CP'. Therefore « (
that the above composition pulls back 7S to ({c¢

)®}7; where (¢ is the ca-
(e ) ® r], Now we can see
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Since K~*(pt) = Z and the second Chern class of —({y — H) and ({¢ — C)?
coincide, we see that the above two compositions are homotopic each other.
Take the Ad® of two compositions and we obtain

cofyg>yPoc

Refer to the diagram of Lemma 4.5. We want to calculate ¢, 4(w;). As we
have done in the proof of Lemma 4.3, let N =2", re N and 0e K(BU(2N) x
BU(2N)) be the class of 6 = (&5, — 2N) ® (&5, — 2N) where &5, is the universal
vector bundle over BU(2N). Also let Y, be the classifying map of 0.

First, we calculate the total Chern class of ¢ in H*(BT?N x BT*N) >
H*(BU(2N) x BU(2N)). Let ty,... 025, 1],... 15 € H*(BT*N x BT*N) be the
generators as usual. Then in the part of degree less than 4N,

W;<]+§:('i) = H (L4t +1)).
p

1<i<2N,1<j<2N

Now we proceed the calculations of (¢ A ¢/)*Yxn(1+ 37, ¢;) in H*(BTV x
BTV) > H*(BSp(N) x BSp(N)). Let s1,...,s5.5],....5xy € H(BTY x BT") be
the generators. Then we can see

(" Ay (l + (',-)
i=1

.
1 <i<2N.1<j<2N

(I414+ t;))

2
{ (l+si2+sj{2)} .
I<i<sN.I<j<N

On the other hand, considering H*(BSp(N)) = H*(BSp), in the part of degree
less than 4N,

(" A c')*l//;,(l + i(',) =y 4¢" (1 + ic;)
i=1 i=1
= ¢4i‘4 (l + ZMIZ)

i=1

L\2
= P44 <] + Z W")
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Since H*(BSp A BSp) is a subalgebra of a polynomial algebra, the square of
any element in H*(BSp A BSp) does not vanishes. Therefore

in the part of degree less than 2N.

We set g; =ok(sP.....s%) (1 <k<N) which are the generators of
H'(BSp(N)) and Q; = ¥, s? which is the primitive element of H*(BSp(N)).
Now we have in the part of degrees less than 2N

wre50)
i=1

I a+s+s?
N

<N, 1gj<

N
H(zu v sf>kq;v_k)
I \k=0

I<i
N
N N-1 k [k
= H(l + Z Z( ; )s,.z’qjv_k)
i=1 k=0 =0

Now we proceed the calculations modulo (q;,....qj\,)z.

s )
P44 (l + Z wi> =
i=1

Ml Il
+ +
™M= IM
2 -

T
o

> ~ =
~ |

~ 9
N———— >~
S L
Y

1l
+
[~]=
n
>
n
bl
b
IIV
/N
=z
~ |
>~
N——
©
Q
=~

This leads us to the next lemma.
Lemma 4.6. Modulo (1® ¢1,1 ® ¢2.1®¢3....)%
(k +/-1
Gaa(wi) = S 1<k i <lkti=) !
0 i #0 mod 4

>Q1®qk i=4j

where H*(BSp) = Z/2Z[q).q2.q3,-..] and Q; € H*(BSp) is the primitive element of
degree 4l.

Let «':22Q°BO — Q*BO be the map which satisfies Ad?(x’) = Idgepe-
Then it can be easily verified that Ad*(g, 4 0 ldgego A k) = ¢4 6. Since

K™ (q1) = Z%bar-2.
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where H*(QZBSp) = /\(bz,b4,b6,...) and by;_» is primitive, it occurs that

k+1-1

(Idgigo A &) 4 4(wai) = ( ;
<k i<l k+l=i

> 01 ® by »

and

b 6(asi-2) = Z <k+;— 1)Ql®b4k—2.

1<k V<l k+i=j

k+1-1 4k + 41— 4 4k +41 -2
Remark that ( / > = ( 47 > = ( 41 ) and

4k + 41— 2

¢Z(,(02ﬂ(4i—2)) = ( 4]
| <k, I <l k+l=j

) 2 ® by 22"

Therefore the statement is also true for ¢, . Q.E.D. (Theorem 4.2)
From Theorem 3.3 and Theorem 4.2, the next theorem follows.

Theorem 4.7. Assume neither n — 1 nor m — 1 is a power of 2 and both n and

-2
m are odd. If (n +m

w1 > =0 mod 2, (n,m) is Spin-regular.

5. The case n and m are even

In this section we use integral cohomology. Consider the next diagram.

In . Ty —
st~ Spin(n) —— S"!

|

'

RP'™ " sO(m) — s

Here m,. 7, is the map obtained from Spin(n) — Spin(n)/Spin(n — 1) = §"~!
and SO(n) — SO(n)/SO(n — 1) = S"~! respectively. Also i, is the inclusion map
defined as follows. Let /€ RP"~!' be a line and let ¢ € / be a unit vector. Then
in(1) = i'(lp)i' (1) where i’(I)(v) = v —2(v.e)e and [ is the base point of RP"'.
We set p’ : §"~! — RP"! be the usual covering map then there is a map 7, which
makes diagram commutative. Moreover, when n = 4, 7, has a section ¢: S""! —
Spin(n), that is, =, o= Id.

We set ¢,_; as the generator of H'(S" ':Z) and take 6 € H'(Spin(n) A
Spin(m):Z) as § = (m, A 7)) (Cnot @ C—t).

Lemma S.1. If n und m are even and neither n nor m is 4,

H""=2(Spin(n) A Spin(m); Z) = 6> ® Ker(iy A i)'
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Proof. Since n is even, i*n'*(c,_1) is the generator of H""'(RP" . Z) = Z.
Therefore

Ik ek 1%

;l;n;:((.”_l) = pn Iu 7'[” ((‘"—l) = 2(.”_|* (12)

that is, i, A () = 4¢i1 ® ot

Because p/* : H" ' (RP""":Z/2Z) — H""'(§"~',Z,/2Z) is a 0-map and i’ o p;
= plroi:. wehave i* o p! =0 in mod 2 cohomology. Further, since, when n # 4,
p; - H"Y(SO(n);Z/2Z) — H"~"(Spin(n): Z/2Z) is epic. this implies that 7' :
H"(Spin(n): 2/2Z) — H"~'(S"~":Z/2Z) is also a 0-map. Therefore Imi*
{2¢,-1 ) in integral cohomology.

Now we obtain that Im(i, A i) = {4y ® 1> = {(in A 1) (O)> and
from the freeness of H"*"~2(§"+"-2.7) the statement follows.

Lemma 5.2. If n=4 and m are even and m # 4,
H"™"=2(Spin(n) A Spin(m):Z) = () @ Ker(e A I,,)".
Proof. From (12) and ¢*m;(c3) = c3,
(& A i) (0) = 261 ® €t

As seen in the proof of previous lemma, Imi, < (2¢,-1) in integral
cohomology and since ¢ i1s a section, Im &* = {c¢3).

Now it follows that Im(e A )" = 23 ® 1) = (e A i) (0)) and from
the freeness of H"*"~2(S7+"-2:7) the statement follows.

Theorem 5.3. Assume neither n — 1 nor m — 1 is a power of 2, both n and m
are even, n+m =0 mod 4 and n+m > 16. Then (n,m) is Spin-regular.

Proof We use Proposition 2.2. Let x:Spin(n) A Spin(m) — Q Spin
s/a\t/isﬁes X*(tym—2) = Xy—1 ® xp—1 in mod 2 cohomology. Then there exists # €
KO(X*Spin(n) A Spin(m)) which satisfies

"'n+m(’7) = szn—l ® X1 ( 13)

Here, since Pontrjagin square acts trivially in H*(Z2Spin(n) A Spin(m):Z). by
the second formula of Wu [12],

/)4(P(n+m)/4(’7)) = n"l/l-f-lll(”)' (14)

where w, . is the image of w,,, under the coefficient monomorphism Z/2Z —
7/4Z and p, is the map of mod 4 reduction.
When neither # nor m is 4, from (13), (14) and Lemma 5.1, we can see that

P(n+m)/4(’7) = 22((4k + 2)6 + O()*
where o € Ker(i, A i,,)" and we obtain

P(n+m)/4(22(in A 2:/;1)*(’7)) = (16k + 8)cpim-
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When n=4 and m # 4. (13), (14) and Lemma 5.2 imply that
Plusmyya(nn) = Z%((4k +2)6 + B).
where 8 € Ker(e A i,)" and we have
Plusmnya(Z%(& A i) (1)) = (8K + 4)Copm.

But for the generator 7, of Eé(S”‘“"’). Puimyja(ny) is divisible by

(nzm_ l)!. [1] When n+m > 16 this is a contradiction and the statement
follows.

Theorem 5.4. Assume neither n — 1 nor m — 1 is a power of 2, both n and m
are even. If n+m=12 or n+m=2 mod 4. Then (n,m) is Spin-reqular.

Proof. We use Proposition 2.2. Let x: Spin(n) A Spin(m) — € Spin be the
arbitrary continuous map.

When n+m =2 mod 4, that is, n+m — 2 is divisible by 4, x*(dpym-2) =
x*(oz(,,+,,,_2)/2)2 in mod 2 cohomology. Thus x*(a,1,—2) can be written in the
form Y o ® f where o and f are decomposable. Therefore x*(otm-2) # Xu—1 @
Xm—1-

Now let n+m =12 and n <m. When n#4, x*(ag) = x3 ® x3 or 0 and
when n =4, x*(ag) =z® x3, x3® x3 or 0. We can see

Sq2x" (o) = x" (Sq’e) = x"(a5) = x"(22)* = 0
while
qu.\'3 ® x3 = x5 ® X3+ x3 ® X5,
SqZ: ®x3=:2zQ Xs.
So x*(x6) =0 and we have
x*(ot10) = x"(Sq*as) = Sq*x*(a6) = 0.

From Proposition 2.2, Theorems 4.7, 5.3, 5.4, we finally obtain Theorem 1.3.

6. (3.4k + 1) is Spin-irregular

In this section we shall give the proof of Theorem 1.4 which requires that
(3,4k + 1) is Spin-irregular.

Since there are embeddings Spin(3) — Spin(4k +3), Spin(dk +1) —
Spin(4k +3) where any element of Spin(3) and any element of Spin(4k) <
Spin(4k + 1) exactly commute in Spin(4k + 3). Let 4 € Spin(3), B e Spin(4k + 1),
C e Spin(4k) = Spin(4k +1). Then A(BC)A™"(BC)™' = ABCA™'C™'B"' =
ABA~'B~! and the commutator of 4 and B is invariant under the right translation
of Spin(4k) on B.
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Therefore there exists a map ¢ : Spin(3) A (Spin(4k + 1)/Spin(4k)) —

Spin(4k +3) such that ¢’ o (1 A mu41) ~¢. See the diagram below. Remark
that Spin(3) = S3 and Spin(4k + 1)/Spin(4k) = S*.

QS0/SO(4k + 3)

|

Spin(3) A Spin(dk + 1) Spin(4k + 3)

IAﬂuHJ / li

S3A S¥ Spin
In the above diagram QSO/SO(4k + 3) — Spin(4k + 3) — Spin is a fibration

and io ¢’ is null homotopic. So there exists a map 4 : S¥*+¥ — QSO/SO(4k + 3).
such that do 4~ ¢'.

Since 74x+4(SO/SO(4k +3)) = 0 ([10]), 7ar43(2S0/SO(4k +3)) = 0 and 7 is

null homotopic.

(1]
(2]

(3]
(4]

(5]

(7]
(8]
(9]

(10]
(1]

(12]

Thus ¢ ~Jo io(l A many1) =~ * and Theorem 1.4 is proved.
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