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Introduction

This paper is a continuation of our previous work [9]. In a half of it, we
studied the inductive limit G = lim_, G, of topological groups G,,n > 1, and
proved that the inductive limit topology ng =lim_, 7¢, of topologies 7, on
G, does not in general give a group topology on G, contrary to the affirmative
statement in [4, Article 210], and then studying TSLd in detail, we constructed,
under a mild condition (PTA), a group topology 75 = BS-lim_, 7¢, on G,
called Bamboo-Shoot topology, which is the strongest among those weaker than
or equal to Tg 4- This work provokes us two directions of study.

The one is to study the reason why this kind of pathological phenomena
occur rather in general. The other is to construct a good version of inductive
limits (like Tgs in the category of topological groups) in various categories,
such as topological algebras, topological semigroups etc.

Take two inductive systems of topological spaces {X}aca and {Y,}aca
and put X =lim_, X,,Y =lim_, Y,,. For the direct product {X, X Y, }aca of
these systems, its inductive limit can be identified with X x Y, and on it we
have two kinds of topologies, the one is 7:X, x 7}, with 77¥, := lim_, 7x_ and

ind
s XXY 1 : X Y
the other is 77, 7 :=lim_.(7x, X 7y, ). Then, we have in general 7;, , x 7,7 ; =<

Tiii de. We found that a principal reason for pathological phenomena similar
to the above one is the mismatch of these two topologies on X x Y. Therefore
we propose, in Section 1, Problems A, B and C related to these phenomena,
and study them in Sections 4 through 6.

Assume {X,}qca be an inductive system in the category of locally con-
vex topological vector spaces (= LCTVSs). Then, the natural inductive limit
topology in this category (cf. Definition 2.1) has been given long ago (denoted
here as 7j5, = lev-lim_, X,,) and is now used everywhere. As an example, take
a space of test functions D(M) of C*°-functions with compact supports on a
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differentiable manifold M. Then, the pointwise multiplication in X = D(M),
and the convolution in X = D(RF) are continuous in ;5 , and so X becomes
a topological algebra in both cases (Propositions 2.2 and 2.3). Their proofs
depend on the special structure of D(M) and can not be generalized to the
general case of inductive systems of topological algebras.

A similar but quite different case is given as follows. Take another Y =
D(M’) with M’ a differentiable manifold, and put Z = D(M x M'). Then, the
pointwise multiplication T : X x Y — Z is not continuous in (775, x 7.%,,77,),
whenever at least one of M and M’ is non-compact (Theorem 2.4). Here,
T(,¥)(pp') = pP)(p')(p € M,p" € M) for (p,7)) € X x Y. Since we have
the equivalence of topologies as Tl)fv X chfv = Tl)C(vXY (Theorem 3.4), the above
non-continuity property relates essentially to the difference between linearity
and bilinearity, or more exactly, the inductive limit Tl{;} in the category of
LCTVSs is well fitted to linear structures but not to bilinear maps taken as
multiplications.

Inspired by these concrete examples, we propose, in Section 2, Problems
D, E and F.

The problem of matching or mismatching of two kinds of topologies on X x
Y is in many respects very important in every category C. It is, in other words,
the problem of “commutativity” of two processes: (1) taking an inductive limit
of topologies in the category C, and (2) taking a direct product. We take

Ti{rzg in general or in the category of topological spaces, Tég} in the category

of topological groups, and TZEZ} in the category of LCTVSs. Consider them as
functors of the corresponding categories consisting of inductive systems. The
above “commutativity” for each of these functors is called the condition (DPA)

(= Direct Product is Admitted).

For the ‘Bamboo-Shoot topology functor’ Tég} in the category of countable
inductive systems of topological groups, and moreover for the extended one in
Section 3.4 in the category of general inductive systems of topological groups,
the condition (DPA) holds, that is, 7§¢ x THy = 755, where H = lim_, H,
for an inductive system {H,,} (Theorem 3.3).

Following [11] and [3], where countable inductive systems of Banach alge-
bras or of their subgroups are studied, we propose, in Section 3, Problems G
and H. For instance, take a countable inductive system of Banach (or topo-
logical) algebras {X,}, and take subgroups G, of X, * of all the invertible
elements in X,, with the restricted topology 7¢, = 7x,|g,. On the limit
group G = lim_, G,,, we want to compare two topologies Tgs = BS-lim_, 7¢,,
and 7% |¢ with X = lim_, X,,.

For the functor Tl{;;}, the condition (DPA) holds in general in the category
of inductive systems of LCTVSs (Theorem 3.4).

For the functor TZ-{:d} in the category of inductive systems of topological
spaces, the condition (DPA) holds only in a certain restricted subcategory. So
we look for a better version of inductive limit for which the condition (DPA)

holds in much wider subcategory. In Section 7 of [6], we take the category of
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uniform spaces and propose a variant 7.4 of 77X ,, under a condition called
(wPTA), but an essential progress has not yet been achieved.

This paper is organized as follows.

In Section 1, we discuss some generalities and show several examples about
the condition (DPA) for inductive systems of topological spaces. Among other

things, the product topology 7:X, x 77, on X x Y is characterized as the

strongest product topology such that = TZ_)éde (Theorem 1.3). We propose
Problems A, B and C for inductive systems of topological spaces.

In Section 2, inductive limits topologies in various categories are discussed,
especially about locally convex vector topology Tl{cz}. Taking spaces of test
functions, we give examples of inductive systems of topological algebras or
similar ones for which multiplications in the limit algebras or so are continuous
or not continuous. Problems D, E and F are proposed in relation to these
subjects.

In Section 3, we discuss about relations between the Bamboo-Shoot topol-

ogy Tgfg} and locally convex topology Tl{*}. Further the condition (DPA) is

proved to hold, for the extended Bamboo-Shoot topology Tég} for inductive

systems of topological groups, and also for locally convex vector topology Tl{;}
for inductive systems of LCTVSs. Relatedly, Problems G and H are proposed.

In Section 4, sufficient conditions for (DPA) are discussed for inductive
systems of topological spaces. This is a half of Problem A. Here the local
compactness and the sequential local compactness play a decisive role.

In Section 5, the case where X is an inductive limit space lim_, X,, and Y’
is a fixed topological space, is treated. These are discussions about Problem B.

In Section 6, necessary conditions to have the condition (DPA) in the case
of topological spaces are discussed. This is the other half of Problem A.

A previous version of this paper has appeared in [6], and a summalized
version in [7].

1. Inductive limits and direct products

1.1. Preliminaries

Let us consider an inductive system in a certain category C, of topological
spaces, of topological groups, of topological vector spaces, or of topological
algebras, etc., as

{(XQ;TXQ),OZ S A; ¢6,aaa j ﬂvaaﬂ S A},

where the index set A is a directed set, each X, is an object in C with topology
Tx,, and ¢g ., is a (continuous) homomorphism X, — Xz in C satisfying the
consistency condition: ¢~ g0 ¢g o = ¢y, for any a < g <.

Then, on an inductive limit space X := lim_, X, we define the corre-
sponding algebraic structure. On the other hand, we have also an inductive
limit topology, denoted as lim_, 7x_ or simply as Tiifd, in which a subset D of
X is open, by definition, if and only if ¢, (D) C X, is open in 7x_ for each
« € A. Here, ¢, denotes the canonical homomorphism from X, to X.
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In this paper, we study about the harmonicity of the limit topology 7;X,
with the algebraic structure on X. Furthermore, we consider an appropriate
variant of 7'2-)5 . in each category C (denote it by T(‘:X provisionally here) and study
various kinds of harmonicity.

Meantime, as is explained in Introduction, we find that one of the im-
portant points of discussions is the problem of commutativity of (1) taking
the inductive limit 75 and (2) taking direct products. This commutativity
is expressed symbolically as 75 x 77 = 75°Y ) for two inductive systems
{(Xa,7x,),a € A} and {(Y,, 7y, ), € A} with Y =lim_, Y.

More in detail, let us explain our problems in the following.

1.2. Inductive limits of topological groups

Let {(Ga,7a,); o € A} be an inductive system of topological groups with
a directed set A as index set. Here 7, denotes the group topology on G,
and we are given an inductive system of continuous group homomorphisms
Danar; Gay — Gay(a1,a2 € A1 = o) satisfying dos,as © Pas,en = Pas.an
for 1 = as X a3. Put G := lim_, G, and Tﬁd = lim_, 7¢_ the inductive
limit of groups and that of topologies respectively. Then, as seen in [9], the
multiplication G X G 3 (g,h) — gh € G is not necessarily continuous with
respect to the inductive limit topology Tz%d, or more exactly, with respect to
(T8 X Tinas Tha)-

Inspired by this rather critical phenomenon, we start in this paper to study
the inductive limit topologies in detail in more general setting.

1.3. A continuity criterion

Let {(Xa,7x,); @ € A} be an inductive system of topological spaces, and
take another inductive system {(Z,,7z,);a € A} of topological spaces with
the same index set A and with an inductive system of continuous maps ¢r,, ,, :
Zo, — Za,- Then, assume that we are given a system of maps F, of X, to Z,
for o € A which is consistent in the sense that Fi, 0 ¢ay.ay = @y 0, © Fa, for
a1,a9 € A a1 = as. Then this system induces a map F : X — Z :=lim_, Z,
such that F o ¢, = ¢/, o F,,(a € A), where ¢, (resp. ¢,,) denotes the natural
map from X, to X (resp. Z, to Z), continuous with respect to (7x,,7i,)

(resp. to (7z,,7%,)). Furthermore the following fact is easy to prove.

Lemma 1.1.  If every map Fy : Xo — Zo is continuous in (Tx,,,7z.,)
for a € A, then the induced map F : X — Z is continuous in (15X 4,72 4)-

Let us apply this lemma to the above case of inductive limits of topological
groups, by setting

(onvTXa) - (Ga X GavTGa X TGa)a (ZaaTZa) - (GayTGa)a

and F,, : X, — Z4 a8 Fu(9a, Pa) = gaha. Then, since 7¢_ is a group topology
on G, the map F,, is continuous for each o € A, and so, as their natural limit,
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the multiplication map F(g,h) = gh of X = G x G to Z = G is continuous,
by Lemma 1.1, with respect to the topologies TZ%?G = lim_, (¢, X 7¢,) on
GxG=Xand 75, :=lim_7g, on G=Z.

Remark 1.1.  For an inductive system {(X,,7x,);o € A}, we may
assume without loss of generality that ¢, : X, — X is an injection, or X, C X
for a € A, replacing X,, by its image X/ := ¢,(X,) if necessary. In that case,
the quotient topology 7x/ of 7x, is attributed to X/,. For some problems, it is
also possible to take the relative topology 7x|x: for X/ C X.

Note that when a directed set A is countable, there exists a sub-directed-set
isomorphic to N or to {1,2,... ,k} C N which is cofinal to A.

1.4. Direct products of inductive limits of topologies

On the other hand, it is easy to see the following fact for the direct prod-
uct of inductive limits of topologies. Take two inductive limits of topological
spaces (X, 775,) = (lim_, X,,lim_, 7y, ) and (Y,7} ;) = (lim_, Y,,lim_, 7y, ),
and consider their direct products.

Proposition 1.2.  The product space X XY is naturally identified with
the inductive limit space lim_, (X, X Y,,). On this space the direct product of
inductive limit topologies T:X ; x 7Y = (lim_, 7x_) x (lim_, 7y, ) is weaker than
or equal to the inductive limit of product topologies Ti)fwfy =1lim_, (7x, X 7v,),
or in a symbolic notation, X, x ¥, < XY In particular, for a subset of
product type D x E C X XY, it is open in the former topology if and only if

so 1is in the latter.

For an inductive limit of topological groups G := lim_, G, taking into
account the above result cited in Section 1.2, we see from Lemma 1.1 that, in
the case where the multiplication G x G 3 (g, h) — gh € G is not continuous
with respect to 75, the product topology 7& , x 75 ; should be strictly weaker
than the inductive limit topology TS@G = lim_, (rq, X 7¢,). Thus we come

naturally to the following problem.

Problem A. Let the notations be as above. Then, give a mecessary

and sufficient condition for the equivalence of two topologies er X TYd and

m m
XY = lim_, (1x,, X Ty,) on X x Y, where (X,7%,) = (lim_, X,,lim_, 7x,)
and (Y, 7} ;) = (lim_, Y, lim_, 7y, ).
This is, in a sense, the problem of commutativity of two processes: (1)

taking inductive limits and (2) taking direct products, for two inductive systems
of topological spaces. This is the problem on the condition (DPA) for Ti{:j .
Remark 1.2. It is sufficient in general to treat the case where the index
sets for two inductive systems are the same. In fact, in case where the second
inductive system has another directed set B as its index set as {(Yg, 73); 8 € B},
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then consider the direct product I' = A x B with the order (o, 3) < (¢/,3)
defined by a@ < o and 3 < (3. Take a sub-directed-set A’ cofinal to I', and put
for v = (o, 8) € A, X, = X,,Y, = Y. Then we come to the case where two
inductive systems have the same index set A’.

1.5. Examples and further problems

Let us examine the simple example, Example 1.2 in [9], from the stand
point of general topology.

Example 1.1. Let G, = F" x Q,F =R, Q or T with the usual non-
discrete topology 7, for n € N. Then, G = lim_ G,, = ([[' F) x Q, where
[T’ F denotes the restricted direct product of countable number of F’s. The
multiplication on G is not continuous with respect to ng =lim_, 7¢,. Hence,
Tz%d X Ticrid = TZ%ZEG

Furthermore, considering G,, as a topological space and express it as a
direct product of two spaces as X,, x Y, with X,, = F™,Y = Q. Then, X :=
lim_, X,, = lim_, F* = H’F, and we see that the direct product topology
X, X Ty is strictly weaker than ;% X¥ = lim_, (7x, x Ty) at every point of
X x Y, by reexamining the proof in Example 1.2 in [9] for non-continuity of

the multiplication on G.

In the above case, the topological space Y is fixed, and so the following
problem is also important to study.

Problem B.  Let (X,77,) = (lim_, X,,lim_, 7x_) be an inductive limit
of topological spaces and (Y, Ty) a fized topological space. Then, give a necessary
and sufficient condition for the equivalence of two topologies X, x Ty and

XY = lim_, (1x, x Ty) on X x Y.

The former Problem A contains this Problem B, but it is worth to study
Problem B by itself. We may expect that a solution to Problem B helps to
solve Problem A. However the situation is not so simple that Problem A is
reduced to Problem B, because, for instance, the topology 7y cannot be in

general recovered from the system 7y, = 7y |y, , as shown in the next example.

Example 1.2. Let (Y, 7v) = (R, ), where 7 denotes the usual topol-
ogy on R. Let number all the elements of Q as {q1,¢2,¢s,...}, and put
Y,=\QU{q,q,. .. ,q.} forn=1,2,.... We give a topology Ty, as the
restriction of 7y onto Y,,. Then, we recover the original space Y as lim_. Y,
but how about the topology 7y on Y? Can we recover it as the inductive limit
7y, = lim_ 7y, ? The answer is no: 7y < 7., More exactly we know the
following.

(i) For any subset D C Q, theset Y\ D = (Y \ Q)L (Q\ D) is 7} ;-open.

(ii) A fundamental system of 7} ,-neighborhood of y € Y is given by a
family {y} U ((y — e,y +€) N (Y \Q)),e > 0. Here (a,b) denotes an Tg-open

interval of R determined by a and b.
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(iii) 7Y, induces on Q C Y the discrete topology. The 7 ,-closure of Y\ Q
is Y, and that of Q is Q itself.

As a peculiar fact about the topology 7y, , we note that no points of Y,
have compact neighborhoods.

This kind of phenomenon is interesting to study and we propose the fol-
lowing problem.

Problem C. Let (Y,7y) be a topological space and {(Yy, Ty, ); 0 € A}
be an inductive system of topological spaces such that Y, CY andY =lim_ Y,
as sets. Assume that the restriction Ty |y, of the topology v onto Yy, is equal
to 1y,. Then, 7y = 7Y, := lim_ 7y,. Look for a necessary and sufficient
condition for the equivalence of these two topologies on'Y .

1.6. A characterization of the product topology Tiifd X Ti};d

For the product X xY of two inductive limits of topological spaces (X, 75 ;)

= (lim_, X,,lim_, 7x_) and (Y, 7} ;) = (lim_, Y,,lim_, 7y, ), we have by Propo-

XXY |

o . . X Y I
sition 1.2, the relation 7,3, x 7,0 , = 77 7% = lim_, (1x, X Ty,).

Further we can characterize the product topology as the strongest topology
on X x Y among direct product topologies weaker than TZ-);;Y. More exactly,

we have the following.

Theorem 1.3.  Let 7% and 7y be topologies on X and Y respectively
such that 7% x 79 < XY Then, Th < 75, T < 7Y, and so T x T4 <

X v in in
Tind X Tind-

Proof. Let D C X be an open subset in 75%. Then, D x Y is open in
7X %Y by assumption. So, for any o, (D x V)N (X, x Ya) = (DN X,) x Yy
is open in 7x_ X Ty, , whence, D N X, is open in 7x,_. Therefore D is open in

X
Tind- ]

The above facts evoke studies on inductive limit topologies in various kinds
of categories, such as the Bamboo-Shoot topology 755 in the category of topo-
logical groups in [9] and its generalization, the locally convex vector topology
in the category of locally convex topological vector spaces, and so on.

We will discuss on them in the succeeding sections.

X
Tlew

2. Inductive limit topologies in various categories

As noticed in Sectoin 1.2, for an inductive limit G = lim_, G, of topological
groups G,,n > 1, the multiplication map is not necessarily continuous with
respect to the inductive limit topology Tﬁ; 4 =lim_ 7¢,. So we have introduced
in [9] a so-called Bamboo-Shoot topology Tgs on G as the strongest group
topology =< 7&,, under the condition (PTA) on the inductive system {G,}.
Concerning these subject we will discuss in the next section.
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In these respects, it is also natural to ask the similar question for other
topological algebraic objects, such as topological vector spaces (= TVSs), topo-
logical semigroups, topological rings, and topological algebras etc.

2.1. Case of locally convex topological vector spaces

A good category of TVSs is the category of locally convex topological
vector spaces (= LCTVSs) over a field F = R or C. In that category, we know
well how to define an inductive limit of topologies.

Let {(Xa,7x,); € A} be an inductive system of LCTVSs with ¢u, 0, :
Xoy = Xays 01,00 € A, 1 X a9, a homomorphism in the category of LCTVSs,
that is, a continuous linear map. On the vector space X = lim_, X,, we
consider a locally convex vector topology as in the following definition.

Definition 2.1.  On the limit space X = lim_, X,, of an inductive sys-
tem { X, } of LCTVSs, a locally convex vector topology, denoted by lev-lim_, 7x_
or 7%, is defined as the one for which a fundamental system of neighborhood
of the null element 0 is given as {U C X ;Ti)n(d—open, convex, balanced (i.e.,
Az € U for x € U, )\ € F,|\| < 1), and absorbing} (cf. [12, I.1, Definition 6,

p. 27)).

For discussions in the following, it is better to introduce a simple charac-
terization of neighborhoods of 0 € X, which is taken as the definition of the
neighborhood system of 0 € X in [10, Section 13, p. 126].

Lemma 2.1. Let X = lim_, X, be the inductive limit of an inductive
system {Xa}aca of LCTVSs. In each X, a neighborhood of 0 € X,, contains
by definition a convex, balanced, absorbing, open set. Then, in the lcv-limit
topology 77X, a subset V. C X is a meighborhood of 0 € X if and only if each
oY (V) C X, contains a Tx, -neighborhood of 0 € X, where ¢, denotes the
cannonical homomorphism of X, to X.

A proof of this lemma can be found for instance in [6].
We propose the following problem.

Problem D.  Assume that every space X, in an inductive system of
LCTVSs has an additional structure or operation of the same kind, which in-
duces as its inductive limit such a structure or an operation on the limit space
X = lim_, X,. Is this structure or operation consistent with the lcv-limit
topology i~ ?

2.2.  Multiplication or product in an inductive system

Let us first consider two concrete cases to show what kind of things we
want to study.

Let M be a non-compact differentiable manifold, and M,, / M,n > 1, be
an increasing sequence of relatively compact, open submanifolds such that the
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closure M,, is contained in M, 1. The space of complex-valued test functions
(C*°-functions with compact supports) on M, denoted by D(M), is a LCTVS
obtaind as an inductive limit of the inductive system X,, = D(M,) := {¢ €
C>(M);supp(¢) C M,},n € N. Here D(M,,) is topologized in a usual manner
by means of a countable number of seminorms.

Let us consider two kinds of operations in X = D(M). First one is the
pointwise multiplication 7' : X x X — X, given as T'(¢1, v2)(p) = ¢1(p)p2(p)
(p € M), and the second one is the convolution T'(y1, v2) = @1 * 2 in the case
of M = R¥. We ask if they are continuous or not in (7;5, X /5, Tix,)-

Note that, for the first T, supp(p1p2) C supp(¢1) Nsupp(psz), and so it
maps X, X X, into X,,. On the other hand, for the second 7', supp(p1 * ¢2)
becomes bigger and is in general comparable to supp(¢i1) + supp(yp2), and so
T maps X, x X, into X,y with a §(n) > n.

2.2.1.  Continuity of the multiplication in D(M)

Proposition 2.2.  In the space of test functions X = D(M), the multi-
plication map T(p1,2) = P12 is continuous in (775, X Tix,, Tiv,)-

Proof. First choose a sequence of open, relatively compact submanifolds
M, ,/ M as above, and put X,, = D(M,). We consider X = D(M) as the
inductive limit of the system {Xo,_1},>1, that is, X = lim_, Xo,_1, and use
{Xon}n>1 as auxiliary assistants.

For each n, choose a function w, € X, such that w, = 1 on Ms,,_; and
supp(wy) C Mas,. Then, w,p = ¢ for p € X5, 1, and w,Y € Xs, for any
Y eX.

Now take a convex 775 -neighborhood U of 0 € X. Then, define a 7x,, -
neighborhood Vs, of 0 € X5, by induction on n in such a way that T'(Va,,, Vay,)
C UNXa, by the continuity of T'| x,, x x,,, and that w;Vs,, C Va; for 1 < j < n.
Put Vap—1 := V2,NXay—1 and V = Conv (U, >1Va,—1). Then, since VN Xa,_1 D
Vap—1 forn > 1, V is a neighborhood of 0 € X in 7% :=lim_, 7x,,_, by Lemma
2.1.

We prove T'(V, V) C U, which shows the continuity of T in (15, X 775, Ti5,)-
Take ¢,1 € V. Then,

Y =o1p1 + QP2 + - mPm, Y = i1 + Boba + - + B,

with Q > O’Zlﬁjgm a5 = 1,(pj S ngfl and G > 0721§k§mﬂk = 1,9y €
Vaor_1. Since

=3 ;B - o, D aib =1,
gk 4.k
it is enough for us to prove ;1 € U for each j, k.
(a) In case j =k, QDjl/)j = T(Qﬁj,wj) S T(‘/Qj_l, V2j—1) cUn X2j cU.
(b) In case j < k, ngil}k = goj(ijk) S ng,lng - VQjVQj cUn X2j C
U. O
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2.2.2. Continuity of the convolution in D(RF)

Proposition 2.3.  In the space of test functions X = D(R¥), the con-
volution map T (p, 1) = p x 1 is continuous in (Tjs, X Tjs, Tixy)-

Proof. Let M = RF. For n > 1, put

M, ={z = (z1,22,...,2,) € M;|z| <n} with |z|]= max |z,
1<i<k
and X,, = D(M,,). The convolution is given by

To.)(@) = ¢ 0@) = [ oo —u)vl)iy

and maps X, X X, to Xppm.
Take a convex, balanced, closed neighborhood W in Tl)c(v of 0 € X. Then,
for any n > 1, there exists a 7x,, -neighborhood Us, C W N Xa,, given as

Uz = {p € Xopn; sup |D’p(x)| <e,5=(s1,52,...,5k), 5| < kn},

€ Moy,

, 0
with DS:DTIDSZ‘”DZ’C’DZ-:%,‘5‘1814*824*"'4»816.
i

Put, for y € M, py(z) := p(x — y). Then, for any ¢ in U, N X,,, a
Tx, -heighborhood of 0 € X,,, we have

Yy €Usp CWNXy, for yeM,.

On the other hand, put
Vo i =Usp, N X, N {<p € X,/ lo(x)|de < 1} .
RF

Then, V,, is a 7x,, -neighborhood of 0 € X,,. By Lemma 2.1, V' = Conv (Un21 Vn)

is a 7 -neighborhood of 0 € X. We assert that T(V,V) C W.
To prove this, take p,1 € V. Then,

© = a1p1 + agP2 + -+ + U Pm, V=011 + Baha + - + B,

with a; > 0,300, 05 = Lig; € Viand B > 0,314, B = L0k € Vi
Since

T(@»¢)=@*¢=Z%‘5k'<ﬂj*¢k, Z%‘ﬁk:L
Tk

gk

and since W is convex, it is enough for us to prove ¢; * ¢, € W for each j, k.
So, take ¢ € V;,9 € V}, and assume j > k. Then,

T(p, ) = /W oy (@)(y)dy, /W (y)ldy < 1,
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and ¢, € W N Xy;. The element T(p,1) € Xy; can be approximated in the
topology 7x,, by Riemann sums for the integral in y. Since the integral of
|(y)| is less than 1, and since W N Xy, is convex, balanced and closed, every
Riemann sums belong to W N X, and accordingly their limit function (in z)
T(p,v) belongs also to W N Xa;.

This proves that T'(V,V) C W and so the continuity of the map 7. O

2.2.3. General case

In the above two cases, multiplications T are both commutative, but in
the above proofs the commutativity is not important but the special structure
of the space D(M) is fully used. So, the proofs can not be generalized directly
in the following general situation.

Problem E.  Assume that an inductive system {Xo; o € A} of LCTVSs
has multiplications, consistent in the sense that, for any «, there exists a B(c)
such that Ty, : Xo X Xo — Xp(a) 18 a continuous bilinear map, and that, for
any o1, 0 € A, there exists a v € A such that v = o, B(y) = B(a;),j = 1,2,
and Ty,’s are naturally induced from T,. Then the system {Tu} induces as its
inductive limit a multiplication T on X =lim_, X,.

Is the limit map T continuous with respect to tix, = lev-lim_, 7x, ?

2.3. Multiplication map between two spaces of test functions

Let M and M’ be two differentiable manifolds. We assume that at least
one of them, say M’, is non-compact.

The space of testing functions X = D(M) is equipped with a locally convex
vector topology 7%, where 75 = Tx the usual C*°-topology in the case M is
compact, and 74 = 775, = lev-lim_, 7x, with X,, = D(M,) as above in the
case M is non-compact. The space Y = D(M’) is equipped with the lev-limit
topology 7%, := lev-lim_, 7y, with Y,, = D(M},), where {M},n=1,2,...}isa
sequence of relatively compact open submanifolds such that M/ C M/, and
M’ = U,>1M],. We can give to the product space X xY = D(M) x D(M’) the
lev-limit topology 77" which is equal to lev-lim_, (1x x 7y, ) if M is compact,
and to lev-lim_, (7x, X 7y, ) if M is non-compact.

Now put Z := D(M x M’). Then, we ask if the multiplication (or product)
map T': X xY — Z, given as T(p,¢)(p,p") = v(p) - ¢(p), p € M, p’ € M',
for ¢ € X, 9 € Y, is continuous with respect to (7% x 7%, 7Z,)-

This time, the answer is definitely no, as is seen from the following.

Theorem 2.4. Let M and M’ be two differentiable manifolds. Assume
that one of them, say M', is non-compact. Then, the multiplication map T :
D(M) x D(M') 5 (¢,9) — @ -9 € D(M x M') is not continuous in (7% X
s T2s), where X = D(M), Y =D(M'), Z = D(M x M'), and 75 = 7x or
Th = Tl‘)c(v according as M is compact or not.

Proof. Let us prove the discontinuity in (7% x 7%, 77,). To give a com-
mon proof irrespective of whether M is compact or not, we consider even when
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M is compact a sequence of submanifolds M; C M, C --- such that M,, = M
for n > 2.

Let k = dim M and consider I;* with I; = (—1,1) C R, open interval. We
choose an open submanifold M; C M contained in a co-ordinate neighborhood
in such a way that, through an appropriate co-ordinate map, M; is mapped
onto I;* and its closure M; is mapped onto J,*, where J; = [-1,1] C R, the
closure of I = (—1,1). For simplicity, we identify M; with I;* and M; with
J1*. Take a sequence of open submanifolds M,,,n > 2, M,, /' M, appropriately
in case M is non-compact, and put (M x M’),, = M,, x M/ . Then, we are now
given X,, = D(M,,),Y,, = D(M),) and Z,, = D(M,, x M), noting (M x M'), =
M,, x M!. The topologies TZ)C(,U, Tl};, and TZ%U are respectively defined by these
inductive sequences. Note that when M is compact, the inductive sequence
Xp,n=1,2,..., is superfluous and X,, = X and 7y, = 7x for n > 2 and 775,
is nothing but 7x.

Put E; = (My x M/, ;)\ (M; x ﬁj’) C M x M’, and consider a subset W

j+1
of Z=D(M x M') given by

Wi={weZ sup |DIM'w(z,y)<1 (j=1,2,3,...)} with D, = i,
(z,y)EE; ory
where x = (z1,72,... ,23) € My = J1¥,y € M’. Then, W is convex, and for

any n, W N Z, is 7z, -open. Hence, W is a Tlfv-open neighborhood of 0 € Z.
Assume that the map T : X x Y — Z is (15, x 7Y, 77, )-continuous.
Then there exists a Tl)c(v—neighborhood Uof0e X and a Tllc/v—neighborhood Vv
of 0 € Y such that T(U,V) C W. For UnN X, with X; = D(JJ), there exist an
m € N and an € > 0 such that, for an element ¢ € X; = D(JF), the condition

sup |[D1°1D5? - Difg(x)| <e (0<s;<m(1<i<k)) with D;= o
we ¥ Ox;

implies that ¢ € UNX;. For this m, consider VNY,, 11 with Yy, 41 = D(M], ),
then for some v € VNY,,41,

1 := sup {Iw(y)\;y € Myyi \M{n} > 0.
Thus we get, for any ¢ € X; satisfying the above condition, the evaluation

n- sup |[Di"™Tle(z)| < sup (DT {p(x)v(y)}| < 1.
—1<z;<1 (z,y)EEm,

This implies that, for any ¢ € X; = D(JF), there holds the following inequality

1
sup |D;"Mo(z)| < —- max sup |D1°t* D92 -+ - D%k ¢(x)],
—1<z:<1 €1 0<s;<m(1<i<k) zeJk

for any x € supp(¢) C J1*. This is clearly not true.
This means that 7' is not continuous in (7% x 7%, 772,)- O

Taking into account Propositions 2.2, 2.3 and Theorem 2.4, we propose
the following problem.
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Problem F.  Tuake three inductive systems of LCTVSs {(Xa,Tx,); o €
A}, {(Ya, v, ) € A}, and {(Za,72,); 0 € A}, and let their inductive limits
be (X,7%), (Y, and (Z,77,). Assume that, for every o € A, there ea-
ists a continuous multiplication (bilinear map) Ty : Xo X Yo — Zgo) with a
B(a) = a, which are consistent with these inductive systems so that there exists
a multiplication T : X XY — Z as their inductive limit. Then, under what
conditions, T is continuous in (Tis, X Ty, Tiy) ?

The bilinear map T : X x Y — Z is factored through the natural map
X xY — X®Y, and similarly for 7,,’s. So we can ask also about relations
with topologies on the tensored spaces X ® Y and X, ® Y.

Remark 2.1. In comparison to the so-called kernel theorem for dis-
tributions (cf. [10, Theorem 51.7]), we give some remarks. In the situation
in Theorem 2.4 with M’ non-compact, take a distribution S on M x M’ or
S € D'(M x M'). Then the bilinear functional D(M) x D(M’) > (p,¥) —
S(T(¢, 1)) is not necessarily continuous in the product topology, because so is
not the bilinear map T': D(M) x D(M') — D(M x M').

By the same reason, the natural imbedding map from D(M) Q. D(M’)
(=2D(M)Q.D(M') thanks to the nuclearity) to D(M x M') is not continuous.
However, the e-topology on this imbedded subspace, which coincides with -
topology due to the nuclearity, is strictly weaker than the restricted tgpology T
from D(M x M'), as is easily seen. Nevertheless its completion D(M)Q D(M')

= D(M)@WD(M’) is just equal to D(M x M') as a space (cf. [4, Article 125]).

2.4. Spaces of finitely many times differentiable functions

Let r be a non-negative integer and M’ is a non-compact C("-class dif-
ferentiable manifold. Let us consider the space ¥ = C(ST)(M ") of C("-class
functions with compact supports. For » = 0, Y is nothing but the space of
continuous functions with compact supports.

To topologize Y, we take a locally finite covering {U;;1 < j < oo} of YV’
such that the closure U; of every Uj is contained in a coordinate neighborhood.
For each Uj, identifying it with the corresponding domain of coordinates y =
(Y1,Y25 - -+ > ye), £ = dim M', we define a seminorm py, (h) for h € Y by

pu,(h) ==Y sup [D'h(y)],
jtj<r YU

where t = (t1,ta,... ,tp), |[t| =t1 +ta + -+ + 4, and

0

Dt = D" D2 ... Dt with D; = —.
y;

Moreover put for h € Y,

IRl =Y~ pu, (h).

1<j<00
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Then, the summation on the right hand side is actually finite, and ||h|| gives a
norm on the space Y. The topology on Y defined by this norm is denoted by
.
H Now take a sequence of open, relatively compact submanifolds M; C M} C
- as above. For the subspace Y;, = C(") (M), we restrict the norm || - || on it,
then Y,, becomes a Banach space. Denote by 7y, its topology and consider the
lev-limit 7Y, :=lev-lim_, 7y, on Y. Then 7, does not depend on the choices of
{U,} and {M] }, and it is strictly stronger than the norm topology T‘?./” because
M’ is non-compact.

Let Z = C’éoo’r)(M x M') be the space of functions f(z,y) in (z,y) €
M x M, which is simultaneously of class C(°) in z € M and of class C(") in
y € M’, and compactly supported. We can topologize it in two ways.

The first way is to utilise sequences (M x M'), = M,, x M/ and Z,, =
O (M, x M}) to get the lev-limit 77, := lim_, 75, .

The second way is to utilize sequences M,, x M’  non-compact, and Z; =
CC(OO’T)(E x M'"). We equip Z, the topology 7z: given by the usual way in the
variable x € M,, and by the norm || - || in the variable y € M’ using as above a
locally finite covering U;,1 < j < oo, of M' and evaluating derivatives in y up
to the degree 7. Then we get another lev-limit 777, . := lev-lim _, 7z, .

On the space Z, the first topology is strictly stronger than the second one:

Z Z
Tlcv,T = Ticv

For the continuity of the multiplication map 7T : X XY — Z, we can
choose two kinds of topologies both on Y and on Z. However, for any choice of
topologies, the map T is not continuous, as stated in the following theorem. A
proof of it can be given by word for word interpretation of the proof of Theorem
24.

Theorem 2.5. Let M be a differentiable manifold and M’ be a non-
compact C")-class manifold for some r, 0 < r < co. Put X = D(M),Y =
Cc(r)(M') and Z = Céoo’r)(M x M"). Then, the multiplication map T : X XY >
(p,9) = - ¢ € Z is not continuous in (Th X Tjr,, Ty ), where Tx = 7x if M
is compact, and T = 7% if M is non-compact.

Remark 2.2.  In general, take two inductive systems of LCTVSs {(X4,
Tx, ;o € A} and {(Ya, v, );o € A} and put X =lim_, X,,, Y =lim_, Y,,. The
direct product of these systems is defined as {(Xq X Ya, Tx,_xv, ), @ € A} with
TX,xY, = TX, XTy,. Then its inductive limit is isomorphic to the direct product
X x Y as vector spaces, and as topologies on this space, Tlfv X T}C/,U = TI)C(UXY :
lev-lim_, 7x_ xv, -

Actually these two locally convex vector topologies on X X Y are mutually
equivalent as will be proved in Theorem 3.4.
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3. Bamboo-Shoot topology 754 and locally convex topology 7;%

3.1. Bamboo-Shoot topology for PTA-groups

For an inductive system of topological groups {(Gu,7q, ); @ € A}, assume
that the index set A is cofinal to a sub-directed-set isomorphic to N. Then we
introduced in [9, Section 2] a condition called (PTA), and under this condition,
we defined the so-called Bamboo-Shoot topology T5¢ on G = lim_, G,, and
proved that it is the strongest one among group topologies weaker than or
equal to the inductive limit topology ng on G.

For later use, we refer these things here. Assume that A = N. For an
inductive sytem {(G,,7q, );n € N}, let ¢, : G,, — G be the canonical homo-
morphisms. Then, we define

ConDITION (PTA). Fiz an n € N. For any 7¢, -neighborhood U of the
identity element e, of G, there exists a 7q, -neighborhood V.C U of e, € G,
symmetric (i.e., V=1 = V), and satisfying that, for any m > n, and for any
Ta,, -neighborhood Wy, of ey, € G, there exists a 71¢,, -neighborhood W/ of
em € G such that ¢m(W7{n)¢TL(V) - ¢7L(V)¢771(W7n)-

In the case where the condition (PTA) holds, the Bamboo-Shoot topology
79 on G = lim_, G,, is defined as the group topology for which a fundamental
system of neighborhoods of the identity element e € G is given by the family
of subsets of the following form: for a system {Uj; j € N} of 7g,-neighborhood
of e; € Gy, put for k € N,

Ulk] :== U5, U(n, k) with

3.2. Bamboo-Shoot topology and locally convex topology

The group topology 7S¢ has an intimate relation to the locally convex
vector topology Tl)c(v as in the following problem.

Problem G. Let {(X,,| - |ln);n € N} be an inductive system of Ba-
nach algebras. Then X = lim_, X,, has naturally a structure of algebra. Take
an inductive system of topological subgroups G, of (X;;,TX:;) the group of all
invertible elements in X,, with the restriction Ty x of || - [[n-topology on X7
In the case where the condition (PTA) holds, what is the relation between the
Bamboo-Shoot topology 75¢ on G = lim_, G,, and the restriction 15 | onto G

of the locally convex vector topology v, ?
In [11], A. Yamasaki studied the following two cases.

Case 1. X, = M(n,C), the algebra of all n x n matrices over F = C,
and G, = GL(n,C). Their limit is G = GL(o0, C).
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Case 2. X, = M(n,A) with A = C(D, C), the algebra of all C-valued
continuous functions on a compact space D, and G,, = GL(n,A). Then, their
limit is G = GL(o0, A).

In both cases, the algebras X,, are Banach algebras and all the homomor-
phism ¢,, ,, are norm-preserving isomorphisms. According to his results,

in Case 1, Tgs = Tﬁid and it coincides with the restriction TZ§U|G, and

in Case 2, 755 < 7¢ , and 7§ = 7% |. Further it is proved that (G, 755)
is isomorphic to C(D, GL(c0, C)) as topological groups.

Recently, T. Edamatsu [3] studied the general case where all the ¢, ,, are
norm-preserving isomorphisms, and proved that these two kinds of topologies

coincide with each other: Tgs = TZ§U|G, for G, = X,,*,n > 1.

Slightly generalizing the above problem, we can propose the following one.
Let {(Xn,7x,);n € N} be an inductive system of topological algebras. Then
X =lim_, X,, has naturally an algebra structure.

Problem H.  Assume that every (X,,7x, ) is locally convex as a TVS.
Then, with the locally convex limit topology Tlfv, does the algebra X become a
topological algebra?

Furthermore, let G, := X,* be the set of all invertible elements in X,,.
Then, G, is a topological group with the relative topology 7, = 7x,|c,,, and
they form an inductive system of topological groups. Then, under the condition
(PTA), what is the relation between the Bamboo-Shoot topology Tgs on G and
the restriction Tjx | onto G of the locally convex limit topology 77%, on X ?

Here, since the scalar multiplication for X is continuous with respect to
Tl)fv, the problem is reduced to the continuity of the product map: X x X 3>
(.Tl,.lﬁg) — r1x9 € X.

We also remark here that studies in different directions on inifinite dimen-
sional Lie groups, containing the theory of their representations, are continued
for example in [2] and in [§].

3.3. Coincidense of topologies Té§7+) and Tl)c(v

For an inductive limit space X = lim_, X, in the category of LCTVSs,
assume that the index set A has a countable cofinal subset, then A contains
a cofinal subset isomorphic to N, and replacing A by the latter one, we may
assume from the beginning A = N (cf. Remark 4.1).

In that case, we have another limit topology Té§7+) other than Tl)c(v, when
every X,,n € N, is considered as an additive group forgetting scalar multi-
plication. In fact, since X,’s are abelian groups, the condition (PTA) holds
automatically, and so the Bamboo-Shoot topology T](;;’H can be defined for
this additive group structure.
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Proposition 3.1.  For a countable inductive system of LCTVSs, there

holds Té§7+) = Tl)c(v on the limit space X =lim_, X,,.

Proof. Note that ng’ﬂ is characterized as the strongest group topology

among those =< ngw and that the addition is continuous with respect to Tl‘)c(,u.
Then, we have Tl)c(v = Té§7+).

On the other hand, we see from the definition that a base of Tg;’H—

neighborhood of 0 € X is given by the family of sets of the form J,,~,(U1 +
Uy + -+ + U,), where every U, runs over open convex Tx, -neighborhoods of
0 € X,,. So they are all ;X -open and convex, and accordingly ;% -open,

ind~
X,
whence Tl)C(v b T](BS +), O

3.4. Extension of Bamboo-Shoot topologies and their products

In the category of topological groups, we can extend in an abstract way the
notion of Bamboo-Shoot topology on an inductive limit group G = lim_, G, for
any (not necessarily countable) inductive system {(Ga,7c, ), & € A;¢g.q, 0 =
8.

In fact, we see easily from axioms of neighborhood system of the unit
element for a topological group (e.g., (GT1) ~ (GT5) in [9, Section 1.3]) that
there exists, on an inductive limit group G = lim_, G, the strongest group
topology under the condition that every canonical homomorphism ¢, : G, — G
is continuous. We call it the extended Bamboo-Shoot topology and denote it
again by Tgs.

In the case where the inductive system is countable and the condition
(PTA) holds for it, this topology coincides with the Bamboo-Shoot topology
794 constructed explicitly in [9], and reviewed in Section 3.1.

Lemma 3.2.  Let (K, 7x) be a topological group, and take a system of
homomorphisms ¥, : Go, — K, consistent in the sense that Wgo¢g o = ¥, for
a = B. Then, a homomorphism ¥ : G — K is canonically induced. If every
VU, is continuous in (TG, ,TrK), then, W is continuous in (TSg, Tk ).

Furthermore the extended Bamboo-Shoot topology Tgs is the strongest group
topology = ng on G = lim_, G, having this property.

In the category of topological groups, the problem similar to Problem A is
affirmatively solved as follows.

Let {(Ga,7¢,);a € A} and {(Hqa,7Th, ); o € A} be inductive systems of
topological groups. Let G = lim_, G, and H = lim_, H, be their inductive
limit groups, and the canonical homomorphisms be ¢, : G, — G and v, :
H,— H.

Then, we have the direct product of inductive systems as {(Gn X Hg,
TGaxH,); & € A} with 7¢_xpm, = Tq., X Th,. Its inductive limit is canonically
identified with the direct product G x H.
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Theorem 3.3. (i) Let G = lim_, G,, H = lim_, H,, and G x H =
lim_, (G, x H,) be as above. Then the extended Bamboo-Shoot topologies TS,

Tgs, and TGXH on G, H, and G x H respectively satisfy
e x THs = 153" on G x H.

(ii) In the case of countable inductive systems, if {(Gn,7q, );n € N} and
{(Hn,7m,);n € N} satisfy the condition (PTA), then so does their direct prod-
uct {(Gp X Hpy 7, xm,); n € N}

Pmof (i) The relation 7§g x THg < 754X follows frorn the facts that
%9 ;<I TBS gives a group topology on G x H and that TBS X TFIS = ’7' md =
7,27, because the extended Bamboo-Shoot topology 754 G Mg the strongest
gg);lg topology which is weaker than or equal to the inductive limit topology

Tind

Let us prove the converse relation. We assert that the homomorphism
G >g— (g,en) € G x H is continuous in (75s, 754 ), where ey denote the
unit element of H.

To prove this, we apply Lemma 3.2 for (K, 7x) = (Gx H, TBagH). Consider,
for each o € A, the homomorphism Go 3 go — (0a(ga),ex) € K = G %
H. Then, it is continuous in 7¢, and 7% = 755", because, by definition of
the extended Bamboo-Shoot topology ngH the canonical map G, x H, >
(Jovs ha) = (0a(9a)s Yalha)) € G x H is continuous in (¢, xm,,Tga ), and
the imbedding map G4 3 go — (9o, en,) € Go X Hy is of course continuous.
Therefore, by Lemma 3.2, we get the asserted continuity.

Similarly the homomorphism H > h +— (eq,h) € G x H is continuous in

(tHg, 755, Therefore, the map

¢:GxH> (gah) — ((gaeH),(eGah)) € (GX H) X (G X H)
is continuous in 7 égs x THs and TBS X TgSXH. Since the extended Bamboo-
Shoot topology 755" on G x H is a group topology, the product map

U:(GxH)x(GxH)>((g,h), (¢, 1)) — (9¢',hh') € (G x H)

is continuous in 7557 x 7§XH and 755, Thus the produot of maps ¥ - & :

G x H 3 (g,h) — (g,h) € G x H is continuous in 75¢ x 7Hs and 7557

This means that the former topology is stronger or equal to the latter one.

(ii) Fix n > 1, and take a 7q, x g, -neighborhood W of the unit element
(eq,.em,) € Gn x H,. Then there exist symmetric 7¢, -neighborhood U of
eg, and 7g, -neighborhood V' of ey, such that U x V' C W and that they
satisfy the following condition (by assumption). For any m > n, and for any
Ta,,-neighborhood U’ of e¢;,, and any 7p, -neighborhood V' of ey, , there exist
such ones U” and V" for which there hold

¢m(UH)¢n(U) - ¢n(U)¢m(U/) and ¢m(V")1/)n(V) - wn(v)"/)M(V/)
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Hence,

(@m X Pm)(U" x V") - (¢ X ¢pn) (U x V)
C (fn X Pu)(U X V) (i X ) (U" x V).

Since the family of neighborhoods of G,,, X H,,, of the form U’ x V' forms a
fundamental basis of neighborhoods of unit element, the above relation proves
that the condition (PTA) holds for G x H or more exactly for the direct product
of inductive systems. O

3.5. Direct product of locally convex vector topology

Let {(Xo,7x,); @ € A} and {(Y,, Ty, );a € A} be inductive systems of
LCTVSs, and put X = lim_, X,,Y = lim_, Y,. The direct product of these
systems is defined as {(X, X Yo, Tx, xv, ); & € A} with 7x_xy, = Tx, X Ty,.
Then its inductive limit is isomorphic to the direct product X x Y as vector
spaces. For topologies on this space, we already know that Tl)fv XT}C/U 2T =
lev-lim_, 7x_ xv, -

On the other hand, we have a variant of Lemma 3.2, in the category of
LCTVSs, and applying it similarly as Lemma 3.2 to the proof of Theorem 3.3,
we see that the condition (DPA) holds in general for the ‘lcv-limit functor’ TE)}
as follows.

Theorem 3.4. Let X =lim_, X,,Y = lim_ Y, be inductive limits in
the category of LCTVSs. The direct product space X x Y is identified with
the inductive limit of the direct product of inductive systems. Then, as locally
convez vector topologies on X XY, there holds the equivalence

X Y ~  XXY . __ :
Tico X Tiev = Tiew . ICV—IEH TXa XY

. . X Y XXY
Proof. It is enough to prove the converse relation 7, x 7L, = 7.7 .

The linear map ®X : X 3 2z — (2,0) € X x Y is continuous in 77X, and
72 Y. This can be shown by applying a variant of Lemma 3.2 in the category
of LCTVSs to (K, TK) = (X XY, TXXY).

lev

In fact, discussing as in the proof of Theorem 3.3, we see that, for each
a € A, the corresponding map: X, 3 xo — (¢a(x4),0) € K = X xY is
continuous in 7x, and T = Tl)c(vxy. Then the desired continuity follows from
the variant of Lemma 3.2.

Similar for the linear map ®¥ : Y 3y +— (0,y) € X x Y.

So themap ®: X xY 3 (x,y) — ((£,0),(0,y)) € (X xY) x (X xY) is
continuous in 7,5, x 72 and 775 Y x 75*Y. On the other hand, the addition
U: (XXY)x (X xY) > ((z,y),@,y) — (z+2",y+y) € (X xY)is
naturally continuous in 775" x 7Y and 7

Thus, we see that the product of maps ¥-® : (z,y) — (x,y) is continuous
in 7%, x 7% and 7,5Y. This means that the former topology is stronger or

equal to the latter one, on X x Y. This is to be proved. O
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4. Sufficient conditions for Problem A

For sufficient conditions for Problem A or B, the local compactness and
the local sequential compactness play important roles. Here we study them for
Problem A.

. sis X Y o XXY
4.1. A sufficient condition for 7;,, x 7, , ~ 777

As in Section 1.4, let

{(Xa,7x,), 0 € A; g o, < B} and

(4.1) {(YaaTYa)va € A;wﬁ,aaa = ﬂ}

be inductive systems of topological spaces and put X = lim_, X,,Y =lim_. Y,.
First let us give a simple sufficient condition for the ‘commutativity’ of (1)
taking inductive limits and (2) taking direct products, for inductive limits of
topologies. When this commutativity holds, we say that the condition (DPA)
(= Direct Product is Admitted) holds in this case.

Theorem 4.1.  Assume that A has a cofinal sub-directed-set isomorphic
to N. For two inductive systems of topological spaces in (4.1), assume that every
Xo and'Y,, are locally compact Hausdorff spaces. Then, as topologies on X XY
with X = lim_, XQ,Y = lim_, Y, identified with lim_> (Xo xYy,), the product
topology Ti),id X T, md and the inductive limit topology T, md XY= lim_, (Tx, X Ty,)

are mutually equivalent: de X }T/Ld ~ TZ):;;Y, that is, the condition (DPA)
holds.

Proof. By assumption, we may assume that A = N as directed set. Since
Y _< TXXY

Ti)n(d X Tind “a  in general, it is sufficient for us to prove the converse
relation.

Take a point (z,y) € X x Y and its TlXXY—open neighborhood O. We may
assume, for simplicity that the canonical maps ¢, : X;, — X and ¢, : ¥,, = Y
are injective, and consider X,, as a subset of X through ¢,, and similarly
for Y, C Y. Starting from a certain n = ng, we have z € X,, and y € Y,,.
Put O,, = (X, xY,)NO, then it is a (1x, X Ty, )-open set containing (x,y).
Therefore there exist a Tx, -open, relatively compact U,, C X,, and a Ty, -open,
relatively compact V,, C Y, such that x € U,,y € V,, and U, x V,, C O,.
Denote by U, the Tx,-closure of U, in X, then it is equal to the closure in
(Xm,Tx,,),m > n, and also in (X, 7;%,), because of its compactness. Similar
for the Ty, -closure V,,. We assert that the sequences {U,} and {V,,} can be
taken as U,, C Un+1,7n C Vpt1. To see this, we construct them by induction
on n applying repeatedly the following elementary lemma. Then, putting U =
Unsng Un and V = U, Vi, we get (77, i X X md) -open neighborhood U x V

of (z,y) contained in O. This proves that 775, x 77 , = 75 XY O

Lemma 4.2.  Let (Z,7) and (Z',7") be two locally compact Hausdorff
topological spaces with topologies T and 7. Let O C Z x Z' be a (7 x 7')-open
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subset and C C Z and C' C Z' be respectively T-compact and 7'-compact such
that C x C' C O. Then, there exist a T-open D D C and a 7’'-open D' D C'
such that they are relatively compact and D x D' C O, where D denotes the
closure of D.

Remark 4.1. Let A be a directed set. A subset B of A is said to be
cofinal to A if for any o € A there exists a 8 € B such that a < 3, and A is
called in [9] of fish-bone type if it contains a cofinal totally ordered subset. On
the other hand, any totally ordered set contains a well ordered subset cofinal
to it.

In the sequel, we usually treat the case where the index set A is of fish-
bone type, and accordingly we may assume from the biginning that A is well
ordered. In the set of ordinals corresponding to cofinal subsets of A, there
exists a minimum which is called the cofinality (or “caractére final” in [1, 111
p. 89, Exercise 16]) of A and is denoted by cf(A). A well ordered set A contains
a cofinal set isomorphic to N if and only if cf(A4) = wp, the first infinite ordinal.

4.2. Other sufficient conditions

We give other sufficient conditions assuming on X,, and Y,, a stronger
condition (SC) than the local sequential compactness.

Definition 4.1.  For a subset D of a topological space Z, its sequential
closure, denoted by scl(D), is defined as
scl(D) :={z € Z;3z, € D suchthat lim z, = z},

n—oo

and D is called sequentially compact if every sequence in it has a subsequence
converging to a point in D, and further Z is called locally sequentially compact
if every point in it has an open neighborhood U for which scl(U) is sequentially
compact.

Our condition (SC) on Z is defined as follows.

(SC) For every sequentially compact subset K and an open set O containing it,
there exists an open set G such that K C G C scl(G) C O and that scl(G) is
sequentially compact.

Under this condition (SC), we can give two kinds of sufficient conditions
for Problem A as follows. For the inductive system (4.1), assume that the
directed set A has a cofinal sub-directed-set isomorphic to N. Then we may
put A = N, and assume that Xy C --- C X,, C X417 C --- C X by the
identification through the canonical maps ¢,,.

Theorem 4.3. Let A =N for an inductive system (4.1) of topological
spaces, and assume that every (X,,7x,) and (Yn,Ty,) satisfies the condition
(SC). Then, in the case where they all satisfy the first countability aziom, the
condition (DPA) holds, i.e., fo; )}(/ =lim_ X, and Y = lim_, Y,,, there holds

Y ~ XY |

. X ~ 1
the equivalence ;) ; x 7,0, = 75 70 =1lm_(7x, X Ty,) on X x Y.
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Theorem 4.4. Let A = N for (4.1) and assume the condition (SC)
for every (X,,7x,) and (Yo, 7y,). Then, in the case where the system (4.1)
satisfies Tx, | |x, = Tx,, TV, |y, = Ty, forn > 1, and the condition

(Go) X, is a Gs-set of X1, and Yy, is a Gs-set of Y1, forn > 1,

XXY .

there holds for X XY the equivalence T35, X T , = T = lim_, (7x, X Ty,).

ind

Remark 4.2. If a sequentially compact normal space satisfies the first
countability axiom, then it satisfies the condition (SC). However it is not nec-
essarily locally compact as the following example shows. Let X = (0,w)N with
the usual product topology, where w is the first uncountable ordinal, (0, w) de-
notes the interval consisting of all ordinal numbers 0 < a < w, and the topology
on (0,w) is defined by open intervals (3, ) consisting of « such that 8 < a < 7.

A proof is given in [6] for that X is normal.

4.3. Proofs of Theorems 4.3 and 4.4
First we prepare the following lemmas.

Lemma 4.5.  In a topological space satisfying the condition (SC), for a
sequentially compact subset K and an open set O containing it, there exists a
sequentially compact Gs-set P such that K C P C O.

Proof. Take G in the condition (SC) as G, and define open sets G,
inductively on 7 in such a way that K C G,, C scl(G,) C G,-1 and that
scl(G,) is sequentially compact. Then, put P =1, 5, Gn =(),5;scl(Gr). O

Lemma 4.6. In a topological space, let K,k =1,2,..., be a decreas-
ing sequence of sequentially compact subsets, and O an open set. Assume
ﬂk21 K, C O, then there exists a k such that K, C O.

Proof of Theorem 4.3. Tt is sufficient to prove 7%, x 7} = Tfidxy. Take

a point (z,y) € X x Y and its TffL;Y—open neighborhood O. we may assume
(z,y) € X7 xY;. Then there exist a 7x,-open neighborhood P; of z, and a Ty, -
open neighborhood @1 of y such that scl(P;) x scl(Q1) C O with sequentially
compact scl(Py) and scl(Q1). Starting from these P, and @1, we construct
inductively on n, P, C P, C --- C P,,Q1 C Q2 C --- C Q,, satisfying for
1<i<n,

(1) P;, Q; are open neighborhoods of z,y in (X;, 7x,), (Y;, Ty, ) respectively,

(2) scl(P;) and scl(Q;) are respectively sequentially compact,

(3) scl(P;) x scl(Q;) C O.

To construct Py, Qni1, we can view C,, = scl(P,,) and D,, = scl(Q,,) as
sequentially compact subsets of (X,11,7x,,,) and (Y,11,7y,,,) respectively
since they are images of continuous maps of such subsets in X,, and Y,,. From
Cyn x D, C O, we see thanks to the first countability axiom on (X,41,7x,,,)
that, for every & € C,, there exists a Tx, ., -open neighborhood V(§) such

n+1
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that V(§) x D, C O. Put G = Ueee, V(E), a 7x,,,-open. Then, C), C
G,G x D, C O. Now apply the condition (SC) for X,,+1 and C,, C G, then
there exists a 7x,,,-open P, such that C,, C P,11 C scl(P,41) C G and
that Cp4+1 = scl(P,41) is sequentially compact in X,,11.

Similar arguments for the second component of C,, 1 x D,, C O, proves
that there exists a Ty, ,-open Qn41 C Yyp41 such that C 1 x Dy 1 C O with
Dy 41 = scl(Qn1) sequentially compact in (Y41, 7y, )-

Now put P =,»; P, @ = U,>; @n, then, Pis 7% -open, Q is 7} ,-open,

K2 7

and (z,y) € Px Q C O. O

Proof of Theorem 4.4. Take a point (z,y) € X x Y and its Tfégy—open
neighborhood O. As in the proof of Theorem 4.3, we may assume (z,y) €
X7 x Y7. This time, we construct series of sets P, Q,,Cy, D,, inductively on
n, in such a way that

(1) P, C X, is1x,-open, @, CY, is 1y, -open,and x € P, C P, C --- C
Pryy€e Q1 CQ2C - CQn,

(2) C, C X, and D,, CY,, are sequentially compact Gs-sets such that
pr,cC, Q,cD,, C,xD,cCO.

First take V(z) C X1, a 7x,-open, and V(y) C Y1, a 7y,-open such that
V(z)xV(y) C O. Then, applying (SC) for {x} C V(x), we have a 7x,-open P;
such that x € Py C scl(Py) C V(x) and that scl(P;) is sequentially compact.
Applying Lemma 4.5 to scl(P1) C V(z), we get a sequentially compact Gs-set
Cy such that scl(Py) C C; C V(z). Similarly we have two subsets @1 C Dy of
Y.

Now assume that desired subsets have been constructed until n. Then,
from the assumptions, we see that C,, (resp. D,) is a Gs-set of X, 11 (resp.
Y41). So, there exists an expression Cp, =) &>1 Wn ik With monotone-decreasing
open sets W, ;, of X,, 1. Applying the condition (SC), let us choose monotone-
decreasing 7x,,,-open Vi, C Xpq1 (b = 1,2,---) such that C,, C V, C
scl(Vi,x) C Wi and that scl(V,, 1) is sequentially compact. Suppose that they
have been chosen until £ = m — 1. Then, apply (SC) to Cp, C Viym—1 N Wi m,
and we get V,, ,, such that C,, C V., C scl(Vim) C Vim—1 N Wy, . Thus, we
have an expression of Cy, as Cp, = (i>1 Ve = (k>1 5¢l(Vi k). Similarly, we
obtain such an expression of Dy, as Dy, = (V351 Vi1 1 = N1 5¢l(V]; ). Finally,

m (sel(Vak) x scl(V,) 1)) = Cn X Dy, C O.

k>1

Then, by Lemma 4.6, there exists a k such that scl(V,, x) x scl(V}; ;) C O.
Applying Lemma 4.5 to scl(Vy, k+1) C Vo, we get a sequentially compact
Gs-set Cp4q such that scl(V, k1) C Cnt1 C Vig.
Similarly we have such a subset D,, 11 as scl(VAk_‘_l) C Dpy1 C V7§7k.
Now put Poy1 = Vi kt1, Qnt1 = V7’L7k+1. Then, P, C C,, C P11 C Cpy1,
Qn C Dy C Qni1 C Dpay, and Cpyg X Dypyy € O. Thus, finishing the

construction of P,’s and Q,,’s, we put P = Un21 P, Q= Un21 Q.. Then P

is 77X -open, Q is 7} ;-open, and (z,y) € P x Q C O as desired. O

K3
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5. The case of a fixed Y and Problem B

In the following, we study in detail Problems A and B, especially necessary
conditions for converses of theorems in Section 4. In this section, we study the
case where Y is fixed, or the case where (Y;,, 7y, ) = (Y, 7y) for any n > 1. This
is our Problem B.

5.1. Comments to converses of Theorems 4.1, 4.3 and 4.4

Statements for direct converses of these theorems contain necessarily a
global characterization such as “X,, is a locally compact space”. However, this
kind of global characterization of spaces X, and Y,, are not possible in its
nature of inductive sequences of topological spaces, and so, possible converses
should be at first stated in languages of local characterizations of these spaces.
This can be seen from the following examples.

Example 5.1. Let X = R and X,, = (—n,n)UQ with an open interval
(—n,n), where X is equipped with a usual topology 7r of R, and X,, with its
relative topology Tx, = Tr|x, . Then, no X, is locally compact, whereas so is
the inductive limit space X (cf. Theorems 5.3 and 5.5). Note that the space
(Q,7q = ™r|q) is totally disconnected and normal.

Example 5.2. LetY = H;i‘,>1 R with R, = R be the restricted direct
product of R. Put ¥, = [[{_; R = R", ¥; = ([[}2{ Rx) x Q € ¥, and
imbed Y,, into Y,,41 as Y,, 2 y — (y,0) € Y, 1. The space Y, is equipped
with the usual Euclidean metric, and the space Y, with its relative topology.
Then, Y;, is locally compact, whereas no point of Y, has a compact neighbor-
hood. However the topological space Y considered as the inductive limit of
(Yo, 7y, ),n > 1, is also equal to the inductive limit of (Y,;,7y:),n > 1, since
there is a mixed inductive system given by Y5, | :=Y,, Yy =Y, (n > 1),
Y,

which converges to (Y, Tind

Now let {X,,;n € N} be an inductive system of separable locally compact
spaces and put X = lim_, X,,. Consider two inductive systems of direct product
type as {X, X Y;(n,m) € N x N}, and {X,, x Y,\.; (n,m) € N x N}, where
(n,m) = (n',m') in N x N if and only if n < n’, m < m’. Then we get as
their inductive limits the same space X x Y. Denote by 7, ¥} and 7, X)" the

inductive limit topologies on X x Y corresponding to the first and the second

system respectively. We assert that 7,1 = 77 <Y 27X x ¥
In fact, the first equivalence is affirmed by considering a mixed induc-
tive system (Z,,7z,), n > 1, with (Zont1,72,,,,) == (Xn X Yo, 7x, X 7v,),

o / : XXY ~ X Y .
(Zon, T2,,) = (X X Yy, Tx, X Ty;). Another equivalence 7;, 7'y = 75, X 7,7, 18

guaranteed by Theorem 4.1 thanks to the local compactness of X,,’s and Y,,’s.
Furthermore, in the case the index m is fixed, as for the topologies on
limy, oo (Xn X Vi) = X x Yy, and on lim, oo (X, x Y,)) = X x Y, we get

m?
: X _ _XxYp . .
the equivalence 77, X 7y,, = 7;.; ™ by Theorem 4.1, but the inequivalence
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X X ><Y7'n .. .
Ting X Ty, < T;pq ™ by Theorem 5.3 below. In more significant notation,

(limrxn) X1y, < lim (7x, X7y, ) (m=>1),
— n—oo

(limen) X <llmTy7/n) = limmm (TX,Z X TYAL) = lim (TXn X Tyy;) .
Note also that the above order in N x N is not the lexicographic one.

The last statement in the above example shows that Problem A cannot
be reduced simply to Problem B in general, and the relation between them is
rather delicate.

5.2. A sufficient condition for 7:¥, x Ty ~ Tz{;Y

Let us now begin to treat Problem B. Fix a topological space (Y, 7y ). Put
Zn=XpnxY, 77 =7x, X7y, and Z =lim_, Z,, Tz%d =lim_, 7 . We identify
Z with X xY and 77 ; with TZ?Z;Y. We know in general 7,5, X 7y < Tfidxy, and
the problem is to guarantee the converse relation. A simple sufficient condition

is given as follows.

Proposition 5.1.  Assume for the inductive system {(X,,7x,)} that

X, is imbedded homeomorphically into X,,+1 forn > 1, and for the counter part

(Y, 7y) that Y is locally compact Hausdorff. Then there holds the equivalence
~ ~XXY

X ~
Tind X TY = Ting

Proof. For a point 2z = (z,y) € Z = X x Y, take a 77 ;-neighborhood
W of z. It is enough for us to prove that there exist a ng—neighborhood U of
x € X and a neighborhood V of y € Y such that U x V. C W.

We may assume that € X;. Then there exist a 7x,-open neighborhood
U; C X; and a relatively compact, open neighborhood @ of y € Y such that
Uy xV Cc WnZ; with V = Cl(Q). Starting from Uy, we construct a 7x, -open
neighborhood U,, of x € X,, in such a way that Uy C U, C ---C U, C ---,
U, xV Cc WNZ,. If thisis done, then U = |J,,~, Un is a Tlfﬁd—open neighborhood
ofz € X and U x V C W as demanded. -

Now assume Uj’s have been chosen for 1 < & < n. Then, since U, X
VcWwnlZz, c WnZ,1, and V is compact, there exists for any £ € U,
a Tx,_.,-open neighborhood U(§) of £ such that U(§) x V. C W N Z,41. Put

Un+1 = Ugep, U(E), then Upt1 is 7x,,,,-open, and we have done. O

5.3. Normalization of situations

To simplify the situations we put some natural assumptions from the be-
ginning.

First we assume for simplicity that the index set A contains a cofinal subset
isomorphic to N as directed set, and so we take A = N later on except when
the contrary is announced.
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It may be assumed without essential loss of generality that
(00-X) each canonical map ¢pi1,n : Xn — Xpny1  (n > 1) is injective,

and so considering as X,, C X471 and X = Un>1 X,,, we can omit the notations
®m,n and ¢, rather freely, and then, -

n*

(01-X) each ¢ppy1n is a homeomorphism, or Tx, . |x, = Tx

For (01-X), we remark that the topologies Tx, can be replaced by 7'1{ alx.,
to get the same inductive limit topology 7%, and then (01-X) holds for new

topologies on X,,’s. From now on, we assume (00-X) and (01-X) for {X,}.
Let us remark the following fact.

Lemma 5.2.  Assume that at a point xg € X there exists a Tx,-open
neighborhood Uy C X for a certain j such that the image ¢, ;(Uy) = Uy is
Tx, -open in X,, for any n > j. Then, the topologies Ti),gd X Ty and Tfé;y
are mutually equivalent at a point (xo,y) € X X Y, that is, the neighborhood
systems of (xo,y) in both topologies are mutually equivalent. More exactly, on a

subset Uy x Y C X XY, we have the equivalence (Ti),id\UO) X Ty =2 Ti)n(dXY|Uo XY -

Proof. Tt is enough to remark that Uy C X =lim_, X, is Tfﬁd—open from
the assumption. O

Taking into account the above fact, to study necessary conditions for Ti‘ii 4 X
Ty = Ti)ridxy, we can put an assumption to deny the above simple sufficient
condition. Thus, taking an appropriate cofinal sequence if necessary, we may
put the following assumption for {X,,} from the beginning:
(1-X) for any n, X,, as a subset of X, 41 has no Tx

i1 -inner point of Xy,

oy X ~ X XY
5.4. Necessary conditions for 7;,, X 7y ~ 7; 7

We follow the discussion of A. Yamasaki in [11] to get the following neces-
sary condition.

Theorem 5.3. Let A=N andY be fired. Assume the condition (1-X)
and the following:

(2-xg) for n > 1, o € X, has a countable fundamental system of Tx, -
neighborhoods;

(3-y0), Yo € Y has a countable fundamental system of neighborhoods con-
sisting of closed ones;

(4-y0), yo €Y does not have a sequentially compact neighborhood.

Then, 735, x Ty < T 5Y i=1lim_, (1x, x 1y) at (z0,4) € X x Y.

ind

Our method of proof is to apply the following lemma.
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Lemma 5.4.  Assume that yo € Y has a countable fundamental system
of neighborhoods. For xo € X1, assume that there exists, for each n, a 7z, -open
neighborhood W,, of zo = (x0,y0) in Z, = X, X Y such that

(a) Wn+1 NZ, = Wn, and

(b) for a fundamental system V;(j > 1) of neighborhoods of yo € Y, there
holds, for each fixed n, Ux, x V, & W, for any tx,-neighborhood of xo € X,,.

Then, W = U,;s, Wy, is a 72 ;-open neighborhood of zy € Z, and Ux x
Vy ¢ W for any 775 ;- neighborhood Ux of zo € X and any Ty -neighborhood Vy
of yo € Y. In other words, 7' T X Ty < T, d at the point zg € Z.

Proof of Theorem 5.3. According to Lemma 5.4, let us determine W,, by
induction on n. We may start from n = 1 and put W; = Z;. Assume that
Wi have been determined for 1 < k <mn — 1. Then, by (1-X) and (2-z¢), there
exists a sequence , ; € X, \ X,,—1(k > 1) converging in 7x, to zo. By (3-yo)
and (4-yo), we have a fundamental system of neighborhoods Vy;(j > 1) of
Yo € Y, closed but not sequentially compact. Then by (4-yo), there exists for
every j a sequence y; € Vy;(k > 1) with no accumulation point in Y. Put

n = {(@Tnks Ynk); k > 1} C Z,,. Then, D, is 7z, -closed and D,, N Z,,_1 = 0.
By (01-X), we have a 7z, -open W/ C Z, such that W,_; = Z,,_1 N W] . Put
W, =W/} N (Z,\ D), then W, is 7z_-open and W,,N Z,, = W,,_1, whence (a)
holds.

Furthermore, since D, N (Ux, X Vy,,) # 0 and D,, N W,, = ), we have
Ux, X Vv, & Wy. Hence (b) holds, as desired. |

Reformulating the above result in a global form, we get a kind of converse,
in the case of a fixed Y, of affirmative assertions in theorems in Section 4 as
follows.

Theorem 5.5.  Assume (1-X) and the following:

(2-X), each (X,,Tx,) satisfies the first countability axziom;

(3-Y), Y is regular and satisfies the first countability axiom.
Then, 73X, x 7v < Tix XY at any point (x,y) € X x Y for which y € Y has no
sequentially compact neighborhood.

6. Necessary conditions for 7' hd X };d ~ Tz)fw)l(Y and Problem A
Let A = N. Let us consider two inductive systems {X,,} and {Y,.}, and
put Z, = X,, xY,, and identify Z = lim_, Z,, with X x Y, then de Tﬁd

Assume (00-X) and (01-X) for {X,,} and similarly (00-Y) and (01-Y) for {Y},},
for simplicity.

XXY

6.1. Conditions for T X T, d = T

at a point

We study when the above two inductive limit topologies on Z = X x Y
are different with each other at a point zg = (z9,yo) € Z.
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Theorem 6.1.  Assume the following:
(1-X) X, has no 7x, ., -inner point of X, 41 for n > 1;

(2-X) X, satisfies the first countability axziom for n > 1;
(3-Y,,) Ya, is regular and satisfies the first countability aziom;
(4-Y,,-yo) Yo € Yy, has no sequentially compact neighborhood;
(5- Yno) o 1S Ty -closed in Yy, for all n > nyg.

Then, 75, x 72 < 75 XY at (z0,90) € X X Y for any x¢ € X, -

znd

Proof. We may assume zg € X1, and ng = 1 whence yp € Y;. Let us
apply an appropriate version of Lemma 5.4. To do so, we determine 7z, -open
neighborhood W,, C Z,, of zg = (x0,y0) by induction on n.

For n = 1, put W; = Z; and suppose that W}, has been chosen for 1 < k <
n—1. Then, by (1-X) and (2-X), there exists a sequence =, € X, \ Xp—1(k >
1), 7x,-convergent to xg. On the other hand, by (3-Y,,) with ng = 1, there
exists a fundamental system of neighborhoods of yy € Y; consisting of 7y, -closed
Vv, ;(j > 1). Then, because of the condition (5-Y,,,) with ny =1, each Vy, ; is
Ty, -closed in Y, for n > 1, and therefore my-closed in Y. By (4-Y,,-yo), there
exists, for each j, a sequence y; € Vi, j(k > 1) with no 7y, -accumulation point
in Y7, and by (5-Y;,,), no such one in each (Yy,, 7y, ). Put D), = {(zn i, Ynk); k >
1}, then D,, C X, x Y} C X,, xY,, = Z,,. Further, D, NW,,_1 = 0, and D,
is Tx, X Ty,-closed, and so, closed also in 7x, X Ty, = 7z,. By (01-X) and
(01-Y), we have a 77 -open W/ C Z, such that W,_; = Z,_; N W/. Put
W =W}, N(Z,\ Dy), then Wy,_y = Z,_1 NW,. So, W = J,~; Wh is a
open neighborhood of zy € Z.

Note that W,, N D,, = 0 and (Ux, x Vy,.n) N D,, # 0 for any 7x,-open
neighborhood Ux, of g € X, then we have Ux, x Vy; », & W,,. Now suppose
Ux x Vy C W for some Tx-open neighborhood Ux of g € X and 7y-open
one Vy of yo € Y. Then, Vy D Vy,; for j > 1. Take such a one j = n,
then taking intersections with X,, x Y,, = Zn7 we have Ux, x Vy, , C W, with
Ux, =UxNX,,a contradiction Thus the 77 ;-open neighborhood W is not a
neighborhood of zq in 77X, x 7% ;. This proves the assertion of the theorem. O

znd

Reformulating the above result in a global form, we get a converse of
Theorem 4.1 as follows.

Theorem 6.2.  Assume (1-X) and (2-X)and further assume the follow-
mng:

(3-Y) each (Y, 1y,) is regular and satisfies the first countability aziom;

(5'-Y) Y, is closed in (Ynq1,7y,,,), forn>1.
Then, if yo E Y has no sequentially compact neighborhood in any (Y, Ty,),
there holds 7' nd X 7' nd =T, d at (zo,y0) € Z for any xg € X.

Remark 6.1. The additional conditions (5-Y,,,) in Theorem 6.1 and
(5’-Y) in Theorem 6.2 are asked to avoid situations similar to that in Example
5.2.

To get much faithful converses to Theorems 4.1, 4.3 and 4.4, we should get
rid of the first countability axiom. We will discuss this point in the future.
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Theorem 6.3.  Let X,, and Y, be all reqgular Hausdorff spaces satisfying
the first countability axiom. Assume the conditions (1-X) and (5’ X) for {X,}
and similarly (1-Y) and (5'-Y) for {Yy,}. Then 735, x 1), = 72X <Y if and only
if X, and Y, are all locally sequentially- compact

6.2. Case of metrizable spaces

In the case of metrizable spaces, they are automatically regular and satisfy
the first countability axiom, and furthermore sequential compactness is equiva-
lent to compactness. Therefore, in that case, we get from Theorems 4.1 and 6.2
the following simple necessary and sufficient condition for the commutativity of

9 « IR X Y ~ X><Y _
“Inductive limit” and “direct product”: ;) , x 7,7, = 75 70 = lim_,(7x, X7y, ).

Theorem 6.4.  Assume the conditions (00-X), (01-X), (1-X) and (5'-X)
for{X,}, and similarly (00-Y), (01- Y) (1-Y) and (5 Y) for{Y,}. Let X,, and
Y, be all metrizable spaces. Then, de X %d >~ Tféd if and only if X, and
Y, are locally compact.

Remark 6.2. In the case of topological groups G = lim_, G,, as in [9]

or [11], the first countability axiom is equivalent to the metrizability. So, the

result in [11] for the necessity for that 77, gives a group topology on G, can
be understood as for a metrizable case.

’L’nd

6.3. Local compactness of inductive limit spaces

The local compactness of each X,, and Y,, plays important roles in our
discussions until now. Concerning a relationship between local compactness
of spaces (X, Tx, ) and that of the inductive limit space X = lim_, X,, with
Ti)n(d = lim_, 7x,, we have the following result.

n?

Proposition 6.5.  Assume that, for {(X,,7x, )}, every X,, is Th1-space,
that is, each of two points has a neighborhood not containing the other one.

(i) For a 7% ;-compact set C' in X, there exists an n such that C C X,,.

(ii) For an x € X, it has a ;% ;-compact neighborhood in X if and only if
there exists an n such that X,, contains a 7;\ ;-compact neighborhood of x.

(iil) In the case of topological groups, where (X, Tx, ) are topological groups,
the inductive limit (X, de) s a locally compact group if and only if there ex-

ists an n such that (X,,7x,) is an open subgroup of X which itself is locally
compact.

Proof. Enough to prove (i). Assume the contrary. Put C,, = X,, N C.
Then, since C; C Cy C ---Cp, C -+ ,Up>1C,, = C, there exists an infinite
sequence n(1) < n(2) < --- such that Cp(;y \ Cp(j—1y # 0. Transfering to a
cofinal sub-directed-set if necessary, it can be assumed that n(j) = j(j € N).
Thus, we can fix a sequence of points z; € C; \ Cj_1,j € N. Put R, =
{&n, Tny1,---} C C. Then, for any j, the intersection R, N X; is finite, and so
R, is closed in (X, 7;%,). On the other hand, (-, R, = 0. This contradicts

the finite intersection property for C. 1
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6.4. A comment to Problem C

From Proposition 6.5 above, we get a simple necessary and sufficient con-
dition for the equivalence lim_,(7y|y;,) = 7y in Problem C, in the case of a
locally compact space (Y, 7y ).

Proposition 6.6.  Let (Y, 7y) be a locally compact Hausdorff space, and
Yo, n > 1, be an increasing sequence of subsets of Y such that |J,,~,; Yn =Y.
Put 1y, = 1vl|y,. Then, im_, 7y, = 7y if and only if, for any y € Y, there
exists a k such that y € Yy, and it has a relatively compact, open neighborhood

in Ty, which is also Ty, -open for n > k.
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