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Introduction

This paper is a continuation of our previous work [9]. In a half of it, we
studied the inductive limit G = lim→Gn of topological groups Gn, n ≥ 1, and
proved that the inductive limit topology τG

ind = lim→ τGn
of topologies τGn

on
Gn does not in general give a group topology on G, contrary to the affirmative
statement in [4, Article 210], and then studying τG

ind in detail, we constructed,
under a mild condition (PTA), a group topology τG

BS = BS-lim→ τGn
on G,

called Bamboo-Shoot topology, which is the strongest among those weaker than
or equal to τG

ind. This work provokes us two directions of study.
The one is to study the reason why this kind of pathological phenomena

occur rather in general. The other is to construct a good version of inductive
limits (like τG

BS in the category of topological groups) in various categories,
such as topological algebras, topological semigroups etc.

Take two inductive systems of topological spaces {Xα}α∈A and {Yα}α∈A

and put X = lim→Xα, Y = lim→ Yα. For the direct product {Xα × Yα}α∈A of
these systems, its inductive limit can be identified with X × Y , and on it we
have two kinds of topologies, the one is τX

ind × τY
ind with τX

ind := lim→ τXα
and

the other is τX×Y
ind := lim→(τXα

× τYα
). Then, we have in general τX

ind × τY
ind �

τX×Y
ind . We found that a principal reason for pathological phenomena similar

to the above one is the mismatch of these two topologies on X × Y . Therefore
we propose, in Section 1, Problems A, B and C related to these phenomena,
and study them in Sections 4 through 6.

Assume {Xα}α∈A be an inductive system in the category of locally con-
vex topological vector spaces (= LCTVSs). Then, the natural inductive limit
topology in this category (cf. Definition 2.1) has been given long ago (denoted
here as τX

lcv = lcv-lim→Xα) and is now used everywhere. As an example, take
a space of test functions D(M) of C∞-functions with compact supports on a
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differentiable manifold M . Then, the pointwise multiplication in X = D(M),
and the convolution in X = D(Rk) are continuous in τX

lcv, and so X becomes
a topological algebra in both cases (Propositions 2.2 and 2.3). Their proofs
depend on the special structure of D(M) and can not be generalized to the
general case of inductive systems of topological algebras.

A similar but quite different case is given as follows. Take another Y =
D(M ′) with M ′ a differentiable manifold, and put Z = D(M ×M ′). Then, the
pointwise multiplication T : X × Y → Z is not continuous in

(
τX
lcv × τY

lcv, τ
Z
lcv

)
,

whenever at least one of M and M ′ is non-compact (Theorem 2.4). Here,
T (ϕ, ψ)(p, p′) = ϕ(p)ψ(p′)(p ∈ M,p′ ∈ M ′) for (ϕ, ψ) ∈ X × Y . Since we have
the equivalence of topologies as τX

lcv × τY
lcv

∼= τX×Y
lcv (Theorem 3.4), the above

non-continuity property relates essentially to the difference between linearity
and bilinearity, or more exactly, the inductive limit τ{∗}lcv in the category of
LCTVSs is well fitted to linear structures but not to bilinear maps taken as
multiplications.

Inspired by these concrete examples, we propose, in Section 2, Problems
D, E and F.

The problem of matching or mismatching of two kinds of topologies onX×
Y is in many respects very important in every category C. It is, in other words,
the problem of “commutativity” of two processes: (1) taking an inductive limit
of topologies in the category C, and (2) taking a direct product. We take
τ
{∗}
ind in general or in the category of topological spaces, τ{∗}BS in the category

of topological groups, and τ
{∗}
lcv in the category of LCTVSs. Consider them as

functors of the corresponding categories consisting of inductive systems. The
above “commutativity” for each of these functors is called the condition (DPA)
(= Direct Product is Admitted).

For the ‘Bamboo-Shoot topology functor’ τ{∗}BS in the category of countable
inductive systems of topological groups, and moreover for the extended one in
Section 3.4 in the category of general inductive systems of topological groups,
the condition (DPA) holds, that is, τG

BS × τH
BS

∼= τG×H
BS , where H = lim→Hn

for an inductive system {Hn} (Theorem 3.3).
Following [11] and [3], where countable inductive systems of Banach alge-

bras or of their subgroups are studied, we propose, in Section 3, Problems G
and H. For instance, take a countable inductive system of Banach (or topo-
logical) algebras {Xn}, and take subgroups Gn of Xn

× of all the invertible
elements in Xn with the restricted topology τGn

:= τXn
|Gn

. On the limit
group G = lim→Gn, we want to compare two topologies τG

BS = BS-lim→ τGn

and τX
lcv|G with X = lim→Xn.

For the functor τ{∗}lcv , the condition (DPA) holds in general in the category
of inductive systems of LCTVSs (Theorem 3.4).

For the functor τ{∗}ind in the category of inductive systems of topological
spaces, the condition (DPA) holds only in a certain restricted subcategory. So
we look for a better version of inductive limit for which the condition (DPA)
holds in much wider subcategory. In Section 7 of [6], we take the category of
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uniform spaces and propose a variant τX
wBS of τX

ind, under a condition called
(wPTA), but an essential progress has not yet been achieved.

This paper is organized as follows.
In Section 1, we discuss some generalities and show several examples about

the condition (DPA) for inductive systems of topological spaces. Among other
things, the product topology τX

ind × τY
ind on X × Y is characterized as the

strongest product topology such that � τX×Y
ind (Theorem 1.3). We propose

Problems A, B and C for inductive systems of topological spaces.
In Section 2, inductive limits topologies in various categories are discussed,

especially about locally convex vector topology τ
{∗}
lcv . Taking spaces of test

functions, we give examples of inductive systems of topological algebras or
similar ones for which multiplications in the limit algebras or so are continuous
or not continuous. Problems D, E and F are proposed in relation to these
subjects.

In Section 3, we discuss about relations between the Bamboo-Shoot topol-
ogy τ

{∗}
BS and locally convex topology τ

{∗}
lcv . Further the condition (DPA) is

proved to hold, for the extended Bamboo-Shoot topology τ
{∗}
BS for inductive

systems of topological groups, and also for locally convex vector topology τ{∗}lcv

for inductive systems of LCTVSs. Relatedly, Problems G and H are proposed.
In Section 4, sufficient conditions for (DPA) are discussed for inductive

systems of topological spaces. This is a half of Problem A. Here the local
compactness and the sequential local compactness play a decisive role.

In Section 5, the case where X is an inductive limit space lim→Xn and Y
is a fixed topological space, is treated. These are discussions about Problem B.

In Section 6, necessary conditions to have the condition (DPA) in the case
of topological spaces are discussed. This is the other half of Problem A.

A previous version of this paper has appeared in [6], and a summalized
version in [7].

1. Inductive limits and direct products

1.1. Preliminaries

Let us consider an inductive system in a certain category C, of topological
spaces, of topological groups, of topological vector spaces, or of topological
algebras, etc., as

{(Xα, τXα
), α ∈ A;φβ,α, α � β, α, β ∈ A},

where the index set A is a directed set, each Xα is an object in C with topology
τXα

, and φβ,α is a (continuous) homomorphism Xα → Xβ in C satisfying the
consistency condition: φγ,β ◦ φβ,α = φγ,α for any α � β � γ.

Then, on an inductive limit space X := lim→Xα, we define the corre-
sponding algebraic structure. On the other hand, we have also an inductive
limit topology, denoted as lim→ τXα

or simply as τX
ind, in which a subset D of

X is open, by definition, if and only if φα
−1(D) ⊂ Xα is open in τXα

for each
α ∈ A. Here, φα denotes the canonical homomorphism from Xα to X.
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In this paper, we study about the harmonicity of the limit topology τX
ind

with the algebraic structure on X. Furthermore, we consider an appropriate
variant of τX

ind in each category C (denote it by τX
C provisionally here) and study

various kinds of harmonicity.
Meantime, as is explained in Introduction, we find that one of the im-

portant points of discussions is the problem of commutativity of (1) taking
the inductive limit τX

C and (2) taking direct products. This commutativity
is expressed symbolically as τX

C × τY
C ∼= τX×Y

C , for two inductive systems
{(Xα, τXα

), α ∈ A} and {(Yα, τYα
), α ∈ A} with Y = lim→ Yα.

More in detail, let us explain our problems in the following.

1.2. Inductive limits of topological groups

Let {(Gα, τGα
);α ∈ A} be an inductive system of topological groups with

a directed set A as index set. Here τGα
denotes the group topology on Gα

and we are given an inductive system of continuous group homomorphisms
φα2,α1 ;Gα1 → Gα2(α1, α2 ∈ A,α1 � α2) satisfying φα3,α2 ◦ φα2,α1 = φα3,α1

for α1 � α2 � α3. Put G := lim→Gα and τG
ind := lim→ τGα

the inductive
limit of groups and that of topologies respectively. Then, as seen in [9], the
multiplication G × G � (g, h) 	→ gh ∈ G is not necessarily continuous with
respect to the inductive limit topology τG

ind, or more exactly, with respect to
(τG

ind × τG
ind, τ

G
ind).

Inspired by this rather critical phenomenon, we start in this paper to study
the inductive limit topologies in detail in more general setting.

1.3. A continuity criterion

Let {(Xα, τXα
);α ∈ A} be an inductive system of topological spaces, and

take another inductive system {(Zα, τZα
);α ∈ A} of topological spaces with

the same index set A and with an inductive system of continuous maps φ′α2,α1
:

Zα1 → Zα2 . Then, assume that we are given a system of maps Fα of Xα to Zα

for α ∈ A which is consistent in the sense that Fα2 ◦ φα2,α1 = φ′α2,α1
◦ Fα1 for

α1, α2 ∈ A,α1 � α2. Then this system induces a map F : X → Z := lim→ Zα

such that F ◦ φα = φ′α ◦ Fα(α ∈ A), where φα (resp. φ′α) denotes the natural
map from Xα to X (resp. Zα to Z), continuous with respect to (τXα

, τX
ind)

(resp. to (τZα
, τZ

ind)). Furthermore the following fact is easy to prove.

Lemma 1.1. If every map Fα : Xα → Zα is continuous in (τXα
, τZα

)
for α ∈ A, then the induced map F : X → Z is continuous in (τX

ind, τ
Z
ind).

Let us apply this lemma to the above case of inductive limits of topological
groups, by setting

(Xα, τXα
) = (Gα ×Gα, τGα

× τGα
), (Zα, τZα

) = (Gα, τGα
),

and Fα : Xα → Zα as Fα(gα, hα) = gαhα. Then, since τGα
is a group topology

on Gα, the map Fα is continuous for each α ∈ A, and so, as their natural limit,
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the multiplication map F (g, h) = gh of X = G × G to Z = G is continuous,
by Lemma 1.1, with respect to the topologies τG×G

ind := lim→ (τGα
× τGα

) on
G×G = X and τG

ind := lim→ τGα
on G = Z.

Remark 1.1. For an inductive system {(Xα, τXα
);α ∈ A}, we may

assume without loss of generality that φα : Xα → X is an injection, or Xα ⊂ X
for α ∈ A, replacing Xα by its image X ′

α := φα(Xα) if necessary. In that case,
the quotient topology τX′

α
of τXα

is attributed to X ′
α. For some problems, it is

also possible to take the relative topology τX |X′
α

for X ′
α ⊂ X.

Note that when a directed set A is countable, there exists a sub-directed-set
isomorphic to N or to {1, 2, . . . , k} ⊂ N which is cofinal to A.

1.4. Direct products of inductive limits of topologies

On the other hand, it is easy to see the following fact for the direct prod-
uct of inductive limits of topologies. Take two inductive limits of topological
spaces (X, τX

ind) = (lim→Xα, lim→ τXα
) and (Y, τY

ind) = (lim→ Yα, lim→ τYα
),

and consider their direct products.

Proposition 1.2. The product space X × Y is naturally identified with
the inductive limit space lim→ (Xα × Yα). On this space the direct product of
inductive limit topologies τX

ind × τY
ind = (lim→ τXα

)× (lim→ τYα
) is weaker than

or equal to the inductive limit of product topologies τX×Y
ind := lim→ (τXα

× τYα
),

or in a symbolic notation, τX
ind × τY

ind � τX×Y
ind . In particular, for a subset of

product type D × E ⊂ X × Y , it is open in the former topology if and only if
so is in the latter.

For an inductive limit of topological groups G := lim→Gα, taking into
account the above result cited in Section 1.2, we see from Lemma 1.1 that, in
the case where the multiplication G × G � (g, h) 	→ gh ∈ G is not continuous
with respect to τG

ind, the product topology τG
ind × τG

ind should be strictly weaker
than the inductive limit topology τG×G

ind := lim→ (τGα
× τGα

). Thus we come
naturally to the following problem.

Problem A. Let the notations be as above. Then, give a necessary
and sufficient condition for the equivalence of two topologies τX

ind × τY
ind and

τX×Y
ind := lim→ (τXα

× τYα
) on X × Y , where (X, τX

ind) = (lim→Xα, lim→ τXα
)

and (Y, τY
ind) = (lim→ Yα, lim→ τYα

).

This is, in a sense, the problem of commutativity of two processes: (1)
taking inductive limits and (2) taking direct products, for two inductive systems
of topological spaces. This is the problem on the condition (DPA) for τ{∗}ind .

Remark 1.2. It is sufficient in general to treat the case where the index
sets for two inductive systems are the same. In fact, in case where the second
inductive system has another directed setB as its index set as {(Yβ , τβ);β ∈ B},
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then consider the direct product Γ = A × B with the order (α, β) � (α′, β′)
defined by α � α′ and β � β′. Take a sub-directed-set A′ cofinal to Γ, and put
for γ = (α, β) ∈ A′, Xγ = Xα, Yγ = Yβ . Then we come to the case where two
inductive systems have the same index set A′.

1.5. Examples and further problems

Let us examine the simple example, Example 1.2 in [9], from the stand
point of general topology.

Example 1.1. Let Gn = Fn × Q, F = R, Q or T with the usual non-
discrete topology τn for n ∈ N. Then, G = lim→Gn = (

∏′
F ) × Q, where∏′

F denotes the restricted direct product of countable number of F ’s. The
multiplication on G is not continuous with respect to τG

ind = lim→ τGn
. Hence,

τG
ind × τG

ind ≺ τG×G
ind .

Furthermore, considering Gn as a topological space and express it as a
direct product of two spaces as Xn × Y , with Xn = Fn, Y = Q. Then, X :=
lim→Xn = lim→ Fn =

∏′ F , and we see that the direct product topology
τX
ind × τY is strictly weaker than τX×Y

ind = lim→ (τXn
× τY ) at every point of

X × Y , by reexamining the proof in Example 1.2 in [9] for non-continuity of
the multiplication on G.

In the above case, the topological space Y is fixed, and so the following
problem is also important to study.

Problem B. Let (X, τX
ind) = (lim→Xα, lim→ τXα

) be an inductive limit
of topological spaces and (Y, τY ) a fixed topological space. Then, give a necessary
and sufficient condition for the equivalence of two topologies τX

ind × τY and
τX×Y
ind := lim→ (τXα

× τY ) on X × Y .

The former Problem A contains this Problem B, but it is worth to study
Problem B by itself. We may expect that a solution to Problem B helps to
solve Problem A. However the situation is not so simple that Problem A is
reduced to Problem B, because, for instance, the topology τY cannot be in
general recovered from the system τYn

= τY |Yn
, as shown in the next example.

Example 1.2. Let (Y, τY ) = (R, τR), where τR denotes the usual topol-
ogy on R. Let number all the elements of Q as {q1, q2, q3, . . . }, and put
Yn = (Y \Q)� {q1, q2, . . . , qn} for n = 1, 2, . . . . We give a topology τYn

as the
restriction of τY onto Yn. Then, we recover the original space Y as lim→ Yn,
but how about the topology τY on Y ? Can we recover it as the inductive limit
τY
ind = lim→ τYn

? The answer is no: τY ≺ τY
ind. More exactly we know the

following.
(i) For any subset D ⊂ Q, the set Y \D = (Y \Q)� (Q \D) is τY

ind-open.
(ii) A fundamental system of τY

ind-neighborhood of y ∈ Y is given by a
family {y} ∪ ((y − ε, y + ε) ∩ (Y \ Q)) , ε > 0. Here (a, b) denotes an τR-open
interval of R determined by a and b.



�

�

�

�

�

�

�

�

Inductive limits of topologies, direct products, problems related to algebraic structures 481

(iii) τY
ind induces on Q ⊂ Y the discrete topology. The τY

ind-closure of Y \Q
is Y , and that of Q is Q itself.

As a peculiar fact about the topology τYn
, we note that no points of Yn

have compact neighborhoods.

This kind of phenomenon is interesting to study and we propose the fol-
lowing problem.

Problem C. Let (Y, τY ) be a topological space and {(Yα, τYα
);α ∈ A}

be an inductive system of topological spaces such that Yα ⊂ Y and Y = lim→ Yα

as sets. Assume that the restriction τY |Yα
of the topology τY onto Yα is equal

to τYα
. Then, τY � τY

ind := lim→ τYα
. Look for a necessary and sufficient

condition for the equivalence of these two topologies on Y .

1.6. A characterization of the product topology τX
ind × τY

ind

For the productX×Y of two inductive limits of topological spaces (X, τX
ind)

= (lim→Xα, lim→ τXα
) and (Y, τY

ind) = (lim→ Yα, lim→ τYα
), we have by Propo-

sition 1.2, the relation τX
ind × τY

ind � τX×Y
ind := lim→ (τXα

× τYα
).

Further we can characterize the product topology as the strongest topology
on X × Y among direct product topologies weaker than τX×Y

ind . More exactly,
we have the following.

Theorem 1.3. Let τ ′X and τ ′Y be topologies on X and Y respectively
such that τ ′X × τ ′Y � τX×Y

ind . Then, τ ′X � τX
ind, τ

′
Y � τY

ind, and so τ ′X × τ ′Y �
τX
ind × τY

ind.

Proof. Let D ⊂ X be an open subset in τ ′X . Then, D × Y is open in
τX×Y
ind by assumption. So, for any α, (D × Y ) ∩ (Xα × Yα) = (D ∩Xα) × Yα

is open in τXα
× τYα

, whence, D ∩Xα is open in τXα
. Therefore D is open in

τX
ind.

The above facts evoke studies on inductive limit topologies in various kinds
of categories, such as the Bamboo-Shoot topology τG

BS in the category of topo-
logical groups in [9] and its generalization, the locally convex vector topology
τX
lcv in the category of locally convex topological vector spaces, and so on.

We will discuss on them in the succeeding sections.

2. Inductive limit topologies in various categories

As noticed in Sectoin 1.2, for an inductive limitG = lim→Gn of topological
groups Gn, n ≥ 1, the multiplication map is not necessarily continuous with
respect to the inductive limit topology τG

ind = lim→ τGn
. So we have introduced

in [9] a so-called Bamboo-Shoot topology τG
BS on G as the strongest group

topology � τG
ind, under the condition (PTA) on the inductive system {Gn}.

Concerning these subject we will discuss in the next section.
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In these respects, it is also natural to ask the similar question for other
topological algebraic objects, such as topological vector spaces (= TVSs), topo-
logical semigroups, topological rings, and topological algebras etc.

2.1. Case of locally convex topological vector spaces

A good category of TVSs is the category of locally convex topological
vector spaces (= LCTVSs) over a field F = R or C. In that category, we know
well how to define an inductive limit of topologies.

Let {(Xα, τXα
);α ∈ A} be an inductive system of LCTVSs with φα2,α1 :

Xα1 → Xα2 , α1, α2 ∈ A,α1 � α2, a homomorphism in the category of LCTVSs,
that is, a continuous linear map. On the vector space X = lim→Xα, we
consider a locally convex vector topology as in the following definition.

Definition 2.1. On the limit space X = lim→Xα of an inductive sys-
tem {Xα} of LCTVSs, a locally convex vector topology, denoted by lcv-lim→ τXα

or τX
lcv, is defined as the one for which a fundamental system of neighborhood

of the null element 0 is given as {U ⊂ X; τX
ind-open, convex, balanced (i.e.,

λx ∈ U for x ∈ U, λ ∈ F, |λ| ≤ 1), and absorbing} (cf. [12, I.1, Definition 6,
p. 27]).

For discussions in the following, it is better to introduce a simple charac-
terization of neighborhoods of 0 ∈ X, which is taken as the definition of the
neighborhood system of 0 ∈ X in [10, Section 13, p. 126].

Lemma 2.1. Let X = lim→Xα be the inductive limit of an inductive
system {Xα}α∈A of LCTVSs. In each Xα, a neighborhood of 0 ∈ Xα contains
by definition a convex, balanced, absorbing, open set. Then, in the lcv-limit
topology τX

lcv, a subset V ⊂ X is a neighborhood of 0 ∈ X if and only if each
φα

−1(V ) ⊂ Xα contains a τXα
-neighborhood of 0 ∈ Xα, where φα denotes the

cannonical homomorphism of Xα to X.

A proof of this lemma can be found for instance in [6].
We propose the following problem.

Problem D. Assume that every space Xα in an inductive system of
LCTVSs has an additional structure or operation of the same kind, which in-
duces as its inductive limit such a structure or an operation on the limit space
X := lim→Xα. Is this structure or operation consistent with the lcv-limit
topology τX

lcv?

2.2. Multiplication or product in an inductive system

Let us first consider two concrete cases to show what kind of things we
want to study.

Let M be a non-compact differentiable manifold, and Mn ↗M,n ≥ 1, be
an increasing sequence of relatively compact, open submanifolds such that the
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closure Mn is contained in Mn+1. The space of complex-valued test functions
(C∞-functions with compact supports) on M , denoted by D(M), is a LCTVS
obtaind as an inductive limit of the inductive system Xn = D(Mn) := {ϕ ∈
C∞(M); supp(ϕ) ⊂Mn}, n ∈ N. Here D(Mn) is topologized in a usual manner
by means of a countable number of seminorms.

Let us consider two kinds of operations in X = D(M). First one is the
pointwise multiplication T : X ×X → X, given as T (ϕ1, ϕ2)(p) = ϕ1(p)ϕ2(p)
(p ∈M), and the second one is the convolution T (ϕ1, ϕ2) = ϕ1 ∗ϕ2 in the case
of M = Rk. We ask if they are continuous or not in (τX

lcv × τX
lcv, τ

X
lcv).

Note that, for the first T , supp(ϕ1ϕ2) ⊂ supp(ϕ1) ∩ supp(ϕ2), and so it
maps Xn ×Xn into Xn. On the other hand, for the second T , supp(ϕ1 ∗ ϕ2)
becomes bigger and is in general comparable to supp(ϕ1) + supp(ϕ2), and so
T maps Xn ×Xn into Xβ(n) with a β(n) > n.

2.2.1. Continuity of the multiplication in D(M)

Proposition 2.2. In the space of test functions X = D(M), the multi-
plication map T (ϕ1, ϕ2) = ϕ1ϕ2 is continuous in (τX

lcv × τX
lcv, τ

X
lcv).

Proof. First choose a sequence of open, relatively compact submanifolds
Mn ↗ M as above, and put Xn = D(Mn). We consider X = D(M) as the
inductive limit of the system {X2n−1}n≥1, that is, X = lim→X2n−1, and use
{X2n}n≥1 as auxiliary assistants.

For each n, choose a function ωn ∈ X2n such that ωn = 1 on M2n−1 and
supp(ωn) ⊂ M2n. Then, ωnϕ = ϕ for ϕ ∈ X2n−1, and ωnψ ∈ X2n for any
ψ ∈ X.

Now take a convex τX
lcv-neighborhood U of 0 ∈ X. Then, define a τX2n

-
neighborhood V2n of 0 ∈ X2n by induction on n in such a way that T (V2n, V2n)
⊂ U∩X2n by the continuity of T |X2n×X2n

, and that ωjV2n ⊂ V2j for 1 ≤ j < n.
Put V2n−1 := V2n∩X2n−1 and V = Conv(∪n≥1V2n−1). Then, since V ∩X2n−1 ⊃
V2n−1 for n ≥ 1, V is a neighborhood of 0 ∈ X in τX

lcv := lim→ τX2n−1 by Lemma
2.1.

We prove T (V, V ) ⊂ U , which shows the continuity of T in (τX
lcv×τX

lcv, τ
X
lcv).

Take ϕ, ψ ∈ V . Then,

ϕ = α1ϕ1 + α2ϕ2 + · · · + αmϕm, ψ = β1ψ1 + β2ψ2 + · · · + βmψm,

with αj ≥ 0,
∑

1≤j≤m αj = 1, ϕj ∈ V2j−1 and βk ≥ 0,
∑

1≤k≤m βk = 1, ψk ∈
V2k−1. Since

ϕψ =
∑
j,k

αjβk · ϕjψk,
∑
j,k

αjβk = 1,

it is enough for us to prove ϕjψk ∈ U for each j, k.
(a) In case j = k, ϕjψj = T (ϕj , ψj) ∈ T (V2j−1, V2j−1) ⊂ U ∩X2j ⊂ U .
(b) In case j < k, ϕjψk = ϕj(ωjψk) ∈ V2j−1V2j ⊂ V2jV2j ⊂ U ∩ X2j ⊂

U .
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2.2.2. Continuity of the convolution in D(Rk)

Proposition 2.3. In the space of test functions X = D(Rk), the con-
volution map T (ϕ, ψ) = ϕ ∗ ψ is continuous in (τX

lcv × τX
lcv, τ

X
lcv).

Proof. Let M = Rk. For n ≥ 1, put

Mn = {x = (x1, x2, . . . , xk) ∈M ; |x| < n} with |x| = max
1≤i≤k

|xi|,

and Xn = D(Mn). The convolution is given by

T (ϕ, ψ)(x) = ϕ ∗ ψ(x) =
∫
Rk

ϕ(x− y)ψ(y)dy

and maps Xn ×Xm to Xn+m.
Take a convex, balanced, closed neighborhood W in τX

lcv of 0 ∈ X. Then,
for any n ≥ 1, there exists a τX2n

-neighborhood U2n ⊂W ∩X2n given as

U2n = {ϕ ∈ X2n; sup
x∈M2n

|Dsϕ(x)| ≤ ε, s = (s1, s2, . . . , sk), |s| ≤ kn},

with Ds = Ds1
1 D

s2
2 · · ·Dsk

k , Di =
∂

∂xi
, |s| = s1 + s2 + · · · + sk.

Put, for y ∈ M , ϕy(x) := ϕ(x − y). Then, for any ϕ in U2n ∩ Xn, a
τXn

-neighborhood of 0 ∈ Xn, we have

ϕy ∈ U2n ⊂W ∩X2n for y ∈Mn.

On the other hand, put

Vn := U2n ∩Xn ∩
{
ϕ ∈ X,

∫
Rk

|ϕ(x)|dx < 1
}
.

Then, Vn is a τXn
-neighborhood of 0 ∈ Xn. By Lemma 2.1, V = Conv

(⋃
n≥1 Vn

)
is a τX

lcv-neighborhood of 0 ∈ X. We assert that T (V, V ) ⊂W .
To prove this, take ϕ, ψ ∈ V . Then,

ϕ = α1ϕ1 + α2ϕ2 + · · · + αmϕm, ψ = β1ψ1 + β2ψ2 + · · · + βmψm,

with αj ≥ 0,
∑

1≤j≤m αj = 1, ϕj ∈ Vj and βk ≥ 0,
∑

1≤k≤m βk = 1, ψk ∈ Vk.
Since

T (ϕ, ψ) = ϕ ∗ ψ =
∑
j,k

αjβk · ϕj ∗ ψk,
∑
j,k

αjβk = 1,

and since W is convex, it is enough for us to prove ϕj ∗ ψk ∈W for each j, k.
So, take ϕ ∈ Vj , ψ ∈ Vk and assume j ≥ k. Then,

T (ϕ, ψ) =
∫
|y|≤k

ϕy(x)ψ(y)dy,
∫
|y|≤k

|ψ(y)|dy < 1,
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and ϕy ∈ W ∩ X2j . The element T (ϕ, ψ) ∈ X2j can be approximated in the
topology τX2j

by Riemann sums for the integral in y. Since the integral of
|ψ(y)| is less than 1, and since W ∩X2j is convex, balanced and closed, every
Riemann sums belong to W ∩X2j and accordingly their limit function (in x)
T (ϕ, ψ) belongs also to W ∩X2j .

This proves that T (V, V ) ⊂W and so the continuity of the map T .

2.2.3. General case
In the above two cases, multiplications T are both commutative, but in

the above proofs the commutativity is not important but the special structure
of the space D(M) is fully used. So, the proofs can not be generalized directly
in the following general situation.

Problem E. Assume that an inductive system {Xα;α ∈ A} of LCTVSs
has multiplications, consistent in the sense that, for any α, there exists a β(α)
such that Tα : Xα × Xα → Xβ(α) is a continuous bilinear map, and that, for
any α1, α2 ∈ A, there exists a γ ∈ A such that γ � αj , β(γ) � β(αj), j = 1, 2,
and Tαj

’s are naturally induced from Tγ. Then the system {Tα} induces as its
inductive limit a multiplication T on X = lim→Xα.

Is the limit map T continuous with respect to τX
lcv = lcv- lim→ τXα

?

2.3. Multiplication map between two spaces of test functions

Let M and M ′ be two differentiable manifolds. We assume that at least
one of them, say M ′, is non-compact.

The space of testing functionsX = D(M) is equipped with a locally convex
vector topology τ ′X , where τ ′X = τX the usual C∞-topology in the case M is
compact, and τ ′X = τX

lcv := lcv-lim→ τXn
with Xn = D(Mn) as above in the

case M is non-compact. The space Y = D(M ′) is equipped with the lcv-limit
topology τY

lcv := lcv-lim→ τYn
with Yn = D(M ′

n), where {M ′
n, n = 1, 2, . . . } is a

sequence of relatively compact open submanifolds such that M ′
n ⊂ M ′

n+1 and
M ′ = ∪n≥1M

′
n. We can give to the product space X×Y = D(M)×D(M ′) the

lcv-limit topology τX×Y
lcv which is equal to lcv-lim→(τX × τYn

) if M is compact,
and to lcv-lim→ (τXn

× τYn
) if M is non-compact.

Now put Z := D(M×M ′). Then, we ask if the multiplication (or product)
map T : X × Y → Z, given as T (ϕ, ψ)(p, p′) = ϕ(p) · ψ(p′), p ∈ M , p′ ∈ M ′,
for ϕ ∈ X, ψ ∈ Y , is continuous with respect to (τ ′X × τY

lcv, τ
Z
lcv).

This time, the answer is definitely no, as is seen from the following.

Theorem 2.4. Let M and M ′ be two differentiable manifolds. Assume
that one of them, say M ′, is non-compact. Then, the multiplication map T :
D(M) × D(M ′) � (ϕ, ψ) 	→ ϕ · ψ ∈ D(M ×M ′) is not continuous in (τ ′X ×
τY
lcv, τ

Z
lcv), where X = D(M), Y = D(M ′), Z = D(M ×M ′), and τ ′X = τX or

τ ′X = τX
lcv according as M is compact or not.

Proof. Let us prove the discontinuity in (τ ′X × τY
lcv, τ

Z
lcv). To give a com-

mon proof irrespective of whether M is compact or not, we consider even when
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M is compact a sequence of submanifolds M1 ⊂M2 ⊂ · · · such that Mn = M
for n ≥ 2.

Let k = dimM and consider I1k with I1 = (−1, 1) ⊂ R, open interval. We
choose an open submanifold M1 ⊂M contained in a co-ordinate neighborhood
in such a way that, through an appropriate co-ordinate map, M1 is mapped
onto I1k and its closure M1 is mapped onto J1

k, where J1 = [−1, 1] ⊂ R, the
closure of I1 = (−1, 1). For simplicity, we identify M1 with I1

k and M1 with
J1

k. Take a sequence of open submanifolds Mn, n ≥ 2, Mn ↗M , appropriately
in case M is non-compact, and put (M ×M ′)n = Mn ×M ′

n. Then, we are now
given Xn = D(Mn), Yn = D(M ′

n) and Zn = D(Mn×M ′
n), noting (M ×M ′)n =

Mn ×M ′
n. The topologies τX

lcv, τ
Y
lcv and τZ

lcv are respectively defined by these
inductive sequences. Note that when M is compact, the inductive sequence
Xn, n = 1, 2, . . . , is superfluous and Xn = X and τXn

= τX for n ≥ 2 and τX
lcv

is nothing but τX .
Put Ej = (M1 ×M ′

j+1) \ (M1 ×M ′
j) ⊂M ×M ′, and consider a subset W

of Z = D(M ×M ′) given by

W := {ω ∈ Z; sup
(x,y)∈Ej

|Dj+1
1 ω(x, y)| < 1 (j = 1, 2, 3, . . . )} with D1 =

∂

∂x1
,

where x = (x1, x2, . . . , xk) ∈ M1 = J1
k, y ∈ M ′. Then, W is convex, and for

any n, W ∩ Zn is τZn
-open. Hence, W is a τZ

lcv-open neighborhood of 0 ∈ Z.
Assume that the map T : X × Y → Z is (τX

lcv × τY
lcv, τ

Z
lcv)-continuous.

Then there exists a τX
lcv-neighborhood U of 0 ∈ X and a τY

lcv-neighborhood V
of 0 ∈ Y such that T (U, V ) ⊂W . For U ∩X1 with X1 = D(Jk

1 ), there exist an
m ∈ N and an ε > 0 such that, for an element φ ∈ X1 = D(Jk

1 ), the condition

sup
x∈Jk

1

|D1
s1Ds2

2 · · ·Dsk

k φ(x)| < ε (0 ≤ si ≤ m (1 ≤ i ≤ k)) with Dj =
∂

∂xj

implies that φ ∈ U∩X1. For thism, consider V ∩Ym+1 with Ym+1 = D(M ′
m+1),

then for some ψ ∈ V ∩ Ym+1,

η := sup
{
|ψ(y)|; y ∈M ′

m+1 \M ′
m

}
> 0.

Thus we get, for any φ ∈ X1 satisfying the above condition, the evaluation

η · sup
−1≤x1≤1

|D1
m+1φ(x)| ≤ sup

(x,y)∈Em

|D1
m+1 {φ(x)ψ(y)} | < 1.

This implies that, for any φ ∈ X1 = D(Jk
1 ), there holds the following inequality

sup
−1≤x1≤1

|D1
m+1φ(x)| ≤ 1

εη
· max
0≤si≤m(1≤i≤k)

sup
x∈Jk

1

|D1
s1D2

s2 · · ·Dk
skφ(x)|,

for any x ∈ supp(φ) ⊂ J1
k. This is clearly not true.

This means that T is not continuous in (τ ′X × τY
lcv, τ

Z
lcv).

Taking into account Propositions 2.2, 2.3 and Theorem 2.4, we propose
the following problem.
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Problem F. Take three inductive systems of LCTVSs {(Xα, τXα
);α ∈

A}, {(Yα, τYα
);α ∈ A}, and {(Zα, τZα

);α ∈ A}, and let their inductive limits
be (X, τX

lcv), (Y, τY
lcv) and (Z, τZ

lcv). Assume that, for every α ∈ A, there ex-
ists a continuous multiplication (bilinear map) Tα : Xα × Yα → Zβ(α) with a
β(α) � α, which are consistent with these inductive systems so that there exists
a multiplication T : X × Y → Z as their inductive limit. Then, under what
conditions, T is continuous in (τX

lcv × τY
lcv, τ

Z
lcv)?

The bilinear map T : X × Y → Z is factored through the natural map
X × Y → X ⊗ Y , and similarly for Tα’s. So we can ask also about relations
with topologies on the tensored spaces X ⊗ Y and Xα ⊗ Yα.

Remark 2.1. In comparison to the so-called kernel theorem for dis-
tributions (cf. [10, Theorem 51.7]), we give some remarks. In the situation
in Theorem 2.4 with M ′ non-compact, take a distribution S on M ×M ′ or
S ∈ D′(M ×M ′). Then the bilinear functional D(M) × D(M ′) � (ϕ, ψ) 	→
S(T (ϕ, ψ)) is not necessarily continuous in the product topology, because so is
not the bilinear map T : D(M) ×D(M ′) → D(M ×M ′).

By the same reason, the natural imbedding map from D(M)
⊗

π D(M ′)
(∼= D(M)

⊗
ε D(M ′) thanks to the nuclearity) to D(M×M ′) is not continuous.

However, the ε-topology on this imbedded subspace, which coincides with π-
topology due to the nuclearity, is strictly weaker than the restricted topology τ
from D(M×M ′), as is easily seen. Nevertheless its completion D(M)

⊗̂
εD(M ′)

= D(M)
⊗̂

πD(M ′) is just equal to D(M ×M ′) as a space (cf. [4, Article 125]).

2.4. Spaces of finitely many times differentiable functions

Let r be a non-negative integer and M ′ is a non-compact C(r)-class dif-
ferentiable manifold. Let us consider the space Y = C

(r)
c (M ′) of C(r)-class

functions with compact supports. For r = 0, Y is nothing but the space of
continuous functions with compact supports.

To topologize Y , we take a locally finite covering {Uj ; 1 ≤ j < ∞} of Y
such that the closure Uj of every Uj is contained in a coordinate neighborhood.
For each Uj , identifying it with the corresponding domain of coordinates y =
(y1, y2, . . . , y�), � = dimM ′, we define a seminorm ρUj

(h) for h ∈ Y by

ρUj
(h) :=

∑
|t|≤r

sup
y∈Uj

|Dth(y)|,

where t = (t1, t2, . . . , t�), |t| = t1 + t2 + · · · + t�, and

Dt = D1
t1D2

t2 · · ·D�
t� with Di =

∂

∂yi
.

Moreover put for h ∈ Y ,

‖h‖ :=
∑

1≤j<∞
ρUj

(h).
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Then, the summation on the right hand side is actually finite, and ‖h‖ gives a
norm on the space Y . The topology on Y defined by this norm is denoted by
τY
‖·‖.

Now take a sequence of open, relatively compact submanifolds M ′
1 ⊂M ′

2 ⊂
· · · as above. For the subspace Yn = C(r)(M ′

n), we restrict the norm ‖ · ‖ on it,
then Yn becomes a Banach space. Denote by τYn

its topology and consider the
lcv-limit τY

lcv := lcv-lim→ τYn
on Y . Then τY

lcv does not depend on the choices of
{Uj} and {M ′

n}, and it is strictly stronger than the norm topology τY
‖·‖ because

M ′ is non-compact.
Let Z = C

(∞,r)
c (M × M ′) be the space of functions f(x, y) in (x, y) ∈

M ×M ′, which is simultaneously of class C(∞) in x ∈ M and of class C(r) in
y ∈M ′, and compactly supported. We can topologize it in two ways.

The first way is to utilise sequences (M ×M ′)n = Mn ×M ′
n and Zn =

C(∞,r)(Mn ×M ′
n) to get the lcv-limit τZ

lcv := lim→ τZn
.

The second way is to utilize sequences Mn ×M ′, non-compact, and Z ′
n =

C
(∞,r)
c (Mn×M ′). We equip Z ′

n the topology τZ′
n

given by the usual way in the
variable x ∈Mn and by the norm ‖ · ‖ in the variable y ∈M ′ using as above a
locally finite covering Uj , 1 ≤ j < ∞, of M ′ and evaluating derivatives in y up
to the degree r. Then we get another lcv-limit τZ

lcv,r := lcv-lim→ τZ′
n
.

On the space Z, the first topology is strictly stronger than the second one:
τZ
lcv,r ≺ τZ

lcv.
For the continuity of the multiplication map T : X × Y → Z, we can

choose two kinds of topologies both on Y and on Z. However, for any choice of
topologies, the map T is not continuous, as stated in the following theorem. A
proof of it can be given by word for word interpretation of the proof of Theorem
2.4.

Theorem 2.5. Let M be a differentiable manifold and M ′ be a non-
compact C(r)-class manifold for some r, 0 ≤ r < ∞. Put X = D(M), Y =
C

(r)
c (M ′) and Z = C

(∞,r)
c (M×M ′). Then, the multiplication map T : X×Y �

(ϕ, ψ) 	→ ϕ · φ ∈ Z is not continuous in (τ ′X × τY
lcv, τ

Z
lcv,r), where τ ′X = τX if M

is compact, and τ ′X = τX
lcv if M is non-compact.

Remark 2.2. In general, take two inductive systems of LCTVSs {(Xα,
τXα

);α ∈ A} and {(Yα, τYα
);α ∈ A} and put X = lim→Xα, Y = lim→ Yα. The

direct product of these systems is defined as {(Xα × Yα, τXα×Yα
), α ∈ A} with

τXα×Yα
= τXα

×τYα
. Then its inductive limit is isomorphic to the direct product

X × Y as vector spaces, and as topologies on this space, τX
lcv × τY

lcv � τX×Y
lcv :=

lcv-lim→ τXα×Yα
.

Actually these two locally convex vector topologies on X×Y are mutually
equivalent as will be proved in Theorem 3.4.
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3. Bamboo-Shoot topology τG
BS and locally convex topology τX

lcv

3.1. Bamboo-Shoot topology for PTA-groups

For an inductive system of topological groups {(Gα, τGα
);α ∈ A}, assume

that the index set A is cofinal to a sub-directed-set isomorphic to N. Then we
introduced in [9, Section 2] a condition called (PTA), and under this condition,
we defined the so-called Bamboo-Shoot topology τG

BS on G = lim→Gα, and
proved that it is the strongest one among group topologies weaker than or
equal to the inductive limit topology τG

ind on G.
For later use, we refer these things here. Assume that A = N. For an

inductive sytem {(Gn, τGn
);n ∈ N}, let φn : Gn → G be the canonical homo-

morphisms. Then, we define

Condition (PTA). Fix an n ∈ N. For any τGn
-neighborhood U of the

identity element en of Gn, there exists a τGn
-neighborhood V ⊂ U of en ∈ Gn,

symmetric (i.e., V −1 = V ), and satisfying that, for any m > n, and for any
τGm

-neighborhood Wm of em ∈ Gm, there exists a τGm
-neighborhood W ′

m of
em ∈ Gm such that φm(W ′

m)φn(V ) ⊂ φn(V )φm(Wm).

In the case where the condition (PTA) holds, the Bamboo-Shoot topology
τG
BS on G = lim→Gn is defined as the group topology for which a fundamental

system of neighborhoods of the identity element e ∈ G is given by the family
of subsets of the following form: for a system {Uj ; j ∈ N} of τGj

-neighborhood
of ej ∈ Gj , put for k ∈ N,

U [k] :=
⋃

n≥k U(n, k) with

U(n, k) := φn(Un)φn−1(Un−1) · · ·φk(Uk)φk(Uk)φk+1(Uk+1) · · ·φn(Un) (n ≥ k).

3.2. Bamboo-Shoot topology and locally convex topology

The group topology τG
BS has an intimate relation to the locally convex

vector topology τX
lcv as in the following problem.

Problem G. Let {(Xn, ‖ · ‖n);n ∈ N} be an inductive system of Ba-
nach algebras. Then X = lim→Xn has naturally a structure of algebra. Take
an inductive system of topological subgroups Gn of (X×

n , τX×
n

) the group of all
invertible elements in Xn, with the restriction τX×

n
of ‖ · ‖n-topology on X×

n .
In the case where the condition (PTA) holds, what is the relation between the
Bamboo-Shoot topology τG

BS on G = lim→Gn and the restriction τX
lcv|G onto G

of the locally convex vector topology τX
lcv?

In [11], A. Yamasaki studied the following two cases.

Case 1. Xn = M(n,C), the algebra of all n × n matrices over F = C,
and Gn = GL(n,C). Their limit is G = GL(∞,C).
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Case 2. Xn = M(n,Λ) with Λ = C(D,C), the algebra of all C-valued
continuous functions on a compact space D, and Gn = GL(n,Λ). Then, their
limit is G = GL(∞,Λ).

In both cases, the algebras Xn are Banach algebras and all the homomor-
phism φm,n are norm-preserving isomorphisms. According to his results,

in Case 1, τG
BS = τG

ind and it coincides with the restriction τX
lcv|G, and

in Case 2, τG
BS ≺ τG

ind and τG
BS = τX

lcv|G. Further it is proved that (G, τG
BS)

is isomorphic to C(D,GL(∞,C)) as topological groups.
Recently, T. Edamatsu [3] studied the general case where all the φm,n are

norm-preserving isomorphisms, and proved that these two kinds of topologies
coincide with each other: τG

BS = τX
lcv|G, for Gn = Xn

×, n ≥ 1.

Slightly generalizing the above problem, we can propose the following one.
Let {(Xn, τXn

);n ∈ N} be an inductive system of topological algebras. Then
X = lim→Xn has naturally an algebra structure.

Problem H. Assume that every (Xn, τXn
) is locally convex as a TVS.

Then, with the locally convex limit topology τX
lcv, does the algebra X become a

topological algebra?
Furthermore, let Gn := Xn

× be the set of all invertible elements in Xn.
Then, Gn is a topological group with the relative topology τGn

:= τXn
|Gn

, and
they form an inductive system of topological groups. Then, under the condition
(PTA), what is the relation between the Bamboo-Shoot topology τG

BS on G and
the restriction τX

lcv|G onto G of the locally convex limit topology τX
lcv on X?

Here, since the scalar multiplication for X is continuous with respect to
τX
lcv, the problem is reduced to the continuity of the product map: X × X �

(x1, x2) 	→ x1x2 ∈ X.

We also remark here that studies in different directions on inifinite dimen-
sional Lie groups, containing the theory of their representations, are continued
for example in [2] and in [8].

3.3. Coincidense of topologies τ (X,+)
BS and τX

lcv

For an inductive limit space X = lim→Xα, in the category of LCTVSs,
assume that the index set A has a countable cofinal subset, then A contains
a cofinal subset isomorphic to N, and replacing A by the latter one, we may
assume from the beginning A = N (cf. Remark 4.1).

In that case, we have another limit topology τ (X,+)
BS other than τX

lcv, when
every Xn, n ∈ N, is considered as an additive group forgetting scalar multi-
plication. In fact, since Xn’s are abelian groups, the condition (PTA) holds
automatically, and so the Bamboo-Shoot topology τ

(X,+)
BS can be defined for

this additive group structure.
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Proposition 3.1. For a countable inductive system of LCTVSs, there
holds τ (X,+)

BS = τX
lcv on the limit space X = lim→Xn.

Proof. Note that τ (X,+)
BS is characterized as the strongest group topology

among those � τX
ind, and that the addition is continuous with respect to τX

lcv.
Then, we have τX

lcv � τ
(X,+)
BS .

On the other hand, we see from the definition that a base of τ (X,+)
BS -

neighborhood of 0 ∈ X is given by the family of sets of the form
⋃

n≥1(U1 +
U2 + · · · + Un), where every Un runs over open convex τXn

-neighborhoods of
0 ∈ Xn. So they are all τX

ind-open and convex, and accordingly τX
lcv-open,

whence τX
lcv � τ

(X,+)
BS .

3.4. Extension of Bamboo-Shoot topologies and their products

In the category of topological groups, we can extend in an abstract way the
notion of Bamboo-Shoot topology on an inductive limit group G = lim→Gα for
any (not necessarily countable) inductive system {(Gα, τGα

), α ∈ A;φβ,α, α �
β}.

In fact, we see easily from axioms of neighborhood system of the unit
element for a topological group (e.g., (GT1) ∼ (GT5) in [9, Section 1.3]) that
there exists, on an inductive limit group G = lim→Gα, the strongest group
topology under the condition that every canonical homomorphism φα : Gα → G
is continuous. We call it the extended Bamboo-Shoot topology and denote it
again by τG

BS.
In the case where the inductive system is countable and the condition

(PTA) holds for it, this topology coincides with the Bamboo-Shoot topology
τG
BS constructed explicitly in [9], and reviewed in Section 3.1.

Lemma 3.2. Let (K, τK) be a topological group, and take a system of
homomorphisms Ψα : Gα → K, consistent in the sense that Ψβ ◦φβ,α = Ψα for
α � β. Then, a homomorphism Ψ : G → K is canonically induced. If every
Ψα is continuous in (τGα

, τK), then, Ψ is continuous in (τG
BS, τK).

Furthermore the extended Bamboo-Shoot topology τG
BS is the strongest group

topology � τG
ind on G = lim→Gα having this property.

In the category of topological groups, the problem similar to Problem A is
affirmatively solved as follows.

Let {(Gα, τGα
);α ∈ A} and {(Hα, τHα

);α ∈ A} be inductive systems of
topological groups. Let G = lim→Gα and H = lim→Hα be their inductive
limit groups, and the canonical homomorphisms be φα : Gα → G and ψα :
Hα → H.

Then, we have the direct product of inductive systems as {(Gα × Hα,
τGα×Hα

); α ∈ A} with τGα×Hα
= τGα

× τHα
. Its inductive limit is canonically

identified with the direct product G×H.
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Theorem 3.3. (i) Let G = lim→Gα, H = lim→Hα, and G × H =
lim→(Gα ×Hα) be as above. Then the extended Bamboo-Shoot topologies τG

BS ,
τH
BS, and τG×H

BS on G, H, and G×H respectively satisfy

τG
BS × τH

BS
∼= τG×H

BS on G×H.

(ii) In the case of countable inductive systems, if {(Gn, τGn
);n ∈ N} and

{(Hn, τHn
);n ∈ N} satisfy the condition (PTA), then so does their direct prod-

uct {(Gn ×Hn, τGn×Hn
); n ∈ N}.

Proof. (i) The relation τG
BS × τH

BS � τG×H
BS follows from the facts that

τG
BS × τH

BS gives a group topology on G×H and that τG
BS × τH

BS � τG
ind× τH

ind �
τG×H
ind , because the extended Bamboo-Shoot topology τG×H

BS is the strongest
group topology which is weaker than or equal to the inductive limit topology
τG×H
ind .

Let us prove the converse relation. We assert that the homomorphism
G � g 	→ (g, eH) ∈ G ×H is continuous in (τG

BS , τ
G×H
BS ), where eH denote the

unit element of H.
To prove this, we apply Lemma 3.2 for (K, τK) = (G×H, τG×H

BS ). Consider,
for each α ∈ A, the homomorphism Gα � gα 	→ (φα(gα), eH) ∈ K = G ×
H. Then, it is continuous in τGα

and τK = τG×H
BS , because, by definition of

the extended Bamboo-Shoot topology τG×H
BS , the canonical map Gα × Hα �

(gα, hα) 	→ (φα(gα), ψα(hα)) ∈ G × H is continuous in (τGα×Hα
, τG×H

BS ), and
the imbedding map Gα � gα 	→ (gα, eHα

) ∈ Gα ×Hα is of course continuous.
Therefore, by Lemma 3.2, we get the asserted continuity.

Similarly the homomorphism H � h 	→ (eG, h) ∈ G ×H is continuous in
(τH

BS , τ
G×H
BS ). Therefore, the map

Φ : G×H � (g, h) 	−→ ((g, eH), (eG, h)) ∈ (G×H) × (G×H)

is continuous in τG
BS × τH

BS and τG×H
BS × τG×H

BS . Since the extended Bamboo-
Shoot topology τG×H

BS on G×H is a group topology, the product map

Ψ : (G×H) × (G×H) � ((g, h), (g′, h′)) 	−→ (gg′, hh′) ∈ (G×H)

is continuous in τG×H
BS × τG×H

BS and τG×H
BS . Thus the product of maps Ψ · Φ :

G×H � (g, h) 	→ (g, h) ∈ G×H is continuous in τG
BS × τH

BS and τG×H
BS .

This means that the former topology is stronger or equal to the latter one.
(ii) Fix n ≥ 1, and take a τGn×Hn

-neighborhood W of the unit element
(eGn

, eHn
) ∈ Gn × Hn. Then there exist symmetric τGn

-neighborhood U of
eGn

and τHn
-neighborhood V of eHn

such that U × V ⊂ W and that they
satisfy the following condition (by assumption). For any m > n, and for any
τGm

-neighborhood U ′ of eGm
and any τHm

-neighborhood V ′ of eHm
, there exist

such ones U ′′ and V ′′ for which there hold

φm(U ′′)φn(U) ⊂ φn(U)φm(U ′) and ψm(V ′′)ψn(V ) ⊂ ψn(V )ψm(V ′).
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Hence,

(φm × ψm)(U ′′ × V ′′) · (φn × ψn)(U × V )
⊂ (φn × ψn)(U × V ) · (φm × ψm)(U ′ × V ′).

Since the family of neighborhoods of Gm×Hm of the form U ′×V ′ forms a
fundamental basis of neighborhoods of unit element, the above relation proves
that the condition (PTA) holds for G×H or more exactly for the direct product
of inductive systems.

3.5. Direct product of locally convex vector topology

Let {(Xα, τXα
); α ∈ A} and {(Yα, τYα

);α ∈ A} be inductive systems of
LCTVSs, and put X = lim→Xα, Y = lim→ Yα. The direct product of these
systems is defined as {(Xα × Yα, τXα×Yα

);α ∈ A} with τXα×Yα
:= τXα

× τYα
.

Then its inductive limit is isomorphic to the direct product X × Y as vector
spaces. For topologies on this space, we already know that τX

lcv×τY
lcv � τX×Y

lcv :=
lcv-lim→ τXα×Yα

.
On the other hand, we have a variant of Lemma 3.2, in the category of

LCTVSs, and applying it similarly as Lemma 3.2 to the proof of Theorem 3.3,
we see that the condition (DPA) holds in general for the ‘lcv-limit functor’ τ{∗}lcv

as follows.

Theorem 3.4. Let X = lim→Xα, Y = lim→ Yα be inductive limits in
the category of LCTVSs. The direct product space X × Y is identified with
the inductive limit of the direct product of inductive systems. Then, as locally
convex vector topologies on X × Y , there holds the equivalence

τX
lcv × τY

lcv
∼= τX×Y

lcv := lcv- lim→ τXα×Yα
.

Proof. It is enough to prove the converse relation τX
lcv × τY

lcv � τX×Y
lcv .

The linear map ΦX : X � x 	→ (x, 0) ∈ X × Y is continuous in τX
lcv and

τX×Y
lcv . This can be shown by applying a variant of Lemma 3.2 in the category

of LCTVSs to (K, τK) = (X × Y, τX×Y
lcv ).

In fact, discussing as in the proof of Theorem 3.3, we see that, for each
α ∈ A, the corresponding map: Xα � xα 	→ (φα(xα), 0) ∈ K = X × Y is
continuous in τXα

and τK = τX×Y
lcv . Then the desired continuity follows from

the variant of Lemma 3.2.
Similar for the linear map ΦY : Y � y 	→ (0, y) ∈ X × Y .
So the map Φ : X × Y � (x, y) 	−→ ((x, 0), (0, y)) ∈ (X × Y ) × (X × Y ) is

continuous in τX
lcv × τY

lcv and τX×Y
lcv × τX×Y

lcv . On the other hand, the addition
Ψ : (X × Y ) × (X × Y ) � ((x, y), (x′, y′)) 	−→ (x + x′, y + y′) ∈ (X × Y ) is
naturally continuous in τX×Y

lcv × τX×Y
lcv and τX×Y

lcv .
Thus, we see that the product of maps Ψ ·Φ : (x, y) 	→ (x, y) is continuous

in τX
lcv × τY

lcv and τX×Y
lcv . This means that the former topology is stronger or

equal to the latter one, on X × Y . This is to be proved.
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4. Sufficient conditions for Problem A

For sufficient conditions for Problem A or B, the local compactness and
the local sequential compactness play important roles. Here we study them for
Problem A.

4.1. A sufficient condition for τX
ind × τY

ind � τX×Y
ind

As in Section 1.4, let

{(Xα, τXα
), α ∈ A;φβ,α, α � β} and

{(Yα, τYα
), α ∈ A;ψβ,α, α � β}(4.1)

be inductive systems of topological spaces and putX = lim→Xα, Y = lim→ Yα.
First let us give a simple sufficient condition for the ‘commutativity’ of (1)
taking inductive limits and (2) taking direct products, for inductive limits of
topologies. When this commutativity holds, we say that the condition (DPA)
(= Direct Product is Admitted) holds in this case.

Theorem 4.1. Assume that A has a cofinal sub-directed-set isomorphic
to N. For two inductive systems of topological spaces in (4.1), assume that every
Xα and Yα are locally compact Hausdorff spaces. Then, as topologies on X×Y
with X = lim→Xα, Y = lim→ Yα, identified with lim→(Xα × Yα), the product
topology τX

ind × τY
ind and the inductive limit topology τX×Y

ind := lim→(τXα
× τYα

)
are mutually equivalent : τX

ind × τY
ind

∼= τX×Y
ind , that is, the condition (DPA)

holds.

Proof. By assumption, we may assume that A = N as directed set. Since
τX
ind × τY

ind � τX×Y
ind in general, it is sufficient for us to prove the converse

relation.
Take a point (x, y) ∈ X×Y and its τX×Y

ind -open neighborhood O. We may
assume, for simplicity that the canonical maps φn : Xn → X and ψn : Yn → Y
are injective, and consider Xn as a subset of X through φn, and similarly
for Yn ⊂ Y . Starting from a certain n = n0, we have x ∈ Xn and y ∈ Yn.
Put On = (Xn × Yn) ∩ O, then it is a (τXn

× τYn
)-open set containing (x, y).

Therefore there exist a τXn
-open, relatively compact Un ⊂ Xn and a τYn

-open,
relatively compact Vn ⊂ Yn such that x ∈ Un, y ∈ Vn and Un × Vn ⊂ On.
Denote by Un the τXn

-closure of Un in Xn, then it is equal to the closure in
(Xm, τXm

),m > n, and also in (X, τX
ind), because of its compactness. Similar

for the τYn
-closure Vn. We assert that the sequences {Un} and {Vn} can be

taken as Un ⊂ Un+1, Vn ⊂ Vn+1. To see this, we construct them by induction
on n applying repeatedly the following elementary lemma. Then, putting U =⋃

n≥n0
Un and V =

⋃
n≥n0

Vn, we get (τX
ind × τY

ind)-open neighborhood U × V

of (x, y) contained in O. This proves that τX
ind × τY

ind � τX×Y
ind .

Lemma 4.2. Let (Z, τ) and (Z ′, τ ′) be two locally compact Hausdorff
topological spaces with topologies τ and τ ′. Let O ⊂ Z × Z ′ be a (τ × τ ′)-open
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subset and C ⊂ Z and C ′ ⊂ Z ′ be respectively τ -compact and τ ′-compact such
that C × C ′ ⊂ O. Then, there exist a τ -open D ⊃ C and a τ ′-open D′ ⊃ C ′

such that they are relatively compact and D × D′ ⊂ O, where D denotes the
closure of D.

Remark 4.1. Let A be a directed set. A subset B of A is said to be
cofinal to A if for any α ∈ A there exists a β ∈ B such that α � β, and A is
called in [9] of fish-bone type if it contains a cofinal totally ordered subset. On
the other hand, any totally ordered set contains a well ordered subset cofinal
to it.

In the sequel, we usually treat the case where the index set A is of fish-
bone type, and accordingly we may assume from the biginning that A is well
ordered. In the set of ordinals corresponding to cofinal subsets of A, there
exists a minimum which is called the cofinality (or “caractère final” in [1, III,
p. 89, Exercise 16]) of A and is denoted by cf(A). A well ordered set A contains
a cofinal set isomorphic to N if and only if cf(A) = ω0, the first infinite ordinal.

4.2. Other sufficient conditions

We give other sufficient conditions assuming on Xn and Yn a stronger
condition (SC) than the local sequential compactness.

Definition 4.1. For a subset D of a topological space Z, its sequential
closure, denoted by scl(D), is defined as

scl(D) := {z ∈ Z; ∃zn ∈ D suchthat lim
n→∞ zn = z},

and D is called sequentially compact if every sequence in it has a subsequence
converging to a point in D, and further Z is called locally sequentially compact
if every point in it has an open neighborhood U for which scl(U) is sequentially
compact.

Our condition (SC) on Z is defined as follows.

(SC) For every sequentially compact subset K and an open set O containing it,
there exists an open set G such that K ⊂ G ⊂ scl(G) ⊂ O and that scl(G) is
sequentially compact.

Under this condition (SC), we can give two kinds of sufficient conditions
for Problem A as follows. For the inductive system (4.1), assume that the
directed set A has a cofinal sub-directed-set isomorphic to N. Then we may
put A = N, and assume that X1 ⊂ · · · ⊂ Xn ⊂ Xn+1 ⊂ · · · ⊂ X by the
identification through the canonical maps φn.

Theorem 4.3. Let A = N for an inductive system (4.1) of topological
spaces, and assume that every (Xn, τXn

) and (Yn, τYn
) satisfies the condition

(SC). Then, in the case where they all satisfy the first countability axiom, the
condition (DPA) holds, i.e., for X = lim→Xn and Y = lim→ Yn, there holds
the equivalence τX

ind × τY
ind

∼= τX×Y
ind := lim→(τXn

× τYn
) on X × Y .
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Theorem 4.4. Let A = N for (4.1) and assume the condition (SC)
for every (Xn, τXn

) and (Yn, τYn
). Then, in the case where the system (4.1)

satisfies τXn+1 |Xn
= τXn

, τYn+1 |Yn
= τYn

for n ≥ 1, and the condition

Xn is a Gδ-set of Xn+1, and Yn is a Gδ-set of Yn+1, for n ≥ 1,(Gδ)

there holds for X × Y the equivalence τX
ind × τY

ind
∼= τX×Y

ind := lim→(τXn
× τYn

).

Remark 4.2. If a sequentially compact normal space satisfies the first
countability axiom, then it satisfies the condition (SC). However it is not nec-
essarily locally compact as the following example shows. Let X = (0, ω)N with
the usual product topology, where ω is the first uncountable ordinal, (0, ω) de-
notes the interval consisting of all ordinal numbers 0 < α < ω, and the topology
on (0, ω) is defined by open intervals (β, γ) consisting of α such that β < α < γ.

A proof is given in [6] for that X is normal.

4.3. Proofs of Theorems 4.3 and 4.4

First we prepare the following lemmas.

Lemma 4.5. In a topological space satisfying the condition (SC), for a
sequentially compact subset K and an open set O containing it, there exists a
sequentially compact Gδ-set P such that K ⊂ P ⊂ O.

Proof. Take G in the condition (SC) as G1, and define open sets Gn

inductively on n in such a way that K ⊂ Gn ⊂ scl(Gn) ⊂ Gn−1 and that
scl(Gn) is sequentially compact. Then, put P =

⋂
n≥1Gn =

⋂
n≥1 scl(Gn).

Lemma 4.6. In a topological space, let Kk, k = 1, 2, . . . , be a decreas-
ing sequence of sequentially compact subsets, and O an open set. Assume⋂

k≥1Kk ⊂ O, then there exists a k such that Kk ⊂ O.

Proof of Theorem 4.3. It is sufficient to prove τX
ind × τY

ind � τX×Y
ind . Take

a point (x, y) ∈ X × Y and its τX×Y
ind -open neighborhood O. we may assume

(x, y) ∈ X1×Y1. Then there exist a τX1-open neighborhood P1 of x, and a τY1-
open neighborhood Q1 of y such that scl(P1) × scl(Q1) ⊂ O with sequentially
compact scl(P1) and scl(Q1). Starting from these P1 and Q1, we construct
inductively on n, P1 ⊂ P2 ⊂ · · · ⊂ Pn, Q1 ⊂ Q2 ⊂ · · · ⊂ Qn, satisfying for
1 ≤ i ≤ n,

(1) Pi, Qi are open neighborhoods of x, y in (Xi, τXi
), (Yi, τYi

) respectively,
(2) scl(Pi) and scl(Qi) are respectively sequentially compact,
(3) scl(Pi) × scl(Qi) ⊂ O.
To construct Pn+1, Qn+1, we can view Cn = scl(Pn) and Dn = scl(Qn) as

sequentially compact subsets of (Xn+1, τXn+1) and (Yn+1, τYn+1) respectively
since they are images of continuous maps of such subsets in Xn and Yn. From
Cn ×Dn ⊂ O, we see thanks to the first countability axiom on (Xn+1, τXn+1)
that, for every ξ ∈ Cn, there exists a τXn+1-open neighborhood V (ξ) such
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that V (ξ) × Dn ⊂ O. Put G =
⋃

ξ∈Cn
V (ξ), a τXn+1-open. Then, Cn ⊂

G,G × Dn ⊂ O. Now apply the condition (SC) for Xn+1 and Cn ⊂ G, then
there exists a τXn+1-open Pn+1 such that Cn ⊂ Pn+1 ⊂ scl(Pn+1) ⊂ G and
that Cn+1 = scl(Pn+1) is sequentially compact in Xn+1.

Similar arguments for the second component of Cn+1 × Dn ⊂ O, proves
that there exists a τYn+1 -open Qn+1 ⊂ Yn+1 such that Cn+1 ×Dn+1 ⊂ O with
Dn+1 = scl(Qn+1) sequentially compact in (Yn+1, τYn+1).

Now put P =
⋃

n≥1 Pn, Q =
⋃

n≥1Qn, then, P is τX
ind-open, Q is τY

ind-open,
and (x, y) ∈ P ×Q ⊂ O.

Proof of Theorem 4.4. Take a point (x, y) ∈ X × Y and its τX×Y
ind -open

neighborhood O. As in the proof of Theorem 4.3, we may assume (x, y) ∈
X1 × Y1. This time, we construct series of sets Pn, Qn, Cn, Dn, inductively on
n, in such a way that

(1) Pn ⊂ Xn is τXn
-open, Qn ⊂ Yn is τYn

-open, and x ∈ P1 ⊂ P2 ⊂ · · · ⊂
Pn, y ∈ Q1 ⊂ Q2 ⊂ · · · ⊂ Qn,

(2) Cn ⊂ Xn and Dn ⊂ Yn are sequentially compact Gδ-sets such that
Pn ⊂ Cn, Qn ⊂ Dn, Cn ×Dn ⊂ O.

First take V (x) ⊂ X1, a τX1-open, and V (y) ⊂ Y1, a τY1-open such that
V (x)×V (y) ⊂ O. Then, applying (SC) for {x} ⊂ V (x), we have a τX1-open P1

such that x ∈ P1 ⊂ scl(P1) ⊂ V (x) and that scl(P1) is sequentially compact.
Applying Lemma 4.5 to scl(P1) ⊂ V (x), we get a sequentially compact Gδ-set
C1 such that scl(P1) ⊂ C1 ⊂ V (x). Similarly we have two subsets Q1 ⊂ D1 of
Y1.

Now assume that desired subsets have been constructed until n. Then,
from the assumptions, we see that Cn (resp. Dn) is a Gδ-set of Xn+1 (resp.
Yn+1). So, there exists an expression Cn =

⋂
k≥1Wn,k with monotone-decreasing

open sets Wn,k of Xn+1. Applying the condition (SC), let us choose monotone-
decreasing τXn+1-open Vn,k ⊂ Xn+1 (k = 1, 2, · · · ) such that Cn ⊂ Vn,k ⊂
scl(Vn,k) ⊂Wn,k and that scl(Vn,k) is sequentially compact. Suppose that they
have been chosen until k = m− 1. Then, apply (SC) to Cn ⊂ Vn,m−1 ∩Wn,m,
and we get Vn,m such that Cn ⊂ Vn,m ⊂ scl(Vn,m) ⊂ Vn,m−1 ∩Wn,m. Thus, we
have an expression of Cn as Cn =

⋂
k≥1 Vn,k =

⋂
k≥1 scl(Vn,k). Similarly, we

obtain such an expression of Dn as Dn =
⋂

k≥1 V
′
n,k =

⋂
k≥1 scl(V ′

n,k). Finally,⋂
k≥1

(
scl(Vn,k) × scl(V ′

n,k)
)

= Cn ×Dn ⊂ O.

Then, by Lemma 4.6, there exists a k such that scl(Vn,k) × scl(V ′
n,k) ⊂ O.

Applying Lemma 4.5 to scl(Vn,k+1) ⊂ Vn,k, we get a sequentially compact
Gδ-set Cn+1 such that scl(Vn,k+1) ⊂ Cn+1 ⊂ Vn,k.

Similarly we have such a subset Dn+1 as scl(V ′
n,k+1) ⊂ Dn+1 ⊂ V ′

n,k.
Now put Pn+1 = Vn,k+1, Qn+1 = V ′

n,k+1. Then, Pn ⊂ Cn ⊂ Pn+1 ⊂ Cn+1,
Qn ⊂ Dn ⊂ Qn+1 ⊂ Dn+1, and Cn+1 × Dn+1 ⊂ O. Thus, finishing the
construction of Pn’s and Qn’s, we put P =

⋃
n≥1 Pn, Q =

⋃
n≥1Qn. Then P

is τX
ind-open, Q is τY

ind-open, and (x, y) ∈ P ×Q ⊂ O as desired.
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5. The case of a fixed Y and Problem B

In the following, we study in detail Problems A and B, especially necessary
conditions for converses of theorems in Section 4. In this section, we study the
case where Y is fixed, or the case where (Yn, τYn

) = (Y, τY ) for any n ≥ 1. This
is our Problem B.

5.1. Comments to converses of Theorems 4.1, 4.3 and 4.4

Statements for direct converses of these theorems contain necessarily a
global characterization such as “Xn is a locally compact space”. However, this
kind of global characterization of spaces Xn and Yn are not possible in its
nature of inductive sequences of topological spaces, and so, possible converses
should be at first stated in languages of local characterizations of these spaces.
This can be seen from the following examples.

Example 5.1. Let X = R and Xn = (−n, n)∪Q with an open interval
(−n, n), where X is equipped with a usual topology τR of R, and Xn with its
relative topology τXn

= τR|Xn
. Then, no Xn is locally compact, whereas so is

the inductive limit space X (cf. Theorems 5.3 and 5.5). Note that the space
(Q, τQ = τR|Q) is totally disconnected and normal.

Example 5.2. Let Y =
∏′

k≥1 Rk with Rk = R be the restricted direct

product of R. Put Yn =
∏n

k=1 Rk = Rn, Y ′
n =

(∏n−1
k=1 Rk

)
× Q ⊂ Yn, and

imbed Yn into Yn+1 as Yn � y 	→ (y, 0) ∈ Yn+1. The space Yn is equipped
with the usual Euclidean metric, and the space Y ′

n with its relative topology.
Then, Yn is locally compact, whereas no point of Y ′

n has a compact neighbor-
hood. However the topological space Y considered as the inductive limit of
(Yn, τYn

), n ≥ 1, is also equal to the inductive limit of (Y ′
n, τY ′

n
), n ≥ 1, since

there is a mixed inductive system given by Y ′′
2n+1 := Yn, Y ′′

2n := Y ′
n, (n ≥ 1),

which converges to (Y, τY
ind).

Now let {Xn;n ∈ N} be an inductive system of separable locally compact
spaces and putX = lim→Xn. Consider two inductive systems of direct product
type as {Xn × Ym; (n,m) ∈ N × N}, and {Xn × Y ′

m; (n,m) ∈ N × N}, where
(n,m) � (n′,m′) in N × N if and only if n ≤ n′, m ≤ m′. Then we get as
their inductive limits the same space X × Y . Denote by τX×Y

ind,1 and τX×Y
ind,2 the

inductive limit topologies on X × Y corresponding to the first and the second
system respectively. We assert that τX×Y

ind,1
∼= τX×Y

ind,2
∼= τX

ind × τY
ind.

In fact, the first equivalence is affirmed by considering a mixed induc-
tive system (Zn, τZn

), n > 1, with (Z2n+1, τZ2n+1) := (Xn × Yn, τXn
× τYn

),
(Z2n, τZ2n

) := (Xn×Y ′
n, τXn

×τY ′
n
). Another equivalence τX×Y

ind,1
∼= τX

ind×τY
ind is

guaranteed by Theorem 4.1 thanks to the local compactness of Xn’s and Yn’s.
Furthermore, in the case the index m is fixed, as for the topologies on

limn→∞(Xn × Ym) = X × Ym and on limn→∞(Xn × Y ′
m) = X × Y ′

m, we get
the equivalence τX

ind × τYm
= τX×Ym

ind by Theorem 4.1, but the inequivalence
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τX
ind × τY ′

m
≺ τ

X×Y ′
m

ind by Theorem 5.3 below. In more significant notation,(
lim→ τXn

)
× τY ′

m
≺ lim

n→∞
(
τXn

× τY ′
m

)
(m ≥ 1),

(
lim→ τXn

)
×

(
lim→ τY ′

m

) ∼= lim→ n,m

(
τXn

× τY ′
m

)
= lim→

(
τXn

× τY ′
n

)
.

Note also that the above order in N× N is not the lexicographic one.

The last statement in the above example shows that Problem A cannot
be reduced simply to Problem B in general, and the relation between them is
rather delicate.

5.2. A sufficient condition for τX
ind × τY � τX×Y

ind

Let us now begin to treat Problem B. Fix a topological space (Y, τY ). Put
Zn = Xn×Y , τZn

= τXn
×τY , and Z = lim→ Zn, τ

Z
ind = lim→ τZn

. We identify
Z with X×Y and τZ

ind with τX×Y
ind . We know in general τX

ind×τY � τX×Y
ind , and

the problem is to guarantee the converse relation. A simple sufficient condition
is given as follows.

Proposition 5.1. Assume for the inductive system {(Xn, τXn
)} that

Xn is imbedded homeomorphically into Xn+1 for n ≥ 1, and for the counter part
(Y, τY ) that Y is locally compact Hausdorff. Then there holds the equivalence
τX
ind × τY ∼= τX×Y

ind .

Proof. For a point z = (x, y) ∈ Z = X × Y , take a τZ
ind-neighborhood

W of z. It is enough for us to prove that there exist a τX
ind-neighborhood U of

x ∈ X and a neighborhood V of y ∈ Y such that U × V ⊂W .
We may assume that x ∈ X1. Then there exist a τX1-open neighborhood

U1 ⊂ X1 and a relatively compact, open neighborhood Q of y ∈ Y such that
U1 ×V ⊂W ∩Z1 with V = Cl(Q). Starting from U1, we construct a τXn

-open
neighborhood Un of x ∈ Xn in such a way that U1 ⊂ U2 ⊂ · · · ⊂ Un ⊂ · · · ,
Un×V ⊂W∩Zn. If this is done, then U =

⋃
n≥1 Un is a τX

ind-open neighborhood
of x ∈ X and U × V ⊂W as demanded.

Now assume Uk’s have been chosen for 1 ≤ k ≤ n. Then, since Un ×
V ⊂ W ∩ Zn ⊂ W ∩ Zn+1, and V is compact, there exists for any ξ ∈ Un

a τXn+1-open neighborhood U(ξ) of ξ such that U(ξ) × V ⊂ W ∩ Zn+1. Put
Un+1 =

⋃
ξ∈Un

U(ξ), then Un+1 is τXn+1-open, and we have done.

5.3. Normalization of situations

To simplify the situations we put some natural assumptions from the be-
ginning.

First we assume for simplicity that the index set A contains a cofinal subset
isomorphic to N as directed set, and so we take A = N later on except when
the contrary is announced.
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It may be assumed without essential loss of generality that

(00-X) each canonical map φn+1,n : Xn → Xn+1 (n ≥ 1) is injective,

and so considering asXn ⊂ Xn+1 andX =
⋃

n≥1Xn, we can omit the notations
φm,n and φn rather freely, and then,

(01-X) each φn+1,n is a homeomorphism, or τXn+1 |Xn
∼= τXn

.

For (01-X), we remark that the topologies τXn
can be replaced by τX

ind|Xn

to get the same inductive limit topology τX
ind, and then (01-X) holds for new

topologies on Xn’s. From now on, we assume (00-X) and (01-X) for {Xn}.
Let us remark the following fact.

Lemma 5.2. Assume that at a point x0 ∈ X there exists a τXj
-open

neighborhood U0 ⊂ Xj for a certain j such that the image φn,j(U0) = U0 is
τXn

-open in Xn, for any n > j. Then, the topologies τX
ind × τY and τX×Y

ind

are mutually equivalent at a point (x0, y) ∈ X × Y , that is, the neighborhood
systems of (x0, y) in both topologies are mutually equivalent. More exactly, on a
subset U0 ×Y ⊂ X ×Y , we have the equivalence

(
τX
ind|U0

)× τY ∼= τX×Y
ind |U0×Y .

Proof. It is enough to remark that U0 ⊂ X = lim→Xn is τX
ind-open from

the assumption.

Taking into account the above fact, to study necessary conditions for τX
ind×

τY ∼= τX×Y
ind , we can put an assumption to deny the above simple sufficient

condition. Thus, taking an appropriate cofinal sequence if necessary, we may
put the following assumption for {Xn} from the beginning:

(1-X) for any n, Xn as a subset of Xn+1 has no τXn+1-inner point of Xn+1.

5.4. Necessary conditions for τX
ind × τY � τX×Y

ind

We follow the discussion of A. Yamasaki in [11] to get the following neces-
sary condition.

Theorem 5.3. Let A = N and Y be fixed. Assume the condition (1-X)
and the following :

(2-x0) for n � 1, x0 ∈ Xn has a countable fundamental system of τXn
-

neighborhoods ;
(3-y0), y0 ∈ Y has a countable fundamental system of neighborhoods con-

sisting of closed ones;
(4-y0), y0 ∈ Y does not have a sequentially compact neighborhood.
Then, τX

ind × τY ≺ τX×Y
ind := lim→ (τXn

× τY ) at (x0, y0) ∈ X × Y .

Our method of proof is to apply the following lemma.
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Lemma 5.4. Assume that y0 ∈ Y has a countable fundamental system
of neighborhoods. For x0 ∈ X1, assume that there exists, for each n, a τZn

-open
neighborhood Wn of z0 = (x0, y0) in Zn = Xn × Y such that

(a) Wn+1 ∩ Zn = Wn, and
(b) for a fundamental system Vj(j ≥ 1) of neighborhoods of y0 ∈ Y , there

holds, for each fixed n, UXn
× Vn �⊂Wn for any τXn

-neighborhood of x0 ∈ Xn.
Then, W =

⋃
n≥1Wn is a τZ

ind-open neighborhood of z0 ∈ Z, and UX ×
VY �⊂W for any τX

ind-neighborhood UX of x0 ∈ X and any τY -neighborhood VY

of y0 ∈ Y . In other words, τX
ind × τY ≺ τZ

ind at the point z0 ∈ Z.

Proof of Theorem 5.3. According to Lemma 5.4, let us determine Wn by
induction on n. We may start from n = 1 and put W1 = Z1. Assume that
Wk have been determined for 1 ≤ k ≤ n− 1. Then, by (1-X) and (2-x0), there
exists a sequence xn,k ∈ Xn \Xn−1(k ≥ 1) converging in τXn

to x0. By (3-y0)
and (4-y0), we have a fundamental system of neighborhoods VY,j(j ≥ 1) of
y0 ∈ Y , closed but not sequentially compact. Then by (4-y0), there exists for
every j a sequence yj,k ∈ VY,j(k ≥ 1) with no accumulation point in Y . Put
Dn := {(xn,k, yn,k); k ≥ 1} ⊂ Zn. Then, Dn is τZn

-closed and Dn ∩ Zn−1 = ∅.
By (01-X), we have a τZn

-open W ′
n ⊂ Zn such that Wn−1 = Zn−1 ∩W ′

n. Put
Wn = W ′

n ∩ (Zn \Dn), then Wn is τZn
-open and Wn ∩Zn = Wn−1, whence (a)

holds.
Furthermore, since Dn ∩ (UXn

× VY,n) �= ∅ and Dn ∩ Wn = ∅, we have
UXn

× VY,n �⊂Wn. Hence (b) holds, as desired.

Reformulating the above result in a global form, we get a kind of converse,
in the case of a fixed Y , of affirmative assertions in theorems in Section 4 as
follows.

Theorem 5.5. Assume (1-X) and the following :
(2-X), each (Xn, τXn

) satisfies the first countability axiom;
(3-Y), Y is regular and satisfies the first countability axiom.

Then, τX
ind × τY ≺ τX×Y

ind at any point (x, y) ∈ X × Y for which y ∈ Y has no
sequentially compact neighborhood.

6. Necessary conditions for τX
ind × τY

ind � τX×Y
ind and Problem A

Let A = N. Let us consider two inductive systems {Xn} and {Yn}, and
put Zn = Xn × Yn and identify Z = lim→ Zn with X × Y , then τZ

ind = τX×Y
ind .

Assume (00-X) and (01-X) for {Xn} and similarly (00-Y) and (01-Y) for {Yn},
for simplicity.

6.1. Conditions for τX
ind × τY

ind ≺ τX×Y
ind at a point

We study when the above two inductive limit topologies on Z = X × Y
are different with each other at a point z0 = (x0, y0) ∈ Z.
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Theorem 6.1. Assume the following :
(1-X) Xn has no τXn+1-inner point of Xn+1 for n ≥ 1;
(2-X) Xn satisfies the first countability axiom for n ≥ 1;
(3-Yn0) Yn0 is regular and satisfies the first countability axiom;
(4-Yn0-y0) y0 ∈ Yn0 has no sequentially compact neighborhood ;
(5-Yn0) Yn0 is τYn

-closed in Yn for all n > n0.
Then, τX

ind × τY
ind ≺ τX×Y

ind at (x0, y0) ∈ X × Y for any x0 ∈ Xn0 .

Proof. We may assume x0 ∈ X1, and n0 = 1 whence y0 ∈ Y1. Let us
apply an appropriate version of Lemma 5.4. To do so, we determine τZn

-open
neighborhood Wn ⊂ Zn of z0 = (x0, y0) by induction on n.

For n = 1, put W1 = Z1 and suppose that Wk has been chosen for 1 ≤ k ≤
n−1. Then, by (1-X) and (2-X), there exists a sequence xn,k ∈ Xn \Xn−1(k ≥
1), τXn

-convergent to x0. On the other hand, by (3-Yn0) with n0 = 1, there
exists a fundamental system of neighborhoods of y0 ∈ Y1 consisting of τY1-closed
VY1,j(j ≥ 1). Then, because of the condition (5-Yn0) with n0 = 1, each VY1,j is
τYn

-closed in Yn for n ≥ 1, and therefore τY -closed in Y . By (4-Yn0 -y0), there
exists, for each j, a sequence yj,k ∈ VY1,j(k ≥ 1) with no τY1-accumulation point
in Y1, and by (5-Yn0), no such one in each (Yn, τYn

). PutDn = {(xn,k, yn,k); k ≥
1}, then Dn ⊂ Xn × Y1 ⊂ Xn × Yn = Zn. Further, Dn ∩Wn−1 = ∅, and Dn

is τXn
× τY1-closed, and so, closed also in τXn

× τYn
= τZn

. By (01-X) and
(01-Y), we have a τZn

-open W ′
n ⊂ Zn such that Wn−1 = Zn−1 ∩ W ′

n. Put
Wn = W ′

n ∩ (Zn \ Dn), then Wn−1 = Zn−1 ∩ Wn. So, W =
⋃

n≥1Wn is a
τZ
ind-open neighborhood of z0 ∈ Z.

Note that Wn ∩ Dn = ∅ and (UXn
× VY1,n) ∩ Dn �= ∅ for any τXn

-open
neighborhood UXn

of x0 ∈ Xn, then we have UXn
×VY1,n �⊂Wn. Now suppose

UX × VY ⊂ W for some τX -open neighborhood UX of x0 ∈ X and τY -open
one VY of y0 ∈ Y . Then, VY ⊃ VY1,j for j � 1. Take such a one j = n,
then taking intersections with Xn × Yn = Zn, we have UXn

× VY1,n ⊂Wn with
UXn

= UX ∩Xn, a contradiction. Thus the τZ
ind-open neighborhood W is not a

neighborhood of z0 in τX
ind×τY

ind. This proves the assertion of the theorem.

Reformulating the above result in a global form, we get a converse of
Theorem 4.1 as follows.

Theorem 6.2. Assume (1-X) and (2-X)and further assume the follow-
ing :

(3′-Y) each (Yn, τYn
) is regular and satisfies the first countability axiom;

(5′-Y) Yn is closed in (Yn+1, τYn+1), for n ≥ 1.
Then, if y0 ∈ Y has no sequentially compact neighborhood in any (Yn, τYn

),
there holds τX

ind × τY
ind ≺ τZ

ind at (x0, y0) ∈ Z for any x0 ∈ X.

Remark 6.1. The additional conditions (5-Yn0) in Theorem 6.1 and
(5′-Y) in Theorem 6.2 are asked to avoid situations similar to that in Example
5.2.

To get much faithful converses to Theorems 4.1, 4.3 and 4.4, we should get
rid of the first countability axiom. We will discuss this point in the future.
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Theorem 6.3. Let Xn and Yn be all regular Hausdorff spaces satisfying
the first countability axiom. Assume the conditions (1-X) and (5′-X) for {Xn}
and similarly (1-Y) and (5′-Y) for {Yn}. Then τX

ind × τY
ind

∼= τX×Y
ind if and only

if Xn and Yn are all locally sequentially-compact.

6.2. Case of metrizable spaces

In the case of metrizable spaces, they are automatically regular and satisfy
the first countability axiom, and furthermore sequential compactness is equiva-
lent to compactness. Therefore, in that case, we get from Theorems 4.1 and 6.2
the following simple necessary and sufficient condition for the commutativity of
“inductive limit” and “direct product”: τX

ind×τY
ind

∼= τX×Y
ind := lim→(τXn

×τYn
).

Theorem 6.4. Assume the conditions (00-X), (01-X), (1-X) and (5′-X)
for {Xn}, and similarly (00-Y), (01-Y), (1-Y) and (5′-Y) for {Yn}. Let Xn and
Yn be all metrizable spaces. Then, τX

ind × τY
ind

∼= τX×Y
ind if and only if Xn and

Yn are locally compact.

Remark 6.2. In the case of topological groups G = lim→Gn as in [9]
or [11], the first countability axiom is equivalent to the metrizability. So, the
result in [11] for the necessity for that τG

ind gives a group topology on G, can
be understood as for a metrizable case.

6.3. Local compactness of inductive limit spaces

The local compactness of each Xn and Yn plays important roles in our
discussions until now. Concerning a relationship between local compactness
of spaces (Xn, τXn

) and that of the inductive limit space X = lim→Xn with
τX
ind = lim→ τXn

, we have the following result.

Proposition 6.5. Assume that, for {(Xn, τXn
)}, every Xn is T1-space,

that is, each of two points has a neighborhood not containing the other one.
(i) For a τX

ind-compact set C in X, there exists an n such that C ⊂ Xn.
(ii) For an x ∈ X, it has a τX

ind-compact neighborhood in X if and only if
there exists an n such that Xn contains a τX

ind-compact neighborhood of x.
(iii) In the case of topological groups, where (Xn, τXn

) are topological groups,
the inductive limit (X, τX

ind) is a locally compact group if and only if there ex-
ists an n such that (Xn, τXn

) is an open subgroup of X which itself is locally
compact.

Proof. Enough to prove (i). Assume the contrary. Put Cn = Xn ∩ C.
Then, since C1 ⊂ C2 ⊂ · · ·Cn ⊂ · · · ,∪n≥1Cn = C, there exists an infinite
sequence n(1) < n(2) < · · · such that Cn(j) \ Cn(j−1) �= ∅. Transfering to a
cofinal sub-directed-set if necessary, it can be assumed that n(j) = j(j ∈ N).
Thus, we can fix a sequence of points xj ∈ Cj \ Cj−1, j ∈ N. Put Rn =
{xn, xn+1, · · · } ⊂ C. Then, for any j, the intersection Rn ∩Xj is finite, and so
Rn is closed in (X, τX

ind). On the other hand,
⋂

n≥1Rn = ∅. This contradicts
the finite intersection property for C.
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6.4. A comment to Problem C

From Proposition 6.5 above, we get a simple necessary and sufficient con-
dition for the equivalence lim→(τY |Yn

) ∼= τY in Problem C, in the case of a
locally compact space (Y, τY ).

Proposition 6.6. Let (Y, τY ) be a locally compact Hausdorff space, and
Yn, n ≥ 1, be an increasing sequence of subsets of Y such that

⋃
n≥1 Yn = Y .

Put τYn
= τY |Yn

. Then, lim→ τYn
∼= τY if and only if, for any y ∈ Y , there

exists a k such that y ∈ Yk and it has a relatively compact, open neighborhood
in τYk

which is also τYn
-open for n ≥ k.
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Kyoto Sangyô University

Kyoto 603-8555 Japan

e-mail: hiraietu@cc.kyoto-su.ac.jp

References
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