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On the homology of the Kac-Moody groups
and the cohomology of the 3-connective covers

of Lie groups

By

Osamu Nishimura∗

Abstract

Let G be a compact, 1-connected, simple Lie group of exceptional
type, g its Lie algebra, and p an odd prime. In this paper, the mod p
homology of the Kac-Moody group K(g(1)) and the mod p cohomology
of the 3-connective cover over G are determined as Hopf algebras over
the Steenrod algebra for every case that the integral homology of G has
p-torsion.

1. Introduction

In [4], Hamanaka and Hara determined H∗(ΩG; F3) as a Hopf algebra
over A3 for G = F4, E6, E7 and E8 where Ap is the mod p Steenrod algebra.
Moreover, they determined the mod 3 homology map of the adjoint action
Ad: G × ΩG → ΩG for G above except for one equation which is in the case
G = E6.

The first purpose of this paper is to determine this remaining equation
by computing the mod 3 homology map of the adjoint action Ad: AdE6 ×
ΩE6 → ΩE6. Then, by using this result and the result of [4], we determine
H∗(K(g(1)); F3) and H∗(G̃; F3) as Hopf algebras over A3 for G above where g
is the Lie algebra of G, K(g(1)) is the Kac-Moody group associated with g (see
[6], [7] and [8]), and G̃ is the 3-connective cover over G. Also we give a similar
result for E8 at prime 5 by using the result of [5].

This paper is organized as follows. In Section 2, we compute the mod 3
homology map of Ad and complete the computation of the mod 3 homology
map of Ad: E6 × ΩE6 → ΩE6. In Sections 3 and 4, we determine the mod
p homology of the Kac-Moody group and the mod p cohomology of the 3-
connective cover, respectively, as Hopf algebras over Ap for the cases stated
before.

We use the following notation. The subscript of an element of a graded
algebra designates the degree. The reduced coproduct of a coalgebra is denoted
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by φ̄. The symbol ∗ is used to indicate the adjoint action as in [4]. (Also see
[12].) The mod 3 cohomology and homology are simply denoted by H∗( ) and
H∗( ).

The author expresses gratitude to Professor Akira Kono for his advices
and encouragements.

2. The adjoint action of AdE6 on ΩE6

Recall from Araki [1], Borel [2] and Petrie [16],

H∗(E6) = F3[x8]/(x3
8) ⊗ ∧(x3, x7, x9, x11, x15, x17),

H∗(AdE6) = F3[x̄2, x̄8]/(x̄9
2, x̄

3
8) ⊗ ∧(x̄1, x̄3, x̄7, x̄9, x̄11, x̄15),

H∗(ΩE6) = F3[t2, t6, t8, t10, t14, t16, t22]/(t32)

as algebras. We choose the same generators as those in Kono [9] and Hamanaka-
Hara [4]. For the detail of the coalgebra structures and the A3-module struc-
tures, see [9] and [4].

Let π : E6 → AdE6 be the natural projection. Let yj and ȳj be the dual
elements of the indecomposable classes of xj and x̄j respectively. Let ȳ6 be the
dual element of x̄3

2 with respect to the monomial basis of H∗(AdE6). We can
see π∗(y8) = ȳ8 = ȳ6ȳ2 − ȳ2ȳ6. (See [14].) Note that H∗(AdE6) is generated by
ȳ1, ȳ2 and ȳ6 as an algebra.

Proposition 1. The map Ad∗ is given by ȳ1 ∗ tj = 0 for any j and by
the following table:

t2 t6 t8 t10 t14 t16 t22

ȳ2∗ 0 t8 t10 0 t16 κt36 −κt38
ȳ6∗ −t8 t8t

2
2 t14 −t16 0 t22 0

where κ is the same one as that in [4]. Moreover, δ = −κ �= 0 in Theorem 2
of [4].

Proof. By the dimensional reason and the primitivity, we have ȳ1 ∗ tj = 0
for any j and ȳ2∗t2 = ȳ2∗t10 = ȳ6∗t14 = ȳ6∗t22 = 0. Since Ad∗◦(π∗⊗1) = Ad∗,
we have t10 = y8 ∗ t2 = ȳ8 ∗ t2 = −ȳ2 ∗ (ȳ6 ∗ t2). Hence we may assume that
t8 = −ȳ6 ∗ t2 and t10 = ȳ2 ∗ t8. Then, we can see that φ̄(ȳ6 ∗ t6) = φ̄(t8t22)
and hence ȳ6 ∗ t6 = t8t

2
2. By applying ℘1 to this, we have ȳ2 ∗ t6 = t8. Since

(ȳ6 ∗ t8)℘1 = ȳ2 ∗ t8 = t10, we can conclude that ȳ6 ∗ t8 = t14. We can see
that t16 = ȳ8 ∗ t8 = ȳ6 ∗ t10 − ȳ2 ∗ t14 while by applying ℘1 to ȳ6 ∗ t14 = 0, we
have ȳ2 ∗ t14 + ȳ6 ∗ t10 = 0. Hence we have ȳ2 ∗ t14 = t16 and ȳ6 ∗ t10 = −t16.
We have ȳ8 ∗ t10 = ȳ2 ∗ t16 = κt36 and since (ȳ6 ∗ t16)℘1 = ȳ2 ∗ t16 = κt36,
we have ȳ6 ∗ t16 = t22. We have y8 ∗ t16 = κȳ6 ∗ (t36) − ȳ2 ∗ t22 while by
applying ℘1 to ȳ6 ∗ t22 = 0, we have ȳ2 ∗ t22 + κȳ6 ∗ (t36) = 0. Hence we have
y8 ∗ t16 = ȳ2 ∗ t22 = −κȳ6 ∗ (t36). We can see that ȳ6 ∗ (t36) = t38 and hence, the
proposition is proved.



�

�

�

�

�

�

�

�

Homology of the Kac-Moody groups 177

3. The homology of the Kac-Moody groups

Let L(G) be the space of free loops on G. Recall that L(G) is the semi-
direct product of G and ΩG where the adjoint action Ad: G×ΩG → ΩG twists
the multiplications of G and ΩG. See [4].

Since K(g(1)) is the central extension by S1 of L(G), it is identified as
an A∞-space with the semi-direct product of G and ΩG̃ where the adjoint
action Ãd: G × ΩG̃ → ΩG̃ twists the multiplications of G and ΩG̃. See Kac
[6] and [7], Kac-Peterson [8]. Accordingly, the Hopf algebra structure over the
Steenrod algebra of H∗(K(g(1)); Fp) is determined by that of H∗(G; Fp), that
of H∗(ΩG̃; Fp), and the map Ãd∗.

Let q : G̃ → G be the covering projection. Let the generators of H∗(G),
H∗(ΩG), H∗(E8; F5) and H∗(ΩE8; F5) be as in [4] and Hamanaka-Hara-Kono
[5]. Then, we have

H∗(ΩF̃4) = F3[t̃10, t̃14, t̃22, ũ18] ⊗ ∧(ũ17),

H∗(ΩẼ6) = F3[t̃8, t̃10, t̃14, t̃16, t̃22, ũ18] ⊗ ∧(ũ17),

H∗(ΩẼ7) = F3[t̃10, t̃14, t̃22, t̃26, t̃34, ũ18, ũ54] ⊗ ∧(ũ53),

H∗(ΩẼ8) = F3[t̃14, t̃22, t̃26, t̃34, t̃38, t̃46, t̃58, ũ54] ⊗ ∧(ũ53),

H∗(ΩẼ8; F5) = F5[t̃14, t̃22, t̃26, t̃34, t̃38, t̃46, t̃58, ũ50] ⊗ ∧(ũ49)

where (Ωq)∗(t̃j) = tj , (Ωq)∗(ũ18) = κt36, (Ωq)∗(ũ54) = t318, (Ωq)∗(ũ50) = t510,
(Ωq)∗(ũodd) = 0, ũ18β = ũ17, ũ54β = ũ53, and ũ50β = ũ49. If we note that
(Ωq)∗ is injective in even degrees, we can easily determine the Ap-module struc-
tures and we can easily see that all generators except for ũ54 ∈ H∗(ΩẼ7) are
primitive and φ̄(ũ54) = −κ(ũ2

18 ⊗ ũ18 + ũ18 ⊗ ũ2
18). See Kono [10] and Kono-

Kozima [11]. Thus, we are left to determine Ãd∗ for the determination of
H∗(K(g(1)); Fp) as a Hopf algebra over Ap for the cases (G, p) = (F4, 3), (E6, 3),
(E7, 3), (E8, 3) and (E8, 5). Let Âd: AdE6×ΩẼ6 → ΩẼ6 be the adjoint action
of AdE6 on ΩẼ6.

Proposition 2.
(i) The mod 3 homology map Âd∗ is given by ȳ1 ∗ t̃16 = ũ17, ȳ1 ∗ t̃j = 0 for

j �= 16, and ȳ1 ∗ ũj = 0 for j = 17, 18, and by the following table.

t̃8 t̃10 t̃14 t̃16 t̃22 ũ17 ũ18

ȳ2∗ t̃10 0 t̃16 ũ18 −κt̃38 0 0
ȳ6∗ t̃14 −t̃16 0 t̃22 0 0 κt̃38

(ii) For the cases (G, p) = (F4, 3), (E6, 3), (E7, 3) and (E8, 3), Ãd∗ is given
by y3 ∗ t̃14 = −ũ17, y3 ∗ t̃j = 0 for j �= 14, y7 ∗ t̃10 = ũ17, y7 ∗ t̃46 = −εũ53,
y7 ∗ t̃j = 0 for j �= 10, 46, y9 ∗ t̃8 = −ũ17, y9 ∗ t̃j = 0 for j �= 8, y19 ∗ t̃34 = εũ53,
y19 ∗ t̃j = 0 for j �= 34, and yl ∗ ũj = 0 for l = 3, 7, 8, 9, 19, 20 and any j, and
by the following table where ε is the same one as that in [4].
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t̃8 t̃10 t̃14 t̃16 t̃22 t̃26 t̃34 t̃38 t̃46 t̃58

y8∗ t̃16 ũ18 t̃22 −κt̃38 −t̃310 t̃34 −t̃314 −t̃46 −εũ54 −εt̃322
y20∗ – – t̃34 – −t̃314 −t̃46 εũ54 t̃58 εt̃322 −t̃326

(iii) For the case (G, p) = (E8, 5), Ãd∗ is given by y3∗t̃46 = −εũ49, y3∗t̃j = 0
for j �= 46, y11∗t̃38 = εũ49, y11∗t̃j = 0 for j �= 38, and yl∗ũj = 0 for l = 3, 11, 12
and j = 49, 50, and by the following table where ε is the same one as that in
[5].

t̃14 t̃22 t̃26 t̃34 t̃38 t̃46 t̃58

y12∗ t̃26 t̃34 t̃38 t̃46 εũ50 εt̃58 −ε−1t̃514

Proof. By the injectivity of (Ωq)∗ in even degrees, by the results of [4] and
[5], and by the result of Section 2, we have the equations of yeven∗ and ȳeven∗
on even degree generators. Also we can easily deduce those on odd degree
generator. Then, applying suitable cohomology operations, we can easily show
the proposition except for the case (G, p) = (E6, 3) of (ii). For the remaining
case, we can similarly deduce the equations of y3∗ and y7∗. Then, we can deduce
those of y9∗ by using y9∗t = ȳ9∗t = (ȳ2ȳ7−ȳ7ȳ2)∗t = ȳ2∗(y7∗t)−y7∗(ȳ2∗t).

Remark 3. Note that the relation y19 ∗ t̃34 = εũ53 in H∗(ΩẼ7) follows
from that in H∗(ΩẼ8). Except for this, all relations can be deduced without
using inclusions of Lie groups and the computations are completely algebraic.

4. The cohomology of the 3-connective covers

Recall that

H∗(F̃4) = F3[z̃18] ⊗ ∧(x̃11, x̃15, z̃19, z̃23),

H∗(Ẽ6) = F3[z̃18] ⊗ ∧(x̃9, x̃11, x̃15, x̃17, z̃19, z̃23),

H∗(Ẽ7) = F3[z̃54] ⊗ ∧(x̃11, x̃15, x̃27, x̃35, z̃19, z̃23, z̃55),

H∗(Ẽ8) = F3[z̃54] ⊗ ∧(x̃15, x̃27, x̃35, x̃39, x̃47, z̃23, z̃55, z̃59),

H∗(Ẽ8; F5) = F5[z̃50] ⊗ ∧(x̃15, x̃23, x̃27, x̃35, x̃39, x̃47, z̃51, z̃59).

Except for the Ap-action on z̃even, the Ap-module structures of these are
easily determined by those of H∗(ΩG̃; Fp). Moreover, we may assume that
all generators except for z̃18 ∈ H∗(Ẽ6), z̃54 ∈ H∗(Ẽ7), z̃54 ∈ H∗(Ẽ8), and
z̃50 ∈ H∗(Ẽ8; F5) are primitive.

Proposition 4. We can choose the generators such that
(i) φ̄(z̃18) = x̃9 ⊗ x̃9 where z̃18 ∈ H∗(Ẽ6),
(ii) φ̄(z̃54) = x̃27 ⊗ x̃27 where z̃54 ∈ H∗(Ẽ7),
(iii) φ̄(z̃54) = x̃27 ⊗ x̃27 + x̃15 ⊗ x̃39 + x̃39 ⊗ x̃15 where z̃54 ∈ H∗(Ẽ8),
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(iv) φ̄(z̃50) = x̃23 ⊗ x̃27 + x̃27 ⊗ x̃23 − x̃15 ⊗ x̃35 − x̃35 ⊗ x̃15 where z̃50 ∈
H∗(Ẽ8; F5).

Proof. We only show (i). The others are similar. By applying the homol-
ogy suspension to y9 ∗ t̃8 = −ũ17, we have y9 ∗ ỹ9 = −b̃18 where ỹ9 and b̃18 are
the dual elements of x̃9 and z̃18 respectively. We can also consider the adjoint
action of Ẽ6 on itself. Then, we have

−ỹ2
9 = [ỹ9, ỹ9] = ỹ9 ∗ ỹ9 = y9 ∗ ỹ9 = −b̃18

and hence b̃18 = ỹ2
9 . We can easily see that this implies (i).

By this proposition, we can easily determine the Ap-action on z̃even and
hence, we determine H∗(G̃; Fp) as a Hopf algebra over Ap for every case (G, p)
we consider.
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