On the homology of the Kac-Moody groups and the cohomology of the 3-connective covers of Lie groups

By

Osamu Nishimura*

Abstract

Let G be a compact, 1-connected, simple Lie group of exceptional type, g its Lie algebra, and p an odd prime. In this paper, the mod p homology of the Kac-Moody group $K(g^{(1)})$ and the mod p cohomology of the 3-connective cover over G are determined as Hopf algebras over the Steenrod algebra for every case that the integral homology of G has p-torsion.

1. Introduction

In [4], Hamanaka and Hara determined $H_*(\Omega G; \mathbb{F}_3)$ as a Hopf algebra over \mathcal{A}_3 for $G = F_4, E_6, E_7$ and E_8 where \mathcal{A}_p is the mod p Steenrod algebra. Moreover, they determined the mod 3 homology map of the adjoint action $\mathrm{Ad}\colon G \times \Omega G \to \Omega G$ for G above except for one equation which is in the case $G = E_6$.

The first purpose of this paper is to determine this remaining equation by computing the mod 3 homology map of the adjoint action $\overline{\mathrm{Ad}}$: $\mathrm{Ad}E_6 \times \Omega E_6 \to \Omega E_6$. Then, by using this result and the result of [4], we determine $H_*(K(g^{(1)}); \mathbb{F}_3)$ and $H^*(\tilde{G}; \mathbb{F}_3)$ as Hopf algebras over \mathcal{A}_3 for G above where g is the Lie algebra of G, $K(g^{(1)})$ is the Kac-Moody group associated with g (see [6], [7] and [8]), and \tilde{G} is the 3-connective cover over G. Also we give a similar result for E_8 at prime 5 by using the result of [5].

This paper is organized as follows. In Section 2, we compute the mod 3 homology map of $\overline{\mathrm{Ad}}$ and complete the computation of the mod 3 homology map of $\mathrm{Ad}\colon E_6 \times \Omega E_6 \to \Omega E_6$. In Sections 3 and 4, we determine the mod p homology of the Kac-Moody group and the mod p cohomology of the 3-connective cover, respectively, as Hopf algebras over \mathcal{A}_p for the cases stated before.

We use the following notation. The subscript of an element of a graded algebra designates the degree. The reduced coproduct of a coalgebra is denoted

Received July 28, 2000

^{*}Partially supported by JSPS Research Fellowships for Young Scientists.

by $\bar{\phi}$. The symbol * is used to indicate the adjoint action as in [4]. (Also see [12].) The mod 3 cohomology and homology are simply denoted by $H^*(\)$ and $H_*(\)$.

The author expresses gratitude to Professor Akira Kono for his advices and encouragements.

2. The adjoint action of AdE_6 on ΩE_6

Recall from Araki [1], Borel [2] and Petrie [16],

$$H^*(E_6) = \mathbb{F}_3[x_8]/(x_8^3) \otimes \wedge (x_3, x_7, x_9, x_{11}, x_{15}, x_{17}),$$

$$H^*(AdE_6) = \mathbb{F}_3[\bar{x}_2, \bar{x}_8]/(\bar{x}_2^9, \bar{x}_8^3) \otimes \wedge (\bar{x}_1, \bar{x}_3, \bar{x}_7, \bar{x}_9, \bar{x}_{11}, \bar{x}_{15}),$$

$$H_*(\Omega E_6) = \mathbb{F}_3[t_2, t_6, t_8, t_{10}, t_{14}, t_{16}, t_{22}]/(t_2^3)$$

as algebras. We choose the same generators as those in Kono [9] and Hamanaka-Hara [4]. For the detail of the coalgebra structures and the A_3 -module structures, see [9] and [4].

Let $\pi \colon E_6 \to \operatorname{Ad}E_6$ be the natural projection. Let y_j and \bar{y}_j be the dual elements of the indecomposable classes of x_j and \bar{x}_j respectively. Let \bar{y}_6 be the dual element of \bar{x}_2^3 with respect to the monomial basis of $H^*(\operatorname{Ad}E_6)$. We can see $\pi_*(y_8) = \bar{y}_8 = \bar{y}_6\bar{y}_2 - \bar{y}_2\bar{y}_6$. (See [14].) Note that $H_*(\operatorname{Ad}E_6)$ is generated by \bar{y}_1, \bar{y}_2 and \bar{y}_6 as an algebra.

Proposition 1. The map \overline{Ad}_* is given by $\overline{y}_1 * t_j = 0$ for any j and by the following table:

	t_2	t_6	t_8	t_{10}	t_{14}	t_{16}	t_{22}
\bar{y}_2*	0	t_8	t_{10}	0	t_{16}	κt_6^3	$-\kappa t_8^3$
\bar{y}_6*	$-t_8$	$t_8 t_2^2$	t_{14}	$-t_{16}$	0	t_{22}	0

where κ is the same one as that in [4]. Moreover, $\delta = -\kappa \neq 0$ in Theorem 2 of [4].

Proof. By the dimensional reason and the primitivity, we have $\bar{y}_1 * t_j = 0$ for any j and $\bar{y}_2 * t_2 = \bar{y}_2 * t_{10} = \bar{y}_6 * t_{14} = \bar{y}_6 * t_{22} = 0$. Since $\overline{\mathrm{Ad}}_* \circ (\pi_* \otimes 1) = \mathrm{Ad}_*$, we have $t_{10} = y_8 * t_2 = \bar{y}_8 * t_2 = -\bar{y}_2 * (\bar{y}_6 * t_2)$. Hence we may assume that $t_8 = -\bar{y}_6 * t_2$ and $t_{10} = \bar{y}_2 * t_8$. Then, we can see that $\bar{\phi}(\bar{y}_6 * t_6) = \bar{\phi}(t_8 t_2^2)$ and hence $\bar{y}_6 * t_6 = t_8 t_2^2$. By applying \wp^1 to this, we have $\bar{y}_2 * t_6 = t_8$. Since $(\bar{y}_6 * t_8) \wp^1 = \bar{y}_2 * t_8 = t_{10}$, we can conclude that $\bar{y}_6 * t_8 = t_{14}$. We can see that $t_{16} = \bar{y}_8 * t_8 = \bar{y}_6 * t_{10} - \bar{y}_2 * t_{14}$ while by applying \wp^1 to $\bar{y}_6 * t_{14} = 0$, we have $\bar{y}_2 * t_{14} + \bar{y}_6 * t_{10} = 0$. Hence we have $\bar{y}_2 * t_{14} = t_{16}$ and $\bar{y}_6 * t_{10} = -t_{16}$. We have $\bar{y}_8 * t_{10} = \bar{y}_2 * t_{16} = \kappa t_6^3$ and since $(\bar{y}_6 * t_{16}) \wp^1 = \bar{y}_2 * t_{16} = \kappa t_6^3$, we have $\bar{y}_6 * t_{16} = t_{22}$. We have $y_8 * t_{16} = \kappa \bar{y}_6 * (t_6^3) - \bar{y}_2 * t_{22}$ while by applying \wp^1 to $\bar{y}_6 * t_{22} = 0$, we have $\bar{y}_2 * t_{22} + \kappa \bar{y}_6 * (t_6^3) = 0$. Hence we have $y_8 * t_{16} = \bar{y}_2 * t_{22} = -\kappa \bar{y}_6 * (t_6^3)$. We can see that $\bar{y}_6 * (t_6^3) = t_8^3$ and hence, the proposition is proved.

3. The homology of the Kac-Moody groups

Let L(G) be the space of free loops on G. Recall that L(G) is the semidirect product of G and ΩG where the adjoint action Ad: $G \times \Omega G \to \Omega G$ twists the multiplications of G and ΩG . See [4].

Since $K(g^{(1)})$ is the central extension by S^1 of L(G), it is identified as an A_{∞} -space with the semi-direct product of G and $\Omega \tilde{G}$ where the adjoint action $\widetilde{\mathrm{Ad}} \colon G \times \Omega \tilde{G} \to \Omega \tilde{G}$ twists the multiplications of G and $\Omega \tilde{G}$. See Kac [6] and [7], Kac-Peterson [8]. Accordingly, the Hopf algebra structure over the Steenrod algebra of $H_*(K(g^{(1)}); \mathbb{F}_p)$ is determined by that of $H_*(G; \mathbb{F}_p)$, that of $H_*(\Omega \tilde{G}; \mathbb{F}_p)$, and the map $\widetilde{\mathrm{Ad}}_*$.

Let $q: \tilde{G} \to G$ be the covering projection. Let the generators of $H_*(G)$, $H_*(\Omega G)$, $H_*(E_8; \mathbb{F}_5)$ and $H_*(\Omega E_8; \mathbb{F}_5)$ be as in [4] and Hamanaka-Hara-Kono [5]. Then, we have

$$\begin{split} H_*(\Omega \tilde{F}_4) &= \mathbb{F}_3[\tilde{t}_{10}, \tilde{t}_{14}, \tilde{t}_{22}, \tilde{u}_{18}] \otimes \wedge (\tilde{u}_{17}), \\ H_*(\Omega \tilde{E}_6) &= \mathbb{F}_3[\tilde{t}_8, \tilde{t}_{10}, \tilde{t}_{14}, \tilde{t}_{16}, \tilde{t}_{22}, \tilde{u}_{18}] \otimes \wedge (\tilde{u}_{17}), \\ H_*(\Omega \tilde{E}_7) &= \mathbb{F}_3[\tilde{t}_{10}, \tilde{t}_{14}, \tilde{t}_{22}, \tilde{t}_{26}, \tilde{t}_{34}, \tilde{u}_{18}, \tilde{u}_{54}] \otimes \wedge (\tilde{u}_{53}), \\ H_*(\Omega \tilde{E}_8) &= \mathbb{F}_3[\tilde{t}_{14}, \tilde{t}_{22}, \tilde{t}_{26}, \tilde{t}_{34}, \tilde{t}_{38}, \tilde{t}_{46}, \tilde{t}_{58}, \tilde{u}_{54}] \otimes \wedge (\tilde{u}_{53}), \\ H_*(\Omega \tilde{E}_8; \mathbb{F}_5) &= \mathbb{F}_5[\tilde{t}_{14}, \tilde{t}_{22}, \tilde{t}_{26}, \tilde{t}_{34}, \tilde{t}_{38}, \tilde{t}_{46}, \tilde{t}_{58}, \tilde{u}_{50}] \otimes \wedge (\tilde{u}_{49}) \end{split}$$

where $(\Omega q)_*(\tilde{t}_j) = t_j$, $(\Omega q)_*(\tilde{u}_{18}) = \kappa t_6^3$, $(\Omega q)_*(\tilde{u}_{54}) = t_{18}^3$, $(\Omega q)_*(\tilde{u}_{50}) = t_{10}^5$, $(\Omega q)_*(\tilde{u}_{\text{odd}}) = 0$, $\tilde{u}_{18}\beta = \tilde{u}_{17}$, $\tilde{u}_{54}\beta = \tilde{u}_{53}$, and $\tilde{u}_{50}\beta = \tilde{u}_{49}$. If we note that $(\Omega q)_*$ is injective in even degrees, we can easily determine the \mathcal{A}_p -module structures and we can easily see that all generators except for $\tilde{u}_{54} \in H_*(\Omega \tilde{E}_7)$ are primitive and $\bar{\phi}(\tilde{u}_{54}) = -\kappa(\tilde{u}_{18}^2 \otimes \tilde{u}_{18} + \tilde{u}_{18} \otimes \tilde{u}_{18}^2)$. See Kono [10] and Kono-Kozima [11]. Thus, we are left to determine $\widetilde{\mathrm{Ad}}_*$ for the determination of $H_*(K(g^{(1)}); \mathbb{F}_p)$ as a Hopf algebra over \mathcal{A}_p for the cases $(G, p) = (F_4, 3)$, $(E_6, 3)$, $(E_7, 3)$, $(E_8, 3)$ and $(E_8, 5)$. Let $\widehat{\mathrm{Ad}}: \mathrm{Ad}E_6 \times \Omega \tilde{E}_6 \to \Omega \tilde{E}_6$ be the adjoint action of $\mathrm{Ad}E_6$ on $\Omega \tilde{E}_6$.

Proposition 2.

(i) The mod 3 homology map \widehat{Ad}_* is given by $\bar{y}_1 * \tilde{t}_{16} = \tilde{u}_{17}$, $\bar{y}_1 * \tilde{t}_j = 0$ for $j \neq 16$, and $\bar{y}_1 * \tilde{u}_j = 0$ for j = 17, 18, and by the following table.

	$ ilde{t}_8$	\tilde{t}_{10}	\tilde{t}_{14}	\tilde{t}_{16}	\tilde{t}_{22}	\tilde{u}_{17}	\tilde{u}_{18}
\bar{y}_2*	\tilde{t}_{10}	0	\tilde{t}_{16}	\tilde{u}_{18}	$-\kappa \tilde{t}_8^3$	0	0
\bar{y}_6*	\tilde{t}_{14}	$-\tilde{t}_{16}$	0	\tilde{t}_{22}	0	0	$\kappa \tilde{t}_8^3$

(ii) For the cases $(G,p)=(F_4,3), (E_6,3), (E_7,3)$ and $(E_8,3), {\rm Ad}_*$ is given by $y_3*\tilde{t}_{14}=-\tilde{u}_{17}, \ y_3*\tilde{t}_j=0$ for $j\neq 14, \ y_7*\tilde{t}_{10}=\tilde{u}_{17}, \ y_7*\tilde{t}_{46}=-\varepsilon \tilde{u}_{53}, \ y_7*\tilde{t}_j=0$ for $j\neq 10, 46, \ y_9*\tilde{t}_8=-\tilde{u}_{17}, \ y_9*\tilde{t}_j=0$ for $j\neq 8, \ y_{19}*\tilde{t}_{34}=\varepsilon \tilde{u}_{53}, \ y_{19}*\tilde{t}_j=0$ for $j\neq 34, \ and \ y_l*\tilde{u}_j=0$ for l=3,7,8,9,19,20 and any j, and by the following table where ε is the same one as that in [4].

	$ ilde{t}_8$	\tilde{t}_{10}	\tilde{t}_{14}	\tilde{t}_{16}	\tilde{t}_{22}	\tilde{t}_{26}	\tilde{t}_{34}	\tilde{t}_{38}	\tilde{t}_{46}	$ ilde{t}_{58}$
y_8*	\tilde{t}_{16}	\tilde{u}_{18}	\tilde{t}_{22}	$-\kappa \tilde{t}_8^3$	$-\tilde{t}_{10}^{3}$	\tilde{t}_{34}	$-\tilde{t}_{14}^{3}$	$-\tilde{t}_{46}$	$-\varepsilon \tilde{u}_{54}$	$-\varepsilon \tilde{t}_{22}^3$
$y_{20}*$	_	_	\tilde{t}_{34}	_	$-\tilde{t}_{14}^{3}$	$-\tilde{t}_{46}$	$\varepsilon \tilde{u}_{54}$	$ ilde{t}_{58}$	$\varepsilon \tilde{t}_{22}^3$	$-\tilde{t}_{26}^{3}$

(iii) For the case $(G, p) = (E_8, 5)$, \widetilde{Ad}_* is given by $y_3 * \widetilde{t}_{46} = -\epsilon \widetilde{u}_{49}$, $y_3 * \widetilde{t}_j = 0$ for $j \neq 46$, $y_{11} * \widetilde{t}_{38} = \epsilon \widetilde{u}_{49}$, $y_{11} * \widetilde{t}_j = 0$ for $j \neq 38$, and $y_l * \widetilde{u}_j = 0$ for l = 3, 11, 12 and j = 49, 50, and by the following table where ϵ is the same one as that in [5].

	$ ilde{t}_{14}$	\tilde{t}_{22}	\tilde{t}_{26}	\tilde{t}_{34}	$ ilde{t}_{38}$	\tilde{t}_{46}	\tilde{t}_{58}
y ₁₂ *	\tilde{t}_{26}	\tilde{t}_{34}	\tilde{t}_{38}	\tilde{t}_{46}	$\epsilon \tilde{u}_{50}$	$\epsilon ilde{t}_{58}$	$-\epsilon^{-1}\tilde{t}_{14}^5$

Proof. By the injectivity of $(\Omega q)_*$ in even degrees, by the results of [4] and [5], and by the result of Section 2, we have the equations of $y_{\text{even}}*$ and $\bar{y}_{\text{even}}*$ on even degree generators. Also we can easily deduce those on odd degree generator. Then, applying suitable cohomology operations, we can easily show the proposition except for the case $(G,p)=(E_6,3)$ of (ii). For the remaining case, we can similarly deduce the equations of y_3* and y_7* . Then, we can deduce those of y_9* by using $y_9*t=\bar{y}_9*t=(\bar{y}_2\bar{y}_7-\bar{y}_7\bar{y}_2)*t=\bar{y}_2*(y_7*t)-y_7*(\bar{y}_2*t)$. \square

Remark 3. Note that the relation $y_{19} * \tilde{t}_{34} = \varepsilon \tilde{u}_{53}$ in $H_*(\Omega \tilde{E}_7)$ follows from that in $H_*(\Omega \tilde{E}_8)$. Except for this, all relations can be deduced without using inclusions of Lie groups and the computations are completely algebraic.

4. The cohomology of the 3-connective covers

Recall that

$$H^{*}(\tilde{F}_{4}) = \mathbb{F}_{3}[\tilde{z}_{18}] \otimes \wedge (\tilde{x}_{11}, \tilde{x}_{15}, \tilde{z}_{19}, \tilde{z}_{23}),$$

$$H^{*}(\tilde{E}_{6}) = \mathbb{F}_{3}[\tilde{z}_{18}] \otimes \wedge (\tilde{x}_{9}, \tilde{x}_{11}, \tilde{x}_{15}, \tilde{x}_{17}, \tilde{z}_{19}, \tilde{z}_{23}),$$

$$H^{*}(\tilde{E}_{7}) = \mathbb{F}_{3}[\tilde{z}_{54}] \otimes \wedge (\tilde{x}_{11}, \tilde{x}_{15}, \tilde{x}_{27}, \tilde{x}_{35}, \tilde{z}_{19}, \tilde{z}_{23}, \tilde{z}_{55}),$$

$$H^{*}(\tilde{E}_{8}) = \mathbb{F}_{3}[\tilde{z}_{54}] \otimes \wedge (\tilde{x}_{15}, \tilde{x}_{27}, \tilde{x}_{35}, \tilde{x}_{39}, \tilde{x}_{47}, \tilde{z}_{23}, \tilde{z}_{55}, \tilde{z}_{59}),$$

$$H^{*}(\tilde{E}_{8}; \mathbb{F}_{5}) = \mathbb{F}_{5}[\tilde{z}_{50}] \otimes \wedge (\tilde{x}_{15}, \tilde{x}_{23}, \tilde{x}_{27}, \tilde{x}_{35}, \tilde{x}_{39}, \tilde{x}_{47}, \tilde{z}_{51}, \tilde{z}_{59}).$$

Except for the \mathcal{A}_p -action on \tilde{z}_{even} , the \mathcal{A}_p -module structures of these are easily determined by those of $H_*(\Omega \tilde{G}; \mathbb{F}_p)$. Moreover, we may assume that all generators except for $\tilde{z}_{18} \in H^*(\tilde{E}_6)$, $\tilde{z}_{54} \in H^*(\tilde{E}_7)$, $\tilde{z}_{54} \in H^*(\tilde{E}_8)$, and $\tilde{z}_{50} \in H^*(\tilde{E}_8; \mathbb{F}_5)$ are primitive.

Proposition 4. We can choose the generators such that

- (i) $\bar{\phi}(\tilde{z}_{18}) = \tilde{x}_9 \otimes \tilde{x}_9 \text{ where } \tilde{z}_{18} \in H^*(E_6),$
- (ii) $\bar{\phi}(\tilde{z}_{54}) = \tilde{x}_{27} \otimes \tilde{x}_{27} \text{ where } \tilde{z}_{54} \in H^*(\tilde{E}_7),$
- (iii) $\bar{\phi}(\tilde{z}_{54}) = \tilde{x}_{27} \otimes \tilde{x}_{27} + \tilde{x}_{15} \otimes \tilde{x}_{39} + \tilde{x}_{39} \otimes \tilde{x}_{15} \text{ where } \tilde{z}_{54} \in H^*(\tilde{E}_8),$

(iv) $\bar{\phi}(\tilde{z}_{50}) = \tilde{x}_{23} \otimes \tilde{x}_{27} + \tilde{x}_{27} \otimes \tilde{x}_{23} - \tilde{x}_{15} \otimes \tilde{x}_{35} - \tilde{x}_{35} \otimes \tilde{x}_{15}$ where $\tilde{z}_{50} \in H^*(\tilde{E}_8; \mathbb{F}_5)$.

Proof. We only show (i). The others are similar. By applying the homology suspension to $y_9 * \tilde{t}_8 = -\tilde{u}_{17}$, we have $y_9 * \tilde{y}_9 = -\tilde{b}_{18}$ where \tilde{y}_9 and \tilde{b}_{18} are the dual elements of \tilde{x}_9 and \tilde{z}_{18} respectively. We can also consider the adjoint action of \tilde{E}_6 on itself. Then, we have

$$-\tilde{y}_9^2 = [\tilde{y}_9, \tilde{y}_9] = \tilde{y}_9 * \tilde{y}_9 = y_9 * \tilde{y}_9 = -\tilde{b}_{18}$$

and hence $\tilde{b}_{18} = \tilde{y}_9^2$. We can easily see that this implies (i).

By this proposition, we can easily determine the \mathcal{A}_p -action on \tilde{z}_{even} and hence, we determine $H^*(\tilde{G}; \mathbb{F}_p)$ as a Hopf algebra over \mathcal{A}_p for every case (G, p) we consider.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY KYOTO 606-8502, JAPAN e-mail: osamu@kusm.kyoto-u.ac.jp

References

- [1] S. Araki, Differential Hopf algebras and the cohomology mod 3 of the compact exceptional groups E_7 and E_8 , Ann. of Math., **73** (1961), 404–436.
- [2] A. Borel, Sous groupes commutatifs et torsion des groupes de Lie compacts connexes, Tôhoku Math. J., **13** (1961), 216–240.
- [3] R. Bott, The space of loops on a Lie group, Michigan Math. J., 5 (1958), 35–61.
- [4] H. Hamanaka and S. Hara, The mod 3 homology of the space of loops on the exceptional Lie groups and the adjoint action, J. Math. Kyoto Univ., 37 (1997), 441–453.
- [5] H. Hamanaka, S. Hara and A. Kono, Adjoint actions on the modulo 5 homology groups of E_8 and ΩE_8 , J. Math. Kyoto Univ., **37** (1997), 169–176.
- [6] V. G. Kac, Constructing Groups Associated to Infinite-dimensional Lie Algebras, Infinite-dimensional groups with applications (Berkeley, Calif., 1984), pp. 167–216, Math. Sci. Res. Inst. Publ., 4, Springer, New York-Berlin, 1985.
- [7] V. G. Kac, Torsion in cohomology of compact Lie groups and Chow rings of reductive algebraic groups, Invent. Math., 80 (1985), 69–79.

- [8] V. G. Kac and D. Peterson, Infinite flag varieties and conjugacy theorems, Proc. Nat. Acad. Sci. U.S.A., 80 (1983), 1778–1782.
- [9] A. Kono, Hopf algebra structure of simple Lie groups, J. Math. Kyoto Univ., 17 (1977), 259–298.
- [10] A. Kono, On the cohomology of the 2-connected cover of the loop space of simple Lie groups, Publ. Res. Inst. Math. Sci., 22 (1986), 537–541.
- [11] A. Kono and K. Kozima, Homology of the Kac-Moody groups I, II, III.,
 J. Math. Kyoto Univ., 29 (1989), 449–453; J. Math. Kyoto Univ., 31 (1991), 165–170; J. Math. Kyoto Univ., 31 (1991), 1115–1120.
- [12] A. Kono and K. Kozima, The adjoint action of a Lie group on the space of loops, J. Math. Soc. Japan, 45 (1993), 495–510.
- [13] J. Milnor and C. Moore, On the structure of Hopf algebras, Ann. of Math., 81 (1965), 211–264.
- [14] O. Nishimura, On the Hopf algebra structure of the mod 3 cohomology of the exceptional Lie group of type E_6 , J. Math. Kyoto Univ., **39** (1999), 697–704.
- [15] O. Nishimura, Adjoint actions of a connected homotopy associative *H*-space on connective covers, preprint.
- [16] T. Petrie, The weakly complex bordism of Lie groups, Ann. of Math., 88 (1968), 371–402.