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On the homology of the Kac-Moody groups
and the cohomology of the 3-connective covers
of Lie groups

By
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Abstract
Let G be a compact, 1-connected, simple Lie group of exceptional
type, g its Lie algebra, and p an odd prime. In this paper, the mod p
homology of the Kac-Moody group K(gm) and the mod p cohomology
of the 3-connective cover over G are determined as Hopf algebras over
the Steenrod algebra for every case that the integral homology of G has
p-torsion.

1. Introduction

In [4], Hamanaka and Hara determined H.(QG;F3) as a Hopf algebra
over Az for G = Fy, Es, E7 and Eg where A, is the mod p Steenrod algebra.
Moreover, they determined the mod 3 homology map of the adjoint action
Ad: G x QG — QG for G above except for one equation which is in the case
G = Eg.

The first purpose of this paper is to determine this remaining equation
by computing the mod 3 homology map of the adjoint action Ad: AdEg x
OEs — QFEg. Then, by using this result and the result of [4], we determine
H,(K(g™M);F3) and H*(G;F3) as Hopf algebras over As for G above where g
is the Lie algebra of G, K(g") is the Kac-Moody group associated with g (see
[6], [7] and [8]), and G is the 3-connective cover over G. Also we give a similar
result for Eg at prime 5 by using the result of [5].

This paper is organized as follows. In Section 2, we compute the mod 3
homology map of Ad and complete the computation of the mod 3 homology
map of Ad: Fg x QFEs — QFg. In Sections 3 and 4, we determine the mod
p homology of the Kac-Moody group and the mod p cohomology of the 3-
connective cover, respectively, as Hopf algebras over 4, for the cases stated
before.

We use the following notation. The subscript of an element of a graded
algebra designates the degree. The reduced coproduct of a coalgebra is denoted
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by ¢. The symbol # is used to indicate the adjoint action as in [4]. (Also see
[12].) The mod 3 cohomology and homology are simply denoted by H*( ) and
H.().

The author expresses gratitude to Professor Akira Kono for his advices
and encouragements.

2. The adjoint action of AdEs on Q2 Fjg

Recall from Araki [1], Borel [2] and Petrie [16],

H*(Es) F3[$8]/($§) ® N (&3, T7,T9, T11, T15, T17),
H*(AdEg) = F3Zo, 7s]/ (79, T3) @ A(Z1, T3, 7, Tg, T11, T15),
H.(QEg) = F3ta, te, ts, tio, tia, tie, t2o] /(£3)

as algebras. We choose the same generators as those in Kono [9] and Hamanaka-
Hara [4]. For the detail of the coalgebra structures and the As-module struc-
tures, see [9] and [4].

Let m: Es — AdEg be the natural projection. Let y; and g; be the dual
elements of the indecomposable classes of x; and Z; respectively. Let ys be the
dual element of 3 with respect to the monomial basis of H*(AdFEg). We can
see T« (Ys) = Ys = YsYz — YoUs- (See [14].) Note that H.(AdEs) is generated by
91, Y2 and gg as an algebra.

Proposition 1. The map Ad. is given by §1 *t; = 0 for any j and by
the following table:

‘ HtQ‘te‘ts‘tw‘tm‘tm‘tm‘
Gox || O ts | tio| O | tie| Kty | —rtd

Ye* —tg tgt% ti4 —t16 0 too 0

where K is the same one as that in [4]. Moreover, 6 = —k # 0 in Theorem 2

of [4].

Proof. By the dimensional reason and the primitivity, we have g *t; = 0
for any j and ga*te = Goxtig = Ye*t14 = Ye*taz = 0. Since Ad,o(m.®1) = Ad,,
we have t1g = yg x tg = Jg * tg = —Fo2 * (Y * t2). Hence we may assume that
ts = —i * t2 and t19 = 7o * tg. Then, we can see that ¢(7s * tg) = P(tst?)
and hence ¥ * tg = tgt3. By applying o' to this, we have 9, * ts = tg. Since
(Ys * tg)pl = §jo x tg = t19, we can conclude that yg * tg = t14. We can see
that t1g = ¥s * ts = Y * t10 — §2 * t14 while by applying ' to 7 * t14 = 0, we
have Yo * t14 + Y * t10 = 0. Hence we have Yo ¥ t14 = 16 and Y * t10 = —T16.
We have g * tig = 2 * tig = rtp and since (Js * tig)p' = o * t1g = Ktg,
we have gﬁ * t16 = t22. We have Ys * t16 = /ﬁlgﬁ * (t%) - gg * t22 while by
applying o' to g * tag = 0, we have §a * tag + ks * (t3) = 0. Hence we have
ys * t16 = Yo * tag = —Kije * (t3). We can see that i * (t3) = t3 and hence, the
proposition is proved. ]
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3. The homology of the Kac-Moody groups

Let L(G) be the space of free loops on G. Recall that L(G) is the semi-
direct product of G and QG where the adjoint action Ad: G x QG — QG twists
the multiplications of G and QG. See [4].

Since K(g!)) is the central extension by S' of L(G), it is identified as
an Aoc-space with the semi-direct product of G and QG where the adjoint
action Ad: G x QG — QG twists the multiplications of G and QG. See Kac
[6] and [7], Kac-Peterson [8]. Accordingly, the Hopf algebra structure over the
Steenrod algebra of H,(K(g™"));F,) is determined by that of H.(G;F,), that
of H, (Qé, F,), and the map Ad..

Let ¢: G — G be the covering projection. Let the generators of H.(G),
H.(QG), H.(Es;F5) and H,(2Es;F5) be as in [4] and Hamanaka-Hara-Kono
[5]. Then, we have

H,(QFy) = Fs[tr0, t1a, t22, ti1s] ® A(fir7),

H.(QEq) = F3lts, t10, t1a, t16, to2, ti1s) @ A7),
H.(QE7) = Faltio, tia, a2, tog, 34, s, Usa] @ A(iis3),
H,(QEg) = F[t14, 120, a6, 34, T35, Ls, E5s, lisa] @ A(lis3),
H,(QEg; F5) = Fs[t14, too, tag, 34, T35, t6, T, liso] @ A(fiag)

where (Qq).(f;) = t;, (Qq)«(t1s) = kg, () (dsa) = tis, ()« (iz0) = 1T,
(Qq)*(ﬂodd) = O7 ﬂlgﬁ = ’&17, 1154ﬁ = ’1153, and ﬂ50ﬁ = 1]49. If we note that
(Q4g). is injective in even degrees, we can easily determine the A,-module struc-
tures and we can easily see that all generators except for 54 € H, (QE7) are
primitive and ¢(fisq) = —k(ii3g @ 1g + U1g ® @2g). See Kono [10] and Kono-
Kozima [11]. Thus, we are left to determine Ad, for the determination of
H.(K(g"M);F,) as a Hopf algebra over A, for the cases (G, p) = (Fy,3), (Es, 3),
(E7,3), (Es,3) and (Es,5). Let Ad: AdEg x QEg — QFEg be the adjoint action
of AdEg on QFE.

Proposition 2.
(i) The mod 3 homology map Ad. is given by 41 *t1 = @17, 1 *t; = 0 for
Jj#16, and §1 * t; = 0 for j = 17,18, and by the following table.

L [ ds [ o [fa [ fio | T2 [ [ s |
gor ||t | O |t |G | —kE3 | O 0
Jox || tia | —tis | 0 | foo 0 0 | kit

(ii) For the cases (G,p) = (Fu,3), (Es,3), (E7,3) and (Es,3), Ad, is given
by yz * iy = —lar, ys x t; = 0 for j # 14, yr x tio = iy, yr * tag = —€liss,
yrxt; =0 for j # 10,46, yo*ts = —ta7, yoxt; = 0 for j # 8, y1o * t34 = i3,
ylg*t =0 for j # 34, and y; x4y = 0 for 1 = 3,7,8,9,19,20 and any j, and
by the following table where € is the same one as that in [4]



178 Osamu Nishimura

‘ H ts ‘ t1o ‘ t1a ‘ t16 ‘ to2 ‘ to6 ‘ t34 ‘ t3s ‘ ta6 ‘ tss ‘
ysk || tie | Tis | oz | —kts | —t3 | faa | —ti4 | —tae | —€lisa | —etiy
Yo0* - - t~34 - *{?4 *{46 Elsq t~58 55%2 *5236

(iii) For the case (G,p) = (Fs,5), A\a* is given by ys¥tis = —€liag, yg*fj =0
forj # 46, y11xtsg = €liag, y11xt; = 0 for j # 38, and yy*t; = 0 forl = 3,11,12
and j = 49,50, and by the following table where € is the same one as that in
[5].

‘ H t1y ‘ t2 ‘ ta ‘ t34 ‘ tss ‘ tag ‘ tss ‘

g g g s - 7 15
‘ Y12% H tas ‘ 34 ‘ l38 ‘ tas ‘ €Us0 ‘ €lss ‘ —€ 1ty ‘

Proof. By the injectivity of (Qq). in even degrees, by the results of [4] and
[5], and by the result of Section 2, we have the equations of Yeven* and Feven*
on even degree generators. Also we can easily deduce those on odd degree
generator. Then, applying suitable cohomology operations, we can easily show
the proposition except for the case (G,p) = (Eg,3) of (ii). For the remaining
case, we can similarly deduce the equations of y3* and y7*. Then, we can deduce
those of yo* by using yo*t = yo*t = (J2yr —Yry2)*t = Yo* (yr*t) —yr*(ya*t). U

Remark 3.  Note that the relation yg * ts4 = elis3 in H, (QE7) follows
from that in H,(2Eg). Except for this, all relations can be deduced without
using inclusions of Lie groups and the computations are completely algebraic.

4. The cohomology of the 3-connective covers

Recall that

H*(Fy) = F3[218] ® A(Z11, 15, 219, Z23),

H*(Eg) = Fs[215] ® A(Z9, #11, 15, Z17, F19, Z23),

H*(E7) = F3[Z54] ® A(F11, E15, Fo7, E35, Z19, 223, 555,
H*(Es) = F3[254] ® A(&15, Zor, T35, E39, La7, 223, Z55, 259,
H*(Es;F5) = F5[Z50] © A(d15, Z23, Tar, T35, T39, T47, Z51, Z59)-

Except for the Ap-action on Zeyen, the Aj-module structures of these are
easily determined by those of H*(QG;IE‘p). Moreover, we may assume that
all generators except for Zjg € H*(Eg), 254 € H*(FEy), 254 € H*(Eg), and
Zs0 € H*(Fs; Fy) are primitive.

Proposition 4. We can choose the generators such that
(1) QS(ZIS) = Tg9 ® Tg where Z13 € H*(E(;),

(ii) ¢(§54) = To7 @ Toy where z54 € H*(Ey),

(iii) ¢(§54) = To7 @ To7 + T15 ® T39 + T39 ® T15 where Z54 € H* (Eg),
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(IY) ¢(250) = To3 @ To7r + Tor @ Tog — T15 @ T35 — T35 ® T15 where Zsg €
H*(Es;F5).

Proof. We only show (i). The others are similar. By applying the homol-
ogy suspension to yg * tg = —i17, we have yg * Jjg = 7518 where 79 and l~718 are
the dual elements of Zg and Z;g respectively. We can also consider the adjoint
action of Fg on itself. Then, we have

55 = [0, o] = G0 * Go = v * o = ~bs
and hence b1g = 2. We can easily see that this implies (i). O

By this proposition, we can easily determine the Ap-action on Zeyen and
hence, we determine H*(G;F,) as a Hopf algebra over A, for every case (G, p)
we consider.
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