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Twining characters, Kostant’s homology
formula, and the Bernstein-Gelfand-Gelfand

resolution

By

Satoshi Naito

Abstract

We give a new proof of the formulas for the twining character of the
Verma module M(λ) of symmetric highest weight λ and for the twining
character of the irreducible highest weight module L(Λ) of symmetric,
dominant integral highest weight Λ over a symmetrizable generalized
Kac-Moody algebra g, by using the Bernstein-Gelfand-Gelfand resolution
of L(Λ).

1. Introduction

In [FSS] and [FRS], they introduced a new type of character-like quantities,
called twining characters, corresponding to a Dynkin diagram automorphism
for certain highest weight modules over a symmetrizable (generalized) Kac-
Moody algebra g. Moreover, they gave formulas (see Theorems 3.3 and 3.4) for
the twining character of a Verma module M(λ) of symmetric highest weight λ
and for the twining character of an irreducible highest weight module L(Λ) of
symmetric, dominant integral highest weight Λ over g.

In the previous paper [N5], we obtained a formula of Kostant type for the
twining characters of the Lie algebra homology modules Hj(n−, L(Λ)), j ≥ 0,
of n− with coefficients in L(Λ), where n− is the sum of all the negative root
spaces of g, and then gave a new proof of the twining character formula for
L(Λ) as a corollary.

In this paper, we use an existence theorem in [N2] of a resolution of L(Λ)
of Bernstein-Gelfand-Gelfand type and an Euler-Poincaré principle to derive a
formula expressing the twining character of L(Λ) in terms of the twining char-
acters of M(λ)’s. Then we immediately deduce the twining character formula
for L(Λ) and also that for M(λ). Here we note that, unlike the case of an
ordinary character, it is not at all easy to describe the twining character of the
Verma module M(λ) of symmetric highest weight λ. Thus our proof will cast
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new light on the connections among the twining character of L(Λ), Kostant’s
homology formula, and the Bernstein-Gelfand-Gelfand resolution.

This paper is organized as follows. In Section 2 we recall the definition of
a generalized Kac-Moody algebra and fix our notation. In Section 3, following
[FSS] and [FRS], we review the definition of a twining character and the twining
character formulas for M(λ) and for L(Λ). In Section 4 we recall briefly the
twining character formula for Hj(n−, L(Λ)), j ≥ 0, which is the main result of
[N5]. In Section 5 we give a (new) proof of the twining character formulas for
M(λ) and for L(Λ), by using a resolution of L(Λ) of Bernstein-Gelfand-Gelfand
type.

2. Preliminaries and notation

2.1. Generalized Kac-Moody algebras.
Let I = {1, 2, . . . , n} be a finite index set, and let A = (aij)i,j∈I be an

n× n real matrix satisfying:
(C1) either aii = 2 or aii ≤ 0 for all i ∈ I;
(C2) aij ≤ 0 if i �= j ∈ I, and aij ∈ Z for j �= i if aii = 2;
(C3) aij = 0 if and only if aji = 0 for i, j ∈ I.

Such a matrix A = (aij)i,j∈I is called a GGCM. For a GGCM A = (aij)i,j∈I ,
there exists a triple (h, Π = {αi}i∈I , Π∨ = {hi}i∈I) satisfying:

(R1) h is a finite-dimensional vector space over the complex numbers C

such that dimC h = 2n− rank A;
(R2) Π = {αi}i∈I is a linearly independent subset of h∗ := HomC(h, C),

and Π∨ = {hi}i∈I is a linearly independent subset of h;
(R3) αj(hi) = aij for i, j ∈ I.

The generalized Kac-Moody algebra (GKM algebra) g = g(A) associated
to a GGCM A = (aij)i,j∈I over C is the Lie algebra over C generated by the
vector space h above (called the Cartan subalgebra) and the elements ei, fi for
i ∈ I with the following defining relations:

(D1) [h, h′] = 0 for h, h′ ∈ h;
(D2) [h, ei] = αi(h)ei, [h, fi] = −αi(h)fi for h ∈ h and i ∈ I;
(D3) [ei, fj ] = δijhi for i, j ∈ I;
(D4) (ad ei)1−aij ej = 0 = (ad fi)1−aij fj = 0 if aii = 2 and j �= i;
(D5) [ei, ej ] = 0 = [fi, fj ] if aii, ajj ≤ 0 and aij = 0 = aji.

We have a root space decomposition of g with respect to the Cartan sub-
algebra h:

g =

 ⊕
α∈∆−

gα

⊕ h⊕
 ⊕

α∈∆+

gα

 ,

where ∆+ ⊂ Q+ :=
∑

i∈I Z≥0αi is the set of positive roots, ∆− = −∆+ is
the set of negative roots, and gα is the root space of g corresponding to a root
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α ∈ ∆ = ∆− �∆+. We set

n± :=
⊕

α∈∆±

gα, b := h⊕ n+,

so that we have

g = n− ⊕ h⊕ n+ = n− ⊕ b.

Note that gαi
= Cei, g−αi

= Cfi for i ∈ I, so that Π = {αi}i∈I ⊂ h∗ is the set
of simple roots.

We set Ire := {i ∈ I | aii = 2}, Iim := {i ∈ I | aii ≤ 0}, and call
Πre := {αi ∈ Π | i ∈ Ire} the set of real simple roots, Πim := {αi ∈ Π | i ∈ Iim}
the set of imaginary simple roots. For i ∈ Ire, let ri ∈ GL(h∗) be the simple
reflection of h∗ given by:

ri(λ) = λ− λ(hi)αi for λ ∈ h∗.

Then the Weyl group W of the GKM algebra g is defined by

W := 〈ri | i ∈ Ire〉 ⊂ GL(h∗).

Note that W is a Coxeter group with the canonical generator system {ri | i ∈
Ire}, whose length function is denoted by

� : W → Z.

We call ∆re := W · Πre the set of real roots, and ∆im := ∆ \ ∆re the set of
imaginary roots. (Notice that W ·Πim ⊂ ∆im.)

Throughout this paper, we assume that a GGCM A = (aij)i,j∈I is sym-
metrizable, i.e., that there exist a diagonal matrix D = diag(ε1, . . . , εn) with
εi > 0 for all i ∈ I and a symmetric matrix B = (bij)i,j∈I such that A = DB.
Hence there exists a nondegenerate, symmetric, invariant bilinear form (·|·) on
g = g(A). The restriction of this bilinear form (·|·) to h is again nondegen-
erate, so that it induces (through ν : h → h∗) a nondegenerate, symmetric,
W -invariant bilinear form on h∗, which is also denoted by (·|·).

2.2. Certain Lie algebra homology modules
For λ ∈ h∗, let

M(λ) := U(g)⊗U(b) C(λ)

be the Verma module of highest weight λ over g, where U(a) denotes the
universal enveloping algebra of a Lie algebra a and C(λ) is the one-dimensional
(irreducible) h-module of weight λ on which n+ acts trivially. We then define
the g-module L(λ) to be the unique irreducible quotient of M(λ), that is,

L(λ) := M(λ)/J(λ),
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where J(λ) is the unique maximal proper submodule of M(λ).
Let

P+ := {Λ ∈ h∗ | Λ(hi) ≥ 0 for all i ∈ I, and Λ(hi) ∈ Z if aii = 2}

be the set of dominant integral weights. Now we recall the definition of the Lie
algebra homology modules Hj(n−, L(Λ)), j ≥ 0, of n− with coefficients in L(Λ)
for Λ ∈ P+. We denote by ∧∗

n− =
⊕
j≥0

∧j
n−

the exterior algebra of n−, where
∧j

n− is the homogeneous subspace of degree
j. Notice that for each j ≥ 0, the subspace

∧j
n− is an h-module under the

adjoint action since [h, n−] ⊂ n−. Let Λ ∈ P+ and j ∈ Z≥0. We define the
vector space Cj(n−, L(Λ)) of j-chains by

Cj(n−, L(Λ)) :=
(∧j

n−

)
⊗C L(Λ),

which is a tensor product of h-modules. Then the boundary operator dj :
Cj(n−, L(Λ))→ Cj−1(n−, L(Λ)) is defined by

dj(x1 ∧ · · · ∧ xj ⊗ v) :=
j∑

i=1

(−1)i(x1 ∧ · · · ∧ x̌i ∧ · · · ∧ xj)⊗ xiv

+
∑

1≤r<t≤j

(−1)r+t([xr, xt] ∧ x1 ∧ · · · ∧ x̌r ∧ · · · ∧ x̌t ∧ · · · ∧ xj)⊗ v,

where x1, . . . , xj ∈ n−, v ∈ L(Λ), and the symbols x̌i, x̌r, x̌t indicate terms to
be omitted. It is well-known that {Cj(n−, L(Λ)), dj}j≥0 with C−1(n−, L(Λ)) :=
{0} is a chain complex. The j-th homology of this chain complex is called
the j-th Lie algebra homology of n− with coefficients in L(Λ), denoted by
Hj(n−, L(Λ)). Note that for j ≥ 0, the boundary operator dj : Cj(n−, L(Λ))→
Cj−1(n−, L(Λ)) commutes with the action of h, and hence Hj(n−, L(Λ)) is an
h-module in the usual way.

3. Twining character formula for L(Λ)

3.1. Twining characters.
We recall the definition of the twining character of a certain highest weight

module, following [FRS] and [FSS] (see also [N4]).
Let A = (aij)i,j∈I be a symmetrizable GGCM indexed by a finite set I. A

bijection ω : I → I such that

aω(i),ω(j) = aij for all i, j ∈ I
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is called a (Dynkin) diagram automorphism, since such ω induces an automor-
phism of the Dynkin diagram of the GGCM A = (aij)i,j∈I as a graph. Let N
be the order of ω : I → I, and Ni the number of elements of the ω-orbit of
i ∈ I in I. We may (and will henceforth) assume that εω(i) = εi for all i ∈ I in
the decomposition A = DB with D = diag(ε1, . . . , εn) (see [N4, Section 3.1]).

The diagram automorphism ω : I → I can be extended (cf. [FSS, Section
3.2] and [K, Section 2.2]) to an automorphism of order N of the GKM algebra
g = g(A) associated to the GGCM A = (aij)i,j∈I so that

ω(ei) := eω(i) for i ∈ I,

ω(fi) := fω(i) for i ∈ I,

ω(hi) := hω(i) for i ∈ I,

ω(h) := h,

(ω(x)|ω(y)) = (x|y) for x, y ∈ g.

Notice that this ω : g → g extends to a unique algebra automorphism ω :
U(g)→ U(g) by

ω(x1 · · ·xk) = ω(x1) · · ·ω(xk) for x1, . . . , xk ∈ g.

We call these two automorphisms ω also diagram automorphisms by abuse of
notation.

The restriction of the diagram automorphism ω : g → g to the Cartan
subalgebra h induces a dual map ω∗ : h∗ → h∗ by

ω∗(λ)(h) := λ(ω(h)) for λ ∈ h∗, h ∈ h.

We set

(h∗)0 := {λ ∈ h∗ | ω∗(λ) = λ},
and call an element of (h∗)0 a symmetric weight. Note that we may (and will
henceforth) take an element ρ ∈ (h∗)0 (called a symmetric Weyl vector) such
that

ρ(hi) = (1/2) · aii for all i ∈ I.

Let λ ∈ (h∗)0 be a symmetric weight, and let V (λ) be either the Verma
module M(λ) or the irreducible highest weight module L(λ) of highest weight
λ. Then there exists a unique linear automorphism τω : V (λ) → V (λ) such
that

τω(xv) = ω−1(x)τω(v) for x ∈ g, v ∈ V (λ),

and

τω(v) = v for v ∈ V (λ)λ,

where V (λ)λ is the (one-dimensional) highest weight space of V (λ).
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Remark 3.1. Because M(λ) = U(g) ⊗U(b) C(λ) by definition, we can
take the linear automorphism ω−1⊗ id : U(g)⊗U(b) C(λ)→ U(g)⊗U(b) C(λ) for
τω : M(λ)→M(λ) above. Moreover, since this map ω−1 ⊗ id : M(λ)→M(λ)
stabilizes the unique maximal proper submodule J(λ) of M(λ), we can take
for τω : L(λ)→ L(λ) above the linear map M(λ)/J(λ)→M(λ)/J(λ) induced
from ω−1 ⊗ id : M(λ)→M(λ).

Remark 3.2. Let V be an h-module admitting a weight space decom-
position

V =
⊕
χ∈h∗

Vχ

with finite-dimensional weight spaces Vχ, and let f : V → V be a linear map
such that f(hv) = ω−1(h)f(v) for h ∈ h, v ∈ V . Then it follows that

f(Vχ) ⊂ Vω∗(χ)

for all χ ∈ h∗. Thus we define a formal sum:

TrV f exp :=
∑

χ∈(h∗)0

Tr(f |Vχ
) e(χ),

where Vχ is the χ-weight space of V for a symmetric weight χ ∈ (h∗)0.

Let λ ∈ (h∗)0. The twining character chω(V (λ)) of V (λ) (= M(λ), L(λ))
is defined to be the formal sum

chω(V (λ)) := TrV (λ) τω exp =
∑

χ∈(h∗)0

Tr(τω|V (λ)χ
) e(χ).

3.2. Twining character formulas for M(λ) and for L(Λ).
We review the twining character formulas for M(λ) of symmetric highest

weight λ and for L(Λ) of symmetric, dominant integral highest weight Λ, which
are the main results of [FSS] and [FRS].

We choose a set of representatives Î of the ω-orbits in I, and then introduce
the following subset of Î:

Ĭ :=

{
i ∈ Î

∣∣∣∣∣
Ni−1∑
k=0

ai,ωk(i) = 1, 2

}
.

We define the following subgroup of the Weyl group W :

W̃ := {w ∈W | ω∗w = wω∗}.
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We know from [FRS, Proposition 3.3] that the group W̃ is a Coxeter group
with the canonical generator system {wi | i ∈ Ĭ}, where for i ∈ Ĭ,

wi :=



Ni/2−1∏
k=0

(rωk(i) rωk+Ni/2(i) rωk(i)) if
Ni−1∑
k=0

ai,ωk(i) = 1,

Ni−1∏
k=0

rωk(i) if
Ni−1∑
k=0

ai,ωk(i) = 2.

Here we note that if
∑Ni−1

k=0 ai,ωk(i) = 1, then Ni is an even integer. We denote
the length function of W̃ by

�̂ : W̃ → Z.

We also recall from [FRS, Equation (1) on p. 529] that for a symmetric weight
λ ∈ (h∗)0 and i ∈ Ĭ,

wi(λ) = λ− 2si(λ|αi)
(αi|αi)

Ni−1∑
k=0

αωk(i),

where si := 2/
∑Ni−1

k=0 ai,ωk(i).
Let Λ ∈ P+ ∩ (h∗)0 be a symmetric, dominant integral weight. We denote

by S(Λ) the set of sums of distinct, pairwise perpendicular, imaginary simple
roots perpendicular to Λ. Then any element β ∈ S(Λ) ∩ (h∗)0 can be written
in the form β =

∑
i∈bI kiβi, where βi :=

∑Ni−1
k=0 αωk(i) ∈ (h∗)0 and ki = 0, 1 for

i ∈ Î. For such β ∈ S(Λ) ∩ (h∗)0, we set

ĥt(β) :=
∑
i∈bI

ki,

while we write ht(α) :=
∑

i∈I mi for α =
∑

i∈I miαi ∈ Q+. Set for (w, β) ∈
W × S(Λ),

(w, β) ◦ Λ := w(Λ + ρ− β)− ρ,

where ρ is a (fixed) symmetric Weyl vector.
We have the following twining character formulas.

Theorem 3.3 ([FRS, Theorem 3.1]). Let λ ∈ (h∗)0 be a symmetric
weight. Then

chω(M(λ)) = e(λ) ·

 ∑
w∈fW

β∈S(0)∩(h∗)0

(−1)b�(w)+ bht(β) e((w, β) ◦ 0)


−1

.
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Theorem 3.4 ([FRS, Theorem 3.1]). Let Λ ∈ P+ ∩ (h∗)0 be a symmet-
ric, dominant integral weight. Then

chω(L(Λ)) =

∑
w∈fW

β∈S(Λ)∩(h∗)0

(−1)b�(w)+ bht(β) e((w, β) ◦ Λ)

∑
w∈fW

β∈S(0)∩(h∗)0

(−1)b�(w)+ bht(β) e((w, β) ◦ 0)
.

4. Twining character formula for Hj(n−, L(Λ))

4.1. Setting.
Since the inverse ω−1 : g → g of the diagram automorphism ω : g → g

stabilizes n−, i.e., ω−1(n−) = n−, it induces an algebra automorphism∧∗
ω−1 :

∧∗
n− →

∧∗
n−

of the exterior algebra
∧∗

n− of n−. The restriction of the
∧∗

ω−1 :
∧∗

n− →∧∗
n− to each homogeneous subspace

∧j
n− for j ≥ 0 is denoted by∧j

ω−1 :
∧j

n− →
∧j

n−.

Let Λ ∈ P+ ∩ (h∗)0 be a symmetric, dominant integral weight, and let
τω : L(Λ) → L(Λ) be the linear automorphism in Section 3.1. We define a
linear automorphism

Φ :=
(∧∗

ω−1
)
⊗ τω :

(∧∗
n−
)
⊗C L(Λ)→

(∧∗
n−
)
⊗C L(Λ),

and for j ≥ 0, we define a linear automorphism

Φj :=
(∧j

ω−1

)
⊗ τω :

(∧j
n−

)
⊗C L(Λ)→

(∧j
n−

)
⊗C L(Λ).

Let j ≥ 0. It is easily seen that

Φj(hv) = ω−1(h)Φj(v)(4.1)

for h ∈ h and v ∈ (
∧j

n−) ⊗C L(Λ). It also follows that for h ∈ h and v ∈
(
∧∗

n−)⊗C L(Λ),

Φ(hv) = ω−1(h)Φ(v).

Moreover, we have the following commutative diagram for each j ≥ 0:

(
∧j

n−)⊗C L(Λ)
Φj−−−−→ (

∧j
n−)⊗C L(Λ)

dj

� �dj

(
∧j−1

n−)⊗C L(Λ) −−−−→
Φj−1

(
∧j−1

n−)⊗C L(Λ),
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where dj : (
∧j

n−)⊗C L(Λ)→ (
∧j−1

n−)⊗C L(Λ) is the boundary operator in
Section 2.2. Hence the linear automorphism Φj : (

∧j
n−)⊗CL(Λ)→ (

∧j
n−)⊗C

L(Λ) induces in the usual way a linear automorphism

Φj : Hj(n−, L(Λ))→ Hj(n−, L(Λ))

for j ≥ 0. Notice that for j ≥ 0 and h ∈ h, v ∈ Hj(n−, L(Λ)),

Φj(hv) = ω−1(h)Φj(v)

by (4.1).

4.2. Main result of [N5].
We define the twining character chω(Hj(n−, L(Λ))) of the Lie algebra ho-

mology module Hj(n−, L(Λ)) for each j ≥ 0 by

chω(Hj(n−, L(Λ))) := TrHj(n−,L(Λ)) Φj exp,

where Φj : Hj(n−, L(Λ))→ Hj(n−, L(Λ)) is as in Section 4.1.
The following is a summary of the main result of [N5].

Theorem 4.1 (see [N5, Section 3.2]). Let Λ ∈ P+∩ (h∗)0 be a symmet-
ric, dominant integral weight, and let j ≥ 0. Then

chω(Hj(n−, L(Λ))) =
∑

w∈fW
β∈S(Λ)∩(h∗)0

�(w)+ht(β)=j

c(w,β) e((w, β) ◦ Λ),

where the scalar c(w,β) ∈ C is defined by

c(w,β) := Tr(Φj |(Hj(n−,L(Λ)))(w,β)◦Λ
).

Moreover, we have

c(w,β) = Tr(Φj |(Hj(n−,L(Λ)))(w,β)◦Λ
)

= Tr(Φj |((Vj n−)⊗CL(Λ))(w,β)◦Λ
)

= (−1)(�(w)+ht(β))−(b�(w)+ bht(β)).

Remark 4.2. Here we recall from the proof of [N2, Proposition 3.3]
the construction of a nonzero weight vector v(w,β) ∈ (

∧j
n−)⊗C L(Λ) of weight

µ = (w, β)◦Λ. First we note that w(ρ)−ρ = −∑α∈∆w
α and that the number

of elements of the set ∆w equals �(w), where ∆w := {α ∈ ∆+ | w−1(α) ∈ ∆−}.
Second we write β in the form β =

∑m
k=1 αik

, where m = ht(β), αik
∈ Πim,

and ir �= it for 1 ≤ r �= t ≤ m. Now we take nonzero root vectors Fk ∈ g−w(αik
)
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for 1 ≤ k ≤ m, Fα ∈ g−α for α ∈ ∆w, and a nonzero weight vector vw(Λ) ∈
L(Λ)w(Λ) of weight w(Λ). Then we set

v(w,β) := (F1 ∧ · · · ∧ Fm) ∧
( ∧

α∈∆w

Fα

)
⊗ vw(Λ) ∈

(∧j
n−

)
⊗C L(Λ).

We know that the vector v(w,β) ∈ (
∧j

n−) ⊗C L(Λ) is nonzero and of weight
µ = (w, β) ◦Λ. Moreover, we know that the image v̄(w,β) of the vector v(w,β) ∈
(
∧j

n−)⊗CL(Λ) of weight µ by the natural quotient map ¯ : (
∧j

n−)⊗CL(Λ)→
Hj(n−, L(Λ)) is nonzero, and hence that the µ-weight space (Hj(n−, L(Λ)))µ

of Hj(n−, L(Λ)) is spanned by the vector v̄(w,β), i.e.,

(Hj(n−, L(Λ)))µ = C v̄(w,β).

5. New proof of the twining character formulas

5.1. Construction of a resolution.
In order to give a new proof of the twining character formulas for M(λ)

and for L(Λ), we recall from [N2] an existence theorem of a resolution of L(Λ)
of Bernstein-Gelfand-Gelfand type.

Theorem 5.1 ([N2, Theorem 3.4]). Let Λ ∈ P+∩(h∗)0 be a symmetric,
dominant integral weight. Then there exists an exact sequence of g-modules and
g-module maps:

0←− L(Λ) ∂0←− C0(Λ) ∂1←− C1(Λ) ∂2←− · · · ∂p←− Cp(Λ)
∂p+1←− · · · ,

where for each p ≥ 0, the g-module Cp(Λ) has an increasing g-module filtration
of finite length

0 = V0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vkp
= Cp(Λ)

such that the quotient module Vi/Vi−1 is isomorphic to a Verma module M(λi)
of highest weight λi for 1 ≤ i ≤ kp. Moreover, for each p ≥ 0, the set of highest
weights {λi | 1 ≤ i ≤ kp} is equal to the set

{(w, β) ◦ Λ | w ∈W, β ∈ S(Λ) with �(w) + ht(β) = p},

and λi �= λj if 1 ≤ i �= j ≤ kp.

By investigating the construction of this resolution, following [N2] and
[GL], we will give a new proof of Theorems 3.3 and 3.4. First we have the
following exact sequence of g-modules and g-module maps:

0←− L(Λ) b0←− B0(Λ) b1←− B1(Λ) b2←− · · · bp←− Bp(Λ)
bp+1←− · · · ,
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where for p ≥ 0, the g-module Bp(Λ) is defined by

Bp(Λ) := U(g)⊗U(b)

((∧p
(g/b)

)
⊗C L(Λ)

)
.

Furthermore, we have the following commutative diagram of g-modules and
g-module maps for p ≥ 0:

(U(g)⊗U(b)

∧p(g/b))⊗C L(Λ) 	−−−−→ U(g)⊗U(b) ((
∧p(g/b))⊗C L(Λ))

dp⊗id

� �bp

(U(g)⊗U(b)

∧p−1(g/b))⊗C L(Λ) −−−−→
	

U(g)⊗U(b) ((
∧p−1(g/b))⊗C L(Λ)).

(5.1)

Here the g-module map dp : U(g) ⊗U(b) (
∧p(g/b)) → U(g) ⊗U(b) (

∧p−1(g/b))
is (well-) defined by

dp(x⊗ ȳ1 ∧ · · · ∧ ȳp) :=
p∑

i=1

(−1)i+1(xyi)⊗ ȳ1 ∧ · · · ∧ ˇ̄yi ∧ · · · ∧ ȳp

+
∑

1≤r<t≤p

(−1)r+tx⊗ [yr, yt] ∧ ȳ1 ∧ · · · ∧ ˇ̄yr ∧ · · · ∧ ˇ̄yt ∧ · · · ∧ ȳp,

where x ∈ U(g), y1, . . . , yp ∈ g, and ¯ : g → g/b is the natural quotient map.
Note that for p = 0, the map d0 : U(g)⊗U(b) C→ C is defined by the condition
that d0(x⊗ 1) is the constant term of x ∈ U(g).

Let p ≥ 0. We define a linear automorphism Ψp of U(g)⊗U(b) ((
∧p(g/b))

⊗C L(Λ)) by

Ψp := ω−1 ⊗
((∧p

ω−1
)
⊗ τω

)
,

and a linear automorphism Ψ′
p of (U(g)⊗U(b) (

∧p(g/b)))⊗C L(Λ) by

Ψ′
p :=

(
ω−1 ⊗

(∧p
ω−1

))
⊗ τω,

where τω : L(Λ)→ L(Λ) is the linear automorphism in Section 3.1, ω : U(g)→
U(g) is the unique algebra automorphism of U(g) extending the diagram au-
tomorphism ω : g→ g, and ω : g/b→ g/b is the linear automorphism induced
from ω : g→ g.

Remark 5.2. Let p ≥ 0. Then

Ψp(xv) = ω−1(x)Ψp(v) for x ∈ g, v ∈ U(g)⊗U(b)

((∧p
(g/b)

)
⊗C L(Λ)

)
,

Ψ′
p(xv) = ω−1(x)Ψ′

p(v) for x ∈ g, v ∈
(
U(g)⊗U(b)

(∧p
(g/b)

))
⊗C L(Λ).
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Lemma 5.3. Let p ≥ 0. Then the following diagram is commutative.

U(g)⊗U(b) ((
∧p(g/b))⊗C L(Λ))

Ψp−−−−→ U(g)⊗U(b) ((
∧p(g/b))⊗C L(Λ))

bp

� �bp

U(g)⊗U(b) ((
∧p−1(g/b))⊗C L(Λ)) −−−−→

Ψp−1

U(g)⊗U(b) ((
∧p−1(g/b))⊗C L(Λ)).

Proof. It immediately follows from the definitions of dp and Ψ′
p for p ≥ 0

that the following diagram commutes:

(U(g)⊗U(b)

∧p(g/b))⊗C L(Λ)
Ψ′

p−−−−→ (U(g)⊗U(b)

∧p(g/b))⊗C L(Λ)

dp⊗id

� �dp⊗id

(U(g)⊗U(b)

∧p−1(g/b))⊗C L(Λ) −−−−→
Ψ′

p−1

(U(g)⊗U(b)

∧p−1(g/b))⊗C L(Λ).

(5.2)

In addition, by using the explicit form of the isomorphism(
U(g)⊗U(b)

∧p
(g/b)

)
⊗C L(Λ) ∼= U(g)⊗U(b)

((∧p
(g/b)

)
⊗C L(Λ)

)
described in the proof of [GL, Proposition 1.7], we can easily check that the
following diagram is commutative:

(U(g)⊗U(b)

∧p(g/b))⊗C L(Λ) 	−−−−→ U(g)⊗U(b) ((
∧p(g/b))⊗C L(Λ))

Ψ′
p

� �Ψp

(U(g)⊗U(b)

∧p(g/b))⊗C L(Λ) −−−−→
	

U(g)⊗U(b) ((
∧p(g/b))⊗C L(Λ)).

(5.3)

The lemma now follows from the commutativity of these diagrams (5.2) and
(5.3) together with the diagram (5.1).

To explain the definition of Cp(Λ) for p ≥ 0, we need some more notation.
The (generalized) Casimir operator Ω in [K, Chapter 2] is defined by

Ω = 2ν−1(ρ) +
dimC h∑

i=1

uiui + 2
∑

α∈∆+

dimC gα∑
i=1

e
(i)
−αe(i)

α ,

where {ui}dimC h
i=1 and {ui}dimC h

i=1 are dual bases of h with respect to the bilinear
form (·|·), and for each α ∈ ∆+, {e(i)

−α}dimC gα

i=1 and {e(i)
α }dimC gα

i=1 are bases of g−α
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and gα that are dual to each other with respect to (·|·). Let V be a g-module
admitting a weight space decomposition

V =
⊕
χ∈h∗

Vχ

such that dimC Vχ <∞ for all χ ∈ h∗ and such that all weights of V lie in a set
λ−Q+ for some λ ∈ h∗. Then we know from [GL, Section 4] that the module
V decomposes into a direct sum of g-modules

V =
⊕

c∈Θ(V )

V(c),

where

Θ(V ) := {c ∈ C | Ω(v) = cv for some 0 �= v ∈ V }
and for c ∈ Θ(V ),

V(c) := {v ∈ V | (Ω− c)n(v) = 0 for some n ∈ Z≥0}.
Lemma 5.4. Let V be a g-module above. We further assume that there

exists a linear automorphism f : V → V such that

f(xv) = ω−1(x)f(v) for x ∈ g, v ∈ V.

Then, as operators on V ,

f ◦ Ω = Ω ◦ f.

Proof. Let v ∈ V . Then we have

f(Ω(v)) = 2f(ν−1(ρ)v) +
dimC h∑

i=1

f(uiuiv) + 2
∑

α∈∆+

dimC gα∑
i=1

f(e(i)
−αe(i)

α v)

= 2ω−1(ν−1(ρ))f(v) +
dimC h∑

i=1

ω−1(ui)ω−1(ui)f(v)

+ 2
∑

α∈∆+

dimC gα∑
i=1

ω−1(e(i)
−α)ω−1(e(i)

α )f(v).

Recall that (ω(x)|ω(y)) = (x|y) for x, y ∈ g, and ω(h) = h. So, {ω−1(ui)}dimC h
i=1

and {ω−1(ui)}dimC h
i=1 are dual bases of h with respect to (·|·), and for α ∈

∆+, {ω−1(e(i)
−α)}dimC gα

i=1 and {ω−1(e(i)
α )}dimC gα

i=1 are bases of g−ω∗(α) and gω∗(α)

that are dual to each other with respect to (·|·) since ω−1(gα) = gω∗(α). In
addition, ω−1(ν−1(ρ)) = ν−1(ω∗(ρ)) = ν−1(ρ). Because the Casimir operator
Ω is independent of the choice of dual bases, we conclude that

f(Ω(v)) = Ω(f(v)).
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This proves the lemma.

We set for p ≥ 0,

Cp(Λ) := (Bp(Λ))c0 ,

where c0 := (Λ + ρ|Λ + ρ)− (ρ|ρ). It follows from Lemma 5.4 that for p ≥ 0,

Ψp ◦ Ω = Ω ◦Ψp

as operators on Bp(Λ). Hence the linear automorphism Ψp : Bp(Λ) → Bp(Λ)
stabilizes the g-submodule Cp(Λ) of Bp(Λ) for p ≥ 0, that is,

Ψp(Cp(Λ)) = Cp(Λ).

Thus we obtain the exact sequence of Theorem 5.1. Note that the map ∂p :
Cp(Λ) → Cp−1(Λ) is the restriction of the map bp : Bp(Λ) → Bp−1(Λ) for
p ≥ 0. In particular, the following diagram commutes for p ≥ 0:

Cp(Λ)
Ψp−−−−→ Cp(Λ)

∂p

� �∂p

Cp−1(Λ) −−−−→
Ψp−1

Cp−1(Λ).

Therefore we can apply an Euler-Poincaré principle to the exact sequence of
Theorem 5.1 to obtain that

chω(L(Λ)) =
∑
p≥0

(−1)p chω(Cp(Λ)),

where chω(Cp(Λ)) for p ≥ 0 is defined by

chω(Cp(Λ)) := TrCp(Λ) Ψp exp.

5.2. New proof.
Now we compute the twining characters chω (Cp(Λ)), p ≥ 0. For this

purpose, we have to modify the original construction of the g-module filtration
of Cp(Λ) for p ≥ 0. By carefully reading the proof of [GL, Propositions 5.5
and 6.4], we see that for each p ≥ 0, there exists a b-module filtration of
(
∧p(g/b))⊗C L(Λ)

0 = N0 ⊂ N1 ⊂ N2 ⊂ · · · ⊂
(∧p

(g/b)
)
⊗C L(Λ)

such that:
• ((

∧p ω−1)⊗ τω)(Ni) ⊂ Ni for i ≥ 0;
• n+ ·Ni ⊂ Ni−1 for i ≥ 1;
• dimC (Ni/Ni−1) <∞ for i ≥ 1;
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• (
∧p(g/b))⊗C L(Λ) =

⋃
i≥0 Ni;

• ⊕i≥1(Ni/Ni−1) ∼= (
∧p

n−)⊗C L(Λ) as h-modules.
(Notice that the Ni’s are defined as in the proof of [GL, Proposition 5.5].)
We write for i ≥ 1,

Ni/Ni−1 =
li⊕

k=1

C v̄k,

where vk ∈ Ni is a weight vector of (
∧p(g/b))⊗C L(Λ) of weight λk, and v̄k is

its image by the natural quotient map ¯ : Ni → Ni/Ni−1. We set

Li := U(g)⊗U(b) Ni

for i ≥ 0. Then, by [GL, Proposition 1.10], we obtain a g-module filtration of
Bp(Λ) = U(g)⊗U(b) ((

∧p(g/b))⊗C L(Λ))

0 = L0 ⊂ L1 ⊂ L2 ⊂ · · · ⊂ Bp(Λ)

such that:
• Ψp(Li) ⊂ Li for i ≥ 0;
• Li/Li−1

∼= U(g)⊗U(b) (Ni/Ni−1) as g-modules for i ≥ 1;
• Bp(Λ) =

⋃
i≥0 Li.

Here we note that because Ni/Ni−1 is a trivial n+-module, the quotient g-
module Li/Li−1 is isomorphic to a direct sum of finitely many Verma modules
M(λk), 1 ≤ k ≤ li.

We set for p ≥ 0,

V ′
i := (Li)c0 ,

where c0 = (Λ + ρ|Λ + ρ)− (ρ|ρ). Then, in the same way as [GL, Proposition
4.7], we get a g-module filtration of Cp(Λ)

0 = V ′
0 ⊂ V ′

1 ⊂ V ′
2 ⊂ · · · ⊂ Cp(Λ)(5.4)

such that:
• Cp(Λ) =

⋃
i≥0 V ′

i ;
• the quotient g-module V ′

i /V ′
i−1 for i ≥ 1 is isomorphic to the direct sum

of Verma modules M(λk) with 1 ≤ k ≤ li for which (λk + ρ|λk + ρ) =
(Λ + ρ|Λ + ρ).

Here, by Lemma 5.4,

Ψp(V ′
i ) ⊂ V ′

i

for i ≥ 0. Moreover, we know from [N2, Section 3.2] that⊕
i≥0

⊕
1≤k≤li

(λk+ρ|λk+ρ)=(Λ+ρ|Λ+ρ)

C(λk) ∼=
⊕

(w,β)∈W×S(Λ)
�(w)+ht(β)=p

C((w, β) ◦ Λ)(5.5)
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since (
∧p(g/b)) ⊗C L(Λ) ∼= (

∧p
n−) ⊗C L(Λ) as h-modules. Now a suitable

refinement of the sequence of the V ′
i ’s gives the filtration of Cp(Λ) for p ≥ 0 in

Theorem 5.1. From the Ψp-stable filtration (5.4), we immediately get that for
p ≥ 0,

chω(Cp(Λ)) =
∑
i≥1

chω(V ′
i /V ′

i−1).

Furthermore, it follows from the exactness of the functor V �→ V(c) for all c ∈ C

that for i ≥ 1,

chω(V ′
i /V ′

i−1) = chω((Li)c0/(Li−1)c0)
= chω((Li/Li−1)c0),

where c0 = (Λ + ρ|Λ + ρ)− (ρ|ρ). Notice that the following diagram is commu-
tative for i ≥ 1:

Li/Li−1
	−−−−→ U(g)⊗U(b) (Ni/Ni−1)

Ψp

� �ω−1⊗((
Vp ω−1)⊗τω)

Li/Li−1 −−−−→	
U(g)⊗U(b) (Ni/Ni−1),

(5.6)

where

Ψp : Li/Li−1 → Li/Li−1

is induced from Ψp : Li → Li, and(∧p
ω−1

)
⊗ τω : Ni/Ni−1 → Ni/Ni−1

is induced from (
∧p ω−1) ⊗ τω : Ni → Ni. For simplicity of notation, we set

for i ≥ 1,

Xi := U(g)⊗U(b) (Ni/Ni−1),

Ξp := ω−1 ⊗
((∧p

ω−1
)
⊗ τω

)
: Xi → Xi.

Because the linear automorphism Ξp : Xi → Xi commutes with the action
of the Casimir operator Ω by Lemma 5.4, we deduce from the commutative
diagram (5.6) that for i ≥ 1,

chω((Li/Li−1)c0) = chω((Xi)c0),

where

chω((Xi)c0) := Tr(Xi)c0
Ξp exp.
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Proposition 5.5. Let i ≥ 1. Then

chω((Xi)c0) =
∑

1≤k≤li
(λk+ρ|λk+ρ)=(Λ+ρ|Λ+ρ)

ω∗(λk)=λk

ck chω(M(λk)),

where the scalar ck ∈ C is determined by

ck := Tr
(((∧p

ω−1
)
⊗ τω

) ∣∣∣
((

Vp(g/b))⊗CL(Λ))λk

)
.

Proof. Since Ni/Ni−1 =
⊕li

k=1 C v̄k is a trivial n+-module for i ≥ 1, it
can be shown by using the Poincaré-Birkhoff-Witt theorem that

Xi = U(g)⊗U(b) (Ni/Ni−1) =
li⊕

k=1

U(g)(1⊗ v̄k),(5.7)

where the g-submodule U(g)(1⊗ v̄k) is isomorphic to the Verma module M(λk)
= U(g)⊗U(b) C(λk) of highest weight λk. Because the Casimir operator Ω acts
on the Verma module M(λk) as the scalar (λk + ρ|λk + ρ)− (ρ|ρ), we deduce
from (5.7) that for i ≥ 1,

(Xi)c0 =
⊕

1≤k≤li
(λk+ρ|λk+ρ)=(Λ+ρ|Λ+ρ)

U(g)(1⊗ v̄k).

Let 1 ≤ k ≤ li be such that (λk + ρ|λk + ρ) = (Λ+ ρ|Λ+ ρ). Then we have
for x ∈ U(g),

Ξp(x(1⊗ v̄k)) = ω−1(x) Ξp(1⊗ v̄k)(5.8)

= ω−1(x)
(

1⊗
((∧p

ω−1
)
⊗ τω

)
(v̄k)

)
= ω−1(x)

(
1⊗

((∧p
ω−1

)
⊗ τω

)
(vk)

)
,

where ((
∧p

ω−1) ⊗ τω)(vk) ∈ (Ni)ω∗(λk). Here we recall from (5.5) that the
weight λk of (

∧p(g/b)) ⊗C L(Λ) with 1 ≤ k ≤ li such that (λk + ρ|λk +
ρ) = (Λ + ρ|Λ + ρ) can be written in the form λk = (w, β) ◦ Λ for a unique
(w, β) ∈ W × S(Λ), and that the multiplicity of the weight λk = (w, β) ◦ Λ in
(
∧p(g/b))⊗C L(Λ) is equal to one. Hence we deduce that

dimC (Ni/Ni−1)ω∗(λk) = 1 = dimC (Ni/Ni−1)λk

since ω∗(λk) is also a weight of Ni ⊂ (
∧p(g/b))⊗C L(Λ) such that

(ω∗(λk) + ρ|ω∗(λk) + ρ) = (ω∗(λk + ρ)|ω∗(λk + ρ))
= (λk + ρ|λk + ρ)
= (Λ + ρ|Λ + ρ).
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So ((
∧p ω−1)⊗ τω)(v̄k) ∈ (Ni/Ni−1)ω∗(λk) implies that ((

∧p ω−1)⊗ τω)(v̄k) ∈
C v̄m for a unique m with 1 ≤ m ≤ li such that λm = ω∗(λk). Thus we
conclude that Ξp(U(g)(1⊗ v̄k)) = U(g)(1⊗ v̄m) for a unique m with 1 ≤ m ≤ li.
Therefore, for i ≥ 1,

chω((Xi)c0) =
∑

1≤k≤li
(λk+ρ|λk+ρ)=(Λ+ρ|Λ+ρ)

ω∗(λk)=λk

chω(U(g)(1⊗ v̄k)),(5.9)

where

chω(U(g)(1⊗ v̄k)) := TrU(g)(1⊗v̄k) Ξp exp.

Let 1 ≤ k ≤ li be such that (λk+ρ|λk+ρ) = (Λ+ρ|Λ+ρ) and ω∗(λk) = λk.
We set

ck := Tr
(((∧p

ω−1
)
⊗ τω

) ∣∣∣
((

Vp(g/b))⊗CL(Λ))λk

)
.

Then we have the following commutative diagram from Equation (5.8):

U(g)(1⊗ v̄k) 	−−−−→ U(g)⊗U(b) C(λk)

Ξp

� �ck(ω−1⊗id)

U(g)(1⊗ v̄k) −−−−→
	

U(g)⊗U(b) C(λk)

since ((
∧p(g/b))⊗C L(Λ))λk

= C vk implies((∧p
ω−1

)
⊗ τω

)
(vk) = ckvk.

Thus it follows from Remark 3.1 that

chω(U(g)(1⊗ v̄k)) = ck chω(M(λk)).

This together with (5.9) proves the proposition.

Let 1 ≤ k ≤ li be such that (λk+ρ|λk+ρ) = (Λ+ρ|Λ+ρ) and ω∗(λk) = λk,
and then write it in the form

λk = (w, β) ◦ Λ

for a unique (w, β) ∈ W × S(Λ) such that �(w) + ht(β) = p. Then, as in
the proof of [N5, Proposition 3.2.1], ω∗(λk) = λk if and only if w ∈ W̃ and
β ∈ S(Λ) ∩ (h∗)0. Therefore, from the obvious commuting diagram:

(
∧p(g/b))⊗C L(Λ) 	−−−−→ (

∧p
n−)⊗C L(Λ)

(
Vp ω−1)⊗τω

� �Φp=(
Vp ω−1)⊗τω

(
∧p(g/b))⊗C L(Λ) −−−−→

	
(
∧p

n−)⊗C L(Λ),
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we see that the scalar ck is equal to the scalar c(w,β) in Theorem 4.1, which
equals (−1)(�(w)+ht(β))−(b�(w)+ bht(β)).

Summarizing all the arguments above, we see that

(5.10)

chω(L(Λ)) =
∑
p≥0

(−1)p chω(Cp(Λ))

=
∑
p≥0

(−1)p
∑
i≥1

chω(V ′
i /V ′

i−1)

=
∑
p≥0

(−1)p
∑
i≥1

chω((U(g)⊗U(b) (Ni/Ni−1))c0)

=
∑
p≥0

(−1)p
∑
i≥1

∑
1≤k≤li

(λk+ρ|λk+ρ)=(Λ+ρ|Λ+ρ)
ω∗(λk)=λk

chω(U(g)(1⊗ v̄k))

=
∑
p≥0

(−1)p
∑

w∈fW
β∈S(Λ)∩(h∗)0

�(w)+ht(β)=p

(−1)(�(w)+ht(β))−(b�(w)+ bht(β)) chω(M((w, β) ◦ Λ))

=
∑

w∈fW
β∈S(Λ)∩(h∗)0

(−1)b�(w)+ bht(β) chω(M((w, β) ◦ Λ)).

Here we note that for a symmetric weight λ ∈ (h∗)0, the Verma module
M(λ) = U(g) ⊗U(b) C(λ) is isomorphic to U(n−) ⊗C C(λ) as an h-module.
Moreover, by Remark 3.1, we can apply [N5, Lemma 3.1.3] to deduce that

chω(M(λ)) = e(λ) · chω(U(n−)),

where

chω(U(n−)) := TrU(n−) ω−1 exp.

Therefore, by putting Λ = 0 in Equation (5.10), we get that

1 = e(0) = chω(U(n−)) ·

 ∑
w∈fW

β∈S(0)∩(h∗)0

(−1)b�(w)+ bht(β) e((w, β) ◦ 0)

 ,

and hence that for λ ∈ (h∗)0,

chω(M(λ)) = e(λ) · chω(U(n−))(5.11)

= e(λ) ·

 ∑
w∈fW

β∈S(0)∩(h∗)0

(−1)b�(w)+ bht(β) e((w, β) ◦ 0)


−1

.
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We finally obtain from Equations (5.10) and (5.11) that

chω(L(Λ)) =

∑
w∈fW

β∈S(Λ)∩(h∗)0

(−1)b�(w)+ bht(β) e((w, β) ◦ Λ)

∑
w∈fW

β∈S(0)∩(h∗)0

(−1)b�(w)+ bht(β) e((w, β) ◦ 0)
.

Thus we have given a new proof of Theorems 3.3 and 3.4.
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