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Differential relations for modular forms
of level five

By

Toshiyuki Mano∗

Abstract

It is known that the ring of modular forms of rational number
weights for Γ(5) is isomorphic to a polynomial ring of two variables. In
this paper, we describe differential relations between logarithmic deriva-
tives of the generators of that ring.

1. Introduction

The origin of studies on differential equations for modular forms might
go back to Jacobi ([7]). He deduced a differential equation satisfied by theta
constants. Afterwards, Halphen [5] rewrote that equation in a form easier to
deal with: 



dω1

dτ
= ω1ω2 + ω1ω3 − ω2ω3,

dω2

dτ
= ω1ω2 + ω2ω3 − ω1ω3,

dω3

dτ
= ω1ω3 + ω2ω3 − ω1ω2.

(1)

This differential system has a special solution

ω1(τ ) =
1
2

d

dτ
log ϑ2(0, τ )4, ω2(τ ) =

1
2

d

dτ
log ϑ3(0, τ )4,

ω3(τ ) =
1
2

d

dτ
log ϑ4(0, τ )4.

Recall that ϑ4
2, ϑ

4
3, ϑ

4
4 are modular forms of level two and weight two. However,

they are not algebraically independent. There is one linear relation between
these three theta constants:

ϑ4
2 − ϑ4

3 + ϑ4
4 = 0.
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42 Toshiyuki Mano

Let Modeven
Γ(2) = ⊕k∈NMod2k

Γ(2) be the ring of modular forms of even weights
and level two. Then the following fact is known:

Modeven
Γ(2) = C[ϑ4

2, ϑ
4
3, ϑ

4
4]/(ϑ4

2 − ϑ4
3 + ϑ4

4).

Thus, Modeven
Γ(2) is isomorphic to a polynomial ring of two variables. Conversely,

starting from the Halphen system (1), we can recover Modeven
Γ(2) by

ω1 − ω2 =
πi

2
ϑ4

4, ω2 − ω3 =
πi

2
ϑ4

2, ω3 − ω1 = −πi

2
ϑ4

3.

Therefore we can deduce differential equations for any modular forms of level
two from the Halphen system. In this way, the Halphen system as a differential
ring characterizes modular forms of level two from analytic view point.

In this paper, we study the case of level five. Put

α1(τ ) = q1/20η(τ )−3/5ϑ3

(
τ + 1

2
, 5τ

)
= q

−3/5
0

∑
n∈Z

(−1)nq5n2−n,

α2(τ ) = q9/20η(τ )−3/5ϑ3

(
3τ + 1

2
, 5τ

)
= q

−3/5
0 q2/5

∑
n∈Z

(−1)nq5n2−3n,

where q = eπiτ and η(τ ) = q1/12
∏∞

n=1(1− q2n), q0 =
∏∞

n=1(1− q2n). Recently,
E. Bannai, M. Koike, A. Munemasa and J. Sekiguchi proved the following:

Theorem 1.1. The above functions α1(τ ) and α2(τ ) are modular forms
of weight 1/5 for an appropriate automorphic factor for Γ(5). Moreover, the
ring of modular forms of level five is isomorphic to a polynomial ring of two
variables generated by α1(τ ) and α2(τ ).

This theorem may be considered as a refinement of F. Klein’s works on
modular functions. In fact, Λ(τ ) = α2(τ )/α1(τ ) is a Hauptmodule for Γ(5) ([4]).
In the present paper, we shall deduce the differential relations for logarithmic
derivatives of these modular forms. Our main result is the following:

Theorem 1.2. Put

X∞ =
d

dτ
log α1(τ ),

X0 =
d

dτ
log α2(τ ),

X2k+1 =
d

dτ
log

(
α2(τ ) +

1
2
(1 −

√
5)εkα1(τ )

)
,

X2k+2 =
d

dτ
log

(
α2(τ ) +

1
2
(1 +

√
5)εkα1(τ )

)
,

where k = 0, . . . , 4 and ε = e2πi/5. Then {Xi}i=∞,0,...,10 satisfies the following
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differential and algebraic relations :




dX∞
dτ

=
10∑

k=0

X∞Xk − X∞X0 − X1X2

−X3X4 − X5X6 − X7X8 − X9X10,

dXj

dτ
= X∞Xj +

10∑
k=0

XjXk − X2
j − X∞X0

−X1X2 − X3X4 − X5X6 − X7X8 − X9X10,

(2)

where j = 0, 1, . . . , 10 and




Xj − Xk

aj − ak

Xl − Xn

al − an
=

Xj − Xn

aj − an

Xl − Xk

al − ak
,

(Xj − X∞)
Xl − Xk

al − ak
=

Xj − Xk

aj − ak
(Xl − X∞),

(3)

where j, k, l, n ∈ {0, 1, . . . , 10} are distinct to each other and aj’s are certain
constants defined later (see Section 5).

Moreover we can prove that X∞−X0, X∞−X1, . . . , X∞−X10 are linearly
independent modular forms of weight two for Γ(5). However, from Theorem 1.1,
the dimension of the linear space of these modular forms is eleven. Therefore
the system of differential equations in Theorem 1.2 recovers the ring of modular
forms of even weight for Γ(5) in the same way as the case of level two.

The way to obtain Theorem 1.2 is similar to which Ohyama [9] adopted
in the case level three. Roughly speaking, it consists of following two steps.
The first step is to find the Picard-Fuchs equation for the elliptic modular
surface of level five. Here it is important that we can descrive its periods
explicitely in terms of modular forms. The second step is to apply Jacobi’s
method to our Picard-Fuchs equation, which is the idea in order to construct
a nonlinear differential system from a second order linear differential equation
([10]). Harnad and McKay [6] is also an interesting application of this method.

2. Elliptic normal curves of fifth degree and elliptic modular surface
of level five

In this section, we construct certain elliptic curves of fifth degree in a
projective space by means of elliptic theta functions. These curves form a family
of elliptic curves with varying the parameter contained in defining equations.
It is known that this is an universal family with level five structure. What
we need is the Picard-Fuchs equation for this family. Contents of this section
follow from Bianchi [3] and Hulek [11].

For τ ∈ H = {τ ∈ C|�τ > 0}, let Γτ be the Z-module of rank two
generated by 1 and τ in C i.e. Γτ = Z ·1+Z · τ . Then Cτ = C/Γτ is a complex
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torus of dimension 1. Now we recall definitions of elliptic theta functions:

ϑ1(z, τ ) = i
∑
n∈Z

(−1)nvn−1/2q(n−1/2)2 ,

ϑ2(z, τ ) =
∑
n∈Z

vn−1/2q(n−1/2)2 ,

ϑ3(z, τ ) =
∑
n∈Z

vnqn2
,

ϑ4(z, τ ) =
∑
n∈Z

(−1)nvnqn2
,

where q = eπiτ and v = e2πiz. Put

x
(∞)
j (z) = (−i)je2πi(2−j)z+ j2

5 πiτ
4∏

k=0

ϑ1

(
z − jτ + k

5

)
, j ∈ Z.(4)

Then we have x
(∞)
j+5k(z) = x

(∞)
j (z) for any integer k. Moreover, by direct

calculations, we have

x
(∞)
j (z + 1) = −x

(∞)
j (z),(5)

x
(∞)
j (z + τ ) = −e−2πi(5z+ τ

2 )x
(∞)
j (z),(6)

x
(∞)
j (−z) = −e−8πizx

(∞)
−j (z),(7)

x
(∞)
j

(
z − 1

5

)
= −e

2
5 (j−2)πix

(∞)
j (z),(8)

x
(∞)
j

(
z − τ

5

)
= −e2πiz−πiτx

(∞)
j+1(z).(9)

From (5) and (6), x
(∞)
j ’s are global sections of the same line bundle Lτ on Cτ .

And we have Lτ
∼= OCτ

(5[0]), where [0] is the origin of Cτ since
∑4

k=0((jτ + k)/
5) ≡ 0 (mod Γτ ). After all {x(∞)

0 , . . . , x
(∞)
4 } is a basis of H0(Cτ , Lτ ). Therefore

the holomorphic map ρ(∞)

ρ(∞)(z) = (x(∞)
0 (z) : x

(∞)
1 (z) : x

(∞)
2 (z) : x

(∞)
3 (z) : x

(∞)
4 (z))(10)

defines an embedding of Cτ into P4(C). We shall determine the defining equa-
tions of ρ(∞)(Cτ ) in P4(C). By (7), (8) and (9), the actions of 5-torsion points
on Cτ :

z �→ z − m + nτ

5
(m, n ∈ Z)

and the elliptic involution ι are extended to those on P
4(C) as follows:

z �→ −z : (X0 : X1 : X2 : X3 : X4) �−→ (X0 : X4 : X3 : X2 : X1),

z �→ z − 1
5

: (X0 : X1 : X2 : X3 : X4) �−→ (X0 : εX1 : ε2X2 : ε3X3 : ε4X4),

z �→ z − τ

5
: (X0 : X1 : X2 : X3 : X4) �−→ (X1 : X2 : X3 : X4 : X0),
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where ε = e(2/5)πi. By these facts, we can show that the defining equations of
ρ(∞)(Cτ ) are given by



ϕ0(X; a) = X2
0 + aX2X3 − 1

a
X1X4 = 0,

ϕ1(X; a) = X2
1 + aX3X4 − 1

a
X2X0 = 0,

ϕ2(X; a) = X2
2 + aX4X0 − 1

a
X3X1 = 0,

ϕ3(X; a) = X2
3 + aX0X1 − 1

a
X4X2 = 0,

ϕ4(X; a) = X2
4 + aX1X2 − 1

a
X0X3 = 0,

(11)

where a is certain constant depending only on τ . Now let Ba be the variety in
P4(C) defined by (11). Then we have following propositions on Ba. For their
proofs, see [1].

Proposition 2.1. For each a ∈ P1, Ba is a curve in P4. If a ∈ P1 \
{0,∞,−(1/2)(1 ± √

5)εk} where ε = e2πi/5, k = 0, . . . , 4, the curve Ba is a
smooth elliptic curve. On the other hand, if a ∈ Λ = {0,∞,−(1/2)(1±√

5)εk},
Ba is a connected cycle of 5 lines which is denoted as type I5 in Kodaira’s
notation ([8]). Above 12 points Λ = {0,∞,−(1/2)(1±√

5)εk} can be identified
with the 12 vertices of an icosahedron sitting inside S2 ∼= P

1.

Proposition 2.2. For a 
= a′, two curves Ba and Ba′ intersect if and
only if a and a′ belong to opposite vertices of the icosahedron Λ. In this case,
the two singular curves Ba and Ba′ intersect at vertices of cycles of 5 lines.

We shall study Ba as a family of elliptic curves with parameter a.

Proposition 2.3. Let us consider the union S = ∪a∈P1Ba of the family
of elliptic curves. Then S is an irreducible surface in P

4 and smooth outside
30 intersection points of the curves Ba and Ba′ , a, a′ ∈ Λ in Proposition 2.2,
and there, two smooth components of the surface S intersect transversely.

Next, we recall the theory of elliptic modular surfaces. Let

Γ(n) =
{(

a b
c d

)
∈ SL(2, Z)

∣∣a ≡ d ≡ 1, b ≡ c ≡ 0 (mod n)
}

be the principal congruence subgroup of level n. When n ≥ 3, we can construct
an elliptic surface in the following manner. Let us define the semi-direct product
Γ(n) � Z

2 by

(γ, (m1, m2)) · (γ′, (m′
1, m

′
2)) = (γγ′, (m1, m2)γ′ + (m′

1, m
′
2)).

It operates on H × C by

(γ, (m1, m2)) : (τ, z) �→ (γτ, (z + m1τ + m2)/(cτ + d)),
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for γ =
(

a b
c d

)
. Take the quotient S′(n) = H×C/Γ(n)�Z

2. It has a canonical

projection

S′(n) → X ′(n) = H/Γ(n)

which induces an elliptic fibration. There are natural smooth compactifications
S(n) of S′(n) and X(n) of X ′(n) with holomorphic mapping S(n) → X(n)
which is an extension of the mapping S′(n) → X ′(n). The complex surface
S(n) with S(n) → X(n) is called the elliptic modular surface of level n. The
surface S(n) has singular fibers of type In over the points correspond to the
cusps of X(n), which is the points X(n) \ X ′(n). We are concerned with the
case n = 5. The relation between the elliptic modular surface of level five and
our family of elliptic curves is as follows:

Theorem 2.1. The normalization S̃ of the surface S in Proposition 2.3
is isomorphic to the elliptic modular surface S(5).

Since the point ρ(∞)(0) ∈ Cτ (see (10)) satisfies the equalities (11), we
obtain

a = a(∞)(τ ) = −x
(∞)
1 (0, τ )

x
(∞)
2 (0, τ )

.

Moreover we have the following explicit description of a(∞)(τ ) from definitions
of x

(∞)
1 and x

(∞)
2 :

a(∞)(τ ) = q2/5 ϑ3

(
3τ+1

2 , 5τ
)

ϑ3

(
τ+1
2 , 5τ

) = q2/5

∑+∞
n=−∞(−1)nq5n2−n

∑+∞
n=−∞(−1)nq5n2−3n

.(12)

Thus, the function a(∞)(τ ) is equal to Λ(τ ), the Hauptmodule for Γ(5) in Section
1. Values of a(∞) at twelve representatives in Γ(5)-orbit of cusps are given by
the following:

a(∞)(∞) = 0, a(∞)(0) = ε + ε4,

a(∞)(1) = ε(ε + ε4), a(∞)(2) = ε2(ε + ε4),

a(∞)(3) = ε3(ε + ε4), a(∞)(4) = ε4(ε + ε4),

a(∞)(1/2) = ε3(ε2 + ε3), a(∞)(−1/2) = ε2(ε2 + ε3),

a(∞)(3/2) = ε4(ε2 + ε3), a(∞)(−3/2) = ε(ε2 + ε3),

a(∞)(3/5) = ∞, a(∞)(5/3) = ε2 + ε3.

Let us give a relation between a(∞)(τ ) and the elliptic modular function J(τ )
which gives an isomorphism from H/SL(2, Z) to P1(C). Put

H(u, v) = −(u20 + v20) + 228(u15v5 − u5v15) − 494u10v10,(13)

f(u, v) = uv(u10 + 11u5v5 − v10),(14)
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and

H(a(∞)(τ )) = H(a(∞)(τ ), 1), f(a(∞)(τ )) = f(a(∞)(τ ), 1).

Then we have

J(τ ) =
H(a(∞)(τ ))3

1728f(a(∞)(τ ))5
.(15)

This is known as the icosahedral equation ([4]).
In the above construction, we may take other sections of the line bundle

Lτ instead of x
(∞)
j . Put

x
(l)
j (z) = (−ε2)j

4∏
k=0

ϑ1

(
z − kτ + kl + j

5

)
, j ∈ Z, l = 0, . . . , 4.(16)

These functions, for each l, give the same elliptic surface as (11). Then the
parameters can be calculated in the similar way:

a(l)(τ ) =
ϑ1( 1

5 , τ+l
5 )

ϑ1( 2
5 , τ+l

5 )
.(17)

Moreover we have

a(l)(τ ) = a(∞)

(
− 1

τ + l

)
= (ε2 + ε3)

a(∞)(τ ) − ε−l(ε + ε4)
a(∞)(τ ) − ε−l(ε2 + ε3)

.(18)

3. Periods of elliptic curves and Picard-Fuchs equations

The main purpose of this section is to find the Picard-Fuchs equation for
the elliptic modular surface of level 5, S(5) → X(5) in the previous section.
The 1-form

κ(a) =
X4dX0 − X0dX4

5a3X1X3 − (2a5 + 1)X0X4
(19)

is holomorphic on Ba and depends holomorphically on a for a /∈ {0,∞,−(1/2)(1
±√

5)εk}. We prepare several periods of elliptic curves given by

κ
(l)
1 (a) = 5

∫
γ
(l)
1

κ(a), κ
(l)
2 (a) = 5

∫
γ
(l)
2

κ(a),(20)

where l = ∞, 0, . . . , 4 and paths of integrals starts from the point ρ(l)(0)
and γ

(l)
1 (resp. γ

(l)
2 ) ends at ρ(l)(1/5) (resp. ρ(l)(τ/5)) and satisfy κ

(l)
2 (a(l)(τ ))

/κ
(l)
1 (a(l)(τ )) = τ .

Proposition 3.1. The period integrals κ
(∞)
1 (a) and κ

(∞)
2 (a) are linearly

independent solutions of

a(a10 + 11a5 − 1)
d2f(a)

da2
+ (11a10 + 66a5 − 1)

df(a)
da

+ 25a4(a5 + 3)f(a) = 0.

(21)
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Proof. Let us consider the auxiliary modular subgroup

Γ1(5) =
{(

a b
c d

)
∈ SL(2, Z)

∣∣a ≡ d ≡ 1, c ≡ 0 (mod 5)
}

.

Then Γ(5) ⊂ Γ1(5), and we have canonical maps:

H → H/Γ(5) → H/Γ1(5).

Beukers [2] study the universal family of elliptic curves with 5-torsion points
parameterized by H/Γ1(5) and the Picard-Fuchs equation for it. When we
identify H/Γ1(5) with P1(C) by

t = t(τ ) = q2 ϑ3

(
3τ+1

2 , 5τ
)5

ϑ3

(
τ+1
2 , 5τ

)5 ,(22)

that family is presented by

y2 = x3 +
1
4
(1 + 6t + t2)x2 +

1
2
t(t + 1)x +

1
4
t2.(23)

The Picard-Fuchs equation is given by

t(t2 + 11t − 1)
d2f(t)

dt2
+ (3t2 + 22t − 1)

df(t)
dt

+ (t + 3)f(t) = 0(24)

as f(t) =
∫
(dx/y). If we chose independent solutions of (24) suitably, f1(t) and

f2(t), then τ = f2(t)/f1(t) gives the inverse function of (22). We can complete
the proof by comparing behaviors of (19) at each singular points with pull back
of (24) by t = a5.

Remark 3.1. Local exponents at each singular points of (24) are given
in the following:




0, 1
2 (−11 ± 5

√
5), ∞

0 0 1 ; t
0 0 1


 .

Moreover, let ω(τ ) be a modular form of weight one for Γ1(5) which vanishes
at τ = 2/5. Then f1(τ ) = ω(τ (t)) and f2(t) = τω are fundamental system of
solutions of (24) (see [2]). Along γ0 which is a loop around t = 0, f1 and f2 are
transformed as follows:

fγ0
1 (t) = f1(t),

fγ0
2 (t) = f2(t) + f1(t) = (τ + 1)f1(t),

where fγ0
i (t) denotes the analytic continuation of fi(t) along γ0. Therefore

f1(t) is expanded at t = 0 as

f1(t) = c0 + c1t + · · · , c0 
= 0.
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Corollary 3.1. Relations between κ
(l)
1 (τ ) defined in (20) are given as

follows

κ
(l)
1 (a(l)(τ )) = cl(a(∞)(τ ) − ε−l(ε2 + ε3))5κ(∞)

1 (a(∞)(τ )),(25)

where l = 0, . . . , 4 and cl is a nonzero constant.

Proof. By (20), κ
(l)
1 (a) is also a solution of the differential equation (21).

We set a = (ε2 + ε3)(a(∞) − ε−l(ε + ε4))/(a(∞) − ε−l(ε2 + ε3)). We change
the independent variable a to a(∞) in (21). It is evident that κ

(l)
1 ((ε2 +

ε3)(a(∞) − ε−l(ε + ε4))/(a(∞) − ε−l(ε2 + ε3))) is a solution of the new differen-
tial equation. Moreover it is checked easily that (a(∞)−ε−l(ε2+ε3))5κ(∞)

1 (a(∞))
is also a solution of the new differential equation. Since both of these solutions
are holomorphic at a(∞) = 0, they are different only constant multiplicity.
Composing a(∞) = a(∞)(τ ), we have a(τ ) = a(l)(τ ). Therefore we obtain

κ
(l)
1 (a(l)(τ )) = cl(a(∞)(τ ) − ε−l(ε2 + ε3))5κ(∞)

1 (a(∞)(τ )),(26)

for certain cl 
= 0.

Next, we give an expression of a composition κ
(l)
1 (a(l)(τ )) as a function of

τ .

Proposition 3.2. We have the following expression of κ
(l)
1 (τ ) =

κ
(l)
1 (a(l)(τ )) as a function of τ :

κ
(∞)
1 (τ ) = 2πq4ϑ1(2τ, 5τ )5η(τ )−3

= 2πiq1/4ϑ3

(
τ + 1

2
, 5τ

)5

η(τ )−3.(27)

κ
(m)
1 (τ ) = 2π

√
5

53
e−

3
4 πiϑ1

(
2
5
,
τ + m

5

)5

η(τ )−3 (m = 0, . . . , 4).(28)

We need the following lemma obtained from the addition formulae of theta
functions to prove Proposition 3.2.

Lemma 3.1. For the function xj(z) = x
(l)
j (z) for each l = ∞, 0, . . . , 4

in (4) and (16), we obtain the following differential equations :

− 5a2 x1

x′
0

d

dz

(
x0(z)
x4(z)

)
= 5a3 x1(z)

x4(z)
x3(z)
x4(z)

− (2a5 + 1)
x0(z)
x4(z)

,(29)

− 5a2 x1

x′
0

d

dz

(
x1(z)
x4(z)

)
= 5a2 x2(z)

x4(z)
x3(z)
x4(z)

− (2 − a5)
x1(z)
x4(z)

,(30)

− 5a2 x1

x′
0

d

dz

(
x2(z)
x4(z)

)
= −5a2 x0(z)

x4(z)
x1(z)
x4(z)

+ (2 − a5)
x2(z)
x4(z)

,(31)

− 5a2 x1

x′
0

d

dz

(
x3(z)
x4(z)

)
= −5a3 x0(z)

x4(z)
x2(z)
x4(z)

+ (2a5 + 1)
x3(z)
x4(z)

,(32)

where x1 = x1(0, τ ), x′
0 = (dx0/dz)(0, τ ).
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Proof. We shall prove only the first equality. The addition formula for
theta functions is given by

x0(z + w)x4(z − w)x1x3(33)
= x0(w)x4(−w)x1(z)x3(z) − x2(w)x1(−w)x0(z)x4(z).

Differentiating (33) by w and setting w = 0, we have

(x′
0(z)x4(z) − x0(z)x′

4(z))x1x3

= x′
0x4x1(z)x3(z) − x′

2x1x0(z)x4(z) + x′
1x2x0(z)x4(z).

Thus we obtain

x1x3
d

dz

(
x0(z)
x4(z)

)
= x′

0x4
x1(z)
x3(z)

x3(z)
x4(z)

+ (x′
1x2 − x1x

′
2)

x0(z)
x4(z)

.

Moreover, differentiating (11) by z and setting z = 0, we have

x′
1x2 − x1x

′
2 = −x′

0x2
2a5 + 1

5a2
.

Therefore we obtain the equation (29).

Proof of Proposition 3.2. By comparing (29) with (19), the period of
elliptic curves κ1(τ ) is given by

κ1(τ ) = − 1
5a2

x′
0

x1
.(34)

We obtain equalities in Proposition 3.2 by direct calculations from (34) using
the definition of x

(l)
j .

Corollary 3.2. Functions κ
(∞)
1 (τ ) and

a(∞)5κ
(∞)
1 (τ ) = 2πiq9/4ϑ3

(
3τ + 1

2
, 5τ

)5

η(τ )−3(35)

are modular forms of weight one for Γ1(5). Here a holomorphic function f(τ )

on H is a modular form of weight one means that for any γ =
(

a b
c d

)
∈ Γ1(5),

f satisfies f((aτ + b)/(cτ + d)) = (cτ +d)f(τ ) and is holomorphic at each cusp.
Moreover κ

(l)
1 (τ ) and

a(l)5κ
(l)
1 (τ ) = 2π

√
5

53
e−

l
4 πiϑ1

(
1
5
,
τ + l

5

)5

η(τ )−3 (l = ∞, 0, . . . , 4)(36)

are modular forms of weight one for Γ(5).
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Proof. For κ
(∞)
1 (τ ), see Remark 3.1, or we can prove it directly by check-

ing transformations of (27) by three generators of Γ1(5). For a(∞)5κ
(∞)
1 (τ ),

since a(∞)5 = t is a modular function for Γ1(5) and κ
(∞)
1 (a) has zero of fifth

order at a = ∞, it is also a modular form for Γ1(5). For rests of functions, state-
ments follow from that Γ(5) is a normal subgroup of SL(2, Z) and that κ

(l)
1 (τ ) =

(1/(τ + l))κ(∞)
1 (−1/(τ + l)) and a(l)5κ

(l)
1 (τ ) = (1/(τ + l))a(∞)(−1/(τ + l))5

κ
(∞)
1 (−1/(τ + l)).

4. Jacobi’s method

In this section, following Ohyama [10], we outline the method to obtain
a differential system of Halphen type from a Fuchsian differential equation of
second order.

We begin with a differential equation

d2y

dz2
+ Q(z)y = 0(37)

with regular singular points at z = a0, a1, . . . , am−1,∞. Then we can write

Q(z) =
m−1∑
j=0

αj

(z − aj)2
+

m−1∑
j=1

βj−1

(z − aj−1)(z − aj)
.(38)

Let u and v be two linearly independent solutions of (37). Wronskian of u and
v is

W (u, v) =
∣∣∣∣ u uz

v vz

∣∣∣∣ = uvz − vuz,

where uz = du/dz and so on. Since u and v satisfy (37), we have

dW

dz
= uvzz − vuzz = 0.

Hence W (u, v) = c, where c is a non-zero constant. Let us consider the following
multi-valued map defined by u and v:

τ : ∆ = C \ {a0, . . . , am−1} → D ⊂ P1(C)

z �→ τ (z) =
v(z)
u(z)

.

Then (dτ/dz) = W (u, v)/u2 = c/u2. So we rewrite (37) by taking τ as a
variable:

1
u(τ )

d2u(τ )
dτ2

− 2
(

1
u(τ )

du(τ )
dτ

)2

+ Q(z(τ ))
u(τ )4

c2
= 0,(39)
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where u(τ ) = u(z(τ )) and z(τ ) is the inverse map of τ . Now we prepare Halphen
variables for (37):

Y∞ =
d

dτ
log u(τ ) =

uτ

u
,(40)

Yj =
d

dτ
log

(
u(τ )

z(τ ) − aj

)
=

uτ

u
− u2

c(z − aj)
,(41)

where j = 0, 1, . . . , m − 1. Using (39), we can express dYk/dτ in terms of
polynomials of Yk. More precisely we have

dYk

dτ
= Y 2

k −
m−1∑
j=0

αj(Yj − Y∞)2 −
m−1∑
j=1

βj−1(Yj−1 − Y∞)(Yj − Y∞),(42)

where k = ∞, 0, 1, . . . , m − 1. However, from definitions of Halphen variables,
every four of them can not be algebraically independent. In fact, we have

(Yj − Y∞)
Yl − Yk

al − ak
=

Yj − Yk

aj − ak
(Yl − Y∞),(43)

Yj − Yk

aj − ak

Yl − Yn

al − an
=

Yj − Yn

aj − an

Yl − Yk

al − ak
,(44)

where j, k, l, n = 0, 1, . . . , m − 1 and distinct to each other. We call the set of
differential and algebraic equations defined by (42), (43) and (44) the general-
ized Halphen system associated to (37). We shall state important properties

of this system. At first, for A =
(

p q
r s

)
∈ SL(2, C) and holomorphic function

f(τ ) on some open set of P1(C), put

fA(τ ) =
1

(rτ + s)2
f

(
pτ + q

rτ + s

)
− r

rτ + s
.(45)

Then we have the following proposition by direct calculations.

Proposition 4.1. If a set of functions {Yk(τ )}k=∞,0,... ,m−1 satisfies
(42), (43) and (44), then for any A ∈ SL(2, C), {Y A

k (τ )} also satisfies (42),
(43) and (44).

Starting from the special solution defined by (40) and (41), we obtain gen-
eral solutions by means of transformations in Proposition 4.1. More precisely,
we have the following theorem.

Theorem 4.1. Let {Yk(τ )} be a set of solutions of the generalized Halphen
system defined by (40) and (41). For any complex numbers yk (k = ∞, 0, . . . , m−
1) distinct to each other and satisfying (43) and (44), and for any τ0 ∈ C, there
exists A ∈ SL(2, C) such that Y A

k (τ0) = yk.
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If yj = yl for j 
= l, then the solutions Yk’s of the generalized Halphen
system degenerate to rational functions of τ . In any case, we can completely
solve the initial value problem for the generalized Halphen system.

5. Generalized Halphen system for modular forms of level five

We shall apply Jacobi’s method to our Fuchsian differential equation (21).
Regular singular points of (21) are {∞, a0 = 0, a2k+1 = −((1 −√

5)/2)εk, a2k+2

= −((1 +
√

5)/2)εk}k=0,... ,4 and (21) can be rewritten to the form

d2y

da2
+


1

4

10∑
j=0

1
(a − aj)2

− 1
2

4∑
j=0

1
(a − a2j+1)(a − a2j+2)


 y = 0(46)

by the transformation of the unknown function

y = a1/2(a10 + 11a5 − 1)1/2f.(47)

However, we take Halphen variables different from ones in the previous section.
We take as follows

X∞(τ ) =
1
5

d

dτ
log κ

(∞)
1 (τ ),(48)

X0(τ ) =
1
5

d

dτ
log a(∞)(τ )5κ(∞)

1 (τ ),(49)

X2k+1(τ ) =
1
5

d

dτ
log κ

(k)
1 (τ ),(50)

X2k+2(τ ) =
1
5

d

dτ
log a(k)(τ )5κ(k)

1 (τ ),(51)

for k = 0, 1, . . . , 4. Then Xk’s are linear combinations of Yk’s, i.e.,

Xk =
1
2


 ∑

j=∞,0,...,10

Yj − 10Yk


(52)

for k = ∞, 0, . . . , 10. Comparing (48–51) with (12), (25) and (27), we obtain
Theorem 1.2. Moreover generic solutions of (2), (3) are given by a SL(2, C)-
orbit of this special solution and other solutions are rational function of τ .

Finally, we study relations between the special solutions of our differential
system and elements of the ring of modular forms.

Proposition 5.1. For Xj(τ ) defined in (48), (49), (50) and (51), the
differences between any two of them Xj −Xk are modular forms of weight two
for Γ(5). More precisely, put

α(k)(τ ) = (a(∞)(τ ) − ak)α1(τ )
= α2(τ ) − akα1(τ ) (k = 0, 1, . . . , 10),
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where ak was defined in Section 5. Then we have

Xj − X∞ = −2πi

5

∏
k �=j

α(k)(τ ).(53)

Proof. From (46), we can obtain

da(∞)(τ )
dτ

= cy2
1 = ca(∞)(a(∞)10 + 11a(∞)5 − 1)κ(∞)2

1 ,(54)

where c is a nonzero constant. Therefore we have

Xj − X∞ =
1

a(∞) − aj

da

dτ
= c

∏
k �=j

(α2(τ ) − akα1(τ )).(55)

Now let us evaluate c. Put u = q2/5 = e2πiτ/5. Then a(∞)(u) is a holomorphic
function of u at u = 0. More precisely, from (12), we have

a(∞)(u) = u + a2u
2 + · · · ,

and

κ2
1 = 1 + k2u + · · · .

Therefore comparing coefficients of first order in (54), we have

−c =
2πi

5
.

Remark 5.1. Each modular form of α1(τ ) and α(k)(τ ) (k = 0, 1, . . . , 10)
has zero at just one of twelve cusps of H/Γ(5). In fact, we can prove that
α1(τ )5

∏
k α(k)(τ )5 is the cusp form of weight 12.

Moreover dXi/dτ − X2
i is a modular form of weight four for any i. So

Theorem 1.2 gives relations between these modular forms and modular forms
Xj − Xk’s.
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