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stochastic equations in infinite dimension with

integral-Lipschitz coefficients
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Ying Hu and Nicolas Lerner

Abstract

In this paper, we study the existence and uniqueness of solutions
to stochastic equations in infinite dimension with an integral-Lipschitz
condition for the coefficients.

1. Introduction

In this paper, we study the solvability of the following stochastic equation
on a separable Hilbert space H:

dX(t) = (AX(t) + b(t,X(t)))dt+ σ(t,X(t))dB(t), X(0) = x,

or, more precisely,

X(t) = eAtx+
∫ t

0

eA(t−s)b(s,X(s))ds+
∫ t

0

eA(t−s)σ(s,X(s))dB(s),(1)

where B(·) is a cylindrical Wiener process valued in a separable Hilbert space
K defined on a filtered probability space (Ω,F , P ;Ft), A is the infinitesimal
generator of a C0-semigroup eAt on H, and x ∈ H.

It is well known that under a Lipschitz condition on the coefficients b, σ
(see, e.g. [2], [3]), eq. (1) has a unique mild solution. Furthermore, Da Prato
and Zabczyk have studied this equation under the hypothesis that A is almost
m-dissipative, and b is continuous and monotone. But they have supposed that
σ is Lipschitz.

On the other hand, Yamada and Watanabe in [11] and [8] proved the
uniqueness of solutions of stochastic differential equations (in finite dimension)
with some non-Lipschitz coefficients; and Yamada in [10] proved the existence
of solutions of stochastic differential equations (in finite dimension) by the
successive approximation.
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580 Ying Hu and Nicolas Lerner

The aim of this paper is to establish the existence and uniqueness of the
solution to eq. (1) under the following so-called integral-Lipschitz condition:

|b(t, x1) − b(t, x2)|2 + |σ(t, x1) − σ(t, x2)|2 ≤ ρ(|x1 − x2|2),(2)

where ρ : (0,+∞) → (0,+∞) is a continuous, increasing, concave function
satisfying

ρ(0+) = 0,
∫ 1

0

dr

ρ(r)
= +∞.

A typical example of (2) is:

|b(t, x1) − b(t, x2)| + |σ(t, x1) − σ(t, x2)| ≤ |x1 − x2|
(

ln
1

|x1 − x2|
) 1

2

.

In particular, we do not need the Lipschitz condition for σ. This result
can be considered as an infinite-dimensional counterpart of the one found by
Yamada in [10]. Nevertheless, one will see that our proof is much simpler than
the one of [10].

The main result of our paper concerns the existence and uniqueness of the
solution to eq. (1) under a “weaker” condition for b, that is:

|b(t, x1) − b(t, x2)| ≤ ρ(|x1 − x2|).
In this case, the uniqueness result for finite dimensional stochastic differ-

ential equations could be found in Watanabe and Yamada [8]. But our proof of
existence by the successive approximation is new, even in the finite dimensional
case.

A typical example for this condition is:

|b(t, x1) − b(t, x2)| ≤ |x1 − x2| ln 1
|x1 − x2| .

Nevertheless, we suppose that A is m-dissipative and as a by-product,
we obtain a uniqueness result for the one-dimensional stochastic differential
equation which is slightly better than the well-known Yamada-Watanabe one
in [11] and whose proof is simpler.

Finally, we apply our method to the study of backward stochastic differ-
ential equations and we obtain some existence and uniqueness result which is
slightly stronger than the result of Mao [5].

The paper is organized as follows: in Section 2, we give some preliminaries.
In Section 3, we prove the existence and uniqueness result to eq. (1) under the
integral-Lipschitz condition on the coefficients. In Section 4, we prove the
existence and uniqueness of solution to the dissipative stochastic equations
under some “weaker” condition for b, and the corresponding result for the one-
dimensional stochastic differential equation. And in the last section, we turn
to the study of backward stochastic differential equations.
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2. Preliminaries

2.1. Stochastic equations in infinite dimensions
Let (Ω,F , P ;Ft) be a filtered probability space. Let H,K be two separable

Hilbert spaces. We denote their norms by | · | and their scalar products by 〈·, ·〉.
A stochastic linear function on K is a linear mapping from K to L0(Ω,F , P )
(see [2] and [3]).

Definition 2.1. We say that B(t), t ∈ R+ is a cylindrical Wiener pro-
cess in a Hilbert space K, if:

(1) ∀t ∈ R+, B(t) is a stochastic linear function on K.
(2) ∀n ∈ N∗, ∀h1, h2, . . . , hn ∈ K, {(B(t)h1, B(t)h2, . . . , B(t)hn), t ∈ R+}

is a Wiener process (not necessarily standard) with values in Rn.
(3) ∀h1, h2 ∈ K, ∀t ∈ R+,

E(B(t)h1)(B(t)h2) = t〈h1, h2〉.

We assume that Ft is the natural filtration of B.
For any Hilbert space H1, we denote by L2

F ([0, T ];H1) the set of all the
Ft-progressively measurable processes x(·), with values in H1, such that

|x(·)| =

(
E

[∫ T

0

|x(t)|2dt
])1/2

< +∞.

Obviously L2
F ([0, T ];H1) is a Hilbert space. We can define a stochastic

integral for x(·) ∈ L2
F ([0, T ];H1):

∫ t

0

x(s)dB1(s), ∀t ∈ [0, T ],

where {B1(s), s ∈ [0, T ]} is a real Wiener process on (Ω,F , P ;Ft).
Next, we consider the space L2(K;H) which is the set of Hilbert-Schmidt

operators from K into H, i.e.,

L2(K;H) =

{
ψ ∈ L(K;H)

∣∣∣∣∣
∞∑

n=1

|ψen|2 < +∞
}
,

where {en}∞n=1 is an orthonormal basis of K. L2(K;H) is a Hilbert space and
its norm is still denoted by | · |.

For any ψ(·) ∈ L2
F ([0, T ];L2(K;H)) we can define the stochastic integral∫ T

0
ψ(t)dB(t) : L2

F ([0, T ];L2(K;H)) → L2(Ω,FT , P ;H) as follows:

∫ T

0

ψ(t)dB(t) =
∞∑

n=1

∫ T

0

ψ(t)end(B(t)en).
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The right hand of the above equality is well defined since

E



∣∣∣∣∣
∞∑

n=1

∫ T

0

ψ(t)end(B(t)en)

∣∣∣∣∣
2

 = E

[ ∞∑
n=1

∫ T

0

|ψ(t)en|2dt
]

= E

[∫ T

0

|ψ(t)|2dt
]
< +∞.

Let b(·, x), σ(·, x) be stochastic processes depending on x ∈ H, such that:

∀x ∈ H, b(·, x) ∈ L2
F ([0, T ];H), σ(·, x) ∈ L2

F ([0, T ];L2(K;H)),(3)

∀x ∈ H, |b(t, x)|2 + |σ(t, x)|2 ≤ β2
1(t) + β2

2(t)|x|2,(4)

where β1 ∈ L2
F ([0, T ];R+), β2 ∈ L2([0, T ];R+).

For a given C0-semigroup eAt with the infinitesimal generator A, we have
the following well-known result (see, e.g. [2], [3]):

Proposition 2.1. We suppose (3), (4), and the following Lipschitz con-
dition: ∀x1, x2 ∈ H,

|b(t, x1) − b(t, x2)|2 + |σ(t, x1) − σ(t, x2)|2 ≤ c2|x1 − x2|2,(5)

where c > 0 is a constant ; then there exists a unique process X(·) ∈ CF ([0, T ];
L2(Ω,F , P ;H)) satisfying the following stochastic equation: for t ∈ [0, T ],

X(t) = eAtx+
∫ t

0

eA(t−s)b(s,X(s))ds+
∫ t

0

eA(t−s)σ(s,X(s))dB(s).(6)

Such a solution is called a mild solution of (6).
The aim of this paper is to study the solvability of eq. (6) under some

weaker condition than the Lipschitz condition (5).

2.2. Dissipative infinitesimal generator
This subsection is adapted from [3].
The infinitesimal generator A : D(A) ⊂ H → H is said to be dissipative if

and only if that for any x ∈ D(A),

〈Ax, x〉 ≤ 0.

A is called m-dissipative if the range of λI − A is the whole space H for
some λ > 0 (and then for any λ > 0). Finally A is called almost m-dissipative
if A− αI is m-dissipative for some α ∈ R.

The Yosida approximation Aα, α > 0, of an m-dissipative infinitesimal
generator A is defined by

Aα = AJα =
1
α

(Jα − I),(7)
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where

Jα = (I − αA)−1.(8)

We list some useful properties of Jα and Aα.

Lemma 2.1. Let A : D(A) → H be an m-dissipative infinitesimal gen-
erator, and let Jα and Aα be defined by (7) and (8) respectively.

(i) For any α > 0, we have

|Jα| ≤ 1.

(ii) For any α > 0, Aα is dissipative, and bounded :

|Aα| ≤ 2
α
,

and
|Aαx| ≤ |Ax|, ∀x ∈ D(A).

(iii) We have
lim
α→0

Jαx = x, ∀x ∈ H.

2.3. Technical lemmas
The following lemma is the starting point of this paper. The first part of

this lemma can be found in [1].

Lemma 2.2. Let ρ : (0,+∞) → (0,+∞) be a continuous, increasing
function satisfying

ρ(0+) = 0,
∫ 1

0

dr

ρ(r)
= +∞,

and let u be a measurable, non-negative function defined on (0,+∞) satisfying

u(t) ≤ a+
∫ t

0

β(s)ρ(u(s))ds, t ∈ (0,+∞),(9)

where a ∈ R+, and β ∈ L1
loc([0,∞);R+). We have:

(1) If a = 0, then u(t) = 0, for t ∈ [0,+∞), a.e.
(2) If a > 0, we define ν(t) =

∫ t

t0
(ds/ρ(s)), t ∈ R+, where t0 ∈ (0,+∞),

then,

u(t) ≤ ν−1

(
ν(a) +

∫ t

0

β(s)ds
)
.(10)

Proof. We define the function on R+:

R(t) = a+
∫ t

0

β(s)ρ(u(s))ds,
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then as ρ is non-decreasing,

dR

dt
(t) = β(t)ρ(u(t)) ≤ β(t)ρ(R(t)).

Hence,
d

dt
ν(R(t)) =

1
ρ(R(t))

β(t)ρ(u(t)) ≤ β(t),

from which we deduce:

ν(R(t)) ≤ ν(a) +
∫ t

0

β(s)ds.(11)

On the other hand, from the definition, ν is obviously a strictly increas-
ing function, and ν(0+) = −∞. Then ν admits a strictly increasing inverse
function, and ν−1(−∞) = 0.

(1) If a = 0, then,
ν(R(t)) = −∞,

and
R(t) = 0,

from which we deduce the desired result.
(2) If a > 0, then from (11),

R(t) ≤ ν−1

(
ν(a) +

∫ t

0

β(s)ds
)
,

and we obtain (10).

Examples.
(i) The standard Lipschitz case: ρ(t) = t, t > 0, then from (10), we get:

u(t) ≤ ae
R t
0 β(s)ds.

(ii) The so-called Log-Lipschitz case: ρ(t) = t ln(1/t), for t ∈ (0, t0], t0 > 0
is small enough, then from (10), we obtain:

u(t) ≤ ae− R t
0 β(s)ds

,

for a > 0 and t > 0 which are small enough.
(iii) If ρ(t) = t ln(1/t) ln ln(1/t), for t ∈ (0, t0], t0 > 0 is small enough, then

from (10), we obtain:

u(t) ≤ exp


−

{
ln

1
a

}e− R t
0 β(s)ds


 ,

for a > 0 and t > 0 which are small enough.
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The second lemma is trivial, we include it for completeness.

Lemma 2.3. We put, for a given ε > 0,

Fε(x) = (|x|2 + ε)
1
2 , x ∈ H,

then, Fε ∈ C2(H;R), and

F ′
ε(x) =

x

(|x|2 + ε)
1
2
, F ′′

ε (x) =
1

(|x|2 + ε)
1
2

(
I − x⊗ x

|x|2 + ε

)
.

In particular,

|F ′
ε(x)| ≤ 1, |F ′′

ε (x)| ≤ 2
(|x|2 + ε)

1
2
.

3. Existence and uniqueness of the solution to stochastic equations
in infinite dimension

Let (Ω,F , P ) be a probability space carrying a cylindrical Wiener process
B = {Bt, t ≥ 0} with values in K (see Section 2 for a brief definition), and
let {Ft} be the σ-field generated by B (that is, Ft = σ(Bs, 0 ≤ s ≤ t)). We
make the standard P -augmentation to each Ft such that Ft contains all the
P -null sets of F . Then {Ft} is right continuous and {Ft} satisfies the usual
hypothesis. Let T > 0 be an arbitrarily fixed number.

Let b(·, x), σ(·, x) be stochastic processes depending on x ∈ H satisfying
(3) and (4). The aim of this section is to establish the solvability of (6) under
the following so-called integral-Lipschitz condition: for any x1, x2 ∈ H,

|b(t, x1) − b(t, x2)|2 + |σ(t, x1) − σ(t, x2)|2 ≤ β2(t)ρ(|x1 − x2|2),(12)

where β ∈ L2([0, T ];R+), and ρ : (0,+∞) → (0,+∞) is a continuous, non-
decreasing, concave function satisfying:

ρ(0+) = 0,
∫ 1

0

dr

ρ(r)
= +∞.(13)

Theorem 3.1. We suppose (3) and the integral-Lipschitz condition (12).
Then there exists a unique process X(·) ∈ CF ([0, T ];L2(Ω,F , P ;H))(= CF)
satisfying the stochastic equation (6). Furthermore, if we define

ν(t) =
∫ t

t0

ds

ρ(s)
, t ∈ R+,

where t0 ∈ (0,+∞),
M = max

t∈[0,T ]
|eAt|,

and we denote by X( · ;x) be a mild solution of (6) starting from x at time
t = 0, then for any t ≥ 0,

E[|X(t;x1) −X(t;x2)|2]

≤ ν−1

(
ν(3M2|x1 − x2|2) + 3M2(1 + T )

∫ t

0

β2(s)ds
)
.
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Remark 3.1. (3) and the integral-Lipschitz condition (12) imply (4),
see [10].

Proof. We begin with the proof of uniqueness.
As X( · ;x) is a mild solution of (6), obviously we have

X(t;x1) −X(t;x2) = eAt(x1 − x2)

+
∫ t

0

eA(t−s)(b(s,X(s;x1)) − b(s,X(s;x2)))ds

+
∫ t

0

eA(t−s)(σ(s,X(s;x1)) − σ(s,X(s;x2)))dBs.

and

|X(t;x1) −X(t;x2)|2

≤ 3

{
|eAt(x1 − x2)|2

+
(∫ t

0

eA(t−s)[b(s,X(s;x1)) − b(s,X(s;x2))]ds
)2

+
(∫ t

0

eA(t−s)[σ(s,X(s;x1)) − σ(s,X(s;x2))]dBs

)2
}
.

Now let us put:

u(t) = sup
0≤r≤t

E[|X(r;x1) −X(r;x2)|2],

then,

u(t) ≤ 3M2|x1 − x2|2 + 3M2(1 + T )
∫ t

0

β2(s)E{ρ(|X(s;x1) −X(s;x2)|2)}ds.

As ρ is concave and increasing, we deduce:

u(t) ≤ 3M2|x1 − x2|2 + 3M2(1 + T )
∫ t

0

β2(s)ρ(u(s))ds.

From (10), we obtain:

u(t) ≤ ν−1

(
ν(3M2|x1 − x2|2) + 3M2(1 + T )

∫ t

0

β2(s)ds
)
.

In particular, if x1 = x2, we obtain the uniqueness of the solution to (6).
Now we turn to the proof of existence to (6). We define the Picard sequence

of processes {Xn(·), n ≥ 0} ⊂ CF as follows:

X0(t) = x, t ∈ [0, T ],
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and

Xn+1(t) = eAtx+
∫ t

0

eA(t−s)b(s,Xn(s))ds

+
∫ t

0

eA(t−s)σ(s,Xn(s))dBs, for t ∈ [0, T ].
(14)

Because of the assumptions (3) and (4), the sequence {Xn(·), n ≥ 0} ⊂ CF
is well defined.

Furthermore, we establish the a priori estimates for {E[|Xn(t)|2], n ≥ 1}.
From (14), we deduce that

E[|Xn+1(t)|2] ≤ 3M2|x|2 + 3M2(1 + T )E
{∫ t

0

(β2
1(s) + β2

2(s)|Xn(s)|2)ds
}
.

Hence,

E[|Xn+1(t)|2] ≤ 3M2|x|2 + 3M2(1 + T )E

[∫ T

0

β2
1(s)ds

]

+ 3M2(1 + T )
∫ t

0

β2
2(s)E[|Xn(s)|2]ds.

Set

p(t) =

{
3M2|x|2 + 3M2(1 + T )E

[∫ T

0

β2
1(s)ds

]}
exp

{
3M2(1 + T )

∫ t

0

β2
2(s)ds

}
,

(15)

then p is the solution of

p(t) = 3M2|x|2 + 3M2(1 + T )E

[∫ T

0

β2
1(s)ds

]
+ 3M2(1 + T )

∫ t

0

β2
2(s)p(s)ds.

(16)

By recurrence, we prove easily that for any n ≥ 0,

E[|Xn(t)|2] ≤ p(t).

Set
uk+1,n(t) = sup

0≤r≤t
E[|Xk+1+n(r) −Xk+1(r)|2].

From the definition of the sequence {Xn(·), n ≥ 0},

Xk+1+n(t) −Xk+1(t) =
∫ t

0

eA(t−s)(b(s,Xk+n(s)) − b(s,Xk(s)))ds

+
∫ t

0

eA(t−s)(σ(s,Xk+n(s)) − σ(s,Xk(s)))dBs.
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Hence,

uk+1,n(t) ≤ 2M2(1 + T )
∫ t

0

β2(s)ρ(uk,n(s))ds.

Set
vk(t) = sup

n
uk,n(t), 0 ≤ t ≤ T,

then,

0 ≤ vk+1(t) ≤ 2M2(1 + T )
∫ t

0

β2(s)ρ(vk(s))ds.

Finally, we define:

w(t) = lim sup
k→+∞

vk(t), t ≥ 0.

As ρ is continuous and

vk(t) ≤ 2p(t),

0 ≤ w(t) ≤ 2M2(1 + T )
∫ t

0

β2(s)ρ(w(s))ds, 0 ≤ t ≤ T.

Hence,
w(t) = 0, t ∈ [0, T ].

That is, {Xn(·), n ≥ 0} is a Cauchy sequence in CF . We denote the limit
in CF of this sequence by X(·). Then there exists a subsequence Xnl(·) and a
process X ′(·) such that

lim
l→+∞

Xnl(t, ω) = X(t, ω), for (t, ω) dt⊗ dP − a.e.,

and
|Xnl(t, ω)| ≤ |X ′(t, ω)|, for (t, ω) dt⊗ dP − a.e.

Let l → +∞ in (14), we prove easily that X is a mild solution of (6). The
proof of the existence of the solution to (6) is now complete.

Remark 3.2. As stated in the introduction, the existence by successive
approximation was already done by Yamada [10] in the finite dimensional case.
As one can see, our method is simpler as we have borrowed the method in-
troduced by Chemin and Lerner [1]. More importantly, in infinite dimensional
case, there is no existence result when the coefficients are only continuous.
Hence, our result concerning the existence of solution is new.

4. Existence and uniqueness of the solution to dissipative stochastic
equations in infinite dimension

In this section, we give our main result about the existence and uniqueness
result to (6) under some weaker condition than the condition (12).
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4.1. Dissipative stochastic equations in infinite dimension
In this subsection, we assume always that A is m-dissipative. Then the

Yosida approximations Aα, α > 0 are bounded, m-dissipative, and

lim
α→0

eAαtx = eAtx, ∀x ∈ H.

Theorem 4.1. We assume the following one-sided integral-Lipschitz
condition for b and σ: for any x1, x2 ∈ H,

2〈b(t, x1) − b(t, x2), x1 − x2〉 + |σ(t, x1) − σ(t, x2)|2 ≤ β2(t)ρ(|x1 − x2|2).
(17)

Then there exists at most one mild solution in CF to (6).

Proof. Let us suppose that there exist two mild solutions X1(·), X2(·) ∈
CF to (6). And set

X1
α(t) = eAαtx+

∫ t

0

eAα(t−s)b(s,X1(s))ds+
∫ t

0

eAα(t−s)σ(s,X1(s))dBs,

(18)

and

X2
α(t) = eAαtx+

∫ t

0

eAα(t−s)b(s,X2(s))ds+
∫ t

0

eAα(t−s)σ(s,X2(s))dBs.

(19)

As Aα is bounded, we can rewrite (18) and (19) in their differential forms,
and we deduce:

dX1
α(t) = (AαX

1
α(t) + b(t,X1(t)))dt+ σ(t,X1(t))dBt,

dX2
α(t) = (AαX

2
α(t) + b(t,X2(t)))dt+ σ(t,X2(t))dBt.

In particular, for any α > 0,

E

[
sup

0≤t≤T
(|X1

α(t)|2 + |X2
α(t)|2)

]
< +∞.

Applying the Itô formula to |X1
α(t) −X2

α(t)|2, we obtain:

d(|X1
α(t) −X2

α(t)|2) = 2〈Aα(X1
α(t) −X2

α(t)), X1
α(t) −X2

α(t)〉dt
+ 2〈X1

α(t) −X2
α(t), b(t,X1(t)) − b(t,X2(t))〉dt

+ 2〈X1
α(t) −X2

α(t), σ(t,X1(t)) − σ(t,X2(t))〉dBt

+ |σ(t,X1(t)) − σ(t,X2(t))|2dt.
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As

E


(∫ T

0

|〈X1
α(t) −X2

α(t), σ(t,X1(t)) − σ(t,X2(t))〉|2dt
) 1

2



≤ E


 sup

0≤t≤T
|X1

α(t) −X2
α(t)|

(∫ T

0

|σ(t,X1(t)) − σ(t,X2(t))|2dt
) 1

2



≤ 1
2
E

[
sup

0≤t≤T
(|X1

α(t) −X2
α(t)|2)

]
+

1
2
E

[∫ T

0

|σ(t,X1(t)) − σ(t,X2(t))|2dt
]

< +∞,

∫ t

0
〈X1

α(s)−X2
α(s), σ(s,X1(s))−σ(s,X2(s))〉dB(s), t ≥ 0 is a martingale, and as

a consequence,

E

[∫ t

0

〈X1
α(t) −X2

α(t), σ(t,X1(t)) − σ(t,X2(t))〉dB(s)
]

= 0,

from which we deduce:

E[|X1
α(t) −X2

α(t)|2]

≤ 2E
[∫ t

0

〈X1
α(s) −X2

α(s), b(s,X1(s)) − b(s,X2(s))〉ds
]

+ E

[∫ t

0

|σ(s,X1(s)) − σ(s,X2(s))|2ds
]
.

When α goes to 0, we get, using (17) and the concavity of ρ,

E[|X1(t) −X2(t)|2] ≤ E

[∫ t

0

β2(s)ρ(|X1(s) −X2(s)|2)ds
]

≤
∫ t

0

β2(s)ρ(E[|X1(s) −X2(s)|2])ds.

Finally, Lemma 2.2 gives the uniqueness result.

Remark 4.1. The condition (17) is weaker than the condition (12),
because the concavity of ρ implies that

ρ(r) ≥ rρ(1), r ∈ (0, 1].

As for existence, we need some stronger conditions.

Theorem 4.2. We suppose (3) and the following condition:

|b(t, x)|2 + |σ(t, x)|2 ≤ β1(t)+β2(t)|x|2, β1 ∈ Lp
F ([0, T ];H), β2 ∈ Lp([0, T ];H),
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for some p > 2. We assume also

|b(t, x1) − b(t, x2)| ≤ β(t)ρ1(|x1 − x2|),
|σ(t, x1) − σ(t, x2)|2 ≤ β(t)ρ2(|x1 − x2|2),

where β ∈ L1([0, T ];R+), ρ1, ρ2 : (0,+∞) → (0,+∞) are continuous, concave
and increasing, and both of them satisfy (13). Furthermore, we assume that

ρ3(r) =
ρ2(r2)
r

, r ∈ (0,+∞)

is also continuous, concave and increasing, and

ρ3(0+) = 0,
∫ 1

0

dr

ρ1(r) + ρ3(r)
= +∞.

Then there exists a unique solution to the equation (6).

Before the proof of this theorem, let us give one simple example to explain
why the condition for b here is “weaker” than that of Theorem 3.1.

Example. If

ρ1(r) = r ln
1
r
,

ρ2(r) = r ln
1
r
,

then the conditions for Theorem 4.2 are satisfied but not for Theorem 3.1.

Proof. We define a sequence of processes {Xn(·), n ≥ 0} ⊂ CF as follows:

X0(t) = x, t ∈ [0, T ],

and

Xn+1(t) = eAtx+
∫ t

0

eA(t−s)b(s,Xn(s))ds

+
∫ t

0

eA(t−s)σ(s,Xn+1(s))dBs, for t ∈ [0, T ].
(20)

Because of the assumptions of this theorem and Theorem 3.1, the sequence
{Xn(·), n ≥ 0} ⊂ CF is well defined.

It is important to note that (14) in Theorem 3.1 is a usual Picard ap-
proximation, while given Xn, (20) is a stochastic equation and Theorem 3.1 is
applied to find Xn+1 in a unique way.

Furthermore,

E[|Xn+1(t)|2]

≤ 3M2|x|2 + 3M2(1 + T )E

[∫ T

0

β2
1(s)ds

]

+ 3M2T

∫ t

0

β2
2(s)E[|Xn(s)|2]ds+ 3M2

∫ t

0

β2
2(s)E[|Xn+1(s)|2]ds.
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Obviously,
E[|X0(t)|2] ≤ p(t).

Let us suppose that
E[|Xn(t)|2] ≤ p(t),

where p is defined by (15) which is the solution of (16).
Then

E[|Xn+1(t)|2]

≤ 3M2|x|2 + 3M2(1 + T )E

[∫ T

0

β2
1(s)ds

]

+ 3M2T

∫ t

0

β2
2(s)p(s)ds+ 3M2

∫ t

0

β2
2(s)E[|Xn+1(s)|2]ds,

from which we deduce that

E[|Xn+1(t)|2] ≤ p(t).

The above recurrence proves that:

E[|Xn(t)|2] ≤ p(t).

Set
uk+1,n(t) = sup

0≤r≤t
E[|Xk+1+n(r) −Xk+1(r)|].

From the definition of the sequence {Xn(·), n ≥ 0},
Xk+1+n(t) −Xk+1(t)

=
∫ t

0

eA(t−s)(b(s,Xk+n(s)) − b(s,Xk(s)))ds

+
∫ t

0

eA(t−s)(σ(s,Xk+n+1(s)) − σ(s,Xk+1(s)))dBs.

We define

Xn+1
α (t) = eAαtx+

∫ t

0

eAα(t−s)b(s,Xn(s))ds

+
∫ t

0

eAα(t−s)σ(s,Xn+1(s))dBs, for t ∈ [0, T ].

Note that as |x| is not C2, one has to approximate |x| by Fε ∈ C2 which
is studied in Lemma 2.3. Applying the Itô formula to Fε(Xk+1+n

α −Xk+1
α (t)),

and taking the expectation, we get

E[Fε(Xk+1+n
α −Xk+1

α (t))]

≤ E

[∫ t

0

|b(s,Xk+n(s)) − b(s,Xk(s))|ds
]

+ E

[∫ t

0

|σ(s,Xk+1+n(s)) − σ(s,Xk+1(s))|2
(|Xk+1+n(s) −Xk+1(s)|2 + ε)

1
2

ds

]
.
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Sending α→ 0, and then letting ε→ 0, we deduce that

uk+1,n(t) ≤
∫ t

0

β(s)ρ1(uk,n(s))ds+
∫ t

0

β(s)ρ3(uk+1,n(s))ds.

Set
vk(t) = sup

n
uk,n(t), 0 ≤ t ≤ T,

then,

0 ≤ vk+1(t) ≤
∫ t

0

β(s)ρ1(vk(s))ds+
∫ t

0

β(s)ρ3(vk+1(s))ds.

Finally, we define:

w(t) = lim sup
k→+∞

vk(t), t ≥ 0,

then

0 ≤ w(t) ≤
∫ t

0

β(s)(ρ1 + ρ3)(w(s))ds, 0 ≤ t ≤ T.

Hence,
w(t) = 0, t ∈ [0, T ].

Hence, {Xn(·), n ≥ 0} is a Cauchy sequence in CF ([0, T ];L1(Ω,F , P ;H)).
We denote the limit in CF([0, T ];L1(Ω,F , P ;H)) of this sequence by X(·).

Then there exists a subsequence Xnl(·), such that:

Xnl(t, ω) → X(t, ω), (t, ω) dt⊗ dP − a.e.

Taking into consideration that β1 ∈ Lp
F ([0, T ];H), β2 ∈ Lp([0, T ];H), we

can prove in a similar way that

sup
n≥0

sup
0≤t≤T

E[|Xn(t)|p] < +∞, where p > 2.

Hence, Xn(t) is uniformly integrable in L2(Ω,Ft, P ;H), and thus

lim
l→+∞

E[|Xnl(t, ω) −X(t, ω)|2] = 0.

Let n→ +∞ in (20), we prove easily that X is a mild solution of (6). The
proof of the existence of the solution to (6) is now complete.

Remark 4.2. In the finite dimensional case, similar uniqueness result
is given in [8]. Nevertheless, our uniqueness result is slightly stronger that of
[8], even in the finite dimensional case. As for the existence part, our existence
result is completely new, even in the finite dimensional case by the successive
approximation.
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4.2. One-dimensional stochastic differential equation
In this subsection, we consider the following one-dimensional stochastic

differential equation:

X(t) = x+
∫ t

0

b(s,X(s))ds+
∫ t

0

σ(s,X(s))dBs,(21)

where b : R+ × R → R, σ : R+ × R → R are two measurable functions. We
suppose that:

(b(t, x1) − b(t, x2))(x1 − x2) ≤ β(t)ρ(|x1 − x2|2),(22)

|σ(t, x1) − σ(t, x2)|2 ≤ β(t)ρ̃(|x1 − x2|),(23)

where β ∈ L1
loc(R+;R+); ρ : (0,+∞) → (0,+∞) is a continuous, increasing,

concave function satisfying (13); and ρ̃ is a Borel locally bounded function from
(0,+∞) into itself such that there exists a r0 > 0,∫ r0

0

dr

ρ̃(r)
= +∞.

Theorem 4.3. Let us assume (22) and (23). Then the pathwise unique-
ness holds for the one-dimensional stochastic differential equation (21).

Proof. Let X1, X2 be two solutions of (21), then

X1(t) −X2(t)

=
∫ t

0

(b(s,X1(s)) − b(s,X2(s)))ds+
∫ t

0

(σ(s,X1(s)) − σ(s,X2(s)))dBs.

As for any fixed ε > 0,∫ t

0

10<X1(s)−X2(s)≤ερ̃(X1(s) −X2(s))−1d〈X1 −X2〉s

=
∫ t

0

10<X1(s)−X2(s)≤ερ̃(X1(s) −X2(s))−1(σ(s,X1(s))−σ(s,X2(s)))2ds

≤
∫ t

0

β(s)ds < +∞,

we obtain from Lemma 3.3 ([7, p. 370]),

L0(X1 −X2) = 0.

Applying Tanaka’s formula to |X1 −X2|, we obtain:

|X1(t) −X2(t)|

=
∫ t

0

sgn(X1(s) −X2(s))d(X1(s) −X2(s))

=
∫ t

0

sgn(X1(s) −X2(s))(b(s,X1(s)) − b(s,X2(s)))ds

+
∫ t

0

sgn(X1(s) −X2(s))(σ(s,X1(s)) − σ(s,X2(s)))dBs.
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Set
τN = inf{t ≥ 0 : |X1(t) −X2(t)| ≥ N},

then τN is a stopping time and

|X1(t ∧ τN ) −X2(t ∧ τN )|

=
∫ t∧τN

0

sgn(X1(s) −X2(s))(b(s,X1(s)) − b(s,X2(s)))ds

+
∫ t∧τN

0

sgn(X1(s) −X2(s))(σ(s,X1(s)) − σ(s,X2(s)))dBs.

Put
uN (t) = E[|X1(t ∧ τN ) −X2(t ∧ τN )|],

then

uN (t) ≤ E

[∫ t∧τN

0

β(s)ρ(|X1(s) −X2(s)|)ds
]

≤
∫ t

0

β(s)ρ(uN(s))ds.

Applying Lemma 2.2, we deduce that

X1(t ∧ τN ) = X2(t ∧ τN ), for t ∈ [0,∞).

Sending N to +∞, we obtain the desired result.

Remark 4.3. The continuity of b is not needed in this theorem.

Remark 4.4. We can obtain a comparison result as the one in [9] under
some similar conditions for b1 or b2.

5. Existence and uniqueness of the solution for backward stochastic
differential equations

In this section, we consider the following backward stochastic differential
equation (BSDE):

Yt = ξ +
∫ T

t

f(s, Ys, Zs)ds−
∫ T

t

ZsdBs,(24)

where ξ ∈ L2(Ω,FT , P ;Rm),

f : [0, T ] × Ω × Rm × Rm×d → Rm

is P⊗β(Rm)⊗β(Rm×d)/β(Rm) measurable (P denotes the predictable σ-field
of [0, T ] × Ω); for a certain constant c > 0 and a certain β ∈ L2

F ([0, T ];R+),

|f(t, y, z)| ≤ β(t) + c(|y| + |z|),(25)

|f(t, y1, z1) − f(t, y2, z2)|2 ≤ ρ(|y1 − y2|2) + c2|z1 − z2|2,(26)

where ρ : (0,∞) → (0,∞) is a continuous, concave, increasing function satisfy-
ing (13).
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Theorem 5.1. Under the assumptions (25) and (26), (24) admits a
unique solution (Y, Z) ∈ L2

F ([0, T ];Rm) × L2
F ([0, T ];Rm×d).

Proof. Let (Y 1, Z1), (Y 2, Z2) ∈ L2
F ([0, T ];Rm×d) be two solutions of

(24), then

Y 1
t − Y 2

t =
∫ T

t

(f(s, Y 1
s , Z

1
s ) − f(s, Y 2

s , Z
2
s ))ds−

∫ T

t

(Z1
s − Z2

s )dBs.

Applying Itô’s formula to |Y 1
t −Y 2

t |2 and taking the expectation, we obtain:

E[|Y 1
t − Y 2

t |2] + E

[∫ T

t

|Z1
s − Z2

s |2ds
]

= 2E

[∫ T

t

(f(s, Y 1
s , Z

1
s ) − f(s, Y 2

s , Z
2
s ), Y 1

s − Y 2
s )ds

]

≤ 2E

[∫ T

t

(ρ
1
2 (|Y 1

s − Y 2
s |2) + c|Z1

s − Z2
s |)|Y 1

s − Y 2
s |ds

]

≤ E

[∫ T

t

(ρ(|Y 1
s − Y 2

s |2)ds
]

+ E

[∫ T

t

|Y 1
s − Y 2

s |2ds
]

+
1
2
E

[∫ T

t

|Z1
s − Z2

s |2ds
]

+ 2c2E

[∫ T

t

|Y 1
s − Y 2

s |2ds
]
.

Thus,

E[|Y 1
t − Y 2

t |2] +
1
2
E

[∫ T

t

|Z1
s − Z2

s |2ds
]

≤ (2c2 + 1)E

[∫ T

t

|Y 1
s − Y 2

s |2ds
]

+ E

[∫ T

t

ρ(|Y 1
s − Y 2

s |2)ds
]

≤ (2c2 + 1)E

[∫ T

t

|Y 1
s − Y 2

s |2ds
]

+
∫ T

t

ρ(E[|Y 1
s − Y 2

s |2])ds.

Now set:
u(t) = E[|Y 1

t − Y 2
t |2],

then,

u(t) ≤ (2c2 + 1)
∫ T

t

u(s)ds+
∫ T

t

ρ(u(s))ds.

As ∫ 1

0

dr

ρ(r) + (2c2 + 1)r
= ∞,

we deduce from Lemma 2.2 that,

u(t) = 0,
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And the uniqueness of the solution can be now easily proved.
As for the existence of solution, we proceed as Theorem 4.2: define a

sequence of (Y n, Zn), n ≥ 0, as follows:

Y 0 = 0, Z0 = 0,

and

Y n+1
t = ξ +

∫ T

t

f(s, Y n
s , Z

n+1
s )ds−

∫ T

t

Zn+1
s dBs.

Then the rest of the proof goes in a similar way as that in Theorem 3.1, and
we omit it.

Remark 5.1. One can find similar result (but a little bit weaker than
ours) in Mao [5]. Once again, the proof given here is much simpler.

Institut de Recherche Mathématique de Rennes
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