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A dependence vanishing theorem for sequences
generated by Weyl transformation

By

Kenji Yasutomi

1. Introduction

Let us develop a real number x into the binary expansion, take the sum of
the first m digits under the decimal point, divide the sum by 2, and denote the
remainder by X(m)(x). Sugita [2] conjectured that, when α is irrational and m
is large, the process X(m)(ω), X(m)(ω + α), X(m)(ω + 2α), . . . is almost i.i.d.
on the Lebesgue space ([0, 1), λ), and proved that

(∗) {X(m)(· + nα)}n∈N converges in law to {0, 1}-valued fair i.i.d.

as m → ∞

for all normal numbers α. Although the process {X(m)(·+nα)}n∈N is generated
by α-rotation and has strong dependence, the mysterious conjecture claims that
the dependence vanishes when m is large. In this paper, we give the affirmative
answer to the conjecture and prove the convergence (∗) for all irrational α.

Various studies [3, 5] were done on this problem. We [6, 7] proved the
convergence (∗) for a.e. α and for normal α by using a standard technique of
Markov chain. In this paper, we apply the technique from a different point of
view, and prove the final result.

2. Result and some comments

For real number x ≥ 0, let �x� be the integral part of x, i.e., �x� :=
max{n ∈ Z | x ≥ n}.

Let b ≥ 2 be an integer and d(j)(x) the j-th digit of decimal part of x ≥ 0
in its base-b expansion, i.e., d(j)(x) := �bjx� − b�bj−1x�.

For a fixed irrational number α and m ∈ N, we define Z/bZ-valued function
X

(m)
l on [0, 1) by

X
(m)
l (ω) :≡

∑
1≤j≤m

d(j)(ω + lα)
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366 Kenji Yasutomi

where z ≡ z′ means that z = z′ modulo b for z, z′ ∈ Z.
Our main theorem is as follows:

Theorem 1. If b is prime and α is irrational, then the distribution of
the process {X(m)

l }∞l=0 on the Lebesgue space ([0, 1), λ) converges weakly to the
distribution of Z/bZ-valued fair i.i.d. when m tends to ∞.

When b = 2, Theorem 1 reduces to the conjectured result.
The condition that b is prime, which is equivalent to that Z/bZ is a finite

field, is used only in Section 4 to show the strong irreducibility on Z/bZ. Pre-
cisely, this condition is necessary for our proof of Lemma 4. But, it may be not
so for the statement of that, hence Theorem 1. We believe that this assumption
is technical and thus can be removed.

In the first draft, our underlying probability measure was so general µ that
{d(j)}j>0 are independent random variables under µ with

lim inf
j→∞

min
0≤s<b

µ(d(j) = s) > 0.

It should be noted that, under this setting, we [7] have proved Theorem 1,
where λ is replaced by µ and b ≥ 2 only is an integer (i.e., it need not be prime),
but only α is normal. For those µ, everything in Section 3 proceeds with no
problem. At the beginning of Section 4, however, we fail in the reduction stated
there. If, for instance, we assume that {d(j)(· + β)}j≥1 is independent for all
β, then we can prevent this failure. But, this assumption is too convenient for
us and indeed, from it the trivial case occurs, that is, such µ’s satisfying it are
only the Lebesgue measure λ. So, from this observation, we have restricted
underlying probability space to the Lebesgue space. Similarly as the case of b,
we are convinced that this restriction for µ can the removed, and hence, under
the above setting, Theorem 1 holds for all b ≥ 2 and all irrational α.

3. Proof of Theorem 1

Let µ be as above, b ≥ 2 an integer and α irrational. Throughout this
section, our underlying probability space is ([0, 1),B([0, 1)), µ), unless otherwise
stated.

The aim of this section is to find the condition on µ under which Theorem 1
holds with λ replaced by µ, in a word, it holds that∫

[0,1)

f(X(m)
0 , . . . , X(m)

n )dµ → 1
bn+1

∑
e∈(Z/bZ)n+1

f(e)(1)

for each n and for each complex function f on (Z/bZ)n+1.
We fix n and define (Z/bZ)n+1-valued functions d(j) and X(m) by

d(j)(ω) := (d(j)(ω), d(j)(ω + α), . . . , d(j)(ω + nα)),

X(m) := (X(m)
0 , X

(m)
1 , . . . , X(m)

n ) ≡
m∑

j=1

d(j) for m ≥ 1,
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and X(0) := 0 ∈ (Z/bZ)n+1.
Since {d(j)}j is an independent process, {X(m)

0 }m ≡ {∑1≤j≤m d(j)}m is a
Markov chain. But, since {d(j)}j is not independent, we cannot easily see that
{X(m)}m ≡ {∑1≤j≤m d(j)}m is a Markov chain. Thus, we introduce a process
{Z(m)}m to manage the dependence among {d(j)}j . Define {0, . . . , 2b − 1}n-
valued function Z(m) = (Z(m)

1 , . . . , Z
(m)
n ) by

Z
(m)
l (ω) :=

⌊
bmω − b�bm−1ω� + bmlα − b�bm−1lα�

⌋
= �bm(ω + lα)� − b(�bm−1ω� + �bm−1lα�).

Then, we have that

Z
(m)
l (ω) = d(m)(ω + lα) + b(�bm−1(ω + lα)� − �bm−1ω� − �bm−1lα�)

≡ d(m)(ω + lα),

and d(m) ≡ (d(m),Z(m)). Furthermore, we can say that Z(1), Z(2), . . . is a
backward Markov chain, i.e., . . ., Z(2), Z(1) is a Markov chain:

Proposition 1. The process {Z(m)}1
m=∞ is a Markov chain.

Proof. Let m′ < m. By the definition of d(j),

m−1∑
j=m′

bm′−jd(j)(x) = bm′−m+1�bm−1x� − b�bm′−1x�,

and hence, by letting m → ∞
∞∑

j=m′
bm′−jd(j)(x) = bm′

x − b�bm′−1x�.

From the first expression, it follows that

Z
(m′)
l (ω) =

⌊
bm′−m�bm(ω + lα)� − b(�bm′−1ω� + �bm′−1lα�)

⌋
(2)

=
⌊
bm′−m(Z(m)

l (ω) + b(�bm−1ω� + �bm−1lα�))

− b(�bm′−1ω� + �bm′−1lα�)
⌋

=

bm′−mZ
(m)
l (ω) +

m−1∑
j=m′

bm′−j(d(j)(ω) + d(j)(lα))

 ,

and from the second expression

Z
(m′)
l (ω) =

 ∞∑
j=m′

bm′−j(d(j)(ω) + d(j)(lα))

(3)
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where 1 ≤ l ≤ n.
Let us define a random transformation Φ(m,m′) on {0, . . . , 2b − 1}n by

φ
(m,m′)
l (ω; z) =

bm′−mz +
∑

m′≤j<m

bm′−j(d(j)(ω) + d(j)(lα))


and

Φ(m,m′)(ω; z1, . . . , zn) = (φ(m,m′)
1 (ω, z1), . . . , φ(m,m′)

n (ω, zn)),

where z, z1, . . . , zn ∈ {0, . . . , 2b − 1}.
Then, we have that Z(m′)(ω) = Φ(m,m′)(ω;Z(m)(ω)) by (2), that ω 
→

Φ(m,m′)(ω; ·) is σ(d(m′), . . . , d(m−1))-measurable by definition, and that Z(m)

is σ(d(m), d(m+1), . . .)-measurable by (3). Thus, the independence of {d(j)}j

implies that

µ
(
Z(m′)(ω) ∈ ∗

∣∣∣ σ(d(m), d(m+1), . . .)
)

= µ
(
Φ(m,m′)(ω;Z(m)(ω)) ∈ ∗

∣∣∣ σ(d(m), d(m+1), . . .)
)

= µ(Φ(m,m′)(ω; z) ∈ ∗)
∣∣∣
z=Z(m)(ω)

,

which shows the Markov property of {Z(m)}1
m=∞.

From the following proposition, we can say that ‘{(X(∞) − X(m−1),
Z(m))}1

m=∞ ≡ {(∑m≤j≤∞ d(j),Z(m))}1
m=∞’ is a Markov chain:

Proposition 2. For each M ∈ N, the (Z/bZ)n+1 × {0, . . . , 2b − 1}n-
valued process {(X(M) − X(m−1),Z(m))}m=M,...,1 is a Markov chain with the
transition probability

P̃
(m,m′)
(e,z),(e′,z′) = µ

 ∑
m′≤j<m

(d(j),Φ(m,j)(z)) ≡ e′ − e,Φ(m,m′)(z) = z′

 ,

where 1 ≤ m′ < m ≤ M , e, e′ ∈ (Z/bZ)n+1 and z, z′ ∈ {0, . . . , 2b − 1}n.

Proof. Let 1 ≤ m′ < m ≤ M and let Bm be an arbitrary σ((X(M) −
X(j−1),Z(j)); j = M, . . . , m)-measurable set. Since Z(j) is σ(d(j), d(j+1), . . .)-
measurable and X(M)−X(j−1) ≡∑M

k=j d(k) ≡ (
∑M

k=j d(k),
∑M

k=j Z(k)), Bm and
X(M) − X(m−1) are σ(d(m), d(m+1), . . .)-measurable. Noting that Φ(m,m′)(z)
is σ(d(m′), . . . , d(m−1))-measurable for each z and that d(j) ≡ (d(j),Z(j)) =
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(d(j),Φ(m,j)(Z(m))), we see from the independence of {d(j)}j that

µ
(
X(M) − X(m′−1) ≡ e′,Z(m′) = z′∣∣ {X(M) − X(m−1) ≡ e,Z(m) = z} ∩ Bm

)
= µ

 ∑
m′≤j<m

d(j) ≡ e′ − e,Z(m′) = z′

∣∣∣ {X(M) − X(m−1) ≡ e,Z(m) = z} ∩ Bm


= µ

 ∑
m′≤j<m

(d(j),Φ(m,j)(z)) ≡ e′ − e,Φ(m,m′)(z) = z′

∣∣∣ {X(M) − X(m−1) ≡ e,Z(m) = z} ∩ Bm


= µ

 ∑
m′≤j<m

(d(j),Φ(m,j)(z)) ≡ e′ − e,Φ(m,m′)(z) = z′

 .

This implies the conclusion of the proposition.

Note that P̃
(m,m′)
(e,z),(e′,z′) does not depend on M .

To give a rough sketch of our proof of Theorem 1, let us temporarily
assume that the Markov chain {(X(∞) − X(m−1),Z(m))}m=∞,...,1 is strongly
irreducible, i.e., for an ε > 0 and for each N ∈ N, there exists a pair (m, m′)
with N ≤ m′ < m such that

min
e,z,e′,z′

P̃
(m,m′)
(e,z),(e′,z′) ≥ ε.(4)

Then, by a standard method of Markov chain, we have that, for every complex
function g on (Z/bZ)n+1 × {0, . . . , 2b − 1}n,

(P̃ (M,1)g)(e, z) :=
∑
e′,z′

P̃
(M,1)
(e,z),(e′,z′)g(e′, z′)

→ 1
bn+1(2b)n

∑
e′,z′

g(e′, z′) (M → ∞).

Let � : (Z/bZ)n+1 × {0, . . . , 2b − 1}n → (Z/bZ)n+1 be the projection. Then,
by Proposition 2,∫

[0,1)

f(X(M))dµ =
∫

(Z/bZ)n+1×{0,...,2b−1}n

(f ◦ �)dµ(X(M),Z(1))

=
∫

(Z/bZ)n+1×{0,...,2b−1}n

P̃ (M,1)(f ◦ �)dµ(X(M)−X(M−1),Z(M))
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→
∑

e,z(f ◦ �)(e, z)
bn+1(2b)n

=
1

bn+1

∑
e

f(e) (M → ∞),

hence we have the convergence (1).
Unfortunately, the assumption (4) is not true. Since the state space

(Z/bZ)n+1 × {0, . . . , 2b − 1}n is too big to be irreducible, we use the follow-
ing trick to make it reasonable size.

For e = (e0, . . . , en), ê = (ê0, . . . , ên) ∈ (Z/bZ)n+1, let e · ê be the inner
product, i.e., e · ê =

∑n
l=0 elêl.

Then, for every complex function f on (Z/bZ)n+1,

f(e) =
∑

be∈(Z/bZ)n+1

f̂(ê) exp
( i2πe · ê

b

)
,

where

f̂(ê) =
1

bn+1

∑
e∈(Z/bZ)n+1

f(e) exp
(−i2πe · ê

b

)
,

by the Plancherel theorem (cf. H. Dym-H. P. McKean [1, p. 219]).
Since X(m) · 0 is constant 0,

f(X(m)) =
∑

be∈(Z/bZ)n+1\{0}
f̂(ê) exp

( i2πX(m) · ê
b

)
+ f̂(0)

=
∑

be∈(Z/bZ)n+1\{0}
f̂(ê) exp

( i2πX(m) · ê
b

)
+

1
bn+1

∑
e∈(Z/bZ)n+1

f(e).

Thus, for the convergence (1) it is sufficient to see that∫
[0,1)

exp
( i2πX(m) · ê

b

)
dµ → 0(5)

for each ê ∈ (Z/bZ)n+1 \ {0}.
We fix such an ê from now on, and introduce the following Markov chain:

Lemma 1. For each M ∈ N, the (Z/bZ)×{0, . . . , 2b−1}n-valued process
{((X(M) − X(m−1)) · ê,Z(m))}m=M,...,1 is a Markov chain with the transition
probability

P
(m,m′)
(z,z),(z′,z′) = µ

 ∑
m′≤j<m

(d(j),Φ(m,j)(z)) · ê ≡ z′ − z,Φ(m,m′)(z) = z′


for z, z′ ∈ Z/bZ, z, z′ ∈ {0, . . . , 2b − 1}n, and 1 ≤ m′ < m ≤ M .
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Proof is the same as that of Proposition 2.

For 0 < m′ < m and complex function g on (Z/bZ) × {0, . . . , 2b − 1}n,
define a function P (m,m′)g on (Z/bZ) × {0, . . . , 2b − 1}n by

(P (m,m′)g)(z, z) :=
∑
z′,z′

P
(m,m′)
(z,z),(z′,z′)g(z′, z′),

and let ‖ · ‖∞ be the supremum norm, i.e., ‖g‖∞ := maxz,z |g(z, z)|.
Then, by Lemma 1,∣∣∣∣∣

∫
[ 0,1)

exp
(

i2πX(m) · ê
b

)
dµ

∣∣∣∣∣
=

∣∣∣∣∣
∫

(Z/bZ)×{0,...,2b−1}n

h dµ(X(m)·be,Z(1))

∣∣∣∣∣
=

∣∣∣∣∣
∫

(Z/bZ)×{0,...,2b−1}n

P (m,1)h dµ((X(m)−X(m−1))·be,Z(m))

∣∣∣∣∣
≤ ‖P (m,1)h‖∞,

where h(z, z) := exp(i2πz/b) for (z, z) ∈ (Z/bZ) × {0, . . . , 2b − 1}n. Let

G0 :=

{
g : (Z/bZ) × {0, . . . , 2b − 1}n → C

∣∣∣ ∑
z,z

g(z, z) = 0

}
,

‖P (m,m′)‖G0 := max
g∈G0,‖g‖∞ �=0

‖P (m,m′)g‖∞
‖g‖∞ .

Then h ∈ G0. Similarly as (4), let us temporarily assume that the Markov chain
{((X(∞) − X(m−1)) · ê,Z(m))}m=∞,...,1 is strong irreducible, i.e., for an ε > 0
and for each N ∈ N, there exists a pair (m, m′) with N ≤ m′ < m such that

min
z,z,z′,z′

P
(m,m′)
(z,z),(z′,z′) ≥ ε.(6)

Then, we have that ‖P (m,m′)‖G0 ≤ 1 − b(2b)nε, and hence∣∣∣∣∣
∫

[ 0,1)

exp
(

i2πX(M) · ê
b

)
dµ

∣∣∣∣∣ ≤ ‖P (M,1)h‖∞

≤ ‖P (M,1)‖G0‖h‖∞ → 0 (M → ∞).

Unfortunately, (6) is again not true. But, since h does not depend on the
second variable, the strong irreducibility on Z/bZ to be stated below is enough
for our purpose. To this end, let

G :=

{
g ∈ G0

∣∣∣ ∑
z

g(z, z) = 0 for each z ∈ {0, . . . , 2b − 1}n

}
,

‖P (m,m′)‖G := max
g∈G,‖g‖∞ �=0

‖P (m,m′)g‖∞
‖g‖∞ .
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Clearly h ∈ G and ‖P (m,m′)h‖∞ ≤ ‖P (m,m′)‖G‖h‖∞. The following lemma
enables us to iterate the estimate of ‖P (m,m′)‖G .

Lemma 2. G is P (m,m′)-invariant, i.e., P (m,m′)G ⊂ G.

Proof. For each g ∈ G,∑
z

(P (m,m′)g)(z, z)

=
∑

z,z′,z′
µ

 ∑
m′≤j<m

(d(j),Φ(m,j)(z)) · ê ≡ z′ − z,Φ(m,m′)(z) = z′

 g(z′, z′)

=
∑
z′,z′

µ
(
Φ(m,m′)(z) = z′

)
g(z′, z′)

=
∑
z′

µ
(
Φ(m,m′)(z) = z′

)∑
z′

g(z′, z′) = 0.

We present the following condition instead of (6).

Lemma 3. Let m′ < m and ε > 0. Suppose that, for each (z, z) ∈
Z/bZ × {0, . . . , 2b − 1}n, there exists z′(z, z) ∈ {0, . . . , 2b − 1}n such that

min
z′∈Z/bZ

P
(m,m′)
(z,z),(z′,z′(z,z)) ≥ ε.(7)

Then

‖P (m,m′)‖G ≤ 1 − bε.

Proof. By assumption, P
(m,m′)
(z,z),(z′,z′) − ε1{z′=z′(z,z)} ≥ 0. Hence, for g ∈ G,∣∣∣(P (m,m′)g)(z, z)

∣∣∣
=

∣∣∣∣∣∣
∑
z′,z′

P
(m,m′)
(z,z),(z′,z′)g(z′, z′)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
z′,z′

(P (m,m′)
(z,z),(z′,z′) − ε1{z′=z′(z,z)})g(z′, z′) + ε

∑
z′

g(z′, z′(z, z))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
z′,z′

(P (m,m′)
(z,z),(z′,z′) − ε1{z′=z′(z,z)})g(z′, z′)

∣∣∣∣∣∣
≤
∑
z′,z′

(P (m,m′)
(z,z),(z′,z′) − ε1{z′=z′(z,z)})‖g‖∞ = (1 − bε)‖g‖∞.
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Thus, we have ‖P (m,m′)g‖∞ ≤ (1 − bε)‖g‖∞.

We finally arrive at the desired ‘strong irreducibility’. We show in Section 4
that this is valid when µ is the Lebesgue measure λ and b is prime.

Proposition 3. Suppose that the Markov chain {((X(∞) − X(m−1)) ·
ê,Z(m))}m=∞,...,1 is strong irreducible on Z/bZ, i.e., for an ε > 0 and for each
N ∈ N, there exists a pair (m, m′) with N ≤ m′ < m satisfying the condition
of Lemma 3. Then ‖P (M,1)‖G → 0 (M → ∞).

Proof. By assumption, we can take a sequence 1 < m′
1 < m1 < m′

2 <
m2 < · · · < mj−1 < m′

j < mj < · · · such that every (mj , m
′
j) satisfies the

condition of Lemma 3.
By Lemma 2, we have ‖P (m,m′′)‖G ≤ ‖P (m,m′)‖G‖P (m′,m′′)‖G for m >

m′ > m′′. Thus, thanks to that ‖P (m,m′)‖G ≤ 1 for m > m′, Lemma 3 implies
that

‖P (M,1)‖G ≤ ‖P (M,mJ(M))‖G
J(M)∏
j=1

‖P (mj ,m′
j)‖G‖P (m′

j ,mj−1)‖G

≤
J(M)∏
j=1

‖P (mj ,m′
j)‖G ≤ (1 − bε)J(M) → 0 (M → ∞),

where J(M) := max{j ≥ 1 | M > mj} and m0 := 1.

Collecting all the above, we have immediately Theorem 1 by the following
implications:

{((X(∞) −X(m−1)) · ê,Z(m))}m=∞,...,1 is strong irreducible on Z/bZ

for each ê ∈ (Z/bZ)n+1 \ {0} and n ∈ N

⇒ ‖P (M,1)‖G → 0 (M → ∞) for each ê ∈ (Z/bZ)n+1 \ {0} and n ∈ N

⇒ The convergence (5) holds for each ê ∈ (Z/bZ)n+1 \ {0} and n ∈ N

⇒ The convergence (1) holds for each complex function f on (Z/bZ)n+1

and n ∈ N

⇒ Theorem 1 holds.

4. Strong irreducibility

In this section, we suppose that µ is the Lebesgue measure λ and b is prime,
and show the strong irreducibility on Z/bZ of the Markov chain {((X(∞) −
X(m−1)) · ê,Z(m))}m=∞,...,1, where ê = (ê0, . . . , ên) ∈ (Z/bZ)n+1 \ {0}.

First of all, we can suppose ê0 �≡ 0 without loss of generality. This reduc-
tion is easily seen in the following way: Let l0 := min{0 ≤ l ≤ n | êl �≡ 0} and
ê′ := (ê′0, . . . , ê

′
n) be such that

ê′l :=
{

êl+l0 if l ≤ n − l0,
0 otherwise.
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Then, ê′0 �≡ 0 and∫
[ 0,1)

exp
(

i2πX(m) · ê
b

)
dλ =

∫
[ 0,1)

exp

(
i2π

b

n∑
l=0

X
(m)
0 (ω + l0α + lα)ê′l

)
λ(dω)

=
∫

[ 0,1)

exp
(

i2πX(m) · ê′
b

)
dλ.

Here we have used the shift invariance: λ( · − l0α) = λ( · ).
Thus, we now check the strong irreducibility on Z/bZ for ê = (ê0, . . . , ên)

with ê0 �≡ 0. The key for doing so is the following proposition, which claims
that every irrational number α has infinite number of ‘irregular’ digits. This is
shown in Section 5.

Proposition 4. Let α be an irrational number. Then, for each n ∈ N

there exist infinitely many m’s satisfying the following condition:{
For each 1 ≤ l ≤ n, there exist jl and j′l with m− 3n− 1 ≤ jl, j

′
l < m

such that 0 < d(jl)(lα) and d(j′
l)(lα) < b − 1.

(8)

This condition is slightly weak compared with that at the beginning of
Section 5, that is, we here admit that jl = j′l when b ≥ 3.

We begin with showing that the chain can visit a neighborhood.

Lemma 4. Let m satisfy the condition (8). Then, for each z ∈ {0, . . . ,
2b−1}n, there exist m′ ∈ N with m−3n−b−1 ≤ m′ < m, z′ ∈ {0, . . . , 2b−1}n

and y ∈ Z/bZ such that

min
z∈Z/bZ,z′≡z+y,z+y+1

P
(m,m′)
(z,z),(z′,z′) ≥

(1
b

)3n+b+1

.

Proof. Let m′ < m − 3n − 1 and

A := {d(m′) = 0, d(j) = b − 1 for m′ < j < m},
A := {d(m′) = 1, d(j) = 0 for m′ < j < m}.

Then d(k) and Φ(m,k) are non random either on A or on A where m′ ≤ k < m.
Let

y :≡
∑

m′≤j<m

(d(j)(ω),Φ(m,j)(ω; z)) · ê, z′ := Φ(m,m′)(ω; z),

y :≡
∑

m′≤j<m

(d(j)(ω),Φ(m,j)(ω; z)) · ê, z′ := Φ(m,m′)(ω; z),

where ω ∈ A and ω ∈ A. Then,

A ⊂
 ∑

m′≤j<m

(d(j),Φ(m,j)(z)) · ê ≡ y,Φ(m,m′)(z) = z′

 ,

A ⊂
 ∑

m′≤j<m

(d(j),Φ(m,j)(z)) · ê ≡ y,Φ(m,m′)(z) = z′

 .
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Since

λ

 ∑
m′≤j<m

(d(j),Φ(m,j)(z)) · ê ≡ y,Φ(m,m′)(z) = z′

 = P
(m,m′)
(z,z),(z+y,z′),

λ

 ∑
m′≤j<m

(d(j),Φ(m,j)(z)) · ê ≡ y,Φ(m,m′)(z) = z′

 = P
(m,m′)
(z,z),(z+y,z′)

and λ(A) = λ(A) = ( 1
b )m−m′

, it is sufficient to show that there exists m′ with
m − 3n − b − 1 ≤ m′ < m such that z′ = z′ and y ≡ y + 1.

Firstly, we show that z′ = z′ for all m′ with m′ < m − 3n − 1. By the
definition of φ

(m,m′)
l ,

φ
(m,m′)
l (ω; z) =

bm′−mz +
∑

m′≤j<m

bm′−j(d(j)(ω) + d(j)(lα))


=

bm′−mz + 1 − bm′−m+1 +
∑

m′≤j<m

bm′−jd(j)(lα)


= d(m′)(lα) +

bm′−mz + 1 − bm′−m+1 +
∑

m′<j<m

bm′−jd(j)(lα)

 ,

φ
(m,m′)
l (ω; z) =

bm′−mz +
∑

m′≤j<m

bm′−j(d(j)(ω) + d(j)(lα))


=

bm′−mz + 1 +
∑

m′≤j<m

bm′−jd(j)(lα)


= d(m′)(lα) + 1 +

bm′−mz +
∑

m′<j<m

bm′−jd(j)(lα)

 .

By Proposition 4, we can verify, for k < m − 3n − 1,

bk−m+1 ≤
∑

k<j<m

bk−jd(j)(lα) ≤ 1 − 2bk−m+1.

Therefore, bk−mz + 1 − bk−m+1 +
∑

k<j<m

bk−jd(j)(lα)

 = 1,(9)

bk−mz +
∑

k<j<m

bk−jd(j)(lα)

 = 0.(10)
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Thus, we have that

φ
(m,m′)
l (ω; z) = d(m′)(lα) + 1 = φ

(m,m′)
l (ω; z),

and hence z′ = z′.
Secondly, we show that y ≡ y + 1 for suitably chosen m′. For all m′ and k

with m′ < k < m − 3n − 1, we have

φ
(m,k)
l (ω; z) =

bk−mz + b − bk−m+1 +
∑

k≤j<m

bk−jd(j)(lα)


= d(k)(lα) + b − 1 +

bk−mz + 1 − bk−m+1 +
∑

k<j<m

bk−jd(j)(lα)

,

φ
(m,k)
l (ω; z) =

bk−mz +
∑

k≤j<m

bk−jd(j)(lα)


= d(k)(lα) +

bk−mz +
∑

k<j<m

bk−jd(j)(lα)

 .

Again, by (9) and (10), we have that

φ
(m,k)
l (ω; z) = d(k)(lα) + b ≡ d(k)(lα) = φ

(m,k)
l (ω; z)

and hence

y − y ≡
∑

m−3n−1≤j<m

(
(d(j)(ω),Φ(m,j)(ω; z)) − (d(j)(ω),Φ(m,j)(ω; z))

) · ê
+

∑
m′≤j<m−3n−1

(d(j)(ω) − d(j)(ω))ê0

=
∑

m−3n−1≤j<m

(
(d(j)(ω),Φ(m,j)(ω; z)) − (d(j)(ω),Φ(m,j)(ω; z))

) · ê
− ê0 + (m − 3n − 2 − m′)(b − 1)ê0

≡
∑

m−3n−1≤j<m

(
(d(j)(ω),Φ(m,j)(ω; z)) − (d(j)(ω),Φ(m,j)(ω; z))

) · ê
− (m − 3n − 1 − m′)ê0.

Since Z/bZ is a finite field and ê0 �= 0, linear congruence equation ê0X ≡ Y
(mod b) is solvable for a given Y , and therefore we can take m′ with m− 3n−
b − 1 ≤ m′ < m − 3n − 1 and y ≡ y + 1.

At last, we can show that the chain can visit everywhere.

Lemma 5. Let ε :=
(ε3n+b+1

b(2b)n

)b−1

for ε :=
1
b
. Then, the strong irre-

ducibility on Z/bZ is valid with this ε, i.e., for each N ∈ N, there exists a pair
(m, m′) with N ≤ m′ < m satisfying the condition of Lemma 3.
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Proof. Let N ∈ N be given arbitrarily. By Proposition 4, we can take
a monotone decreasing sequence m(1) > m(2) > · · · > m(b) ≥ N such that
m(j+1) < m(j) − 3n − b − 1 and m(j) satisfies the condition (8).

Let z ∈ {0, . . . , 2b − 1}n.
Then, by Lemma 4, there exist m′(1), z′(1) and y′(1) with m(2) < m′(1) <

m(1) such that

min
z∈Z/bZ

min
z′≡z+y′(1),z+y′(1)+1

P
(m(1),m′(1))
(z,z),(z′,z′(1)) ≥ ε3n+b+1.

Since the cardinal number of the state space is b(2b)n, there exist y(1) and
z(2) such that

P
(m′(1),m(2))

(y′(1),z′(1)),(y(1),z(2))
≥ 1

b(2b)n
.

Noting that, by the definition, P
(k,k′)
(w,w),(w′,w′) is shift invariant on Z/bZ,

i.e., P
(k,k′)
(w,w),(w′,w′) = P

(k,k′)
(w+v,w),(w′+v,w′) where k > k′, w, w′, v ∈ Z/bZ and

w,w′ ∈ {0, . . . , 2b − 1}n, we see that, for any z ∈ Z/bZ,

P
(m(1),m(2))

(z,z),(z+y(1),z(2))
≥ P

(m(1),m′(1))
(z,z),(z+y′(1),z′(1))P

(m′(1),m(2))

(z+y′(1),z′(1)),(z+y(1),z(2))

= P
(m(1),m′(1))
(z,z),(z+y′(1),z′(1))P

(m′(1),m(2))

(y′(1),z′(1)),(y(1),z(2))
≥ ε3n+b+1

b(2b)n
.

Since we can verify P
(m(1),m(2))

(z,z),(z+y(1)+1,z(2))
≥ ε3n+b+1

b(2b)n in the same way,

min
z∈Z/bZ

min
z′≡z+y(1),z+y(1)+1

P
(m(1),m(2))

(z,z),(z′,z(2))
≥ ε3n+b+1

b(2b)n
.

Hence, inductively, we have that there exist z(3), . . . , z(b) and y(2), . . . , y(b−1)

such that

min
z∈Z/bZ

min
z′≡z+y(j),z+y(j)+1

P
(m(j),m(j+1))

(z,z(j)),(z′,z(j+1))
≥ ε3n+b+1

b(2b)n
,

where j = 1, . . . , b − 1 and z(1) = z. Again, using the shift invariance of
P

(k,k′)
(w,w),(w′,w′), we have that

min
z′=z+y(1)+y(2),z+y(1)+y(2)+1,z+y(1)+y(2)+2

P
(m(1),m(3))

(z,z),(z′,z(3))
≥
(ε3n+b+1

b(2b)n

)2

.

Repeat that to m(b) and let m := m(1), m′ := m(b), z(b) := z + y(1) + · · ·+
y(b−1) and z′(z, z) := z(b). Then, we have

min
z′

P
(m,m′)
(z,z),(z′,z′(z,z)) = min

z′≡z(b),··· ,z(b)+b−1
P

(m(1),m(b))

(z,z),(z′,z(b))
≥
(ε3n+b+1

b(2b)n

)b−1

= ε.
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5. Proof of Proposition 4

In this section, integer b ≥ 2 need not be prime.
We here show the contraposition of Proposition 4, i.e., we check that α is

a rational number when only a finite number of m satisfies the condition (8).
For a fixed n ∈ N, let

N = Nn := max
{

m
∣∣∣ for each 1 ≤ l ≤ n, there exist m − 3n − 1 ≤ jl <

j′l < m such that d(jl)(lα) �= d(j′
l)(lα)

}
.

Then, the following lemma clearly implies Proposition 4:

Lemma 6. If N is finite, α is a rational number.

We prepare two lemmas to see Lemma 6.

Lemma 7. The finite sequence d(m−2n−1)(α), . . . , d(m−1)(α) is periodic
and its period is at most n when there exists 1 ≤ l ≤ n such that d(m−3n−1)(lα)
= · · · = d(m−1)(lα).

Proof. There are two ways of finding a division lα/l. One is a trivial
computation: lα/l = α =

∑∞
j=1

d(j)(α)
bj = 0.d(1)(α)d(2)(α) · · · . Another is a

manual computation given by the following:

0. a1 a2 · · · · · · aj−1 aj · · · · · ·
l
)
�lα�.d(1)

l d
(2)
l · · · · · · d(j−1)

l d
(j)
l d

(j+1)
l · · ·

la1

r1 d
(2)
l

la2

r2 d
(3)
l
. . . . . .

rj−1 d
(j)
l

laj

rj d
(j+1)
l

. . .

where �lα�.d(1)
l d

(2)
l · · · (d(k)

l := d(k)(lα), k ≥ 1) is the b-adic representation of
lα and rj−1d

(j)
l is that of brj−1 + d

(j)
l , and lαj = l × αj . Hence

a1 = max{0 ≤ a < b | la ≤ b�lα� + d(1)(lα)}
= max{0 ≤ a < b | la ≤ �blα�},

r1 = b�lα� + d(1)(lα) − la1 = �blα� − la1,
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and for j > 1

aj = max{0 ≤ a < b | la ≤ brj−1 + d(j)(lα)},
rj = brj−1 + d(j)(lα) − laj .

Since the representations above are equal, we have the identity

d(j)(α) = aj , j ≥ 1.

Next, noting that rj ∈ {0, . . . , l − 1} (j ≥ 1), we set

p = min{i ≥ 1 | rm−2n−2+i = rm−2n−2}.
Clearly 1≤p ≤ l and rm−2n−2 = rm−2n−2+p. By the assumption d(m−3n−1)(lα)
= · · · = d(m−1)(lα), and by the recursion formulas of aj and rj , we can easily
verify that

rk = rk+p, ak+1 = ak+1+p for m − 2n − 2 ≤ k < m − p − 1.

Thus, combining this with the identity above, we complete the proof.

Next lemma is concerned with the least periods of a sequence and its
consecutive subsequence.

Lemma 8. Let {aj}p−1
j=0 be a sequence with the least period k (2k ≤ p).

Then, that of any subsequence {aj}q+p′−1
j=q (0 ≤ q < q + p′ ≤ p) is also k

whenever p′ ≥ 2k.

Proof. Let k′ be the least period of {aj}q+p′−1
j=q . Then k′ ≤ k. For any

0 ≤ l < p − k′, there exist j ∈ Z and 0 ≤ r < k such that l − q = kj + r. Since
r + k′ < 2k ≤ p′,

al = aq+kj+r = aq+r = aq+r+k′ = aq+kj+r+k′ = al+k′ .

Hence k′ is a period of {aj}p−1
j=0 and k′ = k.

Now, we prove Lemma 6.

Proof of Lemma 6. For any m > N , there exists 1 ≤ lm ≤ n such that

d(m−3n−1)(lmα) = · · · = d(m−1)(lmα).

Let m := N +1. Then, by Lemma 7, {d(j)(α)}N
j=N−2n is periodic. Let the least

period be k1. Similarly, {d(j)(α)}N+1
j=N−2n+1 is periodic. Let the least period

be k2. Since k1, k2 ≤ n, Lemma 8 implies that both k1 and k2 are same as
the least period of {d(j)(α)}N

j=N−2n+1, hence k1 = k2. Thus, by the induction,
{d(j)(α)}∞j=N−2n is periodic and α is a rational number.

We conclude this paper with some remarks.
The converse of Lemma 6 is trivial. For, if α = m

l , where l ∈ N and m ∈ Z,
then clearly d(j)(lα) = 0 for all j. Thus, a criterion to be irrational is obtained:
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A real number α is irrational if and only if Nn is infinite for every n ∈ N.

When b = 2, Nn = ∞ is in words that the condition (8) holds for infinitely
many m’s. This condition, in fact, has already appeared in Sugita-Takanobu
[4]. In this unpublished note [4], they have tried a refinement of the argument
in Sugita [2], where only the case of b = 2 is treated, and improved his result, so
that it has been obtained that Theorem 1 is valid for any irrational number α
having Nn = ∞ for every n ∈ N. Here their method is what is called a method
of cancellation established in [2], and different from ours. Therefore, we may
say by the criterion above that as a historical matter, Sugita’s conjecture was
affirmatively solved earlier than we here do. But, this comment does not match
with a fact that they had not this criterion at that time. In fact, viewing their
note carefully, we find the following: They have thought that the condition
imposed for α, i.e., Nn = ∞ for all n only clarifies a part of the irrationality
of α, and so this condition is insignificant compared with the irrationality, still
less they have not expected at all that the irrationality implies this condition.
From this observation, the credit of the proof of Sugita’s conjecture belongs to
us. Anyway, thanks to our criterion, this conjecture has been now advanced to
a theorem by our or his method.
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