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On the Stiefel-Whitney classes of the adjoint
representation of E8

By
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Introduction

Exceptional Lie groups G2, F4 and El (l = 6, 7, 8) have been studied by
many topologists, where the subscript refers to the rank and we agree to con-
sider 1-connected and compact ones tacitly. The cohomology of the classifying
space of them is determined to a large extent. The mod 2 cohomology of BE8,
however, is left unknown. The ring structure of that of BE7 is not determined
yet.

It is known classically that an elementary abelian 2-subgroup, a 2-torus
in other words, of the maximal rank is useful. This rank is called the 2-rank
of the Lie group. Note that a maximal 2-torus does not necessarily give the
2-rank (see [1], [11]). On the other hand, the 3-connected covering Ẽl of El has
been also utilized. In this paper we determine the image of the Stiefel-Whitney
classes of the adjoint representaion of E8 in H∗(BẼ8; F 2). In particular, we
give some results on the image of H∗(BE8; F 2) in it. We denote the mod 2
cohomology of X simply by H∗(X) and by A∗ the mod 2 Steenrod algebra. If
S is a non-empty subset of an algebra, 〈S〉 denotes the subalgebra generated
by S.

The author is very grateful to Professor Akira Kono for his helpful advices
during the preparation of this paper.

1. Cohomology of the classifying spaces of 3-connected cover

First we recall here facts related to BEl for later use. Let T l be a maximal
torus of El. Denote by q′ a generator of H4(BEl; Z) and by q′′ the induced
map defined on BT l. Let BẼl and BT̃ l be the homotopy fibres of these maps,
respectively. We have the natural maps λl : BT l → BEl, λ̃l : BT̃ l → BẼl,
πl : BẼl → BEl, and π̂l : BT̃ l → BT l. Let us denote by ϕl and ϕ̃l the natural
maps BEl−1 → BEl and BẼl−1 → BẼl, respectively. The following diagrams
are commutative.
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BẼl BEl K(Z, 4)
πl q′

� �

BT̃ l BT l K(Z, 4)
π̂l q′′

� �

λ̃l λl

� �
BẼl BEl

πl �

BẼl−1 BEl−1

πl−1
�

ϕ̃l ϕl

� �

The mod 2 cohomology of these coverings is completely determined in [10]
and [9]. For details, also refer to [8] or [18]. As is well known, H∗(BT l) ∼=
F 2[t1, . . . , tl], where deg ti = 1. Let ci be the i-th elementary symmetric poly-
nomial in ti’s, and also its image in H∗(BT̃ l). Define elements c′5, c′7, c′9 by
c5 + c4c1, c7 + c6c1, c8c1 + c7c1

2 + c6c1
3, respectively. Furthermore, we define

some elements of H∗(BT̃ l) as follows, where for generators γi we refer to the
next theorem.

I8 = c8 + c6c1
2 + c4

2 + c4c1
4 + c1

8,

I12 = Sq8I8 = c8c4 + c6
2 + c6c4c1

2 + c4
2c1

4 + c4c1
8,

I14 = Sq4I12 = c8c6 + c′27 + c6
2c1

2 + c6c4c1
4 + c6c1

8,

I15 = Sq2I14 = c8c
′
7 + c′7c6c1

2 + c′7c4c1
4 + c′7c1

8,

I17 = γ17 + γ9I8 + γ5I12 + γ3I14 + c′7c6c4,

I18 = Sq2I17 = γ9
2 + γ5

2I8 + γ3
2I12 + γ3I15 + c′27 c4,

I20 = Sq4I18 = γ5
4 + γ5I15 + γ3

4I8 + γ3
2I14 + I14c6 + I12c4

2 + c′27 c6,

I24 = Sq2I20 = γ9I15 + γ5
4I14 + γ3

4I12 + γ3
8 + I14c6c4 + I12c6

2 + I8c4
4 + c′27 c6c4.

Ishitoya and Kono show the following result.

Theorem 1.1 ([9]). The following facts about the mod 2 cohomology
of BT̃ l and BẼl (l = 6, 7, 8) hold.

(i) H∗(BT̃ l) = F 2[t1, t2, . . . , tl, γ3, γ5, γ9, γ17, v2j+1 (j ≥ 5)]/(c2, c3, c
′
5, c

′
9),

where deg γi = 2i and deg vi = i.

(ii) H∗(BẼ6) =
F 2[ y10, y12, y16, y18, y24, y33, y34, y2i+1 (i ≥ 6)],
H∗(BẼ7) =

F 2[ y12, y16, y20, y24, y28, y33, y34, y36, y2i+1 (i ≥ 6)],
H∗(BẼ8) =

F 2[ y16, y24, y28, y30, y31, y33, y34, y36, y40, y48, y2i+1 (i ≥ 6)],
where deg yi = i.

(iii) If both H∗(BẼl) and H∗(BẼl−1) have the corresponding generator yi,
ϕ̃l

∗(yi) = yi. Otherwise ϕ̃l
∗(yi) = 0 unless it is mentioned below.

ϕ̃8
∗(y40) = y28y12 + y24y16 + y20

2 + y16y12
2,

ϕ̃8
∗(y48) = y28y20 + y24

2 + y24y12
2 + y16

3 + y12
4,

ϕ̃7
∗(y20) = y10

2, ϕ̃7
∗(y36) = y24y12 + y18

2 + y16y10
2.
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(iv) For the case l = 8,

λ̃8
∗(yi) =




Ii/2, (i = 16, 24, 28, 30, 34, 36, 40, 48),
vi, (i = 2j + 1, j ≥ 5),
0, (i = 31).

(v) For the case l = 7,

λ̃7
∗(yi) =

{
Ii/2, (i = 12, 16, 20, 24, 28, 34, 36),
vi, (i = 2j + 1, j ≥ 5),

where I6 = γ3
2 + c4c1

2 + c1
6, I10 = Sq8I6 = γ5

2 + c6c1
4 + c4

2c1
2 + c1

10.

(vi)For the case l = 6,

λ̃6
∗(yi) =

{
Ii/2, (i = 10, 12, 16, 18, 24, 34),
vi, (i = 2j + 1, j ≥ 5),

where I5 = γ5 + c4c1 + c1
5, I9 = Sq8I5 = γ9 + c4

2c1 + c1
9, and I6 denotes

the image of the corresponding elements of H∗(BT̃ 7).

(vii) The action of A∗ on H∗(BẼl) satisfies the table below and Sq2j

y2i+1 =
0 (j < i). These suffices to determine the action completely.

Sq1 Sq2 Sq4 Sq8 Sq16 Sq32 Sq2i

y16 0 0 0 y24 y16
2 0

y24 0 0 y28 0 y24y16 0
y28 0 y30 0 0 y28y16 0
y30 y31 0 0 0 y30y16 0
y31 0 0 0 0 y31y16 0
y33 y34 0 0 0 y33y16 y65

y34 0 y36 0 0 y34y16 y36y30 + y33
2

y36 0 0 y40 0 y36y16 y40y28 + y34
2

y40 0 0 0 y48 y40y16 y48y24 + y36
2

y48 0 0 0 0
y40y24 + y36y28
+y34y30 + y33y31

y48y16
2 + y40

2 + y40y24y16
+y36y28y16 + y34y30y16 + y33y31y16

y12 0 0 y16 y20 0 0
y20 0 0 y12

2 y28 y36 + y24y12 + y20y16 0
y10 0 y12 0 y18 0 0
y18 0 y10

2 0 0 y34 + y24y10 + y18y16 0
y2i+1 0 0 0 0 0 0 (i ≥ 6) y2i+1+1

Note that ( ϕ̃l
∗(yi) )i forms a regular sequence for each l if we exclude

ϕ̃l
∗(yi) which is null. Thus Ker ϕ̃7

∗ = (y28) and Ker ϕ̃8
∗ = (y30, y31). Also note

that ( λ̃l
∗(yi) )i does, and if λ̃l

∗(yi) is non-zero and contained in 〈t1, . . . , tl〉, then
i = 16, 24, 28, 30 for l = 8, i = 16, 24, 28 for l = 7, and i = 16, 24 for l = 6.

Corollary 1.1. (i) Ker ϕ̃7
∗ = (y28), and Ker ϕ̃8

∗ = (y30, y31).
(ii) Ker λ̃6

∗ = 0, Ker λ̃7
∗ = 0, and Ker λ̃8

∗ = (y31).
(iii) Im π6

∗ ⊂ F 2[y16, y24], Im π7
∗ ⊂ F 2[y16, y24, y28], and Im π8

∗ ⊂ F 2[y16,
y24, y28, y30]⊕ (y31).
(iv) In particular, Ker ϕ̃8

∗ ∩ Im π8
∗ ⊂ y30 · F 2[y16, y24, y28] ⊕ (y31).
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Proof. The equalities are immediate. For the third inclusion notice that
λ̃8

∗(Im π8
∗) ⊂ Im π̂8

∗ ∩ Im λ̃8
∗ = 〈t1, . . . , t8〉 ∩ Im λ̃8

∗. Thus Im π8
∗ is contained

in 〈y16, y24, y28, y30〉⊕Ker λ̃8
∗. Other inclusions are proved similarly.

2. Stiefel-Whitney class of the adjoint representation of E8

Let AdEl
be the adjoint representation of El (l = 6, 7, 8). It is known that

AdE8 satisfies AdE8 |E7 = AdE7 ⊕ µ ⊕ ( 3-dimensional trivial representation),
where µ : E7 → U(56) → O(112) is the realization of the 56-dimensional
complex representation. We refer, for example, to [1, Case 2 in page 52].

As for the Stiefel-Whitney class of AdEl
, the following facts are known.

Firstly, H∗(BE6) is generated by x4 and w32(λ) as an A∗-algebra, where x4

is a generater of H4(BE6) and λ is a representation of E6 whose degree is 54.
This fact is shown in [12, Theorem 6.21 and Remark following it].

Secondly, H∗(BE7) is generated by x4 and w64(AdE7) as an A∗-algebra,
and also by x4 and w64(µ). For these we refer to [14, Corollary 4.6, Proposition
6.1 and Corollary 6.9], and to [13, Proposition 2.11, Theorem 2.12 and Corollary
3.7].

Let A and B be the A∗-subalgebras of H∗(BE7) generated by x4 and
w64(µ), respectively. The image of A in H∗(BẼ7) is trivial, and also in
H∗(BT̃ 7). Consequently, π7

∗ assigns 0 to the Stiefel-Whitney classes wi(AdE7)
and wi(µ), if i ≤ 63 or 65 ≤ i ≤ 95.

Lemma 2.1. π6
∗w32(λ) = y16

2 and π7
∗w64(AdE7) = π7

∗w64(µ) = y16
4.

In lower degrees, it holds that π6
∗wi(λ) = 0 for i < 32 and π7

∗wi(AdE7) =
π7

∗wi(µ) = 0 for i < 64.

Proof. It suffices to prove the first half. Firstly, we can assume that
π6

∗w32(λ) = αy16
2, where α is a scalar, by Corollary 1.1. We notice that

H∗(BT 6) is a finite H∗(BE6)-module. In particular, π̂6
∗(H∗(BT 6)) is also

finite. Suppose that α = 0. Then the image π6
∗(H∗(BE6)) is trivial, and so in

H∗(BT̃ 6). This contradicts the fact above.
Secondly, we verify the case of H∗(BẼ7). π7

∗w64(µ) is of the form αy16
4 +

βy24
2y16, where α, β ∈ F 2. As a result, Sq8(π7

∗w64(µ)) = βy28
2y16 + βy24

3,
which is null as we indicated above. Therefore β = 0. If α = 0, we can show a
contradiction similarly to the case of H∗(BẼ6). The assertion on π7

∗w64(AdE7)
is proved in the same manner.

Proposition 2.1. It holds that Im π6
∗ = F 2[y16

2, y24
2] and Im π7

∗ =
F 2[y16

4, y24
4, y28

4]. In particular, Im π8
∗ ⊂ F 2[y16

4, y24
4, y28

4]⊕ y30 ·F 2[y16, y24,
y28]⊕ (y31).

Proof. The first two are clear from Corollary 1.1 and Lemma 2.1. Since
ϕ̃8

∗(Im π8
∗) = π7

∗(Im ϕ8
∗) ⊂ Im π7

∗, Im π8
∗ is contained in F 2[y16

4, y24
4, y28

4]
⊕Ker ϕ̃8

∗. Thus the last assertion follows from Corollary 1.1.

Let i be a non-negative integer less than 7 for a while. Note that ϕ̃8
∗(π8

∗

(w2i(AdE8))) = 0 because of Proposition 2.1 and the decomposition of AdE8 |E7 .



�

�

�

�

�

�

�

�

On the Stiefel-Whitney classes of the adjoint representation of E8 683

Thus π8
∗(w2i(AdE8)) is lying in Ker ϕ̃8

∗. Corollary 1.1 implies π8
∗(w2i(AdE8))

= 0 for i ≤ 5 and π8
∗(w64(AdE8)) is expressed in the form αy31y33. Therefore,

applying Sq1, we deduce that α = 0 since π8
∗(w2i(AdE8)) = 0 for i ≤ 5.

Lemma 2.2. π8
∗w2i(AdE8) = 0 for i < 7. Therefore π8

∗wi(AdE8) = 0
for i < 128.

Now we begin to show ϕ̃8
∗(π8

∗(w128(AdE8))) = y16
8. In this time we need

an additional fact. The root space decomposition of E7 shows AdE7 |T 7 = ξ⊕ (7-
dimensional trivial representation), where ξ is a representation of T 7 of degree
126. Thus λ7

∗(wi(AdE7)) = 0 for i ≥ 127. In particular, λ̃7
∗π7

∗(w128(AdE7)) =
0. Corollary 1.1 then implies π7

∗(w128(AdE7)) = 0. Since ϕ̃8
∗(π8

∗(w128(AdE8)))
= π7

∗(w128(AdE7 ⊕ µ)), we obtain ϕ̃8
∗(π8

∗(w128(AdE8))) = y16
8.

Theorem 2.1. π8
∗w128(AdE8) = y16

8.

Proof. We can assume that π8
∗w128(AdE8) = y16

8 + αy30
2y28y24y16 +

y31
2(βy33

2+γy30y36+δy34y16
2)+y31y33(εy30y34+p)+ζy31y65y16

2, where α, β, γ,
δ, ε, ζ ∈ F 2 and p ∈ 〈y16, y24, y28, y36, y40, y48〉. Since Sq1π8

∗w128(AdE8) = 0
and Sq1π8

∗w128(AdE8) = γy31
3y36 + εy30y31y34

2 + εy31
2y33y34 + y31y34p, γ =

ε = 0 and p = 0. We apply Sq2 and then we conclude α = β = δ = 0. Lastly,
applying Sq16, we obtain ζ = 0.

The following is an easy consequence of Wu formulae.

Corollary 2.1. F 2[y16
8, y24

8, y28
8, y30

8, y31
8] ⊂ Im π8

∗ ⊂ F 2[y16
8, y24

8,
y28

8, y30
8, y31

8] + Q, where Q ⊂ y30 ·F 2[y16, y24, y28]⊕ (y31).
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