A note on the Stiefel-Whitney classes of representations of exceptional Lie groups

Dedicated to the memory of Professor Masahiro Sugawara

By

Akira Kono

Let E_l be the compact, 1-connected simple exceptional Lie group of rank l (l = 6, 7, 8). Consider the following real representations:

$$\rho_6: E_6 \hookrightarrow U(27) \to SO(54),$$

$$\rho_7: E_7 \hookrightarrow U(56) \to SO(112),$$

$$\rho_7': E_7 \to SO(133)$$
and
$$\rho_8: E_8 \to SO(248),$$

where ρ'_7 and ρ_8 are the adjoint representations (see Adams [1]). The purpose of this note is to show the following without using the structure of $H^*(BE_l)$ where $H^*()$ denotes the mod 2 cohomology ring:

Theorem 1. $w_{2^{l-1}}(\rho_l)$ and $w_{64}(\rho'_7)$ are not decomposable in $H^*(BE_l)$.

Let $p=p_n: Spin(n) \to SO(n)$ be the universal covering and $C_n=\ker p_n$. The subgroup of SO(n) which consists of diagonal matrices is denoted by V(n) and $\tilde{V}(n)=p_n^{-1}(V(n))$. Put $p'=p'_n=p_n|_{\tilde{V}(n)},\ d(6)=10,d(7)=11$ and d(8)=13. E_l contains Spin(d(l)) as a closed subgroup. Denote by $\Delta(l)$ the unique irreducible representation of $\tilde{V}(d(l))$ on which $C_{d(l)}$ acts non-trivially. Note that $\dim \Delta(l)=2^{l-1}$ and $\Delta(l)|_{C_{d(l)}}$ is isomorphic to $2^{l-1}\epsilon$ where ϵ is the one dimensional non-trivial real representation of $C_{d(l)}\cong \mathbb{Z}/2$ (see Quillen [3]). Note that (the center of $E_l)\cap C_{d(l)}=\{0\}$. Therefore $\rho_l|_{C_{d(l)}}$ and $\rho'_7|_{C_{d(7)}}$ are non trivial. Since $\dim \rho_l<2^l$, we have the following:

Lemma 1. $\rho_l|_{\tilde{V}(d(l))} = \Delta(l) + p'^*\mu_l$ where μ_l is a representation of V(d(l)).

On the other hand, since we may assume $C_{d(7)}$ contained in a maximal torus, $\rho'_{7}|_{C_{d(7)}}$ contains at least 7-dimensional trivial representation. Therefore we have

218 Akira Kono

Lemma 2. $\rho'_7|_{\tilde{V}(11)} = \Delta(7) \oplus p'_7 \mu'_7$ where μ'_7 is a representation of V(d(7)).

Denote the natural maps $BC_{d(l)} \subset B\tilde{V}(d(l))$, $B\tilde{V}(d(l)) \to BSpin(d(l))$ and $BSpin(d(l)) \to BE_l$ by i_l, j_l and k_l . Put $\xi_l = k_l \circ j_l \circ i_l$. Note that in $H^*(BC_{d(l)}) = \mathbb{Z}/2[t]$ where $\deg t = 1$, $\operatorname{Im} i_l^* = \mathbb{Z}/2[t^{2^{l-1}}]$ (see Quillen [3]). Using Lemma 1 and Lemma 2, we have

(1.1)
$$w(\xi_l^* \rho_l) = 1 + t^{2^{l-1}}$$

and

$$(1.2) w(\xi_l^* \rho_7') = 1 + t^{64},$$

where w() denotes the total Stiefel-Whitney class. We have $\xi_l^* w_{2^{l-1}}(\rho_l)$ and $\xi_l^* w_{64}(\rho_7')$ are not decomposable in $\operatorname{Im} i_l^*$ and therefore we have Theorem 1.

Remark 2. The fact that $w_{128}(\rho_8)$ is not decomposable in $H^*(BE_8)$ is also obtained by Mimura and Nishimoto using $\varphi^*(w(\rho_8))$ where $\varphi: BSpin(16) \to BE_8$ (Talk in Naha 2004).

Consider the following commutative diagram

where ρ and ρ' are mod 2 reductions. Note that ρ is epic and ρ' is isomorphic. Since $i_l^* = 0$, $\xi_l^* = i_l^* \circ j_l^* \circ k_l^* = 0$. Therefore we have

$$H^4(\xi_l; \mathbb{Z}) = 0.$$

Therefore there exists $\tilde{\xi}_l:BC_{d(l)}\to \widetilde{BE}_l$ such that $\pi_l\circ\tilde{\xi}_l\simeq \xi_l$ where $\pi_l:\widetilde{BE}_l\to BE_l$ is the 4-connected cover. In Ohsita [2] $\pi_l^*(w(\rho_l))$ and $\pi_7^*(w(\rho_7'))$ are determined. To determine $\pi_l^*(w(\rho_l))$ l=6,7 and $\pi_7^*(w(\rho_7'))$ the structures of $H^*(BE_6)$ and $H^*(BE_7)$ are used. In this section we determine $\pi_6^*w(\rho_6)$ and $\pi_7^*w(\rho_7)$ without using $H^*(BE_6)$ and $H^*(BE_7)$. For symbols and notation see Ohsita [2]. Since $\xi_l^*\neq 0$, $\tilde{\xi}_l^*\neq 0$. Note that $\operatorname{Im} \pi_6^*\subset \mathbb{Z}/2[y_{16},y_{24}]$ and $\operatorname{Im} \pi_7^*\subset \mathbb{Z}/2[y_{16},y_{24},y_{28}]$ where $|y_j|=j$, $Sq^8y_{16}=y_{24}$ and $Sq^4y_{24}=y_{28}$. Therefore $\tilde{\xi}_l^*y_{16}=t^{16}$. By (1.1), $\pi_6^*w_j(\rho_6)=0$ $1\leq j\leq 31$ and $\pi_6^*w_{32}(\rho_6)=y_{16}^2$. By (1.1), $\pi_7^*w_j(\rho_7)=0$ $1\leq j\leq 63$ and $\pi_7^*w_{64}(\rho_7)=y_{16}^4+\beta y_{16}y_{24}^2$ for some $\beta\in\mathbb{Z}/2$. Applying Sq^8 we have $0=\beta(y_{24}^3+y_{16}y_{28}^2)$ and therefore $\beta=0$. Using (1.2), we can prove $\pi_7^*w(\rho_7')=y_{16}^4$ similarly. Note that $\rho_7'|_{T^7}$ contains 7-dimensional trivial representation and therefore $w_{128}(\rho_7'|_{T^7})=0$. Using this fact we have $\pi_7^*w_{128}(\rho_7')=0$.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY Kyoto 606-8502, Japan e-mail: kono@math.kyoto-u.ac.jp

References

- [1] J. F. Adams, Lectures on exceptional Lie groups, Chicago Univ. Press, 1996.
- [2] A. Ohsita, On the Stiefel-Whitney class of the adjoint representation of E_8 , J. Math. Kyoto Univ. 44 (2004), 679-684.
- [3] D. Quillen, The mod 2 cohomology ring of extra-special 2-groups and the spinor groups, Math. Ann. 194 (1971), 197-212.